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The expansion of salmonid aquaculture has resulted in environmental challenges, including salmon lice that may infest both farmed and wild
fish. For wild Atlantic salmon post-smolts that migrate from their rivers to the ocean, the first phase of their journey in the coastal zone,
where aquaculture occurs, is critical when considering lice exposure. To evaluate the lice influence during the post-smot migration we have
developed a migration model. An archive with spatiotemporal concentrations of lice larvae in Norwegian coastal waters has been established
using a combination of state-of-the-art hydrodynamic and lice biology models. To estimate lice-induced mortality of wild salmon from
Norwegian rivers, the infestation level on the virtual post-smolts was calibrated to match that observed on wild post-smolts genetically
assigned their rivers of origin. The lice infestation pressure was modelled on post-smolts from 401 rivers covering all of Norway. Based on this,
aquaculture-produced salmon lice-induced mortality of wild salmon post-smolts was estimated to be <10% for 179 rivers, 10–30% for 140
rivers, and >30% for 82 rivers in 2019. Estimated mortalities were used together with other data sets to evaluate aquaculture sustainability in
Norway. The aquaculture regulatory system represents a globally leading example of science-based management that considers the environ-
mental impact.
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Introduction
Aquaculture, and especially cage-based marine aquaculture, rep-

resents a rapidly growing form of global food production. The

production of salmonids, which primarily consists of Atlantic

salmon (Salmo salar) and to a lesser degree marine-farmed rain-

bow trout (Oncorhynchus mykiss), was first established in Norway

in the early 1970s. Since its pioneering start, production has in-

creased rapidly, reaching 1.44 million tons in Norway in 2019

(https://www.ssb.no/en/jord-skog-jakt-og-fiskeri/statistikker/fis

keoppdrett) and 2.25 million tons globally in 2016 (FAO, 2018).

However, the growth of this industry has not been without

environmental challenges, and genetic interactions between wild

conspecifics and farmed escapees, and salmon lice

(Lepeophtheirus salmonis, Krøyer 1837) infestations on wild sal-

monids, are considered the most significant (Torrissen et al.,

2013; Taranger et al., 2015; Glover et al., 2017; Forseth et al.,

2017).

The salmon louse is an ectoparasitic copepod that consists of

two allopatric sub-species in the Atlantic and Pacific oceans re-

spectively (Skern-Mauritzen et al., 2014). It is an obligate parasite

of anadromous salmonids during the marine phase of the life

cycle, feeding on the skin, blood and mucus of its host
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(Kabata, 1974; Wootten et al., 1982). As a consequence of

moderate-to-large infestations, lice may damage the skin of its

host and make it more susceptible to secondary infections, caus-

ing physiological and osmoregulatory challenges, and ultimately

death (Birkeland and Jakobsen, 1997; Bjørn and Finstad, 1998;

Dawson et al., 1999; Poole et al., 2000; Bjørn et al., 2001). Sub-

lethal lice infestations may also affect growth, behaviour, and age

of maturity of its host during its marine migration (Birkeland,

1996; Skilbrei et al., 2013; Gargan et al., 2015; Shephard et al.,

2016).

Due to an increasing number of salmon and trout farmed in

open cages in coastal regions (405 million salmon and rainbow

trout in Norway alone as of 1/1-2017; https://www.ssb.no/en/

jord-skog-jakt-og-fiskeri/statistikker/fiskeoppdrett), the number

and availability of hosts for salmon lice have increased (Heuch

and Mo, 2001; Bergh, 2007). In an attempt to reduce the pressure

of lice infestation on wild salmonids in aquaculture-dense regions

of Norway, increasingly stringent regulations to limit the num-

bers of lice permitted on farmed fish have been imposed.

However, regulations of the allowed lice level have not been able

to compensate for the industry’s almost continual expansion.

Consequently, the infection pressure to which both farmed and

wild salmonids have been exposed to in farming-dense regions of

Norway has increased substantially with time (Taranger et al.,

2015). This situation has been exacerbated by the fact that lice in-

creasingly display reduced sensitivity to chemotherapeutants

(Espedal et al., 2013; Ljungfeldt et al., 2014; Kaur et al., 2017),

and are therefore increasingly difficult to control on farms.

The first three stages of the salmon louse life cycle are plank-

tonic. Thus, depending on the prevailing conditions and temper-

atures, larvae may drift 100 km or more from their source of

origin with ambient water currents before dying from starvation

or senescence (Asplin et al., 2014; Johnsen et al., 2014; Johnsen

et al., 2016). Lice larvae produced on farmed fish may therefore

infest both farmed and wild fish as demonstrated by the fact that

lice displaying resistance to delousing chemotherapeutants are

also found on wild salmonids in aquaculture-dense regions

(Fjørtoft et al., 2017, 2019).

Atlantic salmon post-smolts migrating from rivers are exposed

to lice on their way to their oceanic feeding grounds. Due to their

small size, the post-smolts are particularly vulnerable to the

effects of lice infestation in aquaculture-intensive areas (Finstad

et al., 2000; Rikardsen et al., 2004; Skaala et al., 2014). The migra-

tion of salmon post-smolts usually commences from late April in

southern Norway, and late June in northern Norway, and typi-

cally lasts 3–7 weeks (Orell et al., 2007; Skaala et al., 2012; Otero

et al., 2014; Haraldstad et al., 2017). However, the majority of a

river’s smolt population migrates during a 1- to 2-week period

(Hvidsten et al., 1995; Davidsen et al., 2005; Skilbrei and

Wennevik, 2006; Urke et al., 2013).

