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Abstract: Selenium is an essential micronutrient and its metabolism is closely linked to the methionine
cycle and transsulfuration pathway. The present study evaluated the effect of two different selenium
supplements in the diet of rainbow trout (Onchorhynchus mykiss) broodstock on the one-carbon
metabolism and the hepatic DNA methylation pattern in the progeny. Offspring of three parental
groups of rainbow trout, fed either a control diet (NC, basal Se level: 0.3 mg/kg) or a diet supplemented
with sodium selenite (SS, 0.8 mg Se/kg) or hydroxy-selenomethionine (SO, 0.7 mg Se/kg), were collected
at swim-up fry stage. Our findings suggest that parental selenium nutrition impacted the methionine
cycle with lower free methionine and S-adenosylmethionine (SAM) and higher methionine synthase
(mtr) mRNA levels in both selenium-supplemented treatments. DNA methylation profiling by
reduced representation bisulfite sequencing (RRBS) identified differentially methylated cytosines
(DMCs) in offspring livers. These DMCs were related to 6535 differentially methylated genes in
SS:NC, 6890 in SO:NC and 7428 in SO:SS, respectively. Genes with the highest methylation difference
relate, among others, to the neuronal or signal transmitting and immune system which represent
potential targets for future studies.

Keywords: selenium; methionine cycle; transsulfuration; nutritional programming; DNA methylation;
rainbow trout

1. Introduction

Selenium (Se) is an essential micronutrient in humans and animals, with selenoproteins exerting
various metabolic functions [1]. Among vertebrates, fishes have been described to have a well-developed
selenoproteome [2], but there is concern within the aquaculture sector with present feed formulations.
The ongoing replacement of Se-rich fishmeal with plant protein sources [3,4] is associated with a
decrease in dietary Se level provided to farmed fish reared over a long period [5,6]. Many of the
characterized selenoproteins are known to influence antioxidant metabolism, but knowledge on the
effects of dietary Se on other metabolic pathways is not well characterized [7].

As shown in vivo, in the case of a Se deficiency, an increase in glutathione levels possibly relates to
a feedback mechanism by changes in redox state [8,9]. The major source for glutathione is cysteine,
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which is synthesized from homocysteine via the transsulfuration pathway [10]. On the other hand, Se
deficiency can impair the transsulfuration pathway with decreased levels of cysteine, cystathionine
and homocysteine [11,12]. Homocysteine is a key metabolite in the methionine cycle, which links
the antioxidant system to one-carbon (1C) metabolism [13]. Studies in mice have confirmed that Se
affects methionine metabolism with decreased betaine homocysteine methyltransferase activity and
S-adenosylhomocysteine (SAH) levels [14–16]. Comparable studies in fish are lacking.

In the methionine cycle, methionine is activated by S-adenosylmethionine synthetase to form
S-adenosylmethionine (SAM). In the cell, SAM is the universal donor for methylation reactions forming
SAH. DNA methylation is a major regulatory mechanism for epigenetic modifications [17]. DNA
methylation at repeated cytosine phosphate guanine (CpG) residues, especially when localized at the
promoter region, is considered to influence gene expression [18]. Dietary supplementation of Se has
been associated with both hyper- and hypomethylation in mice, but the relationship between Se and
epigenetic mechanisms is still not fully understood [19]. The present work therefore aims to study the
effect of parental Se nutrition in rainbow trout (Oncorhynchus mykiss) on the 1C metabolism and the
hepatic DNA methylation pattern of the progeny.

The period of embryonic development is extremely sensitive to environmental-induced epigenetic
modifications. For example, the allocation of maternal gene products and nutrients to the yolk has
been associated with regulation of key embryonic developmental processes and persisting changes
in the phenotype of the progeny [20,21]. In zebrafish (Danio rerio), dietary inclusion of methyl group
donors did not lead to changes in hatching rate or survival, but mRNA sequencing of the embryos
revealed “hidden” effects of parental nutrition [22] which led to phenotypic changes at later life
stages [23]. In rainbow trout, the maternal Se nutrition during oogenesis increased not only the number
of spawning females, but also the Se levels in the oocytes, especially when provided in the form of
organic Se [6]. Changing Se levels in the progeny during embryonic development were also associated
with modifications in the oxidative status.

