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A B S T R A C T   

It is assumed that maturation in the Barents Sea capelin is length-dependent, and that fish of at least 14 cm will 
potentially spawn. Current assessment and management models for the stock are based on this assumption of 
constant maturity at length (MaL). Using data from scientific surveys, this paper examines the validity of the 
constant MaL assumption, and contrasts it with maturation based on examination of fish gonads. Our analyses, 
based on time series of 16 years, show that MaL-based estimates of the proportion of maturing stock usually 
exceed gonad-based estimates. The difference varies consistently with time, and stock-size. We discuss the 
consequence of our results in the context of uncertainty associated with the current harvest rule.   

1. Introduction 

The Barents Sea capelin (Mallotus villosus Müller) – referred to 
hereafter simply as capelin – is a pelagic, planktivorous fish, with a 
maximum length of approximately 21 cm, and a maximum longevity of 
5 years. It is generally accepted that the species is semelparous, with the 
spawning stock biomass dominated by fish of ages 3–5 (Hjermann et al., 
2004). Capelin in the Barents Sea is central to the marine ecosystem, as it 
is a key forage species that dominate the diet of, for instance, the large 
stock of Northeast Arctic cod (Olsen et al., 2010). 

Like most fish species with a short life history, the capelin stock size 
and spawning-age distribution fluctuate considerably. The annual 
acoustic survey (introduced in 1972) for abundance estimation of 
capelin stock size shows that the stock has experienced drastic fluctua
tions, with collapses occurring during 1985–1989, 1993–1997, 
2003–2006 (Gjøsæter, 1998; Gjøsæter et al., 2007) and more recently, a 
mini-collapse in 2015–2016 (ICES, 2018). Associated with fluctuations 
in stock size are variations in capelin growth rates (Yndestad and Stene, 
2002), age (Baulier et al., 2012; Carscadden et al., 2013; Ingvaldsen and 
Gjøsæter, 2013), and length (Gjøsæter, 1998; Tereshchenko, 2002) at 
maturation. 

Changes in maturation (age or length) may be caused by several 
factors (environmental conditions, population size, mortality, food 
supply), and the result may represent a trade-off between reproductive 
(gonad development), and somatic growth (Engen and Sæther, 2016; 

Stawitz and Essington, 2019). For species with unusual and/or complex 
life histories, the underlying factors that influence maturation may be 
difficult to untangle (Thorpe et al., 1998; Stokes et al., 2013; Folkvord 
et al., 2014; Hunter et al., 2015). This may be critical for short-lived 
species in a fluctuating environment as the probability of surviving 
multiple spawning seasons is low (Rideout et al., 2005; Rideout and 
Tomkiewicz, 2011; Engen and Sæther, 2016). 

Ideally, both measurements (length and gonad-based) should be used 
when determining maturation stage of fish, and estimating the spawning 
stock biomass (Lassen and Medley, 2001, Ch. 9). In practice, however, 
this may be difficult due to the cost and logistics of data collection and 
processing (Rowell et al., 2017). There are also challenges with the 
method (macroscopic, histological techniques or gonadosomatic index) 
used to measure gonads (Saborido-Rey and Kjesbu, 2012; Flores et al., 
2015; Balci and Aktop, 2019) and the time of year the survey is con
ducted (Chen and Paloheimo, 1994; Gjøsæter et al., 2002; Gjøsæter 
et al., 2012). Hence, for pragmatic reasons, either length- or 
gonad-based information is used to determine maturation (Gjøsæter 
et al., 2002; Gangl and Pereira, 2003; Saborido-Rey and Kjesbu, 2012). 

For the Barents Sea capelin, both length- and gonad-based informa
tion are collected at a time when the gonad is still in development. The 
capelin stock is assessed in September of year Y (since 1972), giving 
estimates of abundance at age and length. Since full gonad-development 
is expected in March–April (in year Y + 1), projections of the spawning 
stock biomass are derived from length-based information (Gjøsæter 
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et al., 2012). The length-based index is used to obtain a projection of the 
maturing stock biomass at January 1 (i.e., 3 months after assessment). 
The harvest control rule (HCR) uses this projected biomass to estimate 
the proportion of stock that can be fished (quota) when commercial 
fisheries commences in January. The goal is to ensure an escapement 
stock biomass of 200 kilo-tonnes by April 1 (i.e., commencement of 
spawning) (Gjøsæter et al., 2015; Tjelmeland and Bogstad, 1993). 
Currently, the Barents Sea capelin stock assessment model uses a cut-off 
of length 14 cm, that is non-sex-specific across years and age-groups, in 
calculating the proportion of maturing stock (Gjøsæter et al., 2002; IMR, 
2011). Growth rates, age and maturation may fluctuate with, for 
example, stock size. Hence, this assumption of constant length at 
maturation could potentially bias estimates of spawning stock biomass 
which, subsequently, affect management decisions on total allowable 
catch (TAC) (Gjøsæter, 1986; Kraak et al., 2005; Carscadden et al., 
2013). 

