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Abstract

Methylmercury (MeHg) is a highly neurotoxic form of mercury (Hg) present in seafood. Here, we recorded and compared proteomic and
transcriptomic changes in hippocampus of male BALB/c mice exposed to two doses of MeHg. Mice were fed diets spiked with 0.28 mg
MeHgkg™?, 5 mg MeHg kg™, or an unspiked control diet for 77 days. Total mercury content was significantly (P < 0.05) increased in brain
tissue of both MeHg-exposed groups (18 + 2 mg Hg kg™ and 0.56 + 0.06 mg Hg kg™!). Hippocampal protein and ribonucleic acid (RNA)
expression levels were significantly altered both in tissues from mice receiving a low dose MeHg (20 proteins/294 RNA transcripts) and
a high dose MeHg (61 proteins/876 RNA transcripts). The majority but not all the differentially expressed features in hippocampus
were dose dependent. The combined use of transcriptomic and proteomic profiling data provided insight on the influence of MeHg
on neurotoxicity, energy metabolism, and oxidative stress through several regulated features and pathways, including RXR function

and superoxide radical degradation.
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Juvenile mice, exposed to low (0.04 mg kg™ bw day') and high dose (0.67 mg kg™ bw™ day!) MeHg, revealed differential expression

of brain proteome and transcriptome.

Introduction

The organic methylmercury (MeHg) originates from both natural
and anthropogenic sources and is abundantly spread in the
atmosphere and biosphere.’* The compound biomagnifies along
the aquatic food chain,” and the main exposure route of MeHg

for humans is through seafood consumption.® However, mercury
(Hg) exposure differs highly among consumers, as different
types of seafood with varying levels of MeHg are consumed with
different frequency among populations.’~'! Extensive studies
have been conducted based on major contamination incidents in
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Japan and Iraq where levels of exposure to MeHg were high'>/;
however, the levels of MeHg in most consumed commercial
fish species are often relatively low.'* Further, MeHg exposure
exerts a non-monotonic dose response rather than a linear dose
response.’® 1 Thus, effects reported at low exposure doses in
animal trials are not necessarily observed at high doses of MeHg
exposure.’®'® The European Food Safety Authority (EFSA) did
in their latest evaluation of MeHg establish a tolerable weekly
intake level for MeHg at 1.3 pg kgt bw (EFSA 2012). However,
since recent studies discuss the validity of such a threshold dose,
research on low dose effect of MeHg is required.

Factors determining the grade of mercury toxicity comprise the
quantity of the metal ingested, exposure time, and the chemical
form of mercury?3-?9-?! In addition to a long half-life of MeHg, age
and habitat are determinants affecting the levels of accumulated
mercury in the brain of both humans and wildlife animals.?2-2¢
As different types of seafood contain different levels of MeHg and
the intake of seafood differs, the levels of Hg exposure in humans
will also vary. A comprehensive understanding of MeHg toxicity
at a range of doses is therefore important. MeHg is one of the
most toxic forms of mercury able to cross the blood-brain bar-
rier and influence the neurological system, causing the develop-
ing and maturing brain to be particularly vulnerable.??’ Effects of
MeHg on behavioral performance in adolescent mice have been
observed,'® and whereas some effects of MeHg exposure are well
documented, the underlying mechanisms are still not fully un-
covered. The hippocampus is associated with learning, memory,
and IQ, factors pertinent in MeHg toxicity, and is therefore an im-
portant target region of the brain for effects of MeHg.8

During the last decade, proteomic tools have been increasingly
used to identify novel processes and biological pathways regu-
lating toxicological responses to different substances,”® such as
the elucidation of mechanisms underlying MeHg neurotoxicity in
experimental animal model systems.?>*>” Both proteomic®® and
transcriptomic® tools have been extensively used to investigate
MeHg toxicity in different species. However, to date only a few
have used an integrated application of proteomic and transcrip-
tomic data to unravel mechanisms underlying MeHg neurotoxi-
city*® By combining different omics techniques, additional cellu-
lar and molecular mechanisms may be identified and thus, more
molecular changes at low exposure levels may be detected.*! This
was demonstrated when the neurotoxic potential of persistent or-
ganic pollutants was investigated in juvenile female BALB/c mice,
by the combined use of genes and proteins in a targeted biolog-
ical network analyses.*? Knowledge gaps still exist for a full un-
derstanding concerning the cellular processes and downstream
biochemical pathways governing MeHg toxicity.** Hence, combin-
ing transcriptomic and proteomic approaches followed by path-
way analysis software may uncover molecular mediators both at
the transcript and protein levels, providing additional evidence
for possible mechanisms of action underlying the observed MeHg
toxicity.#1#* In our study, we implemented a sensitive approach
combining proteomics and ribonucleic acid (RNA) sequencing to
elucidate the difference between the sub-chronic exposure of a
high dose of 5 mg MeHg kg™ feed or a more environmentally rel-
evant low dose of 0.28 mg MeHg kg™* feed in BALB/c mice during
adolescence and early adulthood.