In fish diets, Se supplementation becomes increasingly important to make up for the low Se levels
detected in diets based on plant protein sources [24]. With regard to Se supplements, in addition
to the widespread use of sodium selenite in terrestrial livestock nutrition, selenomethionine is the
naturally dominant dietary seleno-compound, known to be a highly bioavailable form of Se also in
mineral premixes [25]. These seleno-compounds, however, might exert different impacts on the 1C
metabolism as they are metabolized through different routes [26]. Seleno amino acids are metabolized
interchangeably with their sulfur analogues making selenomethionine to follow the methionine cycle,
while inorganic Se compounds such as sodium selenite can be directly reduced to selenide to be
incorporated into selenoproteins as selenocysteine [24].

In this context, the present study aims to make a comparison between the use of sodium selenite
and hydroxy-selenomethionine (OH-SeMet), a pure form of the hydroxy-analogue of selenomethionine,
as dietary supplements in plant protein-rich feeds for rainbow trout broodstock on the 1C metabolism
and the hepatic DNA methylation pattern of the progeny.

2. Results

2.1. Parental Selenium Affects Transsulfuration Metabolites in Swim-Up Fry

A decrease in cysteine and cysteinyl-glycine was detected in liver of female broodstock only when
fed sodium selenite (SS) compared to the non-supplemented control (NC). In addition, homocysteine
levels were higher in fish fed OH-SeMet (SO) compared to the two other groups. No effect of the
dietary Se on hepatic aminothiol concentrations was detected in males, which had generally lower
hepatic aminothiol levels compared to females (Table 1).
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Table 1. Aminothiol concentrations (µg/g sample) measured in liver and oocytes of rainbow trout
(Oncorhynchus mykiss) broodstock fed diets containing different levels and source of Se.

Homocysteine Cysteine Cysteinyl-Glycine Glutathione γ-Glutamyl-Cysteine

Oocyte
NC 0.3 ± 0.0 6.7 ± 1.0 3.7 ± 0.4 16 ± 1 1.0 ± 0.1
SS 0.3 ± 0.0 6.7 ± 0.6 4.1 ± 0.5 17 ± 1 1.0 ± 0.1
SO 0.2 ± 0.0 8.1 ± 1.1 3.1 ± 0.3 13 ± 1 1.0 ± 0.1

p-value 0.21 0.48 0.35 0.07 0.48

Female liver
NC 1.4 ± 0.1 b 33 ± 4 a 53 ± 4 a 551 ± 32 30 ± 4
SS 1.1 ± 0.1 b 17 ± 2 b 37 ± 3 b 530 ± 32 23 ± 2
SO 3.2 ± 0.3 a 38 ± 3 a 48 ± 3 ab 526 ± 47 28 ± 3

p-value <0.01 <0.01 0.01 0.88 0.29

Male liver
NC 0.7 ± 0.1 21 ± 3 26 ± 3 511 ± 64 21 ± 2
SS 1.0 ± 0.2 24 ± 5 23 ± 3 300 ± 66 10 ± 2
SO 1.1 ± 0.3 33 ± 8 27 ± 4 465 ± 30 16 ± 5

p-value 0.49 0.33 0.80 0.06 0.48

Average Female 1.9 ± 0.2 a 29 ± 2 46 ± 2 a 536 ± 22 a 27 ± 2 a

Male 0.9 ± 0.1 b 26 ± 3 25 ± 2 b 434 ± 39 b 13 ± 2 b

p-value <0.01 0.43 <0.01 0.02 <0.01

Values are the mean ± SEM (n = 8 in female tissue and n = 5 in males). a,b Within-rows values not sharing a common
superscript letter are significantly different (p < 0.05) according to one-way ANOVA followed by Tukey’s HSD.

A parental effect of Se in swim-up fry could be detected for cysteine as well as cysteinyl-glycine,
which were both significantly lower in fry originating from parents fed Se-supplemented diets
compared to the NC group (Table 2). This was accompanied by a decrease in pyridoxamine levels, but
other B vitamins (folate and vitamin B12) including the pyridoxamine derivate pyridoxal were not
significantly affected. Cystathionine, glutathione and γ-glutamyl-cysteine levels were not significantly
different between the Se treatments. Similarly, parental Se treatment had no significant effect on the
homocysteine level detected in swim-up fry.