Our goal is to assess maturation (level and trend) using gonad-based 
information and compare this with maturation based on the current 
(length-based) approach. We investigate existence of inconsistencies 
between the two maturation metrics, and discuss the effect in the broad 
context of managing short-lived species, whose growth and maturation 
rates are strongly influenced by temporal demographic and environ
mental variability. 

2. Materials and methods 

2.1. Data 

The data set consists of 16 years (2003–2018 time series) of bio
logical data from the Joint Norwegian/Russian Ecosystem Survey in the 
Barents Sea and adjacent waters that are carried out annually in the 
autumn. The survey, conducted just prior to the winter cessation of 
growth, monitors the status of abiotic and biotic factors and changes in 
these in the Barents Sea (IMR/PI, 2018). It provides extensive data from 
a grid of planned sampling stations (including pelagic, midwater and 
bottom trawls), and supplementary trawls based on acoustic registra
tions, with annual sampling effort varying between 320 and 599 trawl 
stations. 

The biological measurements used in this manuscript are individual 
length measurements, maturation stage classifications, and estimated 
total number of age-2 capelin sampled at planned pelagic trawl stations 
only. The assumption is that the random samples are representative of 
the whole catch of capelin. Data samples from bottom trawl stations are 
unlikely to reflect the composition of capelin population since capelin 
occupy pelagic zones of the water column. These data are therefore, not 
used in annual fished stock assessment (ICES, 2019). The stock assess
ment process integrates uncertain information from many data sources, 
and modelling assumptions. Decoupling the effect of the various sources 
of uncertainty on the assessment results is non-trivial. Therefore, we 
have defined analysis that isolate effects of age on maturation by 
focusing on one age group (Hamre, 1985). This has the advantage that 
we can clearly ascribe differences to choice of maturation metric. 
However, this comes with the caveat that we cannot make quantitative 
considerations on the consequences for assessment. In addition, the 
abundance indices (both spawning and non-spawning) of age-2 capelin 
are much larger compared to age-3 capelin (Fig. 1, adapted from tables 
reported in ICES, 2019), because it generally has a relatively large 
number of length samples examined for various biological parameters. 
This is relevant as the proportion of individuals maturing at a given age 
may depend on the strength of the cohort considered (Gjøsæter and 
Bogstad, 1998, and Table 1). Finally, the proportion of capelin at age-2 is 
determined during the survey in autumn. This proportion is likely to 
change by the time of spawning, as fish would have crossed over to an 
older age-group. As is customary, age groups are separated by the 1st of 
January. We refer the reader to Gjøsæter (1999) and Eriksen et al. 
(2018) for detailed description of the survey design. In our analyses, we 

use all age-2 capelin that were staged for maturity during the survey, 
with a sex-independent cut-off length of 14 cm for mature capelin, and 
gonad-based maturity classification following Tables 2 and 1, 1  

2.2. Estimators of maturing fish 

Pelagic trawl stations are the primary sampling units (PSUs) in the 
scientific survey of pelagic fish. Let i = {1, …, N} represent a count index 
over the total of N trawl stations surveyed in a given year. Furthermore, 
let Mi and pi represent respectively, the total number of fish sampled, 
and proportion of maturing fish at station i. Then an estimator for the 
proportion of mature fish, p̂, for p, in a given year y is defined by 

p̂(j) =

∑N
i Mi × p̂i(j)
∑N

i Mi
, j ∈ {Lb, Gb}, (1)  

where maturity is classified as: (i) length-based (Lb), such that 
Lb ≥ 14 cm, or (ii) gonad-based-inspection (Gb) following consider
ations in Table 2. Approximate 95% bootstrap confidence intervals are 
computed by applying the bias-corrected percentile bootstrap procedure 
in Magnusson et al. (2013), Jourdain et al. (2020) to the PSUs, in the 
following way:  

(i) Sample the N PSUs with replacement.  
(ii) Sample lengths from the sampled stations in step (i) and compute 

p̂i(Lb) and p̂i(Gb).  
(iii) Calculate proportions mature in a given year, p̂(Lb) and p̂(Gb).  
(iv) Calculate the difference between p̂(Lb) and p̂(Gb) in step (iii).  
(v) Repeat steps (i)–(iv) B times, where B = 1000 is the number of 

bootstrap replicates. 

To make inference about the difference, if any, between p(Lb) and 
p(Gb), we examine the nominal 95% confidence interval for (p(Lb) − p(Gb)). 
Several methods for testing whether the difference between two point 
estimates are statistically significant exist (Cole and Blair, 1999; 
Cromwell et al., 1996; Schenker and Gentleman, 2001). Some of which 
include the following  

(i) the overlap procedure (Payton et al., 2003) – simple to use but 
potentially conservative and substantially deficient especially 
when associated standard errors of point estimates are not very 
different from each other (Schenker and Gentleman, 2001);  

(ii) the “standard” method (see Schenker and Gentleman, 2001) – 
tests the hypotheses: H0 : μx = μy and H0 : σx = σy, and assumes 

Table 1 
Column 2 (Total) includes only representative stations of the whole catch, and 
which are used in the stock assessment.  

