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Abstract
Habitat changes represent one of the five most pervasive threats to biodiversity. 
However, anthropogenic activities also have the capacity to create novel niche 
spaces to which species respond differently. In 1880, one such habitat alterations 
occurred in Landvikvannet, a freshwater lake on the Norwegian coast of Skagerrak, 
which became brackish after being artificially connected to the sea. This lake is now 
home to the European sprat, a pelagic marine fish that managed to develop a self-
recruiting population in barely few decades. Landvikvannet sprat proved to be ge-
netically isolated from the three main populations described for this species; that 
is, Norwegian fjords, Baltic Sea, and the combination of North Sea, Kattegat, and 
Skagerrak. This distinctness was depicted by an accuracy self-assignment of 89% 
and a highly significant FST between the lake sprat and each of the remaining samples 
(average of ≈0.105). The correlation between genetic and environmental variation 
indicated that salinity could be an important environmental driver of selection (3.3% 
of the 91 SNPs showed strong associations). Likewise, Isolation by Environment 
was detected for salinity, although not for temperature, in samples not adhering to 
an Isolation by Distance pattern. Neighbor-joining tree analysis suggested that the 
source of the lake sprat is in the Norwegian fjords, rather than in the Baltic Sea de-
spite a similar salinity profile. Strongly drifted allele frequencies and lower genetic di-
versity in Landvikvannet compared with the Norwegian fjords concur with a founder 
effect potentially associated with local adaptation to low salinity. Genetic differen-
tiation (FST) between marine and brackish sprat is larger in the comparison Norway-
Landvikvannet than in Norway-Baltic, which suggests that the observed divergence 
was achieved in Landvikvannet in some 65 generations, that is, 132 years, rather than 
gradually over thousands of years (the age of the Baltic Sea), thus highlighting the 
pace at which human-driven evolution can happen.
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1  | INTRODUC TION

Humans have dramatically impacted the Earth's surface and pro-
moted striking ecosystem and biodiversity alterations over the 
course of the last two centuries, hence becoming an evolution-
ary force of extraordinary influence (Albuquerque et al., 2018; 
Ceballos et al., 2015; Hooper et al., 2012). Human activities gen-
erate major pressures on habitats and organisms and are asso-
ciated with evolutionary changes that can occur within tens of 
years, a phenomenon known as “contemporary evolution” (Besnier 
et al., 2014; Otto, 2018; Pelletier & Coltman, 2018; Stockwell 
et al., 2003). Human-driven evolution can happen at a pace and 
extent that is significantly higher than that of natural causes (Bull 
& Maron, 2016; Hendry et al., 2008; Palumbi, 2001; Therkildsen 
et al., 2019). Anthropogenic activities have altered and created 
novel niche spaces and species' responses to ecosystem alter-
ations vary from avoidance to adaptation, including exploitation 
(Bull & Maron, 2016).

Humans are fundamentally changing connections within and 
among ecosystems over a wide range of spatial scales and habitat 
types, hence modifying the levels of connectivity (Crook et al., 2015). 
Such changes can pose direct threats to communities, but may also 
create novel environments that influence the evolutionary trajecto-
ries of populations and species (Allendorf et al., 2012), and can alter 
the phenotypic landscapes of species by decreasing or increasing 
genetic diversity (Figure 1) (Hendry et al., 2017). Many examples 
of contemporary evolution are associated with colonization events, 
species introductions, or invasions (Colautti & Lau, 2015; Johnston 
& Selander, 1964; Reznick & Ghalambor, 2001). Populations colo-
nizing new environmental conditions can be exposed to novel se-
lective forces that lead to adaptive divergence and differentiation 
from the original population (Björklund & Gustafsson, 2015; Hendry 
et al., 2002).

The construction of navigation canals is an example of hu-
man-facilitated connectivity between two previously isolated eco-
systems (Galil et al., 2007). Canals can link marine and freshwater 

K E Y W O R D S
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F I G U R E  1   Hypothetical adaptive landscapes showing mean population fitness (color contours) and its genetic consequences (a). Black 
circles show potential distribution of phenotype/genotype. The starting adaptive landscape has three fitness peaks that are each occupied 
by its own genetic and adapted population (Coastal Norway, North Sea, and Baltic Sea), where the blue circle of each population depicts 
the environment (dark blue for marine environment, light blue for brackish environment). When humans' actions created the connection of 
Landvikvannet with the sea, added a new peak (brackish environment) to the original sprat adaptive landscape. Two plausible scenarios are 
possible following the creation of the new ecological niche. (b) The neighboring population colonizes the new habitat, but the selection is 
not enough for the new population to differentiate itself from the ancestral one. (c) Selection in the new environment is strong enough so 
that the population of the new habitat differs from the ancestral population. In that case, a phenomenon of parallel adaptation to brackish 
environments can occur
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bodies allowing aquatic organisms to disperse to new areas and 
eventually colonize novel environments (Crook et al., 2015). 
One such connectivity change took place in 1880, when the lake 
Landvikvannet (henceforth denoted as Landvik for abbreviation), 
on the southern Norwegian Skagerrak coast, was artificially con-
nected to the adjacent marine fjord (Strandfjorden, Grimstad, 
Norway) by a 3 km long narrow canal (Reddal Canal). The con-
struction of the canal, built to transport logs down to the dock-
yards by the sea as well as to drain the lake to increase the surface 
of arable land, lowered the water level in the lake by 3 m, turning 
the lake brackish as saltwater inflows over the tidal cycle while 
there is a continuous flux of freshwater from streams into the lake 
(Kanalkontoret, 1883). This human alteration drove changes in 
species assemblages, facilitating the colonization of marine spe-
cies like the Atlantic herring (Clupea harengus) (Linnaeus, 1758) 
and European sprat, Sprattus sprattus (Linnaeus, 1758). Although 
it is unsure when these marine species colonized Landvik, the first 
sprat sample taken by the Institute of Marine Research dates back 
to 1999.

The European sprat is a small pelagic fish that is widely distrib-
uted from northern Norway to Morocco, the Baltic Sea, the north-
ern Mediterranean basins, and the Black Sea (Debes et al., 2008). 
Three geographically distinct genetic groups have been described 
with nuclear markers: (a) Norwegian fjords, (b) Baltic Sea, and (c) 
a wide-ranging component spanning the North Sea, Kattegat–
Skagerrak in north to the Celtic Sea, and Bay of Biscay in south 
(Glover et al., 2011; Limborg, Hanel, et al., 2012; Limborg et al., 2009; 
Quintela et al., 2020). Furthermore, mitochondrial control region re-
vealed two additional demes in the Mediterranean Sea, Gulf of Lyon, 
and Adriatic Sea (Debes et al., 2008). Differences found in candidate 
loci for divergent selection between the fresh- to brackish water 
Baltic Sea and fully marine populations suggest that local adaptation 
to low salinity is likely (Quintela et al., 2020), as has been shown in 
other Clupeid species such as the Atlantic herring in the Baltic Sea 
(Guo et al., 2016; Limborg, Helyar, et al., 2012), and the European an-
chovy (Engraulis encrasicolus Linnaeus, 1758) in the Adriatic (Ruggeri 
et al., 2016) and Tyrrhenian Seas (Catanese et al., 2017). The colo-
nization of Landvik's brackish waters might have been possible due 
to the sprat's standing genetic variation allowing adaptation to a 
range of salinities, as conditions in Landvik partly resemble those in 
the Baltic Sea, the largest brackish water body in the world (Florian 
Berg, 2018).