Table 2. Free amino acid, aminothiol, and B vitamin composition of swim-up fry from broodstock fed
the different diets.

Dietary Group NC SS SO p-Value

Essential amino acids 1 1972 ± 79 a 1737 ± 54 b 1400 ± 65 c <0.01
Non-essential amino acids 1 2415 ± 50 a 2351 ± 41 a 2109 ± 60 b <0.01

Methionine 1 99 ± 5 a 83 ± 3 b 56 ± 4 c <0.01
Homocysteine 1 1.2 ± 0.1 1.1 ± 0.1 1.2 ± 0.1 0.86
Cystathionine 1 9 ± 1 6 ± 1 7 ± 1 0.21

Cysteine 1 21 ± 1 a 17 ± 1 b 17 ± 0 b 0.01
Cysteinyl-glycine 1 28 ± 1 a 24 ± 1 b 24 ± 1 b 0.02

Glutathione 1 179 ± 7 159 ± 7 169 ± 13 0.35
γ-Glutamyl-cysteine 1 18 ± 1 17 ± 1 16 ± 1 0.25

Taurine 1 688 ± 17 751 ± 18 724 ± 16 0.05
Pyridoxamine 2 0.24 ± 0.01 a 0.21 ± 0.02 b 0.18 ± 0.01 b 0.01

Pyridoxal 2 1.82 ± 0.08 1.65 ± 0.06 1.85 ± 0.10 0.17
Folate 2 0.36 ± 0.03 0.37 ± 0.02 0.28 ± 0.02 0.05

Cobalamine 2 0.04 ± 0.00 0.04 ± 0.00 0.03 ± 0.00 0.51
1 (µg/g sample); 2 (µg/mg sample). Values are the mean± SEM (n = 8). a,b,c Within-rows values not sharing a common
superscript letter are significantly different (p < 0.05) according to one-way ANOVA followed by Tukey’s HSD.

2.2. Parental Selenium Nutrition Affects the Methionine Metabolism in Swim-Up Fry

In the whole body of swim-up fry, the methionine concentration was significantly decreased,
when parents received Se-supplemented diets compared to fry from the NC group, with the lowest
concentration observed in fries from SO treatment (Table 1). The decreased methionine levels were
accompanied by a general decrease in both essential and non-essential amino acids. PCA analysis of
free amino acids and N-metabolites in fry revealed a strong clustering of the data according to the three
parental groups dominated by essential amino acids, with the main contributing variables being lysine,
isoleucine, valine, leucine, methionine, threonine and histidine besides glutamine, ammonium chloride
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and glycine (Figure 1). The only amino acid that was significantly higher in Se-supplemented treatments
compared to the control was asparagine, with a 18 ± 4 µg/mg sample in NC vs. a 34 ± 3 µg/mg sample
in SS and a 44 ± 5 µg/mg sample in SO.
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Figure 1. PCA biplot of free amino acids and related compounds measured in whole-body swim-up
fry. Arrows represent the 10 most contributing variables to the model. Ellipses represent the 95%
confidence intervals around a center of eight pooled samples per dietary treatment.

In broodstock liver tissue, a reduction in the SAM/SAH ratio was detected for the Se-supplemented
groups (Figure 2A). SAM levels in males and females were, however, strongly affected by inorganic
Se, without a significant difference between NC and SO in males that showed higher SAM as well as
SAH levels compared to females. In oocytes, no significant difference in SAM or SAH levels and the
SAM/SAH ratio was detected between treatments.
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Figure 2. (A) SAM, SAH and the SAM/SAH ratio in whole-body swim-up fry; (B) SAM, SAH and
the SAM/SAH ratio in broodstock tissue. Bars are the mean ± SEM (n = 8 in swim-up fry and female
tissues and n = 5 in males). Means not sharing a common superscript letter are significantly different
(p < 0.05) according to one-way ANOVA followed by Tukey’s HSD.

In the whole body of swim-up fry, the SAM/SAH ratio was low in both Se-supplemented treatments
compared to the control with the lowest SAM/SAH ratio detected in the SO group (Figure 2B). The
decrease in the SAM/SAH ratio can be related to the comparatively lower SAM levels observed in
this group.