Year 

Pelagic stations 
sampled 

Biological 
measurements 

Number mature 

Total With age-2 
fish 

Length Staged Length 
≥14 cm 

Gonads 

2003 25 12 374 185 109 10 
2004 35 14 328 223 130 78 
2005 25 12 478 478 310 81 
2006 21 12 372 372 308 122 
2007 21 12 318 318 251 141 
2008 30 21 726 726 514 186 
2009 27 19 548 548 227 128 
2010 45 30 505 504 213 68 
2011 37 26 668 663 183 63 
2012 27 22 317 317 84 32 
2013 36 26 470 461 78 1 
2014 26 21 461 461 103 11 
2015 21 18 535 535 225 73 
2016 31 14 283 278 221 17 
2017 79 68 1898 1891 1272 713 
2018 40 35 839 834 584 365  
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estimates are consistent, asymptotically normal and asymptoti
cally independent; and 

(iii) nonparametric bootstrapping – flexible as it makes no assump
tions about the distribution of p̂Lb and p̂Gb. 

Here, we use nonparametric bootstrapping to estimate associated stan
dard errors σLb and σGb of pLb and pGb, respectively. By the duality be
tween 100(1 − α) confidence intervals and significance tests level α, we 
test the null hypothesis H0 : p(Lb) − p(Gb) = 0 by examining whether the 
nominal 95% interval contains 0. The null hypothesis will be rejected if 
and only if the interval does not contain 0. 

2.3. Estimator of overlap between juvenile and maturing fish 

This section deals with quantifying the difference in length distri
butions of immature/mature fish, using a gonadal-based metric for 

maturity. Our approach is based on quantifying the similarity in prob
ability density functions of the length distributions. 

Let fA(x) and fB(x) be the probability density functions (pdfs) over a 
continuous variable x, for sets A and B, respectively. We define the 
overlapping coefficient (see Weitzman, 1970; Ridout and Linkie, 2009), 
Δ ∈ [0, 1], as the common area under both fA and fB, i.e., 

Δ(A,B) =
∫

Rn

min[fA(x), fB(x)]dx, (2)  

where Δ(A, B) = 1 or Δ(A, B) = 0 if and only if the densities are 
respectively, identical or have no overlap, for all values of x. 

In practice, the density functions fA(x) and fB(x) are unknown. This 
paper derives the pdfs by applying a nonparametric density estimation 
technique to data. Nonparametric estimation of the overlapping coeffi
cient has been studied in more detail by Schmid and Schmidt (2006), 
who proposed several estimators for Δ(A, B) that are based on Kernel 
Density Estimation (KDE). We adopt the distribution-free approximation 
technique by Pastore and Calcagnì (2019), where KDE estimates are 
used to approximate fA(x) and fB(x) and subsequently, Δ(A, B). 

Let A and B represent immature, and mature fish, respectively, and 
let La = (la1,…, lai ,…, lan) (similarly for B) be length realizations of fish 
that are classified as immature, based on gonad-inspection. The KDE 
approximation, f̂ A(l), of fA(l) (and similarly for fB(l)) is given by 

f̂ A(l) = n− 1
∑n

i=1
K
(

l − la
i

h

)

, (3)  

where K is the kernel and h is the bandwidth (Pastore and Calcagnì, 
2019). The function overlap in the R package overlapping is used to 
estimate Δ̂(A,B) (Team, 2017; Pastore, 2018). We use the R function 
boot.overlap, with B = 1000 bootstrap replications, to estimate the 
variance of Δ̂(A,B) (Pastore, 2018; Pastore and Calcagnì, 2019) and 
approximate 95% confidence intervals. The nonparametric 
bias-corrected percentile bootstrap method is used to estimate confi
dence intervals (Gavaris and Ianelli, 2002; Magnusson et al., 2013). 

Table 2 
Description and classification of macroscopic gonadal stages for Barents Sea 
capelin.  

Stage Condition Description Classification   
Female Male  

1 Immature Juvenile phase. 
Gonads are band- 
like, thin, and 
totally transparent 

Juvenile phase. 
Gonads are band- 
like, thin, and 
totally transparent  

2 Immature Gonads are a little 
larger in volume, 
sex is relatively easy 
to see. Gonads are 
still transparent and 
colorless. 

Gonads are a little 
larger in volume, 
sex is relatively easy 
to see. Gonads are 
still transparent and 
colorless. 

Immature 

3 Maturing 

Gonads opaque, but 
a little developed in 
volume. Visible 
blood veins. Ovaries 
have yellow/white 
grains in the 
lamellae. 

Gonads opaque, but 
a little developed in 
volume. Visible 
blood veins. Testes 
white or with white 
spots. Solid 
consistency. 