The relatively recent colonization of Landvik by sprat provides 
an opportunity to study a contemporary evolution process, testing 
whether the creation of this new environment has promoted ge-
netic differentiation from standing variation through ecological ad-
aptation. This happens when barriers to gene flow evolve between 
populations due to divergent selection, with niche adaptation and 
competition as driving mechanisms (Bolnick, 2004; Schluter, 2000). 
Landvik's salinity is similar to that of parts of the Baltic Sea, which 
thus allows the use of it as a replicate model to study parallel evolu-
tion and the role of the environment in ecologically driven speciation 
(Bailey et al., 2017; Bolnick et al., 2018).

To test for local adaptation and parallel evolution, we first char-
acterized Landvik sprat with a suite of recently developed SNP 
markers and investigated the origin and connectivity of the lake 
population using a set of 42 geographically explicit samples, most 
of which were described in Quintela et al. (2020). Secondly, we in-
vestigated whether loci putatively under selection could be identi-
fied across these samples. Correlation between outlier loci and two 
environmental variables, salinity and temperature, was examined to 
test the potential role of selection in population divergence, and the 
possibility to identify genetic signals of parallel evolutionary change 
between Landvik and the Baltic Sea populations with respect to the 
marine populations.

2  | MATERIAL S AND METHODS

2.1 | Sampling and environmental data

Three samples of sprat from Landvik, comprising a total of 300 in-
dividuals, were collected in 2012, 2015, and 2019, respectively. In 
addition, to compare among local populations in the area, a further 
79 (immature juvenile) individuals were collected in 2019 in two 
Norwegian fjords in the vicinity of Landvik (Tvedestrandsfjord and 
Sørfjord) from a beach seine survey. These five samples were ana-
lyzed and compared with genotype data from 40 reference samples 
of sprat, 2,425 individuals in total, collected from a range of locations 
in the Atlantic and the Baltic Sea, as well as in the Adriatic and Black 
Seas, representing southern outgroups (Table 1, Figure 2). Genetic 
structure in the 40 reference samples was determined in Quintela 
et al. (2020), showing three highly distinct and relatively homoge-
nous groups: (a) Norwegian fjords; (b) Baltic Sea; and (c) Northeast 
Atlantic including the North Sea, Kattegat–Skagerrak, Celtic Sea and 
Bay of Biscay. Evidence of genetic admixture and possibly physical 
mixing was detected in the transition zone between the North and 
Baltic seas, but not elsewhere.

Spawners and embryos have been identified as the most tem-
perature-sensitive stages in the life cycle of fish (Dahlke et al., 2020). 
Data about temperature and salinity corresponding to the average 
summer values for the period 2005–2012 were retrieved from NOAA 
database (National Oceanic and Atmospheric Administration). The 
depth at which measurements were chosen was 10 m for being rele-
vant both for spawners and embryos (Table 1).

2.2 | DNA isolation and genotyping

DNA was extracted from fin clips stored in ethanol using the Qiagen 
DNeasy 96 Blood & Tissue Kit in 96-well plates, each of which con-
tained two or more negative controls. All 45 samples were geno-
typed with the 91 SNPs for which protocols are described in their 
entirety in Quintela et al. (2020). In addition, a subset of 15 of the 
45 samples was genotyped with eight microsatellite markers (see 
Table A1), as described in Glover et al. (2011). The main aim of the 
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second set was to estimate genetic diversity through allelic richness, 
and hence, results derived of the microsatellite data will be mainly 
presented in Appendix 1.

2.3 | Statistical analysis

All statistical analyses were performed separately for SNPs and mi-
crosatellites. The observed (Ho) and unbiased expected heterozygo-
sity (uHe) as well as the inbreeding coefficient (FIS) were computed 
for each sample with GenAlEx v6.1 (Peakall & Smouse, 2006). The 
genotype frequency of each locus and its direction (heterozygote 
deficit or excess) was compared with Hardy–Weinberg expectations 
(HWE) using the program GENEPOP 7 (Rousset, 2008), as was link-
age disequilibrium (LD) between pairwise loci.

Landvik sprat were compared with the remaining collections using 
pairwise FST (Weir & Cockerham, 1984) computed with ARLEQUIN 
v.3.5.1.2 (Excoffier et al., 2005). The Bayesian clustering approach 
implemented in STRUCTURE v. 2.3.4 (Pritchard et al., 2000), and 

conducted using the software ParallelStructure (Besnier & Glover, 
2013), was used to identify genetic groups under a model assuming 
admixture and correlated allele frequencies without using popula-
tion information as a prior. Ten runs with a burn-in period consist-
ing of 100,000 replications and a run length of 1,000,000 MCMC 
iterations were performed for K = 1 to K = 7 clusters. To deter-
mine the number of genetic groups, STRUCTURE output was ana-
lyzed using two approaches: (a) the ad hoc summary statistic ΔK of 
Evanno et al. (2005), and (b) the four statistics (MedMed, MedMean, 
MaxMed, and MaxMean) both implemented in StructureSelector 
(Li & Liu, 2018). The ten runs for the selected Ks were then aver-
aged with CLUMPP v.1.1.1 (Jakobsson & Rosenberg, 2007) using 
the FullSearch algorithm and the G′ pairwise matrix similarity sta-
tistic, and graphically displayed using barplots. Furthermore, the 
relationships between Landvik and the reference samples were ex-
amined using discriminant analysis of principal components, DAPC 
(Jombart et al., 2010) implemented in adegenet (Jombart, 2008), as 
well as with the principal coordinates analysis (PCoA) built using 
Nei (1978)'s genetic distance between pairs of populations with 

F I G U R E  2   Map of the sampling sites as well as detailed view of Landvikvannet. Codes and associated full names of sampling locations 
can be found in Table 1. The colors depict the genetic clusters according to STRUCTURE. Landvikvannet samples are coded as 18–20
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GenAlEx v6.1 (Peakall & Smouse, 2006). To examine demographic 
relationships between geographically explicit samples, the genetic 
distance, measured as FST/(1 − FST), between the northernmost sam-
ple (HOL) and all other samples (excluding the southern European 
outgroups) was plotted against the corresponding shortest water-
way distance, calculated using the path function in GoogleEarth. 
The assignment of individuals to STRUCTURE genetic clusters was 
conducted with the program GeneClass 2 (Piry et al., 2004) using 
the Rannala and Mountain (1997) method of computation. Finally, 
a neighbor-joining (NJ) tree based upon pairwise Nei's genetic dis-
tance DA (Nei et al., 1983) for all SNPs was constructed with the 
software POPTREE2 (Takezaki et al., 2010) using 1,000 bootstraps 
and visualized using FigTree 1.4.3 (Rambaut, 2009).