2.3. Parental Selenium Affects mRNA Levels of Genes Related to the One-Carbon Metabolism in Swim-Up Fry

Gene expression levels in female liver tissue were not significantly different between groups.
Methionine synthase (mtr) expression was higher in male liver tissue when the fish were fed
Se-supplemented diets, with the highest expression in the SS treatment (Figure 3A). In addition,
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in male liver tissue, the expression of adenosylmethionine decarboxylase 1a (amd1a) was higher in
SO compared to NC and that of glycine N-methyltransferase (gnmt) in SS compared to the other two
dietary treatments. Except for adenosylmethionine decarboxylase 1b (amd1b) and gnmt, the expression
of the 1C metabolism-related genes analyzed was higher in the females than in the males.
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Parental feeding of both SS and SO increased mtr gene expression in the swim-up fry compared to
NC feeding (Figure 3B). In addition, the expression of amd1b was higher in SS compared to NC and
that of adenosylhomocysteinase (sahh) was higher in SO compared to the two other groups.

2.4. Parental Selenium Resulted in a Weak Group-Wise DNA Methylation Clustering

Reduced representation bisulfite sequencing (RRBS) data were first processed and aligned to the
rainbow trout genome (Table A1). For downstream analysis, only uniquely mapped reads (47.6 ± 1.4%)
were used. Of the 12 samples sequenced (4 per dietary group), none appeared as an outlier. In
the search for the global methylation pattern with all the mapped CpG sites, t-SNE (t-distribution
stochastic neighbor embedding) was used. The individual methylation pattern was stronger compared
to group-wise global patterns, with only a weak group-wise clustering identified when using the 95th
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percentile of the CpC variance (Figure 4). The stronger individual variation compared to group-wise
clustering was confirmed using other methods including PCA, hierarchical clustering and correlation
analysis (Figure A1).
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2.5. Data Alignment Gives a Balanced Hepatic Methylation Pattern between Groups

The regional annotation showed that most of the mapped CpG originated with 51.8% from the
gene bodies compared to the whole rainbow trout genome, where it accounts for 22.9% (Figure 5A).
With 37.6%, most of the mapped CpG in the gene body were coming from the intron region. Further,
promoters were more targeted by RRBS compared to the whole rainbow trout genome, with an increase
from 4.7% to 7.2%.

The total number of differentially methylated cytosine (DMC) was comparable for the groups
SS:NC (10904), SO:NC (11806) and SO:SS (13179) and, within each group, the number of hyper- and
hypomethylated CpG sites was balanced even when divided into different sub-regions, exon and
intron for the body and P250 for the proximal promoter, P1K for the promoter and P6K for the distal
promoter region as well as flanks (Figure 5B).
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2.6. Parental Selenium Affects the DNA Methylation Pattern in Several Metabolic Pathways

Comparing NC with the SS treatment showed a total of 6535 differentially methylated genes
(DMGs) from which 1142 DMGs had DMCs located in the promoter region (Figure 6). Similarly, in
total, 6890 DMGs were detected between NC and the treatment receiving SO with 1250 DMGs showing
DMCs located in the promoter region. The highest number of DMGs was detected between the two
different Se-supplemented treatments with a total of 7428 genes of which 1340 DMGs had DMCs
located in the promoter region. A synergetic effect of Se in NC vs. SS and NC vs. SO was detected on
3663 genes, whereas SS vs. SO displays a specific effect of the Se source on 2387 genes.
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promoter region; (B) Genes are included with at least one DMC in the promoter region.

In all datasets, multiple KEGG pathways were significantly enriched—22 in SS:NC, 18 in SO:NC
and 20 in SO:SS (Figure A2). These KEGG pathways relate to diverse biological mechanisms, mainly
cellular metabolism and environmental information processing, but also the organismal system and
cellular processing.