In 2017, the Norwegian Government implemented a new sys-

tem for managing the growth of the aquaculture industry in the

white paper “Predictable and environmentally sustainable growth

in Norwegian salmon- and trout farming” (St. Meld. 16, 2014-

2015). The system regulates future growth of the industry based

upon the estimated salmon lice-induced mortality of wild salmon

post-smolts within 13 management areas (MAs) that cover the

entire Norwegian coastline. This is commonly referred to as the

“Traffic Light System”, whereby each MA is determined as

“green” if lice are estimated to cause <10% mortality of wild sal-

monid post-smolts, “yellow” if estimated mortality is 10–30%,

and “red” if estimated mortality is >30%. In turn, these colours

reflect whether the industry in that zone will be allowed to ex-

pand (green), must reduce production levels (red), or shall main-

tain at current levels (yellow). Given that Atlantic salmon

farming is an economically significant form of aquaculture, and

that Norway is the largest salmon-producing country in the

world, this regulatory system represents a globally leading exam-

ple of science-based regulation of aquaculture based on its envi-

ronmental impact.

Norway has a national program (NALO) for monitoring

salmon lice infestation levels on wild Atlantic salmon post-

smolts, sea trout (Salmo trutta L.), and Arctic char (Salvelinus

alpinus L.) (Taranger et al., 2015). Within the program, wild

salmon post-smolts are captured by trawling in six fjord and

coastal areas along the coastline. The salmon lice infestation levels

on these post-smolts are used to estimate the proportion of fish

in the MA that are likely to die from lice infestation according to

threshold tolerance limits (Holst et al., 2003; Taranger et al.,

2015). However, NALO does not cover the entire coast, nor does

it take into consideration that within each of the 13 MAs, post-

smolts captured during trawling originate from multiple rivers of

varying characteristics, including differences in the distances and

migration routes to the ocean. Genetic tools have been used to

identify the compositional units of mixed-stock fisheries (Dahle

et al., 2018; Johansen et al., 2018), including mixed salmonid fish-

eries (Beacham et al., 2012; Ozerov et al., 2017; Bradbury et al.,

2018). Harvey et al. (2019) recently identified the rivers of origin

for many of the salmon post-smolts captured during the NALO

trawling surveys in 2015–2019, using a similar approach to the

previous studies, and to the genetic methods implemented in

Norway to identify fish-farm escapees back to their farms of ori-

gin (Glover et al., 2008; Glover, 2010). The genetic assignments

provide the opportunity to look at river-specific infestation levels,

and in turn, the ability to develop and validate more accurate

models of post-smolt migration and lice infestation dynamics in

Norwegian fjords.

The Norwegian coastline is estimated to be >25 000 km long

(CIA, 2017) and has >400 rivers that may contain salmon.

Clearly, it is not logistically feasible to monitor the lice infestation

rates and corresponding mortality on post-smolts migrating from

all of these rivers. Therefore, we developed a virtual post-smolt

(VPS) model that estimates lice infestation during the salmon’s

migration to the ocean. Information about the lice larvae concen-

trations along the VPS migration routes was taken from the lice

dispersion model (Sandvik et al., 2020).

The VPS model was calibrated and validated by the lice level

observed on the wild salmon post-smolts captured by trawling.

The trawled post-smolts were identified to their rivers of origin

through genetic assignment methods (Harvey et al., 2019). Here,

we present the VPS model with a sensitivity test and the estimated

level of lice on the fish for all 401 rivers targeting a spawning bio-

mass over 10-kg females (Anon, 2016). The mortality of Atlantic

salmon during their migration from the river was estimated based

upon the modelled level of lice.

Material and methods
Overview
To estimate the level of salmon lice-induced mortality of wild

salmon post-smolts migrating towards the ocean, we built a VPS

model using knowledge of migration speed and timing of start
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migration from empirical observations. To estimate the lice infes-

tation on the VPS, we combined lice larvae concentration from a

previously published lice dispersion model (Johnsen et al., 2016;

Sandvik et al., 2016, 2020; Myksvoll et al., 2018), and calibrated

the infestation levels using measurements of lice infestation levels

of wild salmon post-smolts that had been captured in the fjords

in multiple years. Finally, by assuming tolerance of lice as given

by Taranger et al. (2015), with a sensitivity test to altered limits,

lice-induced mortality was estimated for all salmon rivers along

the Norwegian coastline. A schematic overview of the model is

presented in Figure 1, and the major elements upon which it is

based are described in detail below.

Area description
The Traffic light regulation system of the entire Norwegian coast-

line, based on the estimated lice-induced mortality of wild

salmon, requires mortality estimates for the salmon rivers along

the coastline. Rivers are located from the outer coastline to the in-

ner fjords, the longest fjord being over 200 km long. Data on the

wild migrating Atlantic salmon post-smolts captured during the

NALO trawling surveys have been made available for this study

(www.nmdc.no). The post-smolts captured in 2015, 2016, 2017,

2018, and 2019 (Nilsen et al., 2018a, b, c, d, e; Nilsen et al., 2019a,

b, c, d, Nilsen et al., in prep) were used to calibrate the model pre-

dictions from the corresponding years. The rivers to which the

captured fish were genetically assigned are given in

Supplementary Table S3.