Two analytic approaches, BayeScan (Foll & Gaggiotti, 2008) and 
LOSITAN (Antao et al., 2008), were combined to detect loci deviat-
ing from neutral expectations and therefore reflecting either even-
tual selective responses or linkage disequilibrium with genes under 

divergent selection (Lewontin & Krakauer, 1973). In BayeScan, sample 
size was set to 10,000 and the thinning interval to 50. Loci with a pos-
terior probability over 0.99, corresponding to a Bayes Factor > 2 (i.e., 
“decisive selection” (Foll & Gaggiotti, 2006)), were retained as outliers. 
In LOSITAN, a neutral distribution of FST with 1,000,000 iterations 
was simulated, with forced mean FST at a significance level of 0.05 
under an infinite allele model for SNPs and under a stepwise model 
for microsatellites. To avoid pseudo replication, outlier analyses were 
conducted using a random sample of 300 individuals from each of 
the four genetic clusters identified with STRUCTURE (after excluding 
southern distant outgroups). Analyses were performed either using 
jointly the four sets of samples or using subsets, as appropriate.

Adaptation to local environments often occurs through natural 
selection acting on a large number of loci, each having a weak pheno-
typic effect. LFMM, “latent factor mixed model” (Frichot et al., 2013), 
was used to assess whether salinity or water temperature could be a 
potential selective pressure driving local adaptation by identifying loci 

F I G U R E  3   Relationship between Landvikvannet sprat and the reference samples genotyped at 91 SNP loci according to (a) STRUCTURE, 
(b) DAPC, and (c) PCoA. Plot in d) represents genetic distance measured as pairwise FST/(1 − FST) between the northernmost site (HOL) and 
each of the 41 remaining ones versus the corresponding shortest water distance (in km). Analyses in a) and d) were performed without the 
distant southern outgroups to increase the resolution

(a)

(b)
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(c)

(d)

F I G U R E  3   (Continued)
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showing unusual associations with these environmental factors com-
pared to the genetic background. Thus, the environmental informa-
tion used corresponded to the season of the year where fish are at its 
most temperature-sensitive stages (Dahlke et al., 2020). This method, 
which has formerly proved to be efficient for a suite of scenarios of 
demographic history (Lotterhos & Whitlock, 2015; de Villemereuil 
et al., 2014), uses a linear mixed model to test for associations between 
genetic variation and environmental factors, while controlling for neu-
tral genetic structure with (random) latent factors. Ten runs of LFMM 
were conducted using 1,000 sweeps for burn-in and 10,000 additional 
sweeps. The number of latent factors was set at K = 4 according to 

STRUCTURE outcome as suggested by Frichot et al. (2013). The cor-
responding z-scores of the ten replicates were combined following the 
recommendations described in Frichot and François (2015). First, the 
genomic inflation factor (λ) was obtained after computing the median 
of the squared (combined) z-scores for each K, divided by the median 
of the chi-square distribution with one degree of freedom. Finally, 
p-values were adjusted using the genomic inflation factor (λ), and false 
discovery rates were set using the Benjamini and Hochberg (1995) 
algorithm.

In addition, the relationship between genetic distance (FST) and 
each environmental factor was examined using Mantel (1967) tests 

F I G U R E  4   Origin of Landvik sprat: Neighbor-joining tree placing Landvik in context with the reference samples genotyped at 91 SNP loci 
(NJ tree using after removing the loci under positive selection can be found in Figure A3 in Appendix 1). To increase the resolution, analyses 
were performed after excluding the distant southern outgroups
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to investigate whether the correlations conformed the expectations 
of “Isolation by Environment” (IBE); that is, pattern in which genetic 
differentiation increases with environmental differences irrespec-
tive of geographic distance (Wang & Bradburd, 2014), as opposed 
to “Isolation by Distance” (IBD), which refers to the increase of ge-
netic differentiation with geographic distance as a result of restricted 
gene flow and drift (Rousset, 1997; Slatkin, 1993; Wright, 1943). 
Environmental distances to test for IBE were calculated as the 
Euclidean pairwise differences of the corresponding environmental 
factors. Mantel tests were conducted with a program called Pattern 

Analysis, Spatial Statistics and Geographic Exegesis, PASSaGE2 
(Rosenberg & Anderson, 2011).

Allele frequency shifts at outlier loci are expected to be driven by 
selective responses toward strong ecological gradients leading to local 
adaptation, either due to directly associated genes or through hitch-
hiking (linkage) with associated genes (Gagnaire et al., 2015). Low-
frequency alleles can also reach high frequencies through allele surfing 
during population range expansion (Excoffier & Ray, 2008). Major al-
lele frequencies (MAF) per sample were displayed through heatmaps 
and graphs as appropriate.

TA B L E  2   LFMM analysis for salinity and temperature (measured both in summer at 10 m depth)

Locus Annotation

LFMM, log10(PO) Global candidate loci Pairwise candidate loci (LOSITAN)