Among the five genes with the highest number of DMCs listed for each of the sub-regions
(exon, intron, proximal promoter, promoter and distal promoter) in Tables A2–A4, three genes were
common. The limbic system-associated membrane, transcript variant X5 protein (Isamp) belongs to the
immunoglobulin super-family, known to be expressed and excreted in the developing forebrain showed
15 DMCs in SS:NC, 24 in SO:NC and 22 in SO:SS, all located in the intron region. The methylation
pattern revealed both hyper- and hypomethylated CpG sites. The DMCs of the other two genes were
located in the promoter region. The radical S-adenosyl methionine domain containing protein 2-like
(viperin) is a cytoplasmic antiviral protein that is induced by interferons. Viperin had five DMCs in
SS:NC and three DMCs in SO:NC and SO:SS, respectively. In the inorganic Se treatment, the CpG sites
were hypomethylated, but they were hypermethylated in the organic Se treatment. The third gene was
gamma-aminobutyric acid receptor subunit rho-2 (gabrr2), which is an inhibitory neurotransmitter in
the vertebrate brain. The DMCs of gabrr2 were located in the distal promoter region and similar to
viperin the gene was hypomethylated in SS:NC and hypermethylated in SO:NC.

2.7. Parental Selenium also Affects Methylation in Genes Related to the 1C Metabolism

Several genes related to the methionine cycle and transsulfuration pathway were identified, but
mostly they contained only single DMC sites (Table 3). An effect on the genes that provide selenocysteine
for the selenoprotein synthesis was only detected in the organic Se treatment. Nevertheless,
selenoprotein I and selenoprotein U had DMCs in both Se-supplemented treatments.
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Table 3. Differentially methylated genes (DMGs) related to sulfur and selenium metabolism.

DMGs Hyper-/Hypomethylated DMC

Gene ID Gene name SS:NC SO:NC SO:SS

Methionine Cycle

110530927 S-adenosylmethionine synthase 0/1
110537066 S-adenosylmethionine synthase-like 0/1 0/2
110502651 S-adenosylmethionine synthase-like 1/0 P 0/2 1/0

110529528 S-adenosylmethionine decarboxylase
proenzyme-like 0/1 0/1

110538418 DNA (cytosine-5)-methyltransferase 1-like,
transcript variant X1 0/1

110505844 DNA (cytosine-5)-methyltransferase 3A-like 1/0

110532515 DNA (cytosine-5)-methyltransferase 3A-like,
transcript variant X2 1/0

110497603 DNA (cytosine-5)-methyltransferase 3A-like,
transcript variant X6 1/0

110492301 DNA (cytosine-5)-methyltransferase 3B-like,
transcript variant X1 1/0

110500231 Putative adenosylhomocysteinase 3 0/1 P

110494352 S-adenosylhomocysteine hydrolase-like
protein 1 transcript variant X1 1/0

110490243 Adenosylhomocysteinase 3-like 2/1 4/2 0/1

110522167 Putative adenosylhomocysteinase 3,
transcript variant X2 0/1

Glutathione Metabolism

110521555 Glutamate—cysteine ligase regulatory
subunit-like 0/1

110502703 Glutamate—cysteine ligase catalytic
subunit-like, transcript variant X2 0/1

110532297 Glutathione synthetase 0/1 P

110522620 Glutathione-specific
gamma-glutamylcyclotransferase 1-like 2/0

110537206 Gamma-glutamyltransferase 5-like,transcript
variant X1 0/1 P 1/0 P 2/0 P

100305229 Glutathione S-transferase kappa 1, transcript
variant X1 1/0 P

110492369 Glucose-6-phosphate 1-dehydrogenase-like,
transcript variant X2 2/0 0/1

100305228 Peroxiredoxin 6, transcript variant X2 1/0
110532317 Spermidine synthase 0/1 P

110535309 5-oxoprolinase (ATP-hydrolyzing) 0/1 1/2

110501851 Isocitrate dehydrogenase [NADP]
cytoplasmic-like 1/0 P 0/1 P

110520228 Isocitrate dehydrogenase [NADP]
cytoplasmic-like 1/1

Selenoprotein Synthesis and Selenoproteins

110494778 Methionyl-tRna synthetase 1 0/1 0/1
110488988 Methionyl-tRNA synthetase 2, mitochondrial 1/0

110500323 Sep (O-phosphoserine) tRNA:Sec
(selenocysteine) tRNA synthase 1/0 P

110512109 tRNA selenocysteine 1-associated protein
1-like 0/1

110528137 Eukaryotic elongation factor,
selenocysteine-tRNA specific 1/0

110529243 Selenoprotein I 0/3 5/0 7/0
100499413 Selenoprotein U 0/1 P 1/0 P 1/0 P

110532070 Selenoprotein K, transcript variant X1 0/1
110497881 Selenoprotein O-like 1/0
110525853 Thioredoxin reductase 2 0/1

P located at the promoter region.