Materials and methods

Experimental animals and study design

Male mice of the inbred BALB/c strain were obtained from Taconic
Biosciences (Ejby, Denmark) at the age of 2-3 weeks weighing 10

+ 2 g (SD). Young mice were chosen due to the increased sensitiv-
ity to neurotoxic substances during adolescence, a developmental
period where important alterations and maturation of the brain
occur.*#6 The mice were individually housed (NexGen IVC, Allen-
town Inc., Allentown, NJ, USA) and kept in a controlled environ-
ment at 24 £ 2°C, 50% humidity, and a 12/12 h light/dark cycle.
The mice were given sufficient feed to ensure growth and had ad
libitum access to water.

After 5 days of acclimatization, mice were weighed and as-
signed to experimental groups (n/group = 6), ensuring a similar
mean body mass, and fed experimental diets spiked with MeHg
or an unspiked control diet for 11 weeks. The mice were weighed
once a week and fed three times a week with experimental di-
ets. Body composition was assessed at the end of the experiment
using a Minispec LF50mq7.5 NMR Analyzer (Bruker Corporation,
MA, USA), and percentage body fat and lean mass were calculated.
The animal trial and associated experimental protocols were ap-
proved by the Norwegian Food Safety Authority (Mattilsynet; FOTS
ID: 12400).

Experimental diets

The AIN-93G purified diet (Harlan Laboratories Ltd, Indianapolis,
IN, USA) served as a basis for all experimental diets. All ingredi-
ents required for preparation of the diets were mixed in a Crypto
Peerless blender, EF20 (Crypto Peerless, Halifax, UK) and finalized
feeds were stored at —20°C. The experimental diets were spiked
with 0.28 mg MeHg kg™ and 5 MeHg mg kg™!. An approximation
of exposure doses giving a rough estimate of MeHg exposure per
bodyweight was conducted. The estimate was based on total feed
intake, the corresponding MeHg content in feed, divided by length
of experiment (in days) and average body weight throughout the
study, resulting in the approximate exposure doses of 0.04 mg
MeHg kg bw! day! (low dose; LD) and 0.67 mg per kg™' bw™
day™" (high dose; HD).

In brief, for the preparation of diets, a MeHg stock was made,
with a concentration of 1 mg MeHg ml~, where 116.4 mg MeHg-Cl
[methylmercury(Il)chloride, Sigma-Aldrich, Darmstadt, Germany]
was mixed with 1 ml ethanol and added to 49 ml dH,O. Fur-
ther, 56.4 mg cysteine (L-cysteine from non-animal source; Sigma-
Aldrich, Darmstadt, Germany) was mixed with 50 ml dH,0 and
added to the MeHg solution. The molar ratio MeHg:Cys was 1:1.
The HD stock was diluted with dH,0 to prepare the LD stock with
a concentration of 0.058 mg MeHgml™. A cysteine stock was made
by mixing 56.4 mg cysteine with 99 ml dH,0 and 1 ml ethanol, and
the stock was added to the control (Ctr) feed.

The added levels of Hg were verified by inductively coupled
plasma mass spectrometry (ICP-MS) analysis (described in Section
2.4). The Hg levels in the Ctr feed were below the limit of quantifi-
cation (LOQ) for the instrument (n = 4) and the LD and HD MeHg
levels in the experimental diets were in accordance with nom-
inal concentrations within the uncertainty range (+20%) of the
method (n = 4).

Tissue and feces sampling

At termination, the mice were anesthetized with isoflouran (4%)
using an Univentor 400 Anesthesia Unit apparatus (Univentor
Limited, Zejtun, Malta) with airflow at 404 ml min™. The
mice were euthanized through bilateral thoracotomy and blood
sampling through cardiac puncture. Hippocampus, cortex, tib-
ialis, quadriceps femoris, kidneys, and liver were dissected out,
weighed, and collected in plastic bags. All organs were snap-
frozen in liquid nitrogen and further stored at —80°C.
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Mercury quantification

Total Hg (THg) was determined in cortex by direct mercury
analysis (DMA-80, Milestone, Sorisole, Italy) as described by the
United States Environmental Protection Agency*’ Two certified
reference materials were used: dogfish liver (Dolt-4; National
Research Council Canada, Ottawa, Ontario, Canada) and tuna fish
(ERM-CE464; European Reference Material ERM). The obtained
values of the reference material were within the uncertainty of
the method (+£20%). LOQ of the method is 0.08 ng Hg.