4 Maturing 

Gonads larger in 
volume. Ovaries 
yellowish or white. 
The eggs can be 
easily seen and 
gonads begin to 
become 
transparent. 

Gonads larger in 
volume. Visible 
blood veins. Testes 
light grey or white, 
the milt is viscous. 

Mature 
5 Maturing 

The ovaries fill the 
entire body cavity. 
Most eggs are 
transparent. 

Testes grey or 
white. The milt is a 
thin liquid, but the 
gonads are still not 
running. Pressure 
applied to the 
abdomen will cause 
milt to run out. 

6 Spawning 

Running gonads. 
Light pressure on 
the abdomen causes 
eggs to come out. 

Running gonads. 
Light pressure on 
the abdomen causes 
milt to come out. 

7 Spent 
The gonads are 
slack, contains 
remaining eggs. 

The gonads are 
slack, contains 
remaining milt. 

8 Resting 

Gonads are small. 
Eggs are not visible. 
Difficult to 
distinguish from 
stage 2 or 3. 

Gonads are small. 
Difficult to 
distinguish from 
stage 2 or 3.  

9 Abnormal 

Gonad has 
developed 
abnormally, 
difficult to 
determine the stage 

Gonad has 
developed 
abnormally, 
difficult to 
determine the stage   

Fig. 1. Total stock biomass (in tonnes 106) by age (1–4 years) in years 
2003–2018, where age-2 capelin are more dominant compared to maturing 
age-3 and age-4 capelin (IMR/PI, 2018, p. 55). 
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3. Results 

3.1. Evaluating maturity classification criteria 

Temporal patterns in estimated proportions of maturing age-2 
capelin show visible disagreement between the two maturity classifi
cation criteria (Fig. 2, upper panel). The estimates of the proportion 
maturing based on length consistently exceed those based on gonadal- 
inspection, with larger differences during periods of low capelin abun
dance (Fig. 2, lower panel). In addition, large variability exists in gonad- 
based estimates, particularly in the earlier years (2003–2008). We note 
that maturity stages of the capelin are determined by macroscopic ex
amination of gonads. However, inference based on macroscopic exam
ination can be highly uncertain, unless collaborated by microscopic 
examination of gonads. Even small amounts of error in the staging 
process of gonads can lead to profound variation in estimated pro
portions and decreased precision (Ferreri et al., 2009). An evaluation of 
the expected relative standard error {se(p̂Gb)/p̂Gb} in gonad-based esti
mates of proportion mature lies in the range 16.3–122.3%, with at least 
10 of the sampled years exceeding 25%. The results also show that the 
null hypothesis — there is no difference in estimated proportions be
tween the two maturity criteria — can be rejected for all years, except 
2012. We conclude therefore, that the disagreement between the two 
criteria is statistically significant (Fig. 2, lower panel). The 
non-significant difference between ̂pLb and ̂pGb in 2012 may therefore be 
merely coincidental. We also infer from Fig. 2 (lower panel) that in 
general, the occurrence of large differences in maturation metrics are 
coincidental with low capelin stock size. Thus, estimates of the pro
portion of the stock classified as maturing are expected to be biased 
during years of stock collapse (moratorium on fisheries), while 

consistent results are expected for years when the stock is open to 
commercial fisheries. 

3.2. Estimating overlap indices 

Fig. 3 (left panel) shows mixed results in variation of temporal 
overlap between immature and mature population of age-2 capelin. The 
14 cm maturity criterion splits the region of overlap between the mature 
and juvenile population (~) equally for only three of the sampled years 
(2009–2010 and 2015). The overlap is, on average, larger in the earlier 
years (2005–2008), where growth rate of the juvenile population 
increased but not all have attained gonadal-maturity. The years 
(2005–2008) of increasing immature population growth rate are also 
marked by increase in both the total, and maturing stock biomass (Fig. 3, 
right panel). Furthermore, a significant number of fish that are classified 
as maturing based on gonad-inspection have lengths in excess of 14 cm; 
see Fig. 3, left panel. During the period 2011–2014, there seems to be a 
gradual shift towards an earlier onset of maturity (length <14 cm). 
Observe that this period marks a gradual decrease in the capelin biomass 
towards collapse (Fig. 3, right panel). 

The lowest overlap values were in years 2016, 2011 and 2003, 
where, for two of these years, total capelin biomass was at its lowest 
(<0.60 million tonnes). These years with low overlap coefficients were 
part of, or immediately preceded, specific periods of drastic stock 
decline that resulted in fishing moratoria (2003–2007, 2016-2020) 
(Hjermann et al., 2004; Gjøsæter et al., 2016). Observe that analysis 
for year 2013 is excluded in this section. This is because only one mature 
capelin was sampled and the overlap R package requires at least two 
points in each input data set for automatic selection of bandwidth and, 
hence, the estimation of the pdf (Pastore, 2018, and Table 1). 