3. Discussion

3.1. Parental Selenium Nutrition and the Transsulfuration Pathway in the Progeny

Decreased levels of cysteine in rainbow trout fry originating from the parental group fed
Se-supplemented diets are in contrast to reports in adult rats, mice and chicken, where rather an
impaired transsulfuration with decreased cystathionine and cysteine levels has been described under
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dietary Se deficiency [12,14,15]. Decreased levels of cysteine were also detected in liver tissue of female
broodstock of the sodium selenite treatment, indicating an effect independent of life stage in rainbow
trout (Figure 7). In the present study, swim-up fry of the Se-supplemented treatments had lower
pyridoxamine levels compared to the control group, which indicates an increased demand for vitamin
B6 by parental Se nutrition. The combined effect of maternal Se and pyridoxal nutrition has been
studied in porcine embryos by Dalto et al. [27,28], who described that the co-supplementation increased
plasma seleno-dependent glutathione peroxidase levels in the progeny in the long term. In addition,
the supply of organic Se and vitamin B6 stimulated the expression of elongation factors, biological
processes related to translation and the mitotic cell cycle in five-day-old embryos [27]. Although the
sulfur and seleno amino acids follow a similar pathway, the most important reaction for selenocysteine
is its reduction to selenide via selenocysteine lyase and further by selenophosphate synthetase that
donates Se to the Sec-tRNA for the selenoprotein synthesis [26]. Both these enzymes are vitamin B6
dependent, highlighting the importance of this vitamin in Se metabolism. This reaction is independent
of dietary Se form as both inorganic and organic forms undergo the reduction to selenide [29].
The impact of dietary Se form as observed in the present study could be questioned as in an earlier
study it was shown that even in the parental sodium selenite treatment more than 94% of the Se in
oocytes was either selenocysteine or selenomethionine [6]. Nevertheless, the higher selenomethionine
levels corresponding to the higher total Se levels in the organic Se treatment might contribute to
changes in the methionine cycle, providing methyl groups and homocysteine/Se-homocysteine for the
transsulfuration pathway. Thus, it can be inferred that the higher redox status of Se-homocysteine
compared to homocysteine might favor transsulfuration, as its enzymes are readily regulated through
the redox status [30].
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3.2. Parental Selenium Nutrition and the Methionine Cycle in the Progeny

In the present study, parental Se had no effect on homocysteine levels in the swim-up fry, while
studies in mice indicate an inverse correlation between liver Se and homocysteine levels [31,32].
An increased mRNA level of mtr in both Se-supplemented treatments could indicate that in
rainbow trout, parental Se favors the re-methylation of homocysteine to methionine in the offspring.
An increase in homocysteine can result in the accumulation of SAH, which is a competitive inhibitor
of methyl-transferases and therefore associated to global hypomethylation [19]. In mammals,
selenomethionine supplementation resulted in decreased hepatic SAH, but selenite on the contrary
increased hepatic SAH [16,33]. In the present study, the difference was not significant. Nevertheless,
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increased mRNA levels of sahh indicate that SAH might be increasingly metabolized to homocysteine
in the organic Se treatment (Figure 7). The decrease in the SAM/SAH ratio in swim-up fry of
Se-supplemented treatments due to a decrease in SAM levels is possibly due to the lower methionine
levels. In the OH-SeMet treatment, it cannot be excluded that a competition of selenomethionine
on active transporters reduced the methionine uptake in the gut [34]. However, considering the
small fraction that selenomethionine represents compared to dietary methionine levels in this study,
it might be rather indicative of a higher methionine flux in the organic Se treatment. The sequence
of Se-compounds in the metabolism creates an additional drain on methyl groups, as selenide and
other highly reactive seleno-compounds can be spontaneously methylated [35]. This process is of
importance for inorganic Se sources which do not follow the methionine cycle and are directly reduced
to selenide [36]. This hypothesis is supported by our data on broodstock liver, where a significant
decrease in SAM was only observed in the selenite treatment. This might be an explanation why
Speckmann et al. [16] reported a high SAM/SAH ratio in response to selenomethionine supplementation
using Se-deficient conditions in mice where no methylation of seleno-compounds for removal could be
expected. Several other studies in mice using higher Se levels detected no effect of Se on the SAM/SAH
ratio [14,33,37]. A depletion of the methyl donor SAM can result in decreased DNA methyltransferases
(DNMT) activity [38]. If in human colon carcinoma cells, administration of selenite inhibits DNMT
activity [39], dnmt1 expression in the present study was not affected by Se, similar to what was reported
on hepatic mRNA levels in mice [16].