THg concentrations in diets were quantified by ICP-MS
(Thermo iCAP Q, ThermoFisher Scientific, Waltham, MA, USA) as
described by Julshamn et.al.*® The apparatus was equipped with
a FAST SC-4 DX auto sampler (Elemental Scientific, Omaha, NE,
USA). The samples were decomposed by UltraWAVE, Single Reac-
tion Chamber Microwave Digestion System (Milestone, Sorisole,
Italy) prior to the analyses. Rhodium, germanium, and thulium
were used as internal standards to correct for any drift of the
instrument. Two certified reference materials were used: lobster
hepatopancreas (Tort-3; National Research Council Canada,
Ottawa, Ontario, Canada) and oyster tissue (SRM-1566b; National
Institute of Standards and Technology, Gaithersburg, MD, USA).
The obtained values of the reference material were within the
uncertainty of the method (£20%). The LOQ of this method is
0.005 mg kg™ for mercury.

Proteomic analysis

A total of 12 hippocampus samples (four mice per exposure
group) were prepared for proteomic analysis. Sample preparation
and protein mass spectrometry were performed as previously
described,* following standard protocols and procedures at the
Proteomics Unit at the University of Bergen, Norway (PROBE).
In short, proteins were extracted and solubilized in lysis buffer
(4% SDS, 0.1 M Tris-HCI, pH 7.6). Samples were subjected to
sonication (QS5 Sonicator, Qsonica, CT, USA), centrifuged (10 min
at 13 000 rpm), and supernatants were collected. Protein concen-
tration was determined (Pierce™ BCA Protein assay kit, Thermo
Scientific) and samples were digested with trypsin following a
filter-aided sample preparation digestion protocol as described
by Widniewski et al.>® Tryptic peptides (0.5-1 ug) dissolved in 2%
acetonitrile and 0.1% formic acid were injected into an Ultimate
3000 RSLC system (Thermo Scientific, CA, USA) connected to a
linear quadrupole ion trap-orbitrap (LTQ-Orbitrap Elite) mass
spectrometer (Thermo Scientific, Bremen, Germany) equipped
with a nanospray Flex ion source (Thermo Scientific). Raw data
obtained in data-dependent acquisition mode were analyzed
as described by Tyanova et al>' In short, MaxQuant>? with
the built-in search engine Andromeda®® was used for protein
identification and protein quantification. MaxQuant (version
1.6.4.0) parameter settings were set as described before*® Only
reviewed protein sequences of the mouse proteome (UniProt
proteome: UP000000589; accession date: 08.11.2018) were used
for protein identification. False discovery rates for peptide and
protein identification were set to 1%; only unique peptides were
used for label-free quantification (LFQ). MaxQuant data were
processed further using Perseus (version 1.6.10) as described in
Tyanova et al.>* Protein expression data including LFQ intensities,
statistical significance, fold changes, and protein identification
features including accession numbers, protein names, isoelectric
point, molecular weight, and protein identification metrics are
provided in Table S1.
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RNA sequencing