Fig. 2. Upper panel: Estimated proportion of mature age-2 capelin based on length {p̂(Lb)} and gonad-inspection {p̂(Gb)}, Lower panel: Estimated difference in 
proportions {p̂(Lb) − p̂(Gb)} with total biomass (in tonnes 103) in years 2003–2018, with approximate 95% bias-corrected bootstrap confidence intervals for 1000 
bootstrap replications. 
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4. Discussion 

Both individual length and gonad-based classifications in the fall are 
proxy indicators of the propensity to spawn in the spring. We have 
compared the two criteria using selected trawl stations that mimic those 
typically used in abundance index estimation. However, because 
abundance indices are derived from acoustic surveys, our estimates of 
total catch proportions cannot be extrapolated to population parame
ters. This notwithstanding, the estimates provide a solid basis for 
comparing criteria and investigating temporal trends. In order to isolate 
effects, we have focused on age-2 capelin, which constitutes the largest 
fraction of the stock biomass, and also have a good mix of mature and 
immature individuals for almost all years. 

Our analysis shows variability in the proportion of stock maturing 
(for length-based maturation cut-off) that depends on whether the 
maturing stock proportion is being calculated for a low (collapse) or 
high-to-moderate biomass state. There is a high propensity for under
estimating the maturing stock biomass for the former, while an over
estimation is more likely for the latter scenario. These findings are 
consistent with those in Jokar et al. (2021). 

While length-based and gonad-based classifications systematically 
trend in the same direction, we find that these criteria yield different 
estimates of the proportion of mature age-2 capelin, with the former 
consistently providing higher estimates. The most likely errors in 
macroscopic inspection would be those of not detecting all maturing 
individuals, rather than misclassification of those immature, as mature. 
Using microscopic gonad investigation, Forberg and Tjelmeland (1985) 
showed that for most years, L50 for age-2 capelin were somewhat higher 
than for age-3 female capelin. Precisely for this reason, we have sought 
to isolate the age-effect by focusing on age-2 capelin. We note that the 
difference between the two maturation criteria does not seem to be 
invariant of stock size (Fig. 2, lower panel), with large differences in 
years of low total capelin abundance, and vice versa. 

In order to more directly assess how the two maturation criteria 
differ, we have also analysed the overlap of the length distributions of 
sampled fish that are classified as mature or immature, based on gonad- 
inspection. Our results indicate that thresholds for optimal separation 
differ from year to year, depending on stock size (Fig. 3, right panel). 

The years with less individual growth, and less visible maturation 

provides a better length-separation between the mature and immature 
parts of the age-group, and hence a better agreement between the two 
criteria. The signal seems to be driven by variation in the length of 
immature fish (Fig. 3, left panel), with modes clearly shorter in years 
with large stock size. 

Interestingly, this tendency is not evident until the halt in increasing 
stock biomass (year 2009), but continues almost throughout the period 
of decline in stock biomass (2014–2015). If one assumes systematic bias 
in the macroscopic gonad inspections, these observations may be 
indicative of how stock size is linked to individual growth and matu
ration conditions. 

There is a limitation in inferring the potential impact of our results on 
stock assessment. However, we have documented the existence of bias 
(length- or gonad-based) when estimating the proportion of the stock 
that can be classified as mature. Minimizing bias within each metric 
(length-, and gonad-based), and across metrics is relevant to sustainable 
management of the capelin stock, as the annual TAC is based on esti
mates of the maturing stock biomass. This consideration also extends, in 
general, to other short-lived fish stocks (including forage fish). Such 
species are usually characterized by volatile population dynamics and 
rates of maturation may be influenced by confounding events of 
changing biotic and abiotic conditions. A special relevance of our results 
applies to those short-lived species that are managed by escapement 
strategies, and for which combining information from different data 
sources may be attractive in helping reduce uncertainty in management 
decisions. 

5. Conclusions 

The fraction of total capelin biomass that can be considered as 
maturing can be determined either based on length measurements or on 
gonad inspections. Results presented in this paper show that for each of 
these methods, estimates of maturing stock proportion exhibit a tem
poral trend that is influenced by stock size. The average length at 
maturation (using a length-based metric) is much higher during periods 
of commercial fisheries than during fisheries moratorium times. This, in 
turn, means that the maturation intensity (i.e., the change in maturation 
proportion with respect to length, measured at the median length) will 
be higher when stock numbers are low, than for cases when the stock 

Fig. 3. Left: Estimated kernel densities of immature and mature age-2 capelin based on gonad-inspection, Right: Estimated overlap coefficients with approximate 
95% bias-corrected bootstrap confidence intervals, and biomass of maturing and immature capelin (in tonnes, 103) (ICES, 2019) for years 2003–2018. 
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size is high. In comparing estimates from the two metrics, we observe 
that the level of temporal discrepancy is determined by stock size. 

