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Acoustic target classification is the process of assigning observed acoustic backscattering intensity to an acoustic category. A deep learning
strategy for acoustic target classification using a convolutional network is developed, consisting of an encoder and a decoder, which allow the
network to use pixel information and more abstract features. The network can learn features directly from data, and the learned feature space
may include both frequency response and school morphology. We tested the method on multifrequency data collected between 2007 and
2018 during the Norwegian sandeel survey. The network was able to distinguish between sandeel schools, schools of other species, and
background pixels (including seabed) in new survey data with an F1 score of 0.87 when tested against manually labelled schools. The network
separated schools of sandeel and schools of other species with an F1 score of 0.94. A traditional school classification algorithm obtained sub-
stantially lower F1 scores (0.77 and 0.82) when tested against the manually labelled schools. To train the network, it was necessary to develop
sampling and preprocessing strategies to account for unbalanced classes, inaccurate annotations, and biases in the training data. This is a step
towards a method to be applied across a range of acoustic trawl surveys.
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Introduction
Acoustic trawl surveys (Simmonds and MacLennan, 2005) are

commonly used in fisheries assessments to provide data that

support advice on total allowable catches for a wide range of fish

stocks. Echosounders are instruments that produce soundwaves

and record the intensity of backscattered soundwaves produced

by targets in the water column. Echosounder observations are cal-

ibrated (Foote et al., 1987) and can be integrated over specific

depth ranges to calculate the area-backscattering coefficient (the

average backscattering intensity per metre square; Maclennan

et al., 2002). The area-backscattering coefficient is linearly

related to fish abundance (Foote, 1983) for a given representative

target strength (Ona, 2003), and under the assumption that the

backscattering intensity can be correctly assigned to a species or a

group of species. The categorization of species into groups is

aided by trawl samples of the fish, which are used to estimate the

age and length distributions of fish populations. This method is

typically used for pelagic or semi-pelagic species, such as walleye

pollock (Karp and Walters, 1994), herring, blue whiting

(Gastauer et al., 2016), capelin (Gjøsæter et al., 2015), and sandeel

(Johnsen et al., 2009).

The process of assigning values of acoustic backscattering

intensity to an acoustic category or group is typically a manual

operation. An operator, based on information discerned from

trawl catches, multifrequency echosounder observations, and any

other auxiliary information, assigns values of acoustic backscat-

tering intensity to an acoustic category, which can represent a

species or a group of species. The process is typically time-
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consuming and often incurs operator-based biases (Simmonds

and MacLennan, 2005). To reduce bias and increase efficiency,

several features ascertained from the acoustic observations have

been used to aid, automate, or partially automate the process

(Korneliussen, 2018). In addition to trawl sampling, features

such as the location and position, environmental variables, and

acoustically derived morphometric and energy features may also

have discriminatory power (e.g. Horne, 2000; Reid, 2000). The

main feature used in species classification is the relative frequency

response, i.e. the fraction of backscattering intensity observed at

one frequency relative to a reference frequency, typically 38 kHz

(Kloser et al., 2002; Korneliussen and Ona, 2003). Based on these

features, different methods have been used to classify values of

backscattering intensity, including Bayesian methods

(Korneliussen et al., 2016), semi-supervised methods (Woillez

et al., 2012), and machine learning methods including random

forest (Proud et al., 2020; Fallon et al., 2016) and artificial neural

networks (Haralabous and Georgakarakos, 1996).

The current methods require that the feature space used for

the classification is predefined, e.g. averaging the relative fre-

quency response over a suitable number of pixels or defining the

most efficient morphometric features, but this step is not trivial,

i.e. how much should we smooth and what are the best morpho-

logical shapes? Defining the feature space for broadband fisheries

echosounders (Mukai and Amakasu, 2016), where small-scale

features in the frequency response may have large discriminatory

power, may be even more challenging. A method that combines

the feature extraction with the classification is preferable.