The temporal distribution of the start of the Atlantic salmon

post-smolt migration varies between the rivers as well as inter-

annually (Otero et al., 2014). The temporal distribution of start

migration used in our model is based on compilations of data on

25% annual catch of migrating smolts from 25 Norwegian rivers

(Otero et al., 2014; Karlsen et al., 2016; Supplementary Table S1).

In addition, we used information collected from several

Norwegian technical reports giving sparser data on the temporal

distribution of start migration for 18 rivers. In general, post-

smolts begin their migration earlier in the south than in the north

(Hvidsten et al., 1998; Otero et al., 2014). The temporal distribu-

tion of start migration does, however, also vary between rivers lo-

cated at similar latitudes but at different positions within fjords

(Hvidsten et al., 1998; Vollset et al., 2016a). This variation is

probably caused by differences in catchment composition and

height distribution that influence the development of water dis-

charge and water temperature in spring. Based on the available

data and expert judgement (see Nilsen et al. 2017 Appendix 2b),

we assumed a probable distribution of start migration for each of

the 401 rivers, and the time span of the migration was set at 40 d

for all rivers. The start-time of the migration was set to occur 10 d

prior to the 25% migration time and the end of the migration

was set to occur 30 d after the 25% timing date. The date of start,

25%, and end of the migration is given in Supplementary Table

S1. Most rivers within a MA were given the same migration tim-

ing given by the observed median date for 25% migration from

reference rivers with longer time series from that region. Rivers

with more sparse migration data were compared to these refer-

ence rivers and the timing was adjusted if they deviated by more

than a week in observed migration dates for the same years. For

rivers without any data on smolt migration timing, rivers with

low-altitude coastal catchments were given an earlier start date,

whereas rivers with high-altitude inland catchments were given a

later start date (usually a week) than the reference river(s) for

that MA (Nilsen et al. 2017, Appendix 2b).

Observed fish used for model calibration and validation
Wild salmon post-smolts were captured by trawl in the outer

parts of the fjords, using a specially designed fish-lift trawl (Holst

and McDonald, 2000). This surface trawl is 35 m wide, 5 m deep,

and is towed at 4–5 knots. The fish-lift trawl separates fish of rele-

vant size and sorts them into an aquarium connected to the trawl

cod-end. The system is designed to minimize scale loss and loss

of lice. Trawling was performed in the outer part of fjords and ge-

netic baselines established for all rivers in four MAs: MA2–5

made it possible to assign the captured post-smolts to their river

of origin. Hence, we were enabled with an observational data set

of captured wild post-smolts captured in weeks 18–24 in 2015–

2019.

Genetic assignment methods were used to determine the river

of origin for the post-smolts captured by trawling. Full details of

the assignment methods are presented elsewhere (Harvey et al.,

2019), although a short summary is given here. A genetic baseline,

consisting of data from 31 microsatellite DNA markers, was

Figure 1. Schematic overview of the model system used to estimate
the salmon lice (Lepeophtheirus salmonis) infestation level on out-
migrating Atlantic salmon (Salmo salar) post-smolt from rivers
along the Norwegian coast.
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established for 45 salmon populations in four MAs

(Supplementary Table S2). Thereafter, this genetic baseline was

used to identify post-smolts captured by trawling back to their

rivers of origin using the individual assignment approach imple-

mented in the program ONCOR (Kalinowski et al., 2007).

Individual post-smolts that were assigned with an assignment

probability higher than 0.80 were accepted as correctly assigned

(shown in Supplementary Table S3). Individuals not meeting

these criteria or with sign of being hatchery reared post-smolts

(tagged with PIT or adipose fin removed) were treated as uniden-

tified. The hatchery-reared post-smolts were removed because

they originate from scientific release trials and may be chemically

protected against salmon lice, or artificially infested with salmon

lice. Such fish may also have a different migration behaviour

from wild post-smolts.

Salmon lice dispersion model
The biophysical salmon lice dispersion model calculated the daily

concentration of lice by combining data from reported levels of

lice at aquaculture sites along the Norwegian coast and hydrody-

namic models (Albretsen, 2011; Asplin et al., 2014; Johnsen et al.,

2014; Myksvoll et al., 2018). The simulated daily concentration of

lice was a calculated number of copodids residing in the upper 2

m of the water column that day and is hereby referred to as the

lice concentration. The concentration field was limited to the up-

per metres, as the salmon post-smolts normally reside close to the

surface (Davidsen et al., 2009; Plantalech Manel-La et al., 2009).

The dispersion was influenced by their vertical positioning, as de-

scribed in Johnsen et al. (2014); Crosbie et al. (2019). A more de-

tailed description of the parameterization of the model lice

behaviour used in this study can be found in Sandvik et al.

(2020). The lice concentration has been demonstrated to be well

correlated with observations of lice on fish (Samsing et al., 2016;

Sandvik et al., 2016, 2020; Myksvoll et al., 2018).

Similar use of hydrodynamic dispersion models to predict the

distribution of salmon lice for management purposes has been

widely made in the scientific community (Salama and Murray,

2011; Adams et al., 2012; Salama et al., 2013; Adams et al., 2015;

Adams et al., 2016; Salama et al., 2016; Samsing et al., 2017;

Salama et al., 2018; Cantrell et al., 2018).