Five hippocampus samples from each group were included for
RNA sequencing. Total RNA was extracted from each sample
using BioRobot® EZ1 and RNA Tissue Mini Kit (Qiagen, Hilden,
Germany), including DNAase treatment as instructed in the RNA
Tissue Mini Kit manual (Qiagen, Hilden, Germany). RNA quality
was analyzed using a NanoDrop ND-1000 UV-vis Spectropho-
tometer (NanoDrop Technologies, Wilmington, USA). Agilent 2100
Bioanalyzer and RNA 6000 Nano LabChip kit (Agilent Technolo-
gles, Palo Alto, USA) were used to validate RNA integrity. Samples
had 260/280 and 260/230 ratios between 2.0 and 2.1 and between
2.0 and 2.2, respectively. The average RNA integrity number of
all samples was 8.3 + 0.4. Sequencing and library preparation
were performed by the Norwegian Sequencing Centre (Www.
sequencing.uio.no). DNA libraries were prepared using 90 ng total
RNA input to the TruSeq Stranded RNA Library Prep Kit (Illumina)
and standard Illumina adaptors for multiplexing. Libraries for
each individual sample were sequenced using the NextSeq
[llumina platform according to the manufacturer’s instructions,
generating single-end 75 bp read libraries with an average library
size of 15 & 2 million reads. TrimGalore 0.4.2 tool (https://github.
com/FelixKrueger/TrimGalore) was applied for removing adaptors
and for quality trimming using default parameters. Sequence
quality for each sample was investigated using FastQC imbedded
in TrimGalore. Libraries were mapped individually to the Mus Mus-
culus genome (Ensembl genome build NCBIM37, downloaded July
2015) using the Hisat2 short read aligner version 2.0.4. Transcript
abundance for the individual libraries was estimated using Fea-
tureCounts™ of the Subread package (http://subread.sourceforge.
net/). Count data was normalized using the DESeq2 (version
1.18.1)°¢ included in the Bioconductor R package (version 3.4.4).
Features for which the row sum was <10 reads were excluded
from further analysis prior to normalization and differential
expression analysis. RNA expression data, including gene iden-
tification, statistical significance, and fold changes, are provided
in Table S2, while all raw data have been uploaded to the gene
expression omnibus (GEO) with accession number GSE135381.

Statistical analyses and bioinformatics

Tissue levels of mercury and physiological parameters were sta-
tistically evaluated using GraphPad Prism® 7.05 (GraphPad Soft-
ware Inc., La Jolla, CA, USA) using one-way analysis of variance
(ANOVA) followed by Tukey’s multiple comparison test. Normality
was tested by D’Agostino and Pearson normality test and Shapiro-
Wilk normality test, and homogeneity of variance was assessed
using Brown-Forsythe and Bartlett’s test. If these assumptions
were not met, statistics were performed on Box-Cox transformed
data.

Qlucore Omics Explorer 3.5 (Qlucore AB, Lund, Sweden) was
used for statistical analysis of proteomic and transcriptomic data.
Prior to statistical analysis, pre-processed RNA seq data were log2
transformed; proteomics data were analyzed as output by Perseus
using log10 transformed LFQ intensity data. Data were analyzed
using ANOVA comparing the three groups followed by planned
contrasts, to investigate the specific comparisons between groups.
In the omics analyses, P-values were used at a threshold of P < 0.05
for statistical significance. The use of P-values has previously
been recommended to increase the sensitivity of omics analy-
ses®’; however, this may also increase the chance of obtaining
false positives of which the reader should be aware. Therefore,
multiple test-corrected g-values are also reported in Tables S1
and S2. The use of P-values was chosen since the simultaneous
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application of RNA sequencing and proteomics reduces the
chance of obtaining false positives by increasing the weight of ev-
idence. The data were further examined by principal component
analysis (PCA). Nomenclature of proteins and RNA transcripts are
based on the UniProt database and are denoted in the text with
uppercase and lower case letters, respectively. Overlapping fea-
tures between proteins and RNA transcripts are denoted with
italic uppercase letters.

Biological network analyses were conducted in the software In-
genuity Pathway Analysis (IPA; Qiagen, Redwood City, CA, USA).
The entire datasets of proteins and transcripts were imported
to IPA using UniProt and Ensembl Genomes accession numbers
for proteins and transcripts, respectively. A threshold of P < 0.05
was chosen for accepting statistical significance; human, rats, and
mice were the species of selection; and the settings for specifi-
cation of tissues and cells were narrowed down to “nervous sys-
tem,” “central nervous system (CNS) cell lines,” and “neuroblas-
toma cells.” “Core analysis” (using default settings) was performed
on proteins and RNA transcripts separately in each group, for fur-
ther manual inspection and comparison. Comparison analyses
were done in IPA to summarize similarities between LD and HD,
as well as overlap between RNA seq data and proteomic data. For
illustrative purposes, the online software Venny 2.1.0°% was used
to generate all Venn diagrams.

Results

To explore how dietary MeHg influences protein and RNA expres-
sion in hippocampus, we sub-chronically exposed BALB/c mice
to a low dose MeHg (LD; 0.28 mg Hg kg™ feed, corresponding to
~0.04 mg MeHg kg bw! day?), a high dose MeHg (HD; 5 mg
Hg kg feed corresponding to ~0.67 mg MeHg kg? bw* day?),
or an unspiked control feed (Ctr). We recorded different physi-
ological parameters, determined Hg concentrations in brain tis-
sue, and performed transcriptomic and proteomic analyses on
hippocampus.