In recent years, deep convolutional neural networks (CNNs)

have emerged as the leading modelling tools for image classifica-

tion, segmentation, and semantic mapping both generally

(Hariharan et al., 2015; Long et al., 2015) and also within marine

science (Malde et al., 2020). CNNs do not require features to be

designed in advance as they can learn the appropriate features

from “raw” data, like images, and they have been shown to be su-

perior in solving problems in computer vision and image analysis

(Russakovsky et al., 2015). A CNN consists of a sequence of oper-

ations, referred to as layers, applied to the input image. The out-

put from one layer is thus the input to the subsequent layer. Each

layer typically consists of a number of separate convolutions with

small filter kernels, followed by some non-linear function, and

may also be combined with other operations. Each filter kernel

consists of a number of coefficients, and using gradient-based

optimization, these filter coefficients are tuned to minimize the

classification error on annotated training data, referred to as

training (Rumelhart et al., 1986). During training, the first layers

will typically learn to recognize edges, lines, and corners, and

the later layers can represent more abstract features. With this

approach, the network can use the raw data directly as opposed

to the traditional approach where the features must be prede-

fined. Training a CNN requires large amounts of training data,

i.e. ground truth data with corresponding annotations.

Image segmentation using CNNs can be carried out using sev-

eral different approaches. One strategy is to train a classifier on

small image patches and then either classify all pixels using a slid-

ing window approach, or more efficiently, by converting the fully

connected layers in the CNN to convolutional layers (Sermanet

et al., 2013), thereby avoiding overlapping computations.

Another approach is pixel-to-pixel semantic mapping using end-

to-end learning (Long et al., 2015). It uses a fully convolutional

network (FCN), consisting of an encoder and a decoder, where

the encoder maps the image to a low-resolution representation

and the decoder provides a mapping from the low-resolution

representation to the pixel-wise representation. An FCN has the

advantage that the input size can vary since the convolutions

“slide” over the data set, as opposed to networks that have fully

connected layers requiring a fixed input size. A popular network

architecture for semantic mapping is the U-Net (Ronneberger

et al., 2015), characterized by skip connections between the corre-

sponding encoder and decoder layers.

The objectives of this article are to (i) develop a deep learning

strategy that is suitable for segmenting and classifying

echosounder data collected during acoustic trawl surveys without

prior feature extraction; (ii) demonstrate that the strategy devel-

oped in (i) works on a real test case, and (iii) provide perspec-

tives, e.g. pros and cons, on the use of deep learning algorithms

in the classification of acoustic observations into acoustic catego-

ries (e.g. species groups).

Material and methods
The sandeel survey
Data collected during the Norwegian North Sea Sandeel survey

were used as test case for this study (ICES, 2016). The lesser san-

deel (Ammodytes marinus), hereafter sandeel, is a small fish that

does not have a swim bladder. For large parts of its life the san-

deel hides by burrowing in sandy seabed, where the proportion of

fine silt and clay particles is low (Macer, 1966; Wright et al.,

2000). During the feeding season in spring, adults that have bur-

rowed into the sandy substrate at night emerge at dawn

(Winslade, 1974) to form large schools in the upper pelagic zone

and predate on zooplankton (Freeman et al., 2004; Johnsen et al.,

2017). The sandeel is a key species in the North Sea ecosystem,

being a major prey species for several predators, including sea

birds, seals, and larger fish (Furness, 2002), and is also a valuable

target for commercial fishing.

The Institute of Marine Research, Norway, has been conduct-

ing acoustic trawl surveys for sandeel during April and May since

2005 in the sandeel areas of the north eastern part of the North

Sea (Johnsen et al., 2017). The survey series (2005–2018) was con-

ducted using the RV Johan Hjorth (2005–2008, 2010–2011), RV

GO Sars (2009), FV Brennholm (2012), and FV Eros (2013–

2018). All vessels were equipped with multifrequency Simrad

EK60 echosounder systems operating transducers at 18, 38, 120,

and 200 kHz, except for the FV Brennholm (2012) that was with-

out a 120-kHz EK60 echosounder but collected 120 kHz using a

Simrad ME70 sonar (Trenkel et al., 2008). In addition, the RV

GO Sars and FV Eros (from 2014) were equipped with a 70- and

333-kHz echosounder. The echosounders were calibrated in

accordance with standard procedures before each survey (Foote

et al., 1987). During operation, the pulse duration and ping repe-

tition frequency were set to 1.024 ms and 3–4 Hz, respectively, for

all frequencies and vessel speed was kept at approximately ten

knots. Echosounder observations were stored as values of volume

backscattering coefficient (sv; average amount of backscattering

intensity per cubic metre) by frequency (Maclennan et al., 2002).