Salinity Temperature LOSITAN BayeScan
Norway vs. 
Landvik

Norway 
vs. Baltic

Landvik 
vs. Baltic

Ssp248 Protein kinase C epsilon 130.07 4.54 0.976 0.056 0.624 0.993 0.774

Ssp210 116.82 0.51 0.990 2.308 0.972 1 -100

Ssp215 ATP-dependent 
6-phosphofructokinase 
liver-like

51.50 1.28 0.750 -1.190 0.919 0.675 0.702

Ssp253 9.35 3.07 0.996 -0.852 0.917 0.821 1

Ssp263 3.10 32.36 1 2.920 0.658 0.500 1

Ssp213 Tensin-2-like 28.52 0.41 1 0.502 0.997 0.500 1

Ssp268 25.08 6.50 1 0.419 0.998 0.765 1

Ssp279 30.16 0.83 0.799 -1.192 1 0.745 0.250

Ssp260 13.95 1.48 0.991 -1.060 0.994 0.493 0.999

Ssp315 11.83 7.58 0.267 -1.020 1 0.500 0.500

Ssp290 2.55 15.14 0.374 -0.987 1 0.050 -100

Ssp272 Neurochondrin transcript 
variant X1-3

18.18 0.80 0.606 -1.226 0.465 1 0.500

Ssp226 17.21 34.26 0.720 0.001 0.437 1 0.500

Ssp269 0.12 6.80 0.621 -1.173 0.103 1 0.002

Ssp286 0.05 9.14 0.435 -1.182 0.414 1 0.500

Ssp302 Procollagen 
C-endopeptidase 
enhancer 2-like

7.87 0.18 0.638 -1.110 0 1 1

Ssp225 1.77 18.25 0.835 0.040 0.232 1 1

Ssp300 Zinc finger protein 184-
like transcript variant

5.88 0.75 0.468 -1.211 0.500 0.648 1

Ssp319 TOG array regulator of 
axonemal microtubules 
1

0.82 28.17 0.972 0.454 0.343 0.826 1

Ssp222 8.26 25.54 0.500 -0.602 0.269 0.500 -100

Ssp002 8.19 46.96 0.800 -1.033 0.944 0.684 0.830

Ssp264 2.57 46.41 0.884 -0.615 0.281 0.925 0.807

Ssp207 2.10 22.86 0.722 -1.195 0.851 0.383 0.854

Note: Outlier analyses were performed using 300 randomly sampled individuals per genetic cluster instead of geographically explicit samples. Cells 
shaded in dark grey depict significant associations at LFMM after genomic inflation correction as well as candidates for positive selection according 
to LOSITAN after FDR correction (P(Simul FST<sample FST)) and BayeScan (log10(PO)). Cells shaded in light grey depict candidates to balancing 
selection. BayeScan did not detect deviations from neutrality in the pairwise comparisons. Flanking sequences of SNP loci were blasted against the 
GenBank and annotated genes in the vicinity of SNP markers were indicated as appropriate (empty cells depict no hit). All the annotated genes are 
Predicted for Clupea harengus.
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3  | RESULTS

3.1 | Summary statistics

Genetic diversity measured as observed and expected heterozygo-
sity for individuals genotyped with SNPs showed low to interme-
diate values in Landvik, compared with relatively highest values 
found in all the Norwegian fjord samples, and the lowest estimates 
observed in the southern outgroups (Table 1). However, genetic 

diversity assessed as allelic richness, Ho and uHe using microsatellites 
consistently displayed the lowest values in Landvik (Table 1).

3.2 | Genetic differentiation

All the approaches used to compare Landvik with the reference 
samples highlighted the distinctness of the lake sprat, putting also in 
evidence the low gene flow occurring between the brackish lake and 

F I G U R E  5   Manhattan plot from LFMM analysis for a) salinity and b) temperature, both measured during summer (average during the 
period 2005–2012) at 10 m of depth. Highlighted loci showed significant associations
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adjacent areas. Pairwise FST heatmaps for SNP-genotyped samples 
(Table S1 in the Supplementary Information) revealed high and simi-
lar levels of differentiation between Landvik and the samples taken 
in the North Sea, Kattegat–Skagerrak, and the Baltic Sea (average 
FST 0.124), whereas the mean differentiation between Landvik and 
Norwegian coastal sprat, albeit high, was but nevertheless lower 
(0.080). However, Landvik samples did not display a homogeneous 
behavior as the lowest levels of differentiation were found against 
the most recent of the samples (LAND19), the only of the samples 
with sprat of age 1. The highest degree of divergence was found 
between Landvik and the outgroup samples (i.e., Mediterranean–
Black Sea). Likewise, at microsatellites, the differentiation between 
Landvik and the Norwegian fjord samples (average FST of 0.095) 
was lower than versus the North Sea (FST = 0.117) and Baltic sam-
ples (FST = 0.137). In comparison, levels of differentiation within 
Norwegian fjord samples were very low (average FST of 0.003) de-
spite the large geographic distances (Table A2 in Appendix 1).

STRUCTURE was conducted without the southern sam-
ples from the Mediterranean and Black Sea in order to increase 

resolution on the target area of the study and its immediately 
surrounding seas. Evanno test identified a first hierarchical level 
of division at K = 2 that clustered Norwegian fjords and Landvik 
away from the remaining samples (see Table A3 in Appendix 1) 
whereas STRUCTURESelector identified four distinct clusters: (a) 
Norwegian fjords, (b) Landvik, (c) North Sea–Kattegat–Skagerrak, 
and (d) Baltic Sea (Figure 3a). The DAPC plot including all samples 
was built after retaining 80 principal components (PCs) and revealed 
three main groups: Landvik, the southern samples, and the remain-
ing collections. Axis 1, explaining 31.4% of the variation, discrimi-
nated Landvik sprat from the bulk of the three main genetic clusters 
(Norwegian fjords, North Sea–Kattegat–Skagerrak, and Baltic Sea) 
with very little overlapping (Figure 3b). In agreement with estimates 
for pairwise FST, this ordination on the first axis confirmed that the 
oldest samples from Landvik (LAND12, LAND15) were genetically 
more differentiated than the most recent sample LAND19. Axis 
2, accounting for 23.7% of the variation, separated the southern 
outgroups. The DAPC highlighted that the level of differentiation 
between Landvik and geographically close samples was similar 

TA B L E  3   Heatmap of Major Allele Frequency per sample for the loci showing the strongest association with salinity and temperature 
according to LFMM analyses