While direct gonad inspections at an early (pre-maturation) stage are 
not necessarily better indicators of maturation than length, the 
assumption of constant length at maturation is rather strong, and sig
nificant inter-annual variation in maturation at length is supported by 
previous microscopic analysis. The strong co-trending of the difference 
in predicted mature proportion between maturation criteria and the size 
of the stock, strongly suggest that this inter-annual variation is not due 
to random fluctuation, but reflect density effects. The assumption of 
constant maturation length may, therefore, introduce a stock-size 
dependent bias in the assessment of spawning stock biomass. Gonad 
and length measurements are taken during the same survey. Hence both 
measurements can be used to estimate bounds for the spawning stock 
biomass in a transparent manner that is reflective of the inherent un
certainty in determining fish maturation. 

The results in this paper are also significant from an ecological 
perspective. The large discrepancies in maturation metrics at low stock 
size may be reflective of different scenarios by which capelin allocates 
energy to metabolism, growth, and reproduction. Further research is 
required to help understand the link between energy allocation and 
population density in capelin, as well as the subsequent effect on 
maturation scheduling. 
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Carscadden, J.E., Gjøsæter, H., Vilhjálmsson, H., 2013. Recruitment in the Barents Sea, 
Icelandic, and eastern Newfoundland/Labrador capelin (Mallotus villosus) stocks. 
Prog. Oceanogr. 114, 84–96. 

Chen, Y., Paloheimo, J., 1994. Estimating fish length and age at 50% maturity using a 
logistic type model. Aquat. Sci. 56 (3), 206–219. 

Cole, S.R., Blair, R.C., 1999. Overlapping confidence intervals. J. Am. Acad. Dermatol. 41 
(6), 1051–1052. 

Cromwell, G., Davis, G., Morrow, W., Primo, R., Rozeboom, D., Sims, M., 
Stanisiewski, E., et al., 1996. Efficacy of the antimicrobial compound U-82, 127 as a 
growth promoter for growing-finishing pigs. J. Anim. Sci. 74 (6), 1284–1287. 

Engen, S., Sæther, B.-E., 2016. Optimal age of maturity in fluctuating environments 
under r-and K-selection. Oikos 125 (11), 1577–1585. 

Eriksen, E., Gjøsæter, H., Prozorkevich, D., Shamray, E., Dolgov, A., Skern-Mauritzen, M., 
Stiansen, J.E., et al., 2018. From single species surveys towards monitoring of the 
Barents Sea ecosystem. Prog. Oceanogr. 166, 4–14. 

Ferreri, R., Basilone, G., D’Elia, M., Traina, A., Saborido-Rey, F., Mazzola, S., 2009. 
Validation of macroscopic maturity stages according to microscopic histological 
examination for European anchovy. Mar. Ecol. 30, 181–187. 

Flores, A., Wiff, R., Díaz, E., 2015. Using the gonadosomatic index to estimate the 
maturity ogive: application to Chilean hake (Merluccius gayi gayi). ICES J. Mar. Sci. 
72 (2), 508–514. 

Folkvord, A., Jørgensen, C., Korsbrekke, K., Nash, R.D., Nilsen, T., Skjæraasen, J.E., 
2014. Trade-offs between growth and reproduction in wild Atlantic cod. Can. J. Fish. 
Aquat. Sci. 71 (7), 1106–1112. 

Forberg, K.G., Tjelmeland, S., 1985. Maturity studies of Barents Sea capelin: variations in 
length at maturity for female capelin. The Proceedings of the Soviet-Norwegian 
Symposium on the Barents Sea Capelin 213–221. 

Gangl, R.S., Pereira, D.L., 2003. Biological performance indicators for evaluating 
exploitation of Minnesota’s large-lake walleye fisheries. N. Am. J. Fish. Manag. 23 
(4), 1303–1311. 

Gavaris, S., Ianelli, J.N., 2002. Statistical issues in fisheries’ stock assessments. Scand. J. 
Stat. 29 (2), 245–267. 

Gjøsæter, H., 1986. Growth of the Barents Sea Capelin Compared to Stock Size and 
Geographical Distribution. ICES. 

Gjøsæter, H., 1998. The population biology and exploitation of capelin (Mallotus villosus) 
in the Barents Sea. Sarsia 83 (6), 453–496. 

Gjøsæter, H., 1999. Studies on the Barents Sea Capelin (Mallotus villosus Müller), with 
Emphasis on Growth (Ph.D. thesis). 

Gjøsæter, H., Bogstad, B., 1998. Effects of the presence of herring (Clupea harengus) on 
the stock-recruitment relationship of Barents Sea capelin (Mallotus villosus). Fish. 
Res. 38 (1), 57–71. 

Gjøsæter, H., Bogstad, B., Tjelmeland, S., 2002. Assessment methodology for Barents Sea 
capelin Mallotus villosus (Müller). ICES J. Mar. Sci. 59 (5), 1086–1095. 

Gjøsæter, H., Bogstad, B., Tjelmeland, S., 2007. Why Did Three Capelin Stock Collapses 
in the Barents Sea Affect the Ecosystem Differently?. 

Gjøsæter, H., Bogstad, B., Tjelmeland, S., Subbey, S., 2015. A retrospective evaluation of 
the Barents Sea capelin management advice. Mar. Biol. Res. 11 (2), 135–143. 