See Johnsen et al., 2009 for further details.

Data preprocessing
In some instances, the pulse duration (i.e. range resolution) and

ping rate differed from the standard settings. To be consistent,

the data were interpolated into a common time-range grid based
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on the resolution of the 200-kHz data. The median ping rate was

used to detect missing pings, and, when missing pings occurred,

columns of zeros (mapped to �75 dB re 1 m�1 after log transfor-

mation) were inserted into the sv data. If the range vector of the

other frequencies was of a lower resolution, the data were inter-

polated onto the 200-kHz range vector. If the range vector had a

higher resolution, the sv values were averaged into bins defined by

the 200-kHz range vector. This resulted in sv values in a uniform

time-range grid (Figure 1a–d), similar to pixels in a four-channel

image, and we refer to these values as pixels hereafter. The seabed

was approximately located as the depth with maximum increase

in vertical gradient for each ping. This was used for balanced

sampling (see below) and to avoid false predictions.

The survey series uses “sandeel”, “other”, “0-group sandeel”,

and “possible sandeel” as acoustic categories, denoted “classes”

hereafter, that were manually annotated by the same operator

across all years. The annotations were interpolated into a pixel

map corresponding to the echosounder data, and each pixel was

allocated to one class. The acoustic classes “other” and “sandeel”

have been used for all years, and the “sandeel” class is the only

class used in official survey estimates. In addition, “possible

sandeel” was introduced for schools where the frequency response

was not consistent with sandeel but where the operator was in

doubt and, for the 2016 survey, the “0-group sandeel” was intro-

duced due to an extraordinary high density of juveniles. Each

school varied from a few metres in length and height to >1 km in

length extending across large parts of the water column (Johnsen

et al., 2017). The 200-kHz data were used as the primary fre-

quency during annotation since it has the highest sandeel signal-

to-noise ratio, and each school was annotated and classified by

acoustic category using the Large Scale Survey System (LSSS)

postprocessing software (Korneliussen et al., 2016). The manual

annotations were mainly based on the frequency response of each

school (see Johnsen et al., 2009) and validated by trawl samples

where applicable. The “0-group sandeel” and “possible sandeel”

classes were added to an “ignore” pseudo class, and all other

pixels not associated with a class were set to “background”. This

resulted in pixel-based annotations with classes “sandeel”,

“other”, “background”, and “ignore” (Figure 1e). Note that the

bottom echo is included in the “background” class. Table 1 shows

the total number of schools for each class.

The purpose of the annotations is to estimate sandeel abun-

dance, which is calculated by summing up the 200-kHz backscat-

tering intensity (Figures 1d and 2a) of the sandeels over a given

region and dividing by their mean target strength. Heave meas-

urements of the survey vessel were used to correct the echogram

data and annotations. However, all figures are presented without

heave corrections. The annotations were often coded as rectangu-

lar bounding boxes (when viewed with heave corrections;

Figure 2b), and a portion of the bounding box would, conse-

quently, include background pixels. This does not substantially

affect the abundance estimate since adding low-value pixels does

not substantially contribute to the total integrated backscattering

intensity, but it may confuse a pixel-based classifier trying to

Figure 1. Echogram with four frequency channels (a–d, 18, 38, 120 and 200 kHz) and original (e) and modified (f) annotations, where black is
the “background” class, red (grey in print) is the “sandeel” class, green (dark grey in print) is the “other” class, and yellow (light grey in print) is
the “ignore” pseudo class, the predictions from the benchmark method (g), and the predictions from our method (h). Here, black and red
(grey in print) are the background/other and sandeel classes, respectively. The seabed is shown as a white curve in all panels.
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predict the “background” class. To amend this problem, we mod-

ified the original annotations based on the sv values. Any pixel an-

notated as “sandeel” or “other” with a corresponding 200-kHz sv

value outside the interval [10�7 m�1, 10�4 m�1] was assigned to

the “ignore” pseudo class (Figure 2). We set the threshold values

based on a visual inspection of multiple echograms. We further

smoothed the fish annotated pixel regions by applying binary

morphological closing to the modified “sandeel” and “other” anno-

tations, using a 7� 7 disk-shaped structure element (Figure 2c).