Physiological parameters and mercury levels in
the brain

During the dietary exposure, no mortality or clinical signs of
toxic MeHg effects were observed. Physiological endpoints, such
as body weight, feed intake, body composition, and organ weights,
and hematology of the mice were assessed throughout the trial
and post mortem (Fig. S1 and Table S3). Apart from a small de-
crease in hemoglobin in the HD mice, no significant changes were
observed between treatments for these parameters. As expected,
the Hg levels in cortex were significantly (P < 0.05) higher in HD-
fed mice than LD-fed mice and the Ctr (Fig. 1). Hg levels in LD-fed
mice were also significantly (P < 0.05) higher than in the Ctr-fed
mice.

Principal component and hierarchical cluster
analyses

A total of 2224 proteins and 21 412 RNA transcripts from hip-
pocampus were analyzed using the Qlucore Omics Explorer (QOE,
version 3.5, Qlucore, Lund, Sweden). PCA (Fig. 2) revealed a clear
separation between the three groups (HD, LD, and Ctr) indicating
distinct protein and RNA expression patterns. In total, 93 proteins
and 1295 RNA transcripts were found to be significantly regulated
(P < 0.05) following a one-way ANOVA analysis.
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0.0 f T
Ctr LD HD

Fig. 1 Hg concentration (mg Hg kg™!, ww) in cortex collected during the
last week of the experiment. Data are presented as means with 95%
confidence interval spread (n = 6). Different letters indicate statistical
significance between groups. Statistics are performed using one-way
ANOVA and Tukey’s multiple comparison test on Box-Cox transformed
data; raw data are presented in figure. Abbreviations: Ctr, control; LD,
low dose; HD, high dose; ww, wet weight.

Integration of transcriptomic and proteomic
analyses, comparing low dose and high dose
MeHg exposure

Post hoc analyses were performed for each treatment group fol-
lowing the one-way ANOVA. Comparing the LD group with the
Ctr group revealed differential expression (P < 0.05) of 20 proteins
(8 up/12 down) and 294 RNA transcripts (148 up/146 down). Com-
pared with Ctr mice, 61 proteins (21 up/40 down) and 876 RNA
transcripts (505 up/371 down) were differentially (P < 0.05) ex-
pressed in HD-fed mice.

Venn analysis of differentially expressed features revealed
overlapping expression patterns between the LD and HD groups
both on protein and RNA levels (Fig. 3). In total, 120 of the differ-
entially regulated RNA transcripts compared with Ctr were over-
lapping in the LD and HD groups (Table S5B). These overlapping
transcripts are involved in a variety of molecular functions and
processes, showing a top network in IPA related to hematological
system development and function, inflammatory response, and
tissue morphology (Table S5B). Of the differently regulated pro-
teins in the LD and HD mice, 12 were overlapping, and showed a
top network related to cell death and survival, cell morphology,
and nervous system development and function (Table S5A).

The broad range of non-overlapping features and the conse-
quent identification of several non-overlapping pathways in IPA
between the LD and HD groups (Table 1) could indicate certain
selective effects from a low and a high dietary MeHg exposure
on protein and RNA expression in the hippocampus. These re-
sults will, however, be weaker statistically since these are only de-
tected in single groups, without the confirmation of protein/RNA
overlap. Protein expression in hippocampus reveals differences in
affected molecular pathways in LD compared with HD exposed
mice. The top four canonical pathways affected in the LD group
are related to either modulation of the neurotransmitter gluta-
mate or cytoskeletal dynamics, while all the top five canonical
pathways regulated in the HD group are related to changes in
metabolism (Table 1). However, based on RNA expression, most
affected canonical pathways are related to immunological effects
both for LD- and HD-fed mice. Albeit effects in the HD group
were more pronounced in terms of significance and feature cov-
erage, effects also spanned into vascular, immune, and xenobiotic
metabolism (Table 1).
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Fig. 2 PCA of proteins (A, n = 4) and RNA transcripts (B, n = 5). Multigroup comparisons (ANOVA) were performed using QOE, P < 0.05. Abbreviations:

Ctr, control; LD, low dose; HD, high dose.
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Fig. 3 Overview of differentially expressed proteins and RNA overlapping
between the two exposure groups. The differentially expressed features
displayed are initially compared with the control group. Table of
overlapping RNA and proteins is found in Table S5. Abbreviations: LD,
low dose; HD, high dose; prot, proteins.

Joint findings between RNA transcriptomic and
proteomic in hippocampus

To investigate overlapping proteins and RNA transcripts differ-
ently expressed after MeHg exposure, all features affected by
MeHg exposure independent of dose were visualized in a Venn
diagram (Fig. 4).