VPS migration model
Parametrization of migration
The VPS migration model calculated the swimming routes of in-

dividual post-smolts on their way to the ocean. It was coupled

with the predicted lice concentration from the salmon lice model.

Behavioural responses of post-smolts to shifting environmental

conditions are largely unknown. Therefore, the VPS were param-

eterized to swim towards the ocean by artificially implementing a

fjord-index in the 800 m� 800 m horizontally resolved grid used

by the salmon lice model. The fjord-index is shown for the

Hardangerfjord (in MA3) in Figure 2. All grid-cells in open

ocean, defined as >10 km from any land cell in the model, got a

value of zero and the rest of the sea cells are initially undefined.

Thereafter, the index was defined iteratively where undefined cells

neighbouring a cell with value i got the value iþ 1. This was re-

peated until all sea cells were defined. At every time step, each in-

dividual VPS checked the neighbour cells for a lower fjord-index

(there was always at least one such neighbour) to find a local

direction out of the fjord. A stochastic element was added to the

model to create individual variability in migration routes.

Using hourly time steps, the VPS could stay in the cell, move

to a cell with lower fjord index, or move to a cell with higher in-

dex. Stochasticity in migration routes between the VPS was in-

cluded as the probability for migration to a lower fjord index,

and hence towards the ocean, was five times higher compared to

staying at the current position or move to a grid with higher fjord

index. If several neighbouring grids had a lower fjord index com-

pared to the value at current position, there was an equal likeli-

hood of migration between them. The modelled progression

speed of VPS corresponds to a median value of 0.14 m s�1 (25-

and 75-percentiles of 0.12–0.16 m s�1).

Empirical results from studies using tagging approaches show

a great variability in progression speed, between 0.4 and 3.0 body

lengths s�1 (Thorstad et al., 2004; Finstad et al., 2005; Økland

et al., 2006; Davidsen et al., 2009; Plantalech Manel-La et al.,

2009; Thorstad et al., 2012; Urke et al., 2013; Halttunen et al.,

2018). The divergent results may be explained by the different

set-up of the experiments, as they are completed in different

areas, shifting environments, and most of the results are obtained

using hatchery reared post-smolts that tend to be larger than wild

fish. The progression speed of the VPS was �1 body length s�1

for the size of wild salmon post-smolts (Rikardsen et al., 2004),

The modelled progression speed was in accordance with observed

progression speed of wild tagged post-smolt (Urke et al., 2013).

The VPS was followed until they reach the open ocean, defined as

a grid with fjord-index¼ 0 and further migration along the coast

was not considered in the simulation.

Parametrization of lice infestation
The infestation efficiency (the likelihood of settlement on a host

when residing in the same water masses) of salmon lice is influ-

enced by salinity, temperature, water currents, and the age of the

copepodite (Hevrøy et al., 2003; Brooks, 2005; Bricknell et al.,

2006; Samsing et al., 2015). The infestation efficiency as a func-

tion of these variables is, however, unknown. Therefore, we as-

sumed a fixed infestation efficiency.

The number of salmon lice infestations on the VPS (NLice)

was modelled using a negative binomial distribution with expec-

tation m and variance m þ m2/h,

NLice � NB l; hð Þ
E NLiceð Þ ¼ l

Var NLiceð Þ ¼ lþ l2

h
:

The response variable was related to the infestation pressure

(IP) by a log link, which ensured positive count values. The IP

was defined as the migration time multiplied with the mean lice

concentration along the migration route (h N lice m�3).

Generally, this was proportional to the number of lice encoun-

tered by the salmon on its way to the sea.

GLMM regression was conducted to calibrate the model, using

lice count data from trawled fish in the period 2015–2019. To es-

timate the IP experienced by trawled fish, a simulation was per-

formed in which ten VPS from each river were generated per

hour. Trawled fish were then assigned a lice pressure equal to the

mean lice pressure experienced by matching VPS. A VPS was

“matching” if it originated from the same river as the trawled fish

and occurred in the trawling area on the same day as the fish that

4 I. A. Johnsen et al.
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was captured. Trawled fish with no matching VPS (446 of 2125)

were discarded from the analysis. These were either genetically

misassigned or had a migration pattern that was different from

the VPS.

A naı̈ve regression model linking lice count and IP was

logli ¼ Interceptþ logIP; (1)

where IPi was the estimated IP for the i’th trawled fish, measured

in h N lice m�3. This model was useful to check whether there

was indeed a significant correlation between estimated IP and ob-

served lice counts. It did, however, imply a nonlinear (power-

law) relationship between lice count and IP, which was biologi-

cally questionable. In our main model, we therefore forced a lin-

ear relationship by defining IP as an offset variable. The resulting

model made more biological sense but could not be used to con-

firm the correlation between IP and NLice. To account for possi-

ble systematic differences in modelled infestation efficiency

between different years or rivers, we also included river and year

as random intercepts. The main model then read

log lijkð Þ ¼ Intercept þ offset log IPijkð Þ
� �

þ fYearj þ fRiverk ;

f Yearj � N 0;r2
fYear

� �
;

f Riverk � N 0;r2
fRiver

� �
;

(2)

with fYearj and fRiverk as the random effects of the j’th year

and k’th river, respectively. We remark here that the intercept pa-

rameter (and its random effects) encompass a range of different

factors relating to infestation efficiency, such as louse infestation

success rate, fish swimming speed, oceanic turbulence and sys-

tematic errors in the modelled migration route or lice concentra-

tion. Regional or yearly differences in any of these factors will

show up in the model as random effects.