Training data
For each survey, the acoustic data were comprised of a single con-

tinuous echogram for each frequency, but for training purposes,

we divided each dataset into 4 � 256 � 256 pixels crops, where

4 is the number of frequencies. We also applied a decibel trans-

form to the sv values and applied a hard threshold to values

below �75 dB re 1 m�1 and above 0 dB re 1 m�1. Each annotated

echogram also possessed a heavy class imbalance; there were

many more “background” pixels (99.8%) than “sandeel” (0.1%)

and “other” pixels (0.1%). To expose the network to enough

samples with fish schools when training, we first created an algo-

rithm to get crops that were composed entirely of background

pixels and similarly for crops that included “sandeel” and “other”

pixels, respectively. We then balanced the dataset by applying an

equal sampling probability to crops containing seabed only,

“sandeel”, “other”, seabed and “sandeel”, and seabed and “other”

(see Table 2). All these crop types include the “background” class,

but, in addition, we randomly sampled a smaller fraction of crops

that had “background” pixels only (see Table 2). In addition,

most of the sandeel schools resided close to the seabed and the

balanced sampling during training mitigated the network from

classifying all schools close to the seabed as sandeel, or worse,

classifying the bottom itself as sandeel.

We partitioned the dataset into a training and validation data-

set and a test dataset by different years, where 2011–2016 was

used for training and validation and 2007–2010 combined with

2017–2018 was used for testing. From the training and validation

set, we used 85% randomly drawn echograms for training and

the remaining 15% for validation to select the best model.

Among the test sets, the final year (2018) was unseen until the

final evaluation.

Deep learning model and training
In this study, we built a classifier that was based on a slightly

modified version of the U-Net architecture (Ronneberger et al.,

2015). The U-Net is a pixel-wise image segmentation network

with a convolutional encoder–decoder architecture (Figure 3 and

Supplementary Tables S1 and S2), originally developed for the

segmentation of medical images. An encoder–decoder architec-

ture can represent both pixel-wise and abstract features simulta-

neously. Our modified U-Net takes four frequency channels, 18,

38, 120, and 200 kHz, and a 256 � 256 range-time subset of

the echogram as the input (4 � 256 � 256), and “encode” it to a

Table 1. Number of schools annotated as “sandeel”, “other”, and
“ignore” per year in the final dataset.

Year Sandeel schools Other schools Ignored schools

2007 453 605 0
2008 1 664 4 378 0
2009 699 2 755 30
2010 3 206 2 560 542
2011 623 1 685 177
2013 2 015 5 133 527
2014 1 121 6 113 549
2015 1 515 4 866 523
2016 829 4 423 2 130
2017 3 602 2 362 755
2018 4 678 1 917 255
Total 20 405 36 797 5 488

Figure 2. (a) Small patch from an echogram (200-kHz channel)
with (b) original and (c) modified annotations. Modified
annotations were obtained from original annotations using
thresholds on the 200-kHz channel followed by morphological
closing. The classes “background”, “sandeel”, and “ignore” are
presented in black, red, and yellow (black, grey, and light grey in
print), respectively. Axes are similar to Figure 1, where the vertical
and horizontal axes represent depth and time, respectively.

Table 2. Sampling strategy for drawing random 4 � 256 � 256
crops for training.

Classes Probability Description

Background 1/26 Random crop from area without fish,
above the seabed

Seabed 5/26 Random crop from area containing
seabed

Sandeel 5/26 Random crop from area containing
“sandeel” class

Other 5/26 Random crop from area containing
“other” class

Seabed þ sandeel 5/26 Random crop from area containing
both seabed and “sandeel” classes

Seabed þ other 5/26 Random crop from area containing
both seabed and “other” classes

We divided regions of the echograms into these six classes and drew random
samples from each class with the given probabilities.
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16 � 16 “image” with 1024 abstract features (16 � 16 � 1024).

The decoder then takes these features and generates (decode) an

output for the classes “background”, “other”, and “sandeel” (3 �
256 � 256) for each of the input pixels. The architecture also

copies the lower level features at each step when decoding, result-

ing in the decoder to both have access to low-level features (e.g.

the frequency response in a small region) and more abstract fea-

tures (e.g. like the overall shape). Finally, the output is passed

through a “softmax” function where each of the three output

classes is mapped to the interval [0, 1] and add up to 1, like a

probability for each class for each pixel. Contrary to the original

implementation, we inserted a batch normalization layer (Ioffe

and Szegedy, 2015) between each convolutional layer and its sub-

sequent activation function to reduce covariate shift, i.e. normal-

izing the distribution of outputs from each convolutional layer.