Gjøsæter, H., Hallfredsson, E.H., Mikkelsen, N., Bogstad, B., Pedersen, T., 2016. 
Predation on early life stages is decisive for year-class strength in the Barents Sea 
capelin (Mallotus villosus) stock. ICES J. Mar. Sci. 73 (2), 182–195. 

Gjøsæter, H., Tjelmeland, S., Bogstad, B., 2012. Ecosystem-based management of fish 
species in the Barents Sea. Global Progress in Ecosystem-Based Fisheries 
Management 333–352. 

Hamre, J., 1985. Assessment and management of Barents Sea capelin. Proceedings of the 
Soviet-Norwegian Symposium on the Barents Sea Capelin 5–24. 

Hjermann, D.Ø., Ottersen, G., Stenseth, N.C., 2004. Competition among fishermen and 
fish causes the collapse of Barents Sea capelin. Proc. Natl. Acad. Sci. 101 (32), 
11679–11684. 

Hunter, A., Speirs, D.C., Heath, M.R., 2015. Fishery-induced changes to age and length 
dependent maturation schedules of three demersal fish species in the Firth of Clyde. 
Fish. Res. 170, 14–23. 

ICES, 2018. Interim Report of the Working Group on the Integrated Assessments of the 
Barents Sea (WGIBAR), 9–12 March, 2018. International Council for the Exploration 
of the Sea, ICES CM 2018/IEASG:04. 

ICES, 2019. Arctic Fisheries Working Group (AFWG), 2019. International Council of the 
Exploration of Sea, Scientific Reports. 1:30. 934. 10.17895/ices.pub.5292. 

IMR, 2011. Barents Sea Capelin Stock Annex – Assessment of Fish at IMR. Institute of 
Marine Research. http://www.assessment.imr.no/Barents. 

IMR/PINRO, 2018. Survey Report from the Joint Ecosystem Survey in the Barents Sea 
and adjacent waters, August–October 2018. Joint Report Series, IMR/PINRO report 
no. 2-2018. https://www.hi.no/resources/ECOSYSTEM-SURVEY-2018-IMR-PINRO 
-2-2019.pdf. 

Ingvaldsen, R.B., Gjøsæter, H., 2013. Responses in spatial distribution of Barents Sea 
capelin to changes in stock size, ocean temperature and ice cover. Mar. Biol. Res. 9 
(9), 867–877. 

Jokar, M., Subbey, S., Gjøsæter, H., 2021. A logistic function to track time-dependent fish 
population dynamics. Fish. Res. 236, 105840. 

Jourdain, N., Breivik, O., Fuglebakk, E., Aanes, S., Vølstad, J., 2020. Evaluation of 
sampling strategies for age determination of cod (Gadus morhua) sampled at the 
North Sea International Bottom Trawl Survey. ICES J. Mar. Sci. 77 (3), 859–869. 

Kraak, S.B., Bolle, L.J., Rijnsdorp, A.D., 2005. The Determination of Biomass Reference 
Points for North Sea Plaice: The Influence of Assumptions About Discards, Weight, 
Maturity and Stock-Recruitment Relationships (No. C056/05). Tech. rep., RIVO. 

Lassen, H., Medley, P., 2001. Virtual Population Analysis: A Practical Manual for Stock 
Assessment. Food & Agriculture Org, p. 400. 

Magnusson, A., Punt, A.E., Hilborn, R., 2013. Measuring uncertainty in fisheries stock 
assessment: the delta method, bootstrap, and MCMC. Fish Fish. 14 (3), 325–342. 

Olsen, E., Aanes, S., Mehl, S., Holst, J.C., Aglen, A., Gjøsæter, H., 2010. Cod, haddock, 
saithe, herring, and capelin in the Barents Sea and adjacent waters: a review of the 
biological value of the area. ICES J. Mar. Sci. 67 (1), 87–101. 

Pastore, M., 2018. Overlapping: an R package for estimating overlapping in empirical 
distributions. J. Open Source Softw. 3 (32), 1023. https://doi.org/10.21105/ 
joss.01023. 

Pastore, M., Calcagnì, A., 2019. Measuring distribution similarities between samples: a 
distribution-free overlapping index. Front. Psychol. 10. 

Payton, M.E., Greenstone, M.H., Schenker, N., 2003. Overlapping confidence intervals or 
standard error intervals: what do they mean in terms of statistical significance? 
J. Insect Sci. 3 (1). 

Rideout, R.M., Rose, G.A., Burton, M.P., 2005. Skipped spawning in female iteroparous 
fishes. Fish Fish. 6 (1), 50–72. 

Rideout, R.M., Tomkiewicz, J., 2011. Skipped spawning in fishes: more common than 
you might think. Mar. Coast. Fish. 3 (1), 176–189. 