All statistical analyses were conducted in RStudio 1.2.5019

(RStudio Team, 2020). GLMM regression was conducted using

the package merTools (Knowles and Frederick, 2019).

Experimental studies have shown that between 30 and 50% of

the newly attached salmon lice die before reaching the mobile

stages that cause the heaviest damage to the host fish (Grimnes

and Jakobsen, 1996; Stien et al., 2005; Wagner et al., 2008; Hamre

et al., 2009). Therefore, we assumed that 60% of the attached lice

survive to the mobile stages, which was used when estimating the

lice-induced mortality of salmon post-smolts.

Testing the model sensitivity
As the temporal distribution of the post-smolts start migration is

to a large extent unknown for a majority of the rivers, the preva-

lence and mean intensity of the lice levels on the VPS were esti-

mated for a range of temporal distributions for start migration.

Six migration distributions were tested: Flat distribution, flat dis-

tribution moved 10 d forward and backward in time, left-skewed,

right-skewed, and centred distribution, as illustrated in

Supplementary Figure S1. All of the assumed start migration dis-

tributions extended over a 40-day period (Supplementary Table

S1). With an exception of the flat distribution, the assumed mi-

gration distributions were calculated using a beta distribution. To

obtain a left skewed distribution, the date for 25 and 50% migra-

tion was assumed to be 3 and 7 d earlier respectively.

Correspondingly, the date for 25 and 50% migration was as-

sumed to be 10 and 7 d later to obtain the right skewed distribu-

tion. The centred distribution was obtained by assuming the date

of 25% migration to be 5 d later.

Estimating mortality
Using the smolt migration model, we calculated the number of

lice on 1000 individual VPS from each of the 401 salmon rivers

for the period 2012–2019, assuming migration period as pre-

sented in Supplementary Table S1 with a flat distribution. The

simulated number of lice on the VPS were used to estimate the

risk of mortality for individual fish, which then was summed for

the river in question. The risk of mortality for a 20 g salmon post-

smolt was assumed to be in accordance with previously proposed

lice tolerance levels (Normal mortality in Table 1, Taranger et al.,

2015). To test the sensitivity of different tolerance levels, we cal-

culated mortality with a lower and higher lice tolerance, (Table 1)

as conducted previously (Kristoffersen et al., 2018).

Figure 2. Fjord index used for model parameterization of migration (left panel). Modelled migration area for Atlantic salmon (Salmo salar)
post-smolts from the rivers Etne (middle panel) and Opo (right panel) in the Hardangerfjord. Coloured area marks the area of migration, the
number of fish increase from blue to yellow.

Post-smolt migration in Norway 5

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsaa202/6026111 by Institute of M

arine R
esearch user on 23 February 2021

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaa202#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaa202#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaa202#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaa202#supplementary-data


Results
Model migration
Figure 2 illustrates the modelled post-smolt migration routes

from two rivers in the Hardangerfjord. From each of the rivers

Etne and Opo, 1000 VPS were followed during their migration to

the ocean. The fjord has several routes of exit to the ocean, but

the parameterization of the model forced the VPS out the main

fjord mouth, the opening with the shortest distance to open

ocean. The shortest migration distances between the river and the

ocean were 79 km for Etne and 224 km for Opo, giving average

modelled migration times of 6.7 and 17.6 d, respectively.

The temporally averaged simulated salmon lice concentration

in the upper 2 m during May and June 2018 is shown in Figure 3

(left panel). The daily average lice concentration in the assumed

migration area for salmon from the Opo river (the coloured area

in Figure 2) is assumed to represent the IP and is shown by

shaded area in Figure 3 (right panel) for May and June 2018. The

number of infective lice rapidly increased in the time period rele-

vant for the migration of the VPS from this river, illustrating that

migration timing can be an essential factor to consider.

Model infestation efficiency
When fitted to the trawl data, the simple model defined by (1)

gave an expected louse count of

logl ¼ 1:9244þ 0:6351 � log IPð Þ;

and a dispersion parameter of h ¼ 0:2740. The standard error of

the IP coefficient is 0.0403, which implied a significant (p< 0.01)

correlation between lice count and model IP. Fitting the main in-

festation efficiency model (2) to the trawl data, we obtained

logl ¼ 1:2844þ log IPð Þ;

with the intercept having a standard error of 0.3790: Dispersion

was estimated to h ¼ 0:3695. The random-effect variance was

1.4733 for fRiver and 0.4384 for fYear. For more details of inter-

annual and river-specific data, see Supplementary Figure S2,

Supplementary Tables S4 and S5. Reduced models with one or

both random effects removed showed a larger AIC value and

were rejected. The uncertainty was determined both by the stan-

dard error of the intercept and by the variance of the random

effects.