We trained the model over 5000 iterations using batches of 16

random 4 � 256 � 256 crops. We used random uniform weight

initialization and optimized with stochastic gradient descent with

initial learning rate 0.01 and momentum 0.95. The learning rate

controls how much the model parameters can change in each

training iteration, while the momentum controls how much a

training sample will influence the change of model parameters in

the subsequent iterations. The learning rate was reduced by a fac-

tor of 0.5 every 1000 iterations. The model was evaluated on the

validation set every 20th iteration. Due to the class imbalance, we

used a weighted cross entropy loss with class weights (background

¼ 1, sandeel ¼ 30, and other ¼ 25) to further adjust for imbal-

anced classes, giving less weight to each background pixel to

compensate for this class being more frequently observed. We

randomly flipped the training crops about the vertical axis and

added random multiplicative noise to a random 5% of the pixels.

The hyperparameters were set by training the model multiple

times, each time with a different combination of hyperpara-

meters. We observed the impact on classification accuracies on

the training and validation set for different combinations and

fine-tuned the hyperparameters further based on the combination

that gave the best initial results.

Since the network is based on convolutions only, the input

image can be of any size during prediction and does not have

to resemble the 4 � 256 � 256 crops used for training. When

using the network for prediction, we applied it to tiled seg-

ments (corresponding to the echosounder raw files) of the full

survey echograms, including an overlap between segments of

40 pixels to avoid edge effects. As a postprocessing step, we

also removed any predictions of fish more than ten pixels be-

low the seabed.

Due to the heavy class imbalance, we used precision/recall

curves rather than receiver operating characteristic curves to eval-

uate the performance. The network is considered a binary pixel

classifier (positive/negative) by fixing a threshold value between 0

and 1, classifying a pixel as positive if the network output for the

“sandeel” class is above this threshold value and negative other-

wise. Using “sandeel” as the positive class, the precision is the

proportion of predicted “sandeel” pixels that are correct, and the

recall is the fraction of “sandeel” labels that are correctly predicted

as “sandeel”. By predicting all pixels as “sandeel”, recall would be

Figure 3. The network architecture, a slightly modified version of the original U-Net. The input is the 4 � 256 � 256 crops, and the 3 � 256
� 256 output is the softmax for each pixel by class (“sandeel”, “other”, and “background”).
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1, but precision would be low, and conversely, by correctly pre-

dicting one pixel as sandeel, precision would be 1, but recall

would be low. Varying the threshold value results in different pre-

cision and recall values, where the recall may increase at the cost

of lowering the precision. For a good classification, both precision

and recall should be high and the F1 score at a given threshold

value, defined as

F1 ¼ precision�1 þ recall�1

2

� ��1

;

is typically used to test a methods performance. In our case, we

only report the maximized F1 score, i.e. choosing the threshold

value that gives the highest F1 score.

When evaluating the performance, we used two slightly differ-

ent approaches when calculating the precision/recall curves for

the background class. The first approach classifies echograms us-

ing all the echogram pixels, whereas the other approach evaluated

echogram regions that were within 20 pixels of any original

school annotation (c.f. Figure 4). The rationale behind using

these two approaches was that we suspected that a proportion of

schools was not classified during annotation, and therefore, com-

paring “sandeel” predictions to annotations for entire echograms

may result in a high number of erroneous false positives. This

would again yield poor precision/recall curves and not reflect the

actual performance of the model.

When calculating the precision/recall curves, we used different

combinations of classes as positives and negatives, i.e. “sandeel”

as positive vs. “other” as negative to test the ability to separate

species given a school is detected and “sandeel” vs. “other” and

“background” to test the overall ability to detect sandeel schools,

which is the purpose of the survey. Predictions of the “ignore”

pseudo class were not considered when calculating the curves (c.f.

Figure 4).