3.3. Parental Selenium Nutrition Affects the DNA Methylation Pattern of Genes Related to Several
Metabolic Pathways

Analyzed liver tissue of rainbow trout fry revealed that the DNA methylation patterns of
several genes are sensitive to parental Se nutrition. Alterations in DNA methylation by Se have
been reported in several murine studies, although with somewhat contradictory results, as Se
could be associated with both hyper- and hypomethylation [16,33,37,40]. The methylation of
DNA can possibly regulate the spatial-temporal expression pattern of genes driving towards the
development of a specific phenotype [18]. Genes directly related to the sulfur and Se metabolism
presented methylation differences according to parental Se nutrition. Therefore, epigenetic marks
might relate to metabolic differences observed in the present as well as in an earlier study on the
expression of genes involved in the glutathione and antioxidant metabolism in rainbow trout fry [6].
Although an expected enrichment of the glutathione pathway could not be detected, genes of the
glutathione metabolism including glutathione synthetase and glutathione-s-transferase kappa 1 were
detected as DMGs. It has been reported that in cancer cells, selenite supplementation reactivates the
transcription of glutathione-s-transferase π, another member of the glutathione-s-transferase family by
a hypermethylation of the promoter region [41]. Most studies with cancer cells generally report the
methylation of selenoproteins like glutathione peroxidase 1 and 3, methionine sulfoxide reductase
B1 and selenium binding protein 1 in the promoter region [42]. In the present study with rainbow
trout, parental Se nutrition did not result in changing methylation pattern for these genes, contrary to
selenoprotein I, a potential target of parental Se nutrition on the progeny. Selenoprotein I is a protein
involved in the formation of the glycerophospholipid phosphatidylethanolamine [43], belonging to the
glycophospholipid metabolism KEGG pathway that was enriched in the sodium selenite treatment. A
silencing of the gene has been associated with impaired neural development as it is essential in the
myelination process [44]. In general, several genes with high changes in DNA methylation like gabrr2
were related to brain signaling pathways and neurotransmission. Under physiologically relevant
conditions, Se nutrition has been associated with a neuroprotective role on γ-aminobutyric acidergic
neurons [45]. It remains unclear whether the changes in DNA methylation of neuronal signaling genes
as observed here in the hepatic tissue would be similarly detected in other organs such as the brain.
DNA methylation works on a time and spatial dimension as genes gain tissue-dependent importance
and are also activated and deactivated at different developmental stages [46,47]. High methylation
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differences were also identified for genes with a role in immune protection, including the antiviral
protein viperin that showed several DMC sites in the promoter region. Viperin was up-regulated
by supra-nutritional Se feeding in rainbow trout as well as Atlantic salmon (Salmo salar) in earlier
studies [48,49]. This indicates that the impact of Se on the inflammatory response in fish might not
be limited to direct feeding effects, but also be exerted through an epigenetic process. In this context,
similar to other natural feed additives [50], Se might act as an immunostimulant, improving fish
immunity in the long term.

4. Materials and Methods

4.1. Experimental Set up

The experiment was conducted at the INRAE experimental fish farm in Lées-Athas, France. Fish
maintenance and experimental procedures were conducted by trained personnel in compliance with
the European Directive 2010/63/EU for the protection of animals used for scientific purposes and the
French Decree no. 2013–118 for animal experimentation.