A total of 20 features were significantly (P < 0.05, ANOVA) regu-
lated both at the RNA and protein levels (Table 2). Of these, 12
specific features were significantly regulated (P < 0.05) follow-
ing a two-group planned comparison post hoc test both at RNA
expression and protein abundance levels. These 12 overlapping
features were apolipoprotein E (APOE), dual specificity protein
phosphatase 3 (DUS3), glial fibrillary acidic protein (GFAP), an-
nexin A7 (ANXA7), 2-iminobutanoate/2-iminopropanoate deam-
inase (RIDA), catalase (CATA), tetraspanin-2 (TSN2), ornithine
aminotransferase, mitochondrial (OAT), vesicle-associated mem-
brane protein 1 (VAMP1), complement C1q subcomponent sub-
unit B (C1QB), GTP-binding protein Di-Ras2 (DIRA2), and gluta-
mate decarboxylase 1 (DCE1), all mainly affected by the high dose
MeHg exposure. Additionally, GFAP and DCE1 were affected by the
low dose MeHg on protein level. Of the abovementioned features,
seven were upregulated and five were downregulated. Features
upregulated by MeHg exposure were involved in antioxidant ac-

tivity and handling of toxic metabolites (APOE, CATA, RIDA), cal-
cium regulation (ANXA?7), the neurological function (GFAP), the
immune system (C1QB), and amino acid synthesis (OAT). Of the
downregulated features, one was involved in GTPase activity and
neuronal development (DIRA2), downregulation of MAP kinases
and subsequent effects on cellular proliferation and differentia-
tion (DUS3), vesicle transport (VAMP1), regulation of neurotrans-
mitter GABA (DCE1), and oligodendrocyte differentiation (TSN2).

To further investigate the MeHg-induced effects, canonical
pathways and upstream regulators, which were predicted to
be significantly affected (P < 0.05) by IPA (Table S4A and B)
for both RNA transcripts and protein differential expression,
were determined (Fig. 5). Identified canonical pathways were
lipopolysaccharide/interleukin-1 (LPS/IL-1) mediated inhibition of
RXR function, apelin adipocyte signaling pathway, LXR/RXR acti-
vation, arginine biosynthesis IV, phagosome maturation, FXR/RXR
activation, superoxide radical degradation, and glutamate degra-
dation III. Further, several suggested upstream regulators were
also found to be affected by both RNA and protein analyses
dependent on dose (Fig. Sb).

Discussion

In this study, using transcriptomic and proteomic analyses of hip-
pocampus from BALB/c mice, we demonstrate that known ef-
fects of MeHg, such as differentially expressed genes and pro-
teins indicative of inflammation, metabolism, and neurotoxicity,
are present at both low dose of MeHg (0.28 mg Hg kg™ feed) and
high dose of MeHg exposure (5 mg Hg kg™ feed). The combined
findings from both proteomic and RNA sequencing increase the
confidence in the validity of these results irrespective of the statis-
tical challenges encountered when both approaches were applied
independently.

Seafood is the main dietary exposure source for MeHg in
humans.® Several fish species contain levels comparable to, or
above, the levels of MeHg in the low dose diets of the present
trial.’*»>% Bioaccumulation of MeHg along the aquatic food chain
can lead to higher levels of mercury in predatory fish and marine
mamumals.?>® This fact presents a 2-fold threat. First, contents
in seafood and seafood products consumed by humans may
contain very high levels of MeHg.5%%* Second, in an ecotoxico-
logical perspective, MeHg can pose a risk to the wildlife itself.5>
Total mercury levels assessed in brain of several wildlife species
like mink, striped dolphins, and otters have been detected in
the same order of magnitude as observed in the mice exposed
to the high dose MeHg in the present trial ?>%-%¢ Levels of Hg
detected in the brain of the mice exposed to both LD and HD
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Table 1. Overview of main findings according to exposure group in the IPA software. Abbreviations: Ctr, control; LD, low dose; HD, high