Evaluation
To test our approach against a traditional automated processing

pipeline, we used the Sandeel case in Korneliussen et al. (2016) as

a benchmark. This was implemented as a Korona processing

pipeline in LSSS and consisted of a range of operations, including

noise filtering (spike noise, spot noise) smoothing, bottom detec-

tion, thresholding, school detection, and categorization. We used

the exact same setup and parameters as used by Korneliussen

et al. (2016). The categorization was exported to a file and

imported and treated similarly as the predictions from the U-Net

algorithm, except that the threshold for accepting a pixel as san-

deel was fixed, resulting in one point in the prediction recall plot

as opposed to the curves from our method. The testing was only

performed in the years that we used as test cases, i.e. our network

had never seen the data where we compare the methods.

Results
We trained and validated the model using echograms derived

from 2011 to 2016 survey data and tested the trained model using

echograms derived from 2007 to 2010 and 2017 to 2018 survey

data. Figure 1h shows an example of classification based on

model predictions for a four-channel echogram. In this example,

the trained network successfully separated the sandeel schools

from other types of fish and the background class. Figure 1g

shows the corresponding classification based on the benchmark

method.

The network’s ability to discriminate “sandeel” (positive) vs.

“background” and “other” (negative) is good (F1 score 0.87,

Figure 5) when excluding background pixels that are at a distance

of 20 pixels or more from the school annotations. In this case, a

total number of 170 million pixels were evaluated (positives and

negatives) and the annotations consisted of 90% “background”,

6% “sandeel”, and 4% “other” (Supplementary Table S3). This

resulted in an overall F1 score of 0.87 for the overall test set across

Figure 4. Illustration of evaluated pixels for computing precision/recall curves. (a) The 200-kHz echogram, (b) modified annotations where
yellow pixels (light grey in print) are the ignore pseudo class, while in this example, “sandeel” (red, grey in print) is treated as positive and
“other” (green, dark grey in print) and “background” (black) are regarded as negatives when calculating the precision/recall curves. (c) The
predictions of the “sandeel” class where a high softmax is shown as bright red and a low softmax is shown as dark red (grayscale in print).
Axes are similar to Figure 1, where the vertical and horizontal axes represent depth and time, respectively.

1396 O. Brautaset et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/77/4/1391/5712978 by N
orsk R

egnesentral-N
orw

egian user on 10 M
arch 2021

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsz235#supplementary-data


years, with a corresponding threshold, precision, and recall of

0.80, 0.85 and 0.89, respectively. For the training and validation

set, the years 2013, 2015, and 2016 did not perform as well when

compared to the other years, and for the test set, the years 2007

and 2008 did not perform as well as the other years. The bench-

mark method achieved an overall F1 score of 0.77 for the overall

test set across years, with a corresponding precision and recall of

0.80 and 0.74, respectively (Figure 5).

We also tested the network’s ability to discriminate between

“sandeel” (positive) and “other” (negative) while excluding both

“background” and the pseudo-class “ignore”, i.e. the ability to

determine the species given that a school is detected. In this case,

a total number of 18 million pixels were evaluated (positives and

negatives) and the annotation consisted of 0% background, 57%

“sandeel”, and 43% “other”. Our model’s separation of sandeel

vs. other species obtained an overall F1 score of 0.94 for the test

set. The corresponding threshold, precision, and recall were 0.50,

0.93, and 0.95, respectively. The test set results by year were also

more consistent than the previous case (including background

pixels), with the exception of 2007 and 2008, indicating that the

network is well suited to differentiate between species

(Supplementary Figure S1). The benchmark method achieved an

overall F1 score of 0.82 for the test set, with a corresponding pre-

cision and recall of 0.91 and 0.74, respectively (Supplementary

Figure S1).

Our model did not perform as well when tested using entire

echograms as input (Supplementary Figure S2). The performance

on the test set for the years 2017 and 2018 was satisfactory

(F1 score 0.61 and 0.78, respectively) but was substantially poorer

for earlier years 2007–2010 (F1 score 0.11, 0.51, 0.78, and 0.68,

respectively). The benchmark method achieved even lower F1

scores, both for the years 2017 and 2018 (0.32 and 0.62, respec-

tively) and for the years 2007–2010 (0.03, 0.07, 0.42 and 0.50, re-

spectively; Supplementary Figure S2). When looking into these

specific results in more detail, we found two main reasons for the

discrepancies, including missing annotations, incomplete annota-

tions, and erroneous predictions close to the sea surface.