Model sensitivity
The estimated lice level on the VPS varied between the simula-

tions of different migration timing; altering the temporal distri-

bution for migration in accordance to the curves in

Supplementary Figure S1 altered the lice infestation level

(Supplementary Figure S3). The left skewed distribution resulted

in lower estimated prevalence and mean intensity lice on the VPS

compared to the normal migration in MA 2–5 in all the simulated

years. Correspondingly, the right skewed distribution estimated

higher lice level compared to the normal migration. The centred,

Flat � 1 0 d and Flat þ10 d distributions showed a similar preva-

lence and intensity of lice on the VPS as the flat (normal)

Table 1. Assumed tolerance limits for mortality of Atlantic salmon (Salmo salar) post-smolts with salmon lice (Lepeophtheirus salmonis).

Low mortality Normal mortality High mortality

Lice per fish Assumed mortality (%) Lice per fish Assumed mortality (%) Lice per fish Assumed mortality (%)

<2 0 <2 0 <2 0
2–3 10 2–3 20 2–3 40
4–6 25 4–6 50 >3 100
7–10 50 >6 100 – –
>10 100 – – – –

The limits correspond to the tolerance limit for a 20 g post-smolt in accordance to Taranger et al (2015) and Kristoffersen et al (2018).

Figure 3. Mean simulated lice (Lepeophtheirus salmonis) distribution in the upper 2 m during May 2018 and June 2018 (left side) and daily
averaged concentration of lice (ind m�3 h�1) representing the infestation pressure in the assumed migration area for Atlantic salmon (Salmo
salar) post-smolts from the river Opo during May 2018 and June 2018 (right side).
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migration in 2019. In 2018, the Flat þ10 d distributions predicted

increased salmon lice infestation levels in MA2 and MA3 com-

pared to the flat (normal) migration (not shown). The variability

in influence between MAs and years reflects the seasonal and

management dynamics in the salmon lice levels on the farms.

Note that these results represent the average estimate between the

rivers in the area, where all rivers were weighted equally.

Estimated mortality
In 2019, a total of 179 rivers were classified as having a low

(<10%) mortality of migrating post-smolts, 140 as having a me-

dium (10–30%) mortality of migrating post-smolts, and 82 rivers

as having a high (>30%) mortality of migrating post-smolts us-

ing the established mortality tolerance limits (Table 1; Figure 4).

When mortality among rivers was weighted equally, the average

mortality was high in 2019 (>30%) in MA3 and 4, moderate

(10–30%) in MA 2, 5, 6, 7, and 10, and low (<10%) in the

remaining areas (MA1, 8, 9, 11, 12, and 13). Note that the average

here was weighted equally between the rivers, not reflecting the

different rivers salmon production. When estimating river-

specific mortality, MA1 and 13 did not have estimated mortality

exceeding 10% in any rivers during 2012–2019. The majority of

the rivers displaying a high mortality of post-smolts were located

in inner fjord locations. The simulations from 2012 to 2019 reveal

that the proportion of rivers with low mortality (<10%) in MA

2–6 has decreased since 2012 and 2013 (Figure 5). MA3 is the

only area with decreasing number of highly influenced rivers

(mortality >30%) from 100% influenced rivers in 2016.

Interannual fluctuation in the estimated influence can be seen in

MA 4, 5 and 8, related to the production cycles in the MAs. The

data set of the model estimates is published with river-specific

data starting in 2012 (Johnsen et al., 2020).

Alterations in the assumed tolerance limit influenced mortality

estimates (Figure 6). The median mortality between rivers in an

MA altered classifications in 4 out of 13 MAs in 2019.

Discussion
Here, we developed a VPS model to estimate the marine mortal-

ity of wild Atlantic salmon post-smolts resulting from infestation

of salmon lice produced on commercial salmon farms. After pa-

rametrization and calibration against empirical data from the

field, the model was implemented to estimate mortality for post-

smolts from 401 rivers spanning Norway. Based on this,

aquaculture-produced salmon lice-induced mortality of wild

salmon post-smolts was estimated as <10% for 247 rivers, 10–

30% for 122 rivers, and >30% for 32 rivers in 2019.

Management applications
The mortality estimates generated from this work are currently

used as a major part of the Norwegian Government’s evaluation

of the environmental impact of aquaculture. Here, the indicator

used to describe this impact is the mortality of wild salmonids

caused by salmon lice from fish farms in all 13 MAs. In imple-

menting the Norwegian Government’s Traffic Light System for

Figure 4. Estimated mortality of Atlantic salmon (Salmo salar)
post-smolts from salmon lice (Lepeophtheirus salmonis) infestations
during out migration in 2019. The estimated mortality is categorized
into three classes: <10% morality in green, 10–30% mortality in
yellow and >30% mortality in red. The MAs are marked in black
and are numbered from south to north.

Figure 5. Distribution of river-specific estimated mortality of
Atlantic salmon (Salmo salar) post-smolts due to salmon lice
(Lepeophtheirus salmonis) infestations in 13 MAs during the years
2012–2019. The estimated mortality is categorized into three classes:
<10% morality in green, 10–30% mortality in yellow and >30%
mortality in red.

Figure 6. Estimated mortality of Atlantic salmon post-smolts due to
salmon lice (Lepeophtheirus salmonis) infestations during migration
to the ocean in 2019. The estimates are calculated based upon three
different assumed tolerance limits.
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regulating the aquaculture industry, all relevant available sources

of data are considered and evaluated within each MA. This

includes both the observed and modelled lice levels on wild fish

(Nilsen et al., 2018 a, b, c, d, e; Sandvik et al., 2016; Kristoffersen

et al., 2018). As there are >400 rivers containing salmon in

Norway, measuring the influence of salmon lice on post-smolts

during migration to the ocean based upon field observations

alone is logistically unfeasible. Thus, model results as presented

here provide an important supplement to the empirical observa-

tions to evaluate potential environmental impacts from

aquaculture.