dose; RNA seq, RNA sequencing

Proteomic P-value  No. of molecules Proteomic P-value  No. of molecules
LD HD
Top canonical pathways
Glutamate-dependent acid resistance 0.0025 1 Glycerol degradation I 0.00014 2
Glutamate degradation III (via 4-aminobutyrate)  0.0062 1 Palmitate biosynthesis I 0.0076 1
RhoA signaling 0.0087 2 Glycerol-3-phosphate shuttle 0.0076 1
Signaling by Rho family GTPases 0.035 2 Fatty acid biosynthesis initiation II 0.0076 1
Mechanisms of viral exit from host cells 0.049 1 Tetrahydrobiopterin biosynthesis I 0.0114 1
Top upstream regulators
NFIC 1.5E-06 MYRF 9.7E-10
LEPR 2.2E-06 BCKDK 1.4E-08
ST8SIA4 4.5E-06 EIF2AK4 1.4E-08
BACE1 9.0E-06 TARDBP 2.2E-08
FGFR2 1.5E-05 MTOR 4.3E-07
RNA sequencing P-value  No.of molecules  RNA sequencing P-value  No. of molecules
LD HD
Top canonical pathways
FXR/RXR activation 0.0129 4 Phagosome formation 1.4E-07 18
Systemic lupus erythematosus signaling 0.0219 5 Leptin signaling in obesity 3.2E-07 14
Nur77 signaling in T lymphocytes 0.0222 3 Adrenomedullin signaling pathway  1.9E-06 22
TREM1 signaling 0.0243 3 Dendritic cell maturation 2.5E-06 19
Cholecystokinin/gastrin-mediated signaling 0.0274 3 Xenobiotic metabolism signaling 6.7E-06 25
Top upstream regulators
AGER 0.00162 KDM1A 2.5E-21
1IL12B 0.00226 MAPT 1.2E-16
PTGER2 0.00495 1L10 2.1E-11
B4GALNT1 0.00575 ST8SIA1 4.3E-10
SSB 0.00931 B4GALNT1 9.7E-10
Proteins RNA transcripts demonstrated. Results from previous animal trials using simi-
lar low doses as the present study have shown motor function
damage, coordination deficits, and learning impairments in rats.”?
Also, reduced neuronal cell density and increased oxidative stress
together with decreased antioxidant capacity have been observed
in rats exposed to similar low doses of MeHg.*>/® Comparable lev-
els of MeHg in cortex, as demonstrated in our study, have pre-
5 viously been reported to reduce cognitive performance.”* Other
(;3 2702)) proteomic studies have in line with our findings displayed several

Fig. 4 Comparison of differentially expressed proteins and RNA by MeHg
exposure (LD and HD related to Ctr) detected through proteomics and
RNA sequencing, respectively (one-way ANOVA, P < 0.05). Features are
matched and overlapped independent of MeHg exposure dose. The
overlapping features are presented in Table 2.

are also comparable to levels predicted in humans living in
contaminated areas from studies using hair measurements.%%7%
Previous studies have determined neurophysiological alterations
by prenatal exposure to low levels of MeHg’?; these authors have
therefore stated that there are no “safe levels” of MeHg, which
underlines the importance of low dose studies of MeHg.

No apparent changes in gross pathology were observed in our
study. Still, alteration in the proteome and transcriptome, indicat-
ing toxic effects in the hippocampus after MeHg exposure, was

effects of MeHg on molecular pathways, which include neurode-
generative processes and altered energy metabolism,**> indicat-
ing that despite the lack of pathology, early indicators of adverse
effects by MeHg can still be determined in the hippocampal pro-
teome and transcriptome.

A clear separation of the expression patterns in LD mice from
both Ctr and HD mice was observed, suggesting that high and low
MeHg doses can act by different mechanisms. However, due to rel-
atively low statistical power, these results could also potentially
be a statistical artifact due to too low sample size to determine
sufficient effect size in the LD group. Still, together with the no-
tion that MeHg can exert a non-monotonic effect,'®? our results
indicate the importance of investigating the effects of MeHg expo-
sure at varying levels. Although clear differences between doses
were found, we also detected some consistent effects across ex-
posure levels, such as effects on energy metabolism and neuro-
logical development. This is in accordance with previous reports
on MeHg toxicity in which effects on neuronal development and
energy metabolism were detected.*34:3%.7> Effects of low levels of
MeHg exposure have been reported in humans, resulting in neu-
rocognitive effects through prenatal exposure,’® and the general
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Fig. 5 Overlapping canonical pathways and upstream regulators between RNA sequencing and proteomics, and LD and HD. (a) Overlapping significant

W

canonical pathways (P < 0.05); “a” denotes overlap between HD RNA and HD protein; “b” denotes overlap for LD protein and HD RNA; and “c” denotes

wn

overlap for HD both for RNA and proteins and LD RNA. (b) Overlapping significant upstream regulators (P < 0.05); “a” denotes overlap between HD RNA
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and HD protein; “b” denotes overlap for LD protein and HD RNA; “c” denotes overlap for HD both for RNA and proteins and LD protein; “d” denotes
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overlap for all groups; “e” denotes overlap for LD and HD for proteins and LD for RNA; “f” denotes overlap for LD and HD for RNA and HD protein; and
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¢" denotes overlap for HD protein and LD RNA.