Sample no. Sample

Salinity Temperature

Ssp210 Ssp215 Ssp248 Ssp264 Ssp002 Ssp226

Norwegian 
fjords

1 HOL 0.767 0.758 0.871 0.767 0.629 0.850

2 MEL 0.679 0.705 0.794 0.753 0.625 0.763

3 FIN 0.653 0.653 0.793 0.703 0.643 0.800

4 TRH 0.813 0.728 0.812 0.763 0.595 0.835

5 NOR1 0.756 0.635 0.782 0.689 0.577 0.821

6 NOR2 0.791 0.682 0.740 0.703 0.562 0.778

7 NOR3 0.792 0.744 0.786 0.727 0.551 0.765

8 SOG1 0.630 0.804 0.755 0.707 0.723 0.809

9 SOG2 0.806 0.717 0.763 0.719 0.586 0.809

10 HAR1 0.745 0.702 0.825 0.747 0.600 0.828

11 HAR2 0.727 0.662 0.767 0.799 0.500 0.786

12 HAR3 0.830 0.630 0.750 0.678 0.576 0.784

13 HAR4 0.755 0.737 0.824 0.712 0.590 0.806

14 LYS 0.788 0.670 0.726 0.652 0.621 0.840

15 TVE 0.824 0.614 0.730 0.703 0.586 0.878

16 SORF 0.869 0.588 0.842 0.738 0.700 0.893

17 OSL 0.843 0.684 0.831 0.787 0.642 0.801

Landvik 18 LAND12 1.000 0.963 0.595 0.685 0.788 0.846

19 LAND15 0.988 0.924 0.653 0.706 0.909 0.955

20 LAND19 0.919 0.836 0.688 0.694 0.784 0.904

Baltic Sea 38 AB 0.992 0.741 0.518 0.941 0.698 0.983

39 BBN 0.987 0.859 0.472 0.936 0.697 1.000

40 BBS 1.000 0.780 0.563 0.940 0.725 1.000

41 GD 0.991 0.857 0.580 0.945 0.688 0.982

42 GOTB 0.981 0.849 0.500 0.955 0.673 1.000

43 GOT 0.991 0.858 0.434 0.971 0.625 1.000
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to the differentiation between Northern and Southern European 
sprat. Likewise, axis 1 in PCoA, explaining 27.7% of the variation, 
separated the southern outgroups, whereas axis 2 (19.8% variance 
explained) discriminated Landvik samples from the three remain-
ing genetic clusters (Figure 3c). Plotting pairwise genetic distance 
between the northernmost sample (HOL) and each of the samples 
against the shortest water distance between the same pairs showed 
that the comparisons with Landvik strongly deviated from any geo-
graphically derived expectations (Figure 3d), particularly for the 
oldest samples (LAND12 and LAND15). Likewise, the correlation 
between the matrix of pairwise FST (without southern outgroups) 
and the matrix of Euclidean geographic distances did not conform 
with Isolation by Distance (Rxy = 0.017, p = .359). Finally, GeneClass2 
showed that across all samples 86% of the individuals genotyped at 
SNPs were correctly assigned to their respective clusters (Table A4 
in Appendix 1). The correct self-assignment per cluster ranged from 
84% for Norwegian fjords to 100% in the Mediterranean Sea out-
groups. In Landvik, 89% of the individuals were correctly assigned 
to the Landvik cluster, albeit with temporal differences: In 2012 
and 2015, the percentage of correct assignment to cluster was of 
96%–98%, respectively, whereas in 2019, it dropped to 60% as 21 
individuals (i.e., 30% of the total in LAND19) were assigned to the 
Norwegian fjord cluster, 11 of them to the neighboring coastal sam-
ples (i.e., LYS, SORF, and TVE). As seven out of the 21 individuals 
showed an ancestry of q > 0.8 to the Norwegian fjord cluster, the 
hypothesis of them being migrants is plausible (see Figure A1 in 
Appendix 1). The 15 samples genotyped with microsatellites repro-
duced the patterns of genetic differentiation and clustering found 
with SNPs and clearly depicted the distinctness of Landvik sample 
(Figures A2a-d in Appendix 1).

3.3 | Genetic relationships of Landvik sprat

The determination of the origin of Landvik sprat is hampered by 
the high levels of differentiation between this population and the 
reference samples. Pairwise FST between Landvik and Norwegian 
fjord sprat were lower than any of the remaining comparisons hence 
revealing higher genetic relatedness than to brackish Baltic sprat 
(Table S1 in Supplementary File). Likewise, the Norwegian samples 
from LYS, TVE, and SORF, which are the geographically nearest to 
Landvik, were also the genetically closest (Figure 3c). Furthermore, 
the NJ tree built with all the SNPs not only highlighted the distinct-
ness of Landvik, but also showed that the lake sprat could stem from 
the sprat of the Norwegian fjords as Landvik shared a node in the 
phylogenetic tree with LYS (Figure 4).

3.4 | Selection tests and detection of loci associated 
with environmental factors

Both outlier detection analyses (LOSITAN and BayeScan) as well as 
LFMM were conducted after excluding the southern distant groups 
due to their low sample size. LOSITAN reported four loci (4.4%) under 
positive selection, whereas BayeScan reported two, one of them in 
agreement with LOSITAN (Table 2). After genomic inflation correc-
tion, LFMM identified three loci associated with salinity and seven 
with temperature (Table 2), although the strength of the association 
was larger with salinity (Figure 5a,b). Locus Ssp263 was associated 
with temperature as well as flagged as an outlier by both procedures, 
whereas locus Ssp210 was associated with salinity, flagged as outlier 
with BayeScan and marginally with LOSITAN. Locus Ssp248, the one 

F I G U R E  6   Major allele frequency for the four loci showing the largest differentiation in Landvikvannet compared to the Norwegian 
sprat. Allele frequency per sample was plotted versus the shortest water distance between each site and HOL (the northernmost one). The 
coloring pattern followed STRUCTURE barplot, that is, green for the Norwegian fjords and purple for Landvikvannet
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showing the strongest association with salinity (log10(P0) = 130.1), 
was annotated to the vicinity of a predicted protein kinase C epsilon 
in the herring genome whereas only one of the loci associated with 
temperature could be annotated, that is, locus Ssp319 to TOG array 
regulator of axonemal microtubules 1 also in the herring genome 
(Table 2). The relationships between genetic distance and environ-
mental factors revealed that the correlation between the matrices 
of FST and salinity followed an Isolation by Environment pattern 
(Rxy = 0.47, p = .0001), conversely to the lack of correlation with 
temperature (Rxy = 0.05, p = .404).

Furthermore, outlier detection analyses were conducted for the 
same clusters of 300 randomly sampled individuals albeit in a pairwise 
fashion through comparisons involving the Norwegian sprat, Landvik, 
and the Baltic Sea (Table 2). Locus Ssp210, showing strong associa-
tion with salinity, was reported to be a candidate to positive selection 
in the comparison between marine and brackish samples in Norway 
versus Baltic and marginally in Norway versus Landvik, whereas no 
positive selection was reported between brackish environments. On 
the other side, four loci (Ssp253, Ssp263, Ssp300, and Ssp319) were 
candidates to directional selection in the comparison between brack-
ish environments (Landvik vs. Baltic Sea) but not in the comparison's 
marine versus brackish, which could eventually support rejecting the 
hypothesis of the origin of the lake sprat being in the Baltic Sea. Major 
allele frequency per sample for the loci showing the strongest associ-
ation with salinity was assessed in samples from contrasting environ-
ments (Table 3) and revealed a similar pattern in low salinity waters (i.e., 
Landvik and the Baltic Sea) as opposed to marine waters (Norwegian 
fjords), which could suggest that Landvik sprat evolved from the 
Norwegian make-up to adapt to low salinity environments. Conversely, 
no temperature-related pattern for a similar process was obvious.

Finally, the major allele frequency of seven of the SNPs (Ssp253, 
Ssp321, Ssp260, Ssp268, Ssp213, Ssp251, and Ssp236) showed a 
remarkable drop in Landvik compared with the Norwegian fjord 
samples illustrating a change that could have happened in less than 
132 years (see Figure 6 for four of them).