Ridout, M.S., Linkie, M., 2009. Estimating overlap of daily activity patterns from camera 
trap data. J. Agric., Biol., Environ. Stat. 14 (3), 322–337. 

Rowell, T.J., Demer, D.A., Aburto-Oropeza, O., Cota-Nieto, J.J., Hyde, J.R., Erisman, B. 
E., 2017. Estimating fish abundance at spawning aggregations from courtship sound 
levels. Sci. Rep. 7 (1), 1–14. 

N.O.A.S. Jourdain et al.                                                                                                                                                                                                                       

http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0005
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0005
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0005
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0010
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0010
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0015
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0015
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0015
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0020
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0020
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0025
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0025
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0030
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0030
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0030
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0035
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0035
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0040
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0040
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0040
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0045
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0045
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0045
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0050
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0050
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0050
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0055
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0055
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0055
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0060
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0060
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0060
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0065
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0065
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0065
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0070
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0070
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0075
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0075
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0080
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0080
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0085
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0085
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0090
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0090
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0090
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0095
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0095
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0100
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0100
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0105
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0105
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0110
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0110
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0110
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0115
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0115
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0115
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0120
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0120
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0125
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0125
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0125
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0130
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0130
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0130
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0135
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0135
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0135
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0140
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0140
http://www.assessment.imr.no/Barents
https://www.hi.no/resources/ECOSYSTEM-SURVEY-2018-IMR-PINRO-2-2019.pdf
https://www.hi.no/resources/ECOSYSTEM-SURVEY-2018-IMR-PINRO-2-2019.pdf
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0155
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0155
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0155
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0160
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0160
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0165
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0165
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0165
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0170
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0170
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0170
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0175
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0175
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0180
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0180
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0185
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0185
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0185
https://doi.org/10.21105/joss.01023
https://doi.org/10.21105/joss.01023
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0195
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0195
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0200
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0200
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0200
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0205
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0205
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0210
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0210
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0215
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0215
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0220
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0220
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0220


Fisheries Research 237 (2021) 105880

7

Saborido-Rey, F., Kjesbu, O.S., 2012. Growth and Maturation Dynamics. Institute of 
Marine Research (CSIC) and Institute of Marine Research. (IMR). 

Schenker, N., Gentleman, J.F., 2001. On judging the significance of differences by 
examining the overlap between confidence intervals. Am. Stat. 55 (3), 182–186. 

Schmid, F., Schmidt, A., 2006. Nonparametric estimation of the coefficient of 
overlapping-theory and empirical application. Comput. Stat. Data Anal. 50 (6), 
1583–1596. 

Stawitz, C.C., Essington, T.E., 2019. Somatic growth contributes to population variation 
in marine fishes. J. Anim. Ecol. 88 (2), 315–329. 

Stokes, T.K., McGlade, J.M., Law, R., 2013. The Exploitation of Evolving Resources: 
Proceedings of an International Conference, Held at Jülich, Germany, September 
3–5, 1991, vol. 99. Springer Science & Business Media. 

Team, R. C, 2017. R: A Language and Environment for Statistical Computing. R Found. 
Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 
http://www.R-project.org/.  

Tereshchenko, E.S., 2002. The dynamics of population fecundity in Barents Sea capelin. 
ICES J. Mar. Sci. 59 (5), 976–982. 

Thorpe, J.E., Mangel, M., Metcalfe, N.B., Huntingford, F.A., 1998. Modelling the 
proximate basis of salmonid life-history variation, with application to Atlantic 
salmon, Salmo salar L. Evolut. Ecol. 12 (5), 581–599. 

Tjelmeland, S., Bogstad, B., 1993. The Barents Sea capelin stock collapse: a lesson learn. 
Risk Evaluation and Biological Reference Points for Fisheries Management Canadian 
Special Publication of Fisheries and Aquatic Sciences 127–139. 

Weitzman, M.S., 1970. Measures of Overlap of Income Distributions of White and Negro 
Families in the United States, vol. 22. US Bureau of the Census. 

Yndestad, H., Stene, A., 2002. System dynamics of the Barents Sea capelin. ICES J. Mar. 
Sci. 59 (6), 1155–1166. 

N.O.A.S. Jourdain et al.                                                                                                                                                                                                                       

http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0225
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0225
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0230
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0230
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0235
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0235
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0235
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0240
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0240
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0245
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0245
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0245
http://www.R-project.org/
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0255
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0255
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0260
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0260
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0260
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0265
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0265
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0265
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0270
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0270
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0275
http://refhub.elsevier.com/S0165-7836(21)00008-4/sbref0275

	Maturation in the Barents Sea capelin – Contrasting length- and gonad-based metrics
	1 Introduction
	2 Materials and methods
	2.1 Data
	2.2 Estimators of maturing fish
	2.3 Estimator of overlap between juvenile and maturing fish

	3 Results
	3.1 Evaluating maturity classification criteria
	3.2 Estimating overlap indices

	4 Discussion
	5 Conclusions
	Funding
	Declaration of Competing Interest
	Acknowledgements
	References