The VPS model has been calibrated against observations of lice

numbers on wild salmon post-smolts captured by trawling in the

fjords over multiple years to ensure that the model predictions

are in accordance with observed lice levels on out-migrating post-

smolts from individual rivers. Ideally, the observational data set

available for calibration should include fish from all MAs. Due to

limitations in trawling effort and genetic baselines for all rivers,

the available data set consists of targeted effort in the MAs with

highest aquaculture intensity (MA2–5). A similar model was de-

veloped for estimating mortality of Atlantic salmon during post-

smolt migration but calibrated using lice infestation levels on

hatchery-reared salmon post-smolts kept in sentinel cages in the

fjords for surveillance purposes (Kristoffersen et al., 2018). Our

model results predict higher lice infestation levels than the predic-

tions from the previous study. As the lice concentration fields,

migration model, temporal distribution of post-smolt start

migrations, and observation data sets used for model calibration

are different between these two studies, it is difficult to identify a

single cause of the differences in the results between the two mod-

els. Whereas Kristoffersen et al. (2018) calibrated their model us-

ing observed number of lice kept in sentinel cages, the model

presented here is calibrated using the number of lice observed on

out migrating wild post-smolts captured by trawling. Given that

both are calibrated to fit observations, it seems feasible that the

different observational data sets represent a significant cause of

different model outputs. Another source of difference is the dis-

persion models. Kristoffersen et al. (2018) disperse salmon lice

larvae as a function of seaward distance, while our method is

based upon a hydrodynamic model. The genetic assignment of

the captured post-smolts provided a unique possibility to cali-

brate and evaluate the VPS model to the IP observed on wild

Atlantic salmon post-smolts on a per-river basis (Harvey et al.,

2019). To our knowledge, the result from the VPS model is the

only method that is shown to estimate lice levels in accordance

with river-specific data.

For the VPS model, results from both modelled and observed

approaches showed that, within each MA, rivers are differentially

affected. That is, as illustrated here, salmon originating from

inner-fjord rivers always displayed a higher lice-induced mortality

compared to the outer-fjord or coastal rivers. The main reason is

longer distance, and thereby extended time exposure to lice larvae

in the fjord or coastal area. This is consistent with other studies

that have demonstrated higher marine mortality for inner as op-

posed to outer fjord populations (Vollset et al., 2016a).

Therefore, future management regimes need to consider variation

in aquaculture impact also within the 13 MAs covering Norway.

The VPS model predicted elevated lice-induced mortality of

VPS in MA 2–12. In MA 2–5 the estimated mortality was low for

<60% of the rivers during 2015–2018, and MA3 has not exceeded

33% green rivers during 2012–2019. With an exception of MA3

that has shown an improvement since 2016, the number of rivers

with high estimated mortalities has increased the latter years. This

indicates a negative development regarding the environmental

impact on wild fish, considering salmon lice. The interannual

fluctuations in the lice-induced mortality in MA 4 and 5 coincide

with coordinated production between farms within these MAs,

where there was high farmed biomass in the outer part of the MA

during the years where high mortality was estimated for many of

the rivers. Throughout the study period, the highest mortalities

were found in MA 3 and 4 as a combined result of the lice con-

centration in the water masses and long migration routes.

Model sensitivity
The development of numerical models enables the possibility to

monitor the environmental conditions and investigate the influ-

ence of aquaculture on wild oceanic migrating post-smolts.

Further, models enable the possibility to explore the effect of dif-

ferent scenarios by varying different parameters, such as migra-

tion routes, tolerance limits, infestation efficiency, and so on.

Here, we have assumed that the infestation efficiency of the lice is

constant and not influenced by environmental conditions. It is

shown that salmon lice increase their infestation efficiency with

increasing temperatures (Skern-Mauritzen et al., 2020). However,

as salmon start their migration later in north compared to in the

south, the sea temperature under seaward migration is not that

different (Myksvoll et al., 2018). The sensitivity analysis con-

ducted here focused on the migration timing of the fish (the tem-

poral distribution of start migration) and how tolerance limits of

lice altered the estimated mortality.

For the estimated mortality of VPS, we assumed a migration

where the VPS start their migration during a 40-day period for all

rivers. This is probably seldom the case (e.g. Veselov et al., 1998;

Orell et al., 2007). However, the temporal distribution of the start

migration is strongly influenced by environmental cues that may

also vary between rivers (Hvidsten et al., 1995; Fjeldstad et al.,

2012; Jensen et al., 2012; Jonsson and Jonsson, 2014). Water dis-

charge, water temperature, and changes in these two factors, ei-

ther alone or in combination, appear to be the most important

environmental factors for interannual and inter-river variation in

the temporal distribution of start migration. At present, we lack

general models to predict such variation, but studies have shown

that the interannual variability of start migration is about 20–30 d

in Norwegian rivers (Hvidsten et al., 1995; Jensen et al., 2012;

Jonsson and Jonsson 2014; Vollset et al., 2016a; Skaala et al.,

2019).