4  | DISCUSSION

The brackish lake Landvik, created after excavating a 3 km long canal 
to the sea in 1880, represents a model system in which to investigate 
the potential for marine organisms to adapt to rapidly emerging new 
environments in the marine realm. Here, we showed that European 
sprat, a small pelagic marine fish, were able to colonize and develop 
a genetically highly distinct population in few decades. The level 
of differentiation observed between samples from Landvik and all 
other reference samples of sprat was equivalent to the genetic dif-
ferentiation displayed among the most geographically distant popu-
lations of sprat. This level of differentiation has been achieved in 
a maximum of 132 years, as computed from the completion of the 
canal until the sampling date of LAND12, which would mean some 
65 generations of sprat. Thus, Landvik adds to the three distinc-
tive genetic clusters formerly described in European sprat, that is, 

Norwegian fjords, North Sea–Kattegat–Skagerrak, and Baltic Sea 
(Quintela et al., 2020). The study also suggests signatures of contem-
porary adaptation to brackish habitat in Landvik sprat population, 
which represents a potential model system to study parallel evolu-
tion in comparison with the Baltic.

4.1 | Origin of the Landvik population

The relationship between genetic differentiation and shortest water dis-
tance revealed that samples from Landvik strongly departed from any geo-
graphically driven expectation (see Figure 3d), a situation also described 
for three spine sticklebacks (Gasterosteus aculeatus Linnaeus, 1758), where 
populations inhabiting anthropogenic modified habitats deviated from the 
general pattern of Isolation by Distance (Scharsack et al., 2012). Another 
striking characteristic of the Landvik sprat population is the relatively low 
genetic diversity displayed by microsatellite markers in terms of Ho, uHe, 
and allelic richness. The only sample that exhibited a comparably low allelic 
richness was collected in Gotland (Baltic Sea), in the brink of Baltic sprat's 
spawning habitat where salinity conditions approach to those impeding 
larval survival (Sjöblom & Parmanne, 1980). Landvik, thus, adheres to the 
pattern previously described in the Baltic, where the combination of young 
age, extreme conditions, and limited habitat size leads Baltic populations 
to often have less intraspecific genetic diversity than their counterparts in 
the open Northeast Atlantic (Johannesson & Andre, 2006).

Landvik is also inhabited by a taxonomically close species to 
sprat: the Atlantic herring. Landvik herring are considered as a 
self-sustaining and somewhat stationary population, character-
ized by slower growth, smaller length at maturity, lower vertebral 
count, shorter life span, higher relative fecundity, and divergent 
genetic profiles compared to the migratory oceanic herring in other 
parts of the Norwegian waters (Eggers, 2013; Eggers et al., 2014; 
Silva et al., 2013). Meristic trait vertebral count is often used as a 
population identifier in herring (e.g., Berg et al., 2017; Mosegaard 
& Madsen, 1996; Rosenberg & Palmén, 1981), and the observa-
tion that vertebral count in Landvik herring is similar to that in 
herring populations in the brackish Western Baltic Sea has led to 
the hypothesis that Landvik was colonized by low salinity adapted 
herring of Western Baltic Sea origin (Berg et al., 2019; Eggers 
et al., 2014). In addition, factorial crossing experiments performed 
at a range of salinities ranging from 6 to 35 revealed adaptation of 
herring populations to their native salinity conditions and also that 
adaption to salinity is transmitted to the offspring within the fol-
lowing generation (Berg et al., 2019). In contrast to herring, which 
rely on a benthic spawning habitat for depositing eggs, sprat is 
a pelagic spawner. As such, salinity may exert an even stronger 
selection pressure in sprat to avoid neutrally buoyant eggs from 
sinking into deeper anoxic water layers, as has for example been 
observed in Atlantic cod, Gadus morhua, adapted to spawning in 
brackish waters (Berg et al., 2015; Nissling et al., 1994). In both cod 
and herring, local adaptation is implied to be swift and ongoing, 
and working on standing genetic variation (e.g., Berg et al., 2015; 
Lamichhaney et al., 2012).
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The origin of Landvik sprat is unknown, but, based on inference 
from herring, it would be conceivable that the lake could have also 
been colonized by fish from the Baltic Sea, already adapted to brack-
ish waters, given the parallelism in the environmental conditions. 
However, the analysis of Landvik in conjunction with the reference 
samples available in this study does not appear to support the hy-
pothesis of the Baltic Sea as the source, but points toward founders 
from Norwegian fjordic sprat. This is particularly endorsed by the 
lower genetic differentiation between Norwegian sprat and Landvik, 
as well as by the neighbor-joining tree showing that Landvik sprat 
stems from the Norwegian cluster. Taking into consideration that 
NJ analyses are sensitive to outliers, the tree was recalculated after 
purging the candidate loci to positive selection detected by LOSITAN 
and BayeScan. The new NJ tree confirmed that the node from which 
Landvik sprat stem was the Norwegian sample, LYS (see Figure A3 in 
Appendix 1). Furthermore, Landvik sprat displays a suite of features 
that concur with founder effects such as strongly drifted allele fre-
quencies at both microsatellites and SNPs, together with low genetic 
diversity at microsatellites assessed as allelic richness, Ho and uHe in 
comparison with the Norwegian samples. Similarly, losses of genetic 
diversity, a signature compatible with historical founder effect, have 
been reported in other fish species in the face of anthropic chal-
lenges: for example, Mango tilapia Sarotherodon galilaeus (Linnaeus, 
1758) in the Sea of Galilee (Borovski et al., 2018), American paddle-
fish Polyodon spathula (Walbaum in Artedi 1792) stocked in Poland 
from United States (Kaczmarczyk et al., 2012), or the introduced grass 
carp Ctenopharyngodon idella (Valenciennes in Cuvier & Valenciennes, 
1844) with respect to its native Chinese ranges (Chen et al., 2012). 
Likewise, the isolation of the live-bearing fish Caterina allocota Allotoca 
catarinae (de Buen, 1942) from another species of the same complex 
dated ~1900 years ago represents the first evidence of fish species 
translocation by a pre-Hispanic culture of Mexico (Corona-Santiago 
et al., 2015). Finally, the sample taken in Landvik in 2019 included 21 
individuals (31%) with a genetic profile compatible with being migrants 
from surrounding Norwegian fjords as denoted by an inferred ances-
try to the Norwegian STRUCTURE cluster of q > 0.8 and by being 
assigned to this cluster by GeneClass. However, only one individual 
approached this level of ancestry for the Baltic Sea cluster. The fact 
of finding potential migrants coming from the coastal Norway, but 
not from the Baltic Sea, would further support the hypothesis of the 
Norwegian fjords as a source of Landvik sprat. Despite these levels of 
gene flow, outlier loci revealed patterns of population structure that 
support postsettlement selection and suggest that strong selective 
forces could be acting and therefore causing local adaptation.