Three-year-old rainbow trout (Oncorhynchus mykiss) broodstock (initial mean weight: 1.1 ± 0.2 kg
in females and 0.9 ± 0.3 kg in males) from the same genetic group produced at the INRAE facilities of
Lées-Athas (permit no. A64-104-1) were individually tagged and divided into three groups consisting
of 25 females and 15 males. The fish were reared under natural photoperiod, as previously described [6],
over six months and fed the respective diets once daily to apparent satiation. At spawning, oocytes
from eight females per group were fertilized with pooled sperm received from males of the same
dietary treatment collected on the same day. Fertilized eggs from each female were reared separately
in small trays until swim-up fry stage supplied with flow-through spring water at 8 ± 1 ◦C.

4.2. Experimental Diets

The diets were based on plant ingredients with an 8% fish oil inclusion and designed to differ
only in their Se content (Table 4), as previously described [6]. The NC diet at a basal Se level of 0.3
mg/kg was not supplemented with Se. The SS diet was supplemented with sodium selenite to a target
level of 0.6 mg/kg (analyzed concentration, 0.8 mg/kg) and the SO diet was supplemented to the same
target level of 0.6 mg/kg with OH-SeMet (Selisseo®, Adisseo SAS, Antony, France), resulting in a final
Se concentration of 0.7 mg/kg.
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Table 4. Dietary composition.

Diet NC SS SO

Ingredients
Plant meals 1 74 74 74

Crystalline amino acids and attractant
mixture 2 3.14 3.14 3.14

Soybean lecithin3 2 2 2
Fish oil 3 8 8 8

Vegetable oils 4 8 8 8
Astaxanthin (µg/g diet) 5 40 40 40

Vitamin and mineral mixture without Se 6 4.82 4.82 4.82
Sodium selenite (µg/g diet) 7 – 0.71 –

Hydroxy-selenomethione (µg/g diet) 7 – – 0.75
Analytical composition
Dry matter (DM, %) 96 98 97

Crude protein (% DM) 49 50 50
Total lipid (% DM) 23 22 23

Gross energy (kJ/g DM) 25 25 25
Ash (% DM) 6 6 6

Phosphorus (% DM) 1.2 1.1 1.2
Selenium (mg/kg dry feed) 8 0.3 0.8 0.7

1 Plant meals (% diet): 20% wheat gluten (Roquette), 18% corn gluten meal (Inzo), 15% soybean protein concentrate
Estril®75 (Sopropêche), 6% soybean meal (Sud-Ouest Aliment), 5% rapeseed meal 00 (Sud-Ouest Aliment), 5%
white lupin meal Farilup 500 (Terrena), 3% dehulled pea meal Primatex (Sotexpro), 2% whole wheat (Sud-Ouest
Aliment). 2 Crystalline amino acids and attractant mixture (% diet): 1.34% L-lysine, 0.3% DL-methionine, 0.5%
glucosamine, 0.3% taurine, 0.3% betaine, 0.2% glycine, 0.2% alanine. 3 Soybean lecithin from Louis François and
fish oil from Sopropêche. 4 Vegetable oils (% diet): 4% rapeseed oil, 2.4% linseed oil, 1.6% palm oil (Daudry). 5

Provided as Carophyll®pink (DSM). 6 Vitamin and mineral mixture without Se (per kg diet): retinol acetate, 55,000
IU; cholecalciferol, 2,500 IU; DL-α-tocopherol acetate, 50 IU; sodium menadione bisulfate, 10 mg; thiamin-HCl, 1 mg;
riboflavin, 4 mg; niacin, 10 mg; D-calcium pantothenate, 20 mg; pyridoxine-HCl, 3 mg; D-biotin, 0.2 mg; folic acid, 1
mg; cyanocobalamin, 10 µg; L-ascorbyl-2-polyphosphate, 50 mg; myo-inositol, 0.3 g; choline, 1 g; CaHPO4·2H2O, 33
g; CaCo3, 2.15 g; Mg(OH)2, 1.24 g; KCl, 0.9 g; NaCl, 0.4 g; FeSO4·7H2O, 0.2 g; ZnSO4·7H2O, 40 mg; MnSO4·H2O, 30
mg; CuSO4·5H2O, 30 mg; NaF, 10 mg; KI, 0.4 mg; CoCl2·6H2O, 0.2 mg. All ingredients were diluted with α-cellulose.
7 Sodium selenite contained 42% Se (Sigma-Aldrich) and hydroxy-selenomethionine contained 40% Se provided
as Selisseo®(Adisseo). 8 Total Se was determined using inductively coupled plasma mass spectrometry (