To evaluate the effect of the temporal distribution of the start

migration for the 401 rivers, the average prevalence and intensity

across all rivers for each MA was calculated for different assumed

distributions for start migration. The altered timing of start mi-

gration influenced the estimated lice level on the VPS, where sim-

ulations with earlier skewed migrations gave lower mean intensity

on the VPS. As the abundance of lice typically increases during

the spring, the earlier migration of VPS decreased both prevalence

and mean intensity of salmon lice infestation. In addition, the

number of adult female salmon lice permitted on farmed salmon

in open net-pens is decreased from an average of 0.5 lice per fish

to 0.2 lice per fish during 6 weeks in the spring in order to help

protect wild salmonids. Therefore, both prevalence and mean in-

tensity increased in the simulation of skewed late migrating VPS.

The increase is an effect of the increasing lice concentration in the
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migration route. This is to our understanding most likely the re-

sult of the altered management regime as well as the nonlinear

temperature-dependent development of salmon lice (Samsing

et al., 2016).

In accordance with the expectations, and as indicated in a pre-

vious study (Kristoffersen et al., 2018), the estimated mortality of

VPS was highly sensitive to alterations in the assumed tolerance

limits to salmon lice. In 2019, the mean estimated mortality for

MA2-6 was decreased �20% using the higher tolerance limits

and increased �40% using the lower tolerance. The percentage

difference was larger in the northern MAs.

Future model developments
Although the simulated concentration of salmon lice is shown to

be in accordance with the observed levels of lice on salmonid fish,

there are uncertainties and possible room for improvement in the

parameterization of the salmon lice distribution model (Sandvik

et al., 2016; Myksvoll et al., 2018; Sandvik et al., 2020). Due to

lack of better information, the model today includes a fixed mor-

tality. In high latitude spring bloom systems, we expect seasonal

variability in the salmon lice mortality. Also, as the salmon post-

smolts migrate to sea in a limited period during spring (here as-

sumed to be 40 d), information of the lice release with a higher

resolution than weekly data would be highly valuable.

Both the exact timing of post-smolt migration and the routes

travelled are not yet fully understood. The assumed migration

dates and the parameterization of smolt migration in the model

(swimming speed and direction) are based upon published stud-

ies (Økland et al., 2006; Davidsen et al., 2009; Thorstad et al.,

2004; 2007; 2012; Urke et al., 2013; Halttunen et al., 2018). As the

model system calculates the temperature, salinity, and current

conditions along the entire Norwegian coast, it is possible to im-

plement individual behavioural cues depending on the surround-

ing environmental conditions for the VPS. The current velocity,

in particular, may be of similar magnitude to the swimming ve-

locity of a post-smolt and has therefore a direct influence on the

migration speed and route.

The sensitivity tests conducted here illustrate that the esti-

mated mortality of salmon post-smolts is more sensitive to the

assumed tolerance limits than the timing of the start migration.

The tolerance limits are based upon published results (Taranger

et al., 2015), which again is based on a report reviewing all rele-

vant literature. These limits are largely based upon laboratory

experiments using farmed or cultivated salmon. These limits need

verification, not at least since there are major differences between

laboratory conditions (for instance no predators, no feed compe-

tition or limitations, stable environmental conditions) and na-

ture. Verification of these limits from wild fish residing in its

natural habitat would be highly valuable.

More complex migration timing and swimming routes may be

implemented in the model system in the future; however, the pre-

sent parameterization makes the model fast and efficient to run

for all rivers and reflects both the rivers’ different exposure period

as a function of the distance between river and ocean and the

concentration of infective salmon lice in the area between river

and ocean.

Concluding remarks
Salmon lice-induced mortality has a negative effect on wild

Atlantic salmon post-smolts, and is documented in areas of

intensive salmonid aquaculture (Skilbrei et al., 2013; Vollset

et al.,2016b). However, it can be hard to evaluate for all rivers in

Norway and on an annual basis based upon observations. Here,

we developed a unique VPS model that estimates the lice-induced

mortality of out-migrating salmon post-smolts.

The distribution of infectious agents in the marine environ-

ment is highly influenced by the surrounding conditions. Salmon

lice are known to avoid water masses with low salinity by adjust-

ing their vertical position in the water column (Heuch, 1995;

Heuch et al., 1995; Bricknell et al., 2006, Crosbie et al., 2019). As

post-smolts migrate in the surface-layers, and the timing of mi-

gration into the ocean often coincides with high river discharges

during spring with maximum stratification of the fjords, inclu-

sion of environmental conditions is essential in order to realisti-

cally calculate the interaction and level of contact between host

and agent. As the VPS model system uses the salmon lice distri-

bution from a hydrodynamic model system, which already takes

key environmental parameters including current, salinity, and

temperature into consideration, this has been achieved in the cur-

rent work.

The estimated lice level on modelled post-smolts is shown to

coincide with the level observed on captured wild post-smolts.

The concentration of salmon lice rapidly increases with the ambi-

ent temperatures and altered farm regulations during spring and

early summer when post-smolts start their oceanic migration.

Hence, the number of lice on a post-smolt is dependent on the

timing of migration. As the exact timing of migration is unknown

for most rivers, we have assumed a likely migration window based

upon available knowledge. The estimated mortality from the VPS

model can therefore deviate from the actual mortality of wild

fish. However, the VPS model provides the regulatory authorities

with an objective measure of the influence salmon lice have on

wild fish in a time period and area that the post-smolts are likely

to migrate.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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