4.2 | Adaptation as a consequence of brackish 
water colonization

Transitions from marine to freshwater habitats constitute dra-
matic shifts between adaptive habitats that have occurred not 
only on macroevolutionary time scales, but also in the recent 
past (Lee & Bell, 1999). During the last two centuries, humans 

have been changing connections between freshwater and ma-
rine ecosystems thus facilitating freshwater introductions (Crook 
et al., 2015). Drastic differences in salinity, parasites, competi-
tors, and predators between marine and freshwater environments 
exert divergent selective pressures on the corresponding popula-
tions. Salinity showed strong associations with 3.3% of the loci 
analyzed in the present study. The genetic change experienced 
by the Norwegian sprat colonizing Landvik could be attributed 
to the strong directional selection driven by the low salinity in 
the lake. Rapid evolutionary changes are predicted in the face of 
strong selection following habitat shifts or environmental distur-
bances (Burke & Long, 2012; Kopp & Matuszewski, 2014; Losos 
et al., 1997; Turcotte et al., 2011), as happened in Landvik when 
the lake was artificially connected to the sea circa 150 years ago. 
Similar processes have been documented in other species such as 
the threespine stickleback, which managed to evolve from oce-
anic ancestors to colonize the freshwater ponds that were formed 
during uplift caused by the Great Alaska Earthquake in 1964 
(Lescak et al., 2015). Adaptation of a newly established resident 
population to the brackish environment often proceeds very fast, 
over the course of several decades (Barrett et al., 2008; Lescak 
et al., 2015; Marques et al., 2018). Data on adaptation associated 
with salinity have been reported in fish moving from high to low 
salinity such as sticklebacks (DeFaveri & Merilä, 2014; McCairns & 
Bernatchez, 2010), Atlantic killifish Fundulus heteroclitus (Linnaeus, 
1766) (Whitehead et al., 2011), and alewives Alosa pseudoharengus 
(A. Wilson, 1811) (Velotta et al., 2014).

Outlier loci experiencing adaptive selection based on envi-
ronmental conditions have also been described in other Clupeids. 
Ruggeri et al. (2016) related population divergence in microsatel-
lite outlier loci in relation to salinity, oxygenation, and temperature 
in the European anchovy Engraulis encrasicolus (Linnaeus, 1758) in 
the Adriatic Sea. For the same species, Catanese et al. (2017) re-
ported that the selective pressure related to river mouths acts on 
the same genes in distant areas in the Atlantic Ocean, Tyrrhenian, 
and North Adriatic Sea. These SNP outliers were also associated 
with salinity variability or involved in a critical stage of fertilization 
process.

The Baltic Sea was formed after the latest ice age, approximately 
10,000–15,000 years ago, although its “ecological age” is circa 
8,000 years (Lass & Matthäus, 2008). The combination of young 
geological age and contrasting environmental conditions to the sur-
rounding oceans resulted in fast processes of adaptive evolution, 
which led to species living in the edge of their physiological toler-
ance (Ojaveer et al., 2010). The degree of differentiation between 
marine and brackish sprat is higher in the comparisons Norway 
fjords versus Landvik (mean FST = 0.080, range 0.029–0.117) than in 
Norway fjords versus Baltic (mean FST = 0.037, range 0.026–0.047). 
Hypothesizing that the origin of Landvik sprat is the Norwegian fjord 
sprat invokes the possibility that the genetic changes occurring in the 
lake took place in a maximum of 65 generations (<132 years) rather 
than gradually over thousands of years. This hypothesis was also put 
forward in the threespine stickleback, which achieved in 50 years 
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similar levels of divergence as populations that had diverged thou-
sands of years ago (Lescak et al., 2015). Most likely, such rapid adap-
tation to a new environment cannot depend on de novo mutations 
and must rely primarily on standing genetic variation (Matuszewski 
et al., 2015; Dolph Schluter & Conte, 2009) as it has been demon-
strated in the threespine stickleback populations (Terekhanova 
et al., 2019). The high speed of adaptation of Landvik population to 
the brackish environment probably has been possible by freshwater 
tolerance alleles being present in ancestral marine populations.

4.3 | Parallel or convergent evolution under similar 
selection pressures?

Adaptation to a radically different environment is likely to be geneti-
cally complex and to involve many loci, as it has been shown for other 
species (Terekhanova et al., 2019). Locus Ssp210, showing strong as-
sociation with salinity, was reported to be a candidate to positive 
selection in the comparison between marine and brackish samples 
(in Norway vs. Baltic and marginally in the comparison Norway vs. 
Landvik) but not in the comparison between brackish environments 
(Lanvik vs. Baltic), which could suggest parallel or convergent evolu-
tion processes in Landvik and the Baltic Sea diverging from marine 
sprat. Despite the geographic proximity between Landvik and the 
Norwegian coastal sites, strong genetic divergence is found among 
those samples, probably due to differences in abiotic parameters 
(salinity) between habitats.

Parallel evolution under similar selection pressure has been 
widely observed in populations of the same species, for example, 
in bacterial experiments (Baym et al., 2016), recurrent adaptations 
of pathogens to their hosts (Collins & Didelot, 2018), and marine 
threespine sticklebacks that have independently colonized many 
freshwater habitats (Stuart et al., 2017). Baltic Sea and Landvik sprat 
populations could well be the results of parallel or convergent evo-
lution (Arendt & Reznick, 2008), as it has been observed in lake and 
stream sticklebacks (Colosimo et al., 2005; Stuart et al., 2017). They 
dwell in discrete and divergent habitats, and are derived from an-
cestral marine populations, increasing the likelihood of them reusing 
similar ancestral genetic variants for adaptation. However, unlike 
the case of some stickleback populations that colonized lakes and 
streams after the last glaciation from the same ancestral population 
(Bolnick et al., 2018; Therkildsen et al., 2019), the history of Landvik 
and the Baltic Sea are different and could lead to a nonparallel 
evolution.

Despite the limitations of the current set of SNPs markers, 
the candidate outliers that distinguish derived brackish popu-
lations from the ancestral marine populations are not same be-
tween Landvik and Baltic Sea populations, thus not showing a 
pattern of molecular parallelism, contrary of what has been de-
tected in sticklebacks colonizing different lakes (Terekhanova 
et al., 2014). Marine populations of stickleback harbor, at low fre-
quencies, alleles that confer adaptation to freshwater (Schluter 
& Conte, 2009), presumably due to the gene flow from coastal 

freshwater populations (Bassham et al., 2018). This population 
structure and history would provide many opportunities for paral-
lel evolution when new freshwater populations were established 
from the marine stickleback population (Stern, 2013). In stickle-
backs, that genetic parallelism is seen on finer geographic scales 
(Jones et al., 2012; Nelson & Cresko, 2018) but not globally, a pat-
tern attributed to founder events and the loss of genetic diversity 
following colonization of the Atlantic (Fang et al., 2020). Landvik 
adaptation to brackish waters could have followed a similar pat-
tern, where adaptation independent from Baltic populations has 
been a consequence of demographic forces of the founder event 
of the lake from the Norwegian coast populations. However, our 
study has strong limitations to disentangle whether it is a case of 
molecular parallelism or independent adaptation. Future genomic 
studies may help reveal the evolutionary history of the sprat and 
the molecular mechanisms involved in its different adaptations to 
brackish environments. Study the genetics of convergence can 
help shed light on fundamental questions in evolutionary biology, 
including whether natural selection is constrained and repeat-
able or instead characterized by many molecular paths to similar 
phenotypes.