Missing annotations were found in several echograms, and an

example of this is provided in Figure 6c, where the entire right-

hand side of the echogram does not contain any annotations of

fish. On closer inspection of the 200-kHz echogram (Figure 6a),

clear fish marks were not annotated. In these circumstances,

Figure 5. Precision/recall curves per year, where “sandeel” (positive) is compared to “other” and “background” (negatives) in a 20-pixel region
extending beyond the original school annotations. The remaining pixels annotated as “background” or “ignore” were excluded. The red and
blue curves (dark grey and light grey in print) denote the training data (years 2011–2016) and test data (years 2007–2010 and 2017–2018),
respectively. Each diamond denotes the corresponding precision/recall value for the benchmark method (evaluated on test data years only).
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positive predictions made by the model will be penalized when

calculating the precision/recall curves. This illustrates a common

problem encountered in the data, where image data are recorded

with an abrupt absence of annotations (the remaining part of the

echogram is annotated as “background”), c.f. the discussion for a

possible explanation.

In some cases, the model makes false-positive predictions for

“sandeel”. This is a common problem near the surface, where the

model often classifies high sv values, which could be caused by

dense plankton layers, as “sandeel”. This class is annotated as

“background” during training, but since we did not balance the

training dataset for this case, as we did for the bottom, the model

was not exposed to these “background” layers. The model has,

consequently, not learned to annotate it as “background” and

occasionally erroneously classifies them as “sandeel” instead.

Discussion
The objectives of this article were to define, train, and apply a

deep CNN model that performs automatic classification of la-

belled multifrequency echosounder data and discuss how deep

CNNs may be utilized for acoustic data. One of the main

strengths of this model is that it does not require prior feature ex-

traction steps, as it works directly on the output from the

echosounder. These learned features may be both energetic and

morphometric (Reid, 2000; Korneliussen, 2018), and there is no

need to specify the features explicitly or to what degree one or the

other should be used. The method also avoids any pixel averaging

by school or region before applying the classifier, as the method

works on high-resolution data. As with all neural networks,

model interpretation is difficult. In its current design, the CNN

does not provide information relating to feature importance,

making it less transparent when compared to conventional meth-

ods (e.g. random forest) that work using hand-crafted features.

The manual annotations from survey data may be uncertain,

and the uncertainty is not explicitly coded within the data. When

using predefined features, the number of parameters in the classi-

fication model is typically lower than what is needed for CNNs.

In those cases, it has been recommended to use a high-quality

training set where classifications are certain (Korneliussen et al.,

2016). Training a CNN requires a large amount of training data,

and utilization of the full set of annotations from the survey may

be needed. This has the drawback that low-quality annotation

data may be used in training and validation but has the advantage

that the data span the full variability across the survey. To some

extent, we worked around this by adding the “possible sandeel”

class to the “ignore” pseudo class. We recommend that future

implementations use a combination of the above and assign a

larger weight to annotations that have high certainty, e.g. those

from a feature library (Korneliussen et al., 2016), or allocate them

to the test set only.

Using non-standard image data with annotations not made

specifically for machine learning is a challenge. The annotations

from the survey were designed for integrating sandeel backscat-

tering intensity values, and assigning low sv values to the sandeel

class does not substantially contribute to the integrated sandeel

backscatter. Consequently, using square bounding boxes that in-

clude background pixels does not substantially affect the inte-

grated backscatter and is more efficient during manual

annotation than drawing the school outlines. This represented a

challenge in this study as the objective was to separate sandeel

and background classes, and hence, refining the annotations was

necessary. The modified annotations were important in making

the method work. Modification of manually annotated acoustic

observations may be a necessary step when using annotations to

build automatic classification models such as CNNs.

Addressing the class imbalance by exposing the network to bal-

anced mini batches of the data that contained all classes was nec-

essary. The “other” and “sandeel” classes could be balanced, since

they were annotated, but balancing the “background” class

was more challenging. This class was a combination of seabed,

plankton layers, empty water, and any other unknown scatterers.