acknowledgement of MeHg as a neurotoxic compound has been
firmly established.?”” Our results are in accordance with earlier
studies demonstrating that a range of MeHg effects are dose de-
pendent, but also according to our findings, transcriptomic and
proteomic signatures indicate that potentially adverse neurolog-
ical implications of early-life MeHg exposure can be present al-
ready at low dose exposure levels, whereas a higher dose may be
required to observe the fuller extent of molecular pathways af-
fected by MeHg.

Furthermore, when assessing overlapping canonical pathways
affected by both low and high dose MeHg, we found that both
LPS/IL-1 mediated inhibition of RXR function and superoxide rad-
ical degradation were significantly affected by both low dose and
high dose MeHg on protein level. The RXRs play an important reg-
ulatory role in metabolism, such as glucose, fatty acid, and choles-
terol metabolism,”” corroborating the notion that metabolism is
affected independent of dose. Superoxide radical degradation is
mainly mediated by the feature CATA, which was found to be up-
regulated both after low dose and high dose exposure on the pro-
tein level and after high dose exposure on the RNA level. Super-

oxide dismutase (SOD) transcripts were also regulated in the high
dose. Both CATA and SOD are important antioxidants important
for maintenance of oxidative homeostasis in the cells.’®7% Oxida-
tive stress is a well-known molecular mechanism of MeHg,?” and
is in our study affected independently of dose.

An important aspect of this study is the combined use of RNA
sequencing and proteomic profiling. Of note, the overlapping
features identified at both RNA and protein levels were mostly
concomitantly up- or downregulated suggesting consistency in
regulation between the two methods. It should be noted that
brain proteomics does not necessarily correspond well to gene
expression*” due to the substantial role of post-transcriptional,
translational, and protein degradation in the brain.® The latter
may partly explain the low correlation between RNA-seq and
proteomic findings in our study. Furthermore, post-translational
modifications have also been highlighted as important for higher
brain functions,®! and these have not been assessed in this study.
Still, effects conserved between RNA and protein may be strong
indications of a MeHg-induced response, despite general low
effect sizes of differentially regulated proteins.
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Most corresponding findings between RNA and proteins were in
the high dose-exposed mice, which could indicate that expression
of proteins and RNA transcripts in the brain is highly regulated
until a certain threshold dose occurs. Expression levels of VAMP1,
DIRA2, and TSN2 involved in exocytosis and the release of neu-
rotransmitter, glutamatergic and catecholaminergic neurons and
neurogenesis, and oligodendrocyte development and immune
functions, respectively, -8 were downregulated indicating neu-
rotoxicity as previously observed.®” % Additionally, expression
levels of APOE, CATA, and RIDA involved in antioxidative defense
and handling of toxic reactive metabolites were upregulated,
and superoxide radical degradation was observed as a canonical
pathway in both transcriptomic and proteomic analyses. Oxida-
tive stress has been suggested as a driving force in MeHg-induced
neurotoxicity,”-# where downregulation of VAMP1, DIRA2, and
TSN2 may indicate a detrimental effect of MeHg on the neuronal
cells and neurotransmitter function. In addition, the possible
increase in reactive oxygen species and oxidative stress by MeHg
may have led to a compensatory upregulation of the APOE, RIDA,
and CATA features with antioxidative properties. The additional
upregulation of the protein CATA in the low dose-exposed mice
may suggest that this antioxidant can be an early biomarker
of MeHg toxicity, supporting oxidative stress as an effect of
MeHg evident already by low dose exposures. However, whether
the expression levels of specific features are a direct cause of
MeHg exposure or compensatory mechanisms cannot firmly be
established emphasizing the complexity of omics interpretation.

Conclusion

We have shown that MeHg can induce differential protein and
RNA expression at doses corresponding to relevant human and
wildlife exposure levels. We identified dose-independent MeHg-
regulated signatures involving effects on energy metabolism, ox-
idative homeostasis, and the nervous system function. Further, we
have shown indications that expression of different proteins and
RNA transcripts as well as associated pathways can be affected
differently by low and high dose MeHg exposure, emphasizing the
importance of dose-response studies when examining the toxico-
logical effects of MeHg.

Supplementary material

Supplementary data are available at Metallomics online.
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