The uniqueness of Landvik sprat suggests that an appropriate 
management should be considered for this population. A next step 
using whole-genome sequencing will allow to further explore intra-
clusters standing genetic variation as well as the origin of Landvik 
population. Parallel evolution in response to similar environmental 
pressures strongly suggests evolution by natural selection; however, 
the underlying genetic basis of this process is unclear. Landvik sprat 
thus provides an excellent opportunity for testing the genomic as-
pects of evolutionary repeatability.
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APPENDIX 1

TA B L E  A 1   Sprat genotyped at 8 microsatellites

Sample N No alleles Ar Ho uHe FIS Dev HWE (B)
Dev 
LD (B)

HOL 31 130 16.3 0.88 ± 0.03 0.87 ± 0.03 −0.04 ± 0.04 2 (0) 1 (0)

MEL 79 189 17.2 0.80 ± 0.05 0.88 ± 0.03 0.09 ± 0.04 5 (4) 2 (1)

FIN 79 185 16.7 0.80 ± 0.05 0.88 ± 0.03 0.09 ± 0.04 4 (3) 1 (1)

TRH 80 193 17.3 0.80 ± 0.05 0.88 ± 0.03 0.09 ± 0.04 3 (0) 1 (1)

NOR 73 182 16.7 0.81 ± 0.05 0.87 ± 0.03 0.07 ± 0.04 7 (5) 0 (0)

SOG 49 150 16.3 0.81 ± 0.05 0.89 ± 0.02 0.08 ± 0.05 2 (1) 3 (2)

HAR1 79 173 16.2 0.78 ± 0.04 0.87 ± 0.02 0.10 ± 0.04 4 (4) 0 (0)

HAR2 38 129 15.4 0.79 ± 0.02 0.85 ± 0.03 0.05 ± 0.03 2 (1) 1 (1)

HAR3 87 193 16.9 0.81 ± 0.03 0.87 ± 0.03 0.06 ± 0.03 4 (4) 0 (0)

LYS 99 195 16.5 0.80 ± 0.05 0.87 ± 0.02 0.08 ± 0.04 5 (4) 1 (1)

OSL 87 190 16.9 0.81 ± 0.04 0.87 ± 0.03 0.07 ± 0.03 4 (3) 0 (0)

LAND15 97 182 12.2 0.63 ± 0.08 0.70 ± 0.08 0.08 ± 0.06 5 (5) 0 (0)

NSEA 88 207 18.3 0.79 ± 0.05 0.89 ± 0.03 0.11 ± 0.04 6 (4) 0 (0)

CEL 74 193 17.9 0.83 ± 0.06 0.88 ± 0.03 0.06 ± 0.04 2 (1) 1 (1)

GOT 43 121 13.5 0.84 ± 0.04 0.82 ± 0.04 −0.04 ± 0.03 3 (0) 1 (0)

Note: Summary statistics per sampling site: Number of individuals; number of alleles; allelic richness (Ar); observed heterozygosity, Ho (mean ± SE); 
unbiased expected heterozygosity, uHe (mean ± SE); inbreeding coefficient, FIS (mean ± SE); number of deviations from Hardy–Weinberg equilibrium 
(HWE) at α = 0.05; number of deviations from Linkage Disequilibrium (LD) at α = 0.05 both before and after (B) Bonferroni correction.
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TA B L E  A 3   Sprat genotyped at 91 SNPs: Outcome of STRUCTURESelector and Evanno test after ten STRUCTURE runs from K1 to K7

K Runs

STRUCTURESelector Evanno test

MedMed MedMean MaxMed MaxMean Mean LnP(K) Stdev LnP(K) Ln′(K) |Ln″(K)| ΔK

1 10 1 1 1 1 −198719.85 0.05 NA NA NA

2 10 2 2 2 2 −195809.77 2.74 2,910.08 731.26 267.02

3 10 3 3 3 3 −193630.95 16.86 2,178.82 1,170.00 69.41

4 10 4 4 4 4 −192622.13 27.26 1,008.82 29.74 1.09

5 10 5 3 5 4 −191643.05 193.65 979.08 445.99 2.30

6 10 3 3 3 3 −191109.96 43.81 533.09 182.68 4.17

7 10 3 3 3 3 −190759.55 24.42 350.41 NA NA

MedMedK MedMeaK MaxMedK MaxMeaK

5 4 5 4

(Continues)
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TA B L E  A 4   Assignment analysis for individuals genotyped at SNPs to the different genetic clusters

Norway Landvik
NorthSea, 
Katt-Skag Baltic Outgr

Correct self-assign 
(%)

Norway 987 21 135 37 0 83.6

Landvik 23 268 7 2 0 89.3

NorthSea, 
Kattegat–Skagerrak

70 3 808 69 0 85.1

Baltic 10 0 18 280 0 90.9

Outgroups 0 0 0 0 66 100.0

Note: Values in the diagonal gray cells depict the correct self-assignment to cluster (in numbers). The last column shows the same values but in 
percentage. Overall correct self-assignment was 86%.

TA B L E  A 3   (Continued)
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F I G U R E  A 1   Extract of STRUCTURE barplot corresponding to LAND19 with individuals ordered by increasing ancestry to the Norwegian 
cluster (green). The rest of the clusters are depicted by the following colors: purple (Landvikvannet), blue (Baltic Sea) and orange (North Sea–
Kattegat–Skagerrak)
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F I G U R E  A 2   Relationship between Landvikvannet sprat and the 14 reference samples genotyped at microsatellites according to (a) 
STRUCTURE analysis, (b) DAPC, and (c) PCoA. The plot in (d) represents genetic distance measured as pairwise FST/(1 − FST) between the 
northernmost site (HOL) and each of the 14 remaining ones versus the corresponding shortest water distance (in km)

(a)

(b)
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F I G U R E  A 2   (Continued)
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F I G U R E  A 3   Origin of Landvikvannet sprat: Neighbor-joining tree placing Landvikvannet in context with the 40 reference samples after 
removing the SNP loci candidates to directional selection flagged by LOSITAN and BayeScan. Names of sampling sites by numbers can be 
retrieved in Table 1