For the seabed, we solved this by balancing the training set with

respect to crops close to seabed (since we had the bottom approx-

imately detected), but we did not balance this for the unlabelled

surface layer. This layer is most likely composed of near-surface

phytoplankton blooms, specifically high densities of the gas

Figure 6. (a and b) The 200-kHz echograms. (c and d) Modified “sandeel” annotations in red (grey in print), the “ignore” pseudo class in
yellow (light grey in print), and the “background” class in black. (e and f) Prediction of the “sandeel” class. (a, c, and e) Echogram with the
absence of fish annotations in the right-hand side of the image. (b, d, and f) Echogram with false-positive predictions of sandeel close to the
surface, possibly due to a zooplankton layer that the network is not trained to recognize. Axes are similar to Figure 1, where the vertical and
horizontal axes represent depth and time, respectively.
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producing Phaeocystis, which produce high levels of acoustic

backscattering intensity at 18 and 38 kHz. Since there is some

overlap in the backscattering intensity of the surface plankton

layer and of sandeel schools, the network would occasionally mis-

classify the “background” class as “sandeel”. A possible solution

to this problem could have been to have implemented an unsu-

pervised segmentation of the background class and then balance

the training dataset based on the resulting classes. Consequently,

addressing class imbalance is important for the actual classes in

the data, not only for those that are annotated, and represents a

general challenge when implementing supervised methods on

acoustic data.

Processing the whole survey time series using the same auto-

mated algorithm is more efficient, consistent, and cost-effective

than processing the data manually. We deliberately separated the

training and test dataset by years to see if the network could gen-

eralize across years. The results showed that the performance

changed by year, but this was not necessarily explained by the

training and test datasets (Figure 5 and Supplementary Figure

S2). The annotation issues noted above could account for parts of

the discrepancies, but there were also other features that may

have caused the network to perform differently across years. The

annotation of sandeel schools is easier for large schools (due to

more stable frequency responses and higher signal to noise), and

school size tends to increase with high sandeel abundance

(Johnsen et al., 2017). In years with low sandeel abundance, a

higher proportion of small schools cause a more uncertain cate-

gorization. Furthermore, weather condition may affect the

schooling behaviour, which affects sandeel school detection.

When reviewing model performance by year, especially when

including all background pixels (Supplementary Figure S2), some

of the discrepancies may have arisen due to erroneous annota-

tion. For survey years up to 2008, the labelling tool was under de-

velopment and labelling was less efficient, and typically square

annotation boxes were used. A bug in the annotation software

was discovered in 2013 that led to incorrect storing of the annota-

tion information (but not the exported backscattering intensity

values). This may explain the improvement in performance in

later years. For 2015, the weather conditions were rough, which

led to underestimated biomass as stated in the 2015–2017 survey

reports. For 2016, the “0-group sandeel” class was introduced due

to large amounts of juveniles, which indicates a change in the sys-

tem that may cause the model to perform differently, or alterna-

tively, caused the labelling to be more challenging. From this

perspective, reviewing the performance of the model across years

is an efficient tool to identify any potential biases in the data se-

ries, but these considerations also apply to our benchmark.

There are several future directions in which we would like to

take this. Further improvements of the model could be to include

net sampling data and depth as separate inputs, where net sam-

ples could provide additional species information, and due to the

conical shape of the echosounder beam, range could be used to

compensate for range effects (e.g. that schools at short range look

different at longer ranges). We would also want to include the

uncertainty of the acoustic categorizing to the survey abundance

estimates and, consequently, the fisheries advice when fully auto-

mating the annotation process. Another particularly interesting

property of CNNs is transfer learning, i.e. that a network can be

initialized from a previously trained network, and when presented

with new data can update its weights. When a network is devel-

oped for sandeel classification, we can apply transfer learning and

adapt the network for different species, ideally across a wide range

of surveys.

We have shown that a CNN can be reliably trained to catego-

rize acoustic multifrequency observations. The main strength of

this method is that the parameters can be learned directly from

the echosounder output using manual labels as training data, i.e.

there is no need to predefine features like frequency response,

school morphology, etc., as the network learns the features di-

rectly from the training data. The method also allows us to code

the tacit “knowledge” of a skilled operator, and it would be inter-

esting to see if the method could be used to replicate different

operators. In conjunction with more traditional, physics-based

methods, this would enable us to study drift in expert judge-

ments, explain annual differences, etc. When the network is

trained on other surveys, we can transfer networks between sur-

veys and look for differences in practices and test the implica-

tions. In our opinion, an end-to-end training approach opens

possibilities not achievable when using conventional methods.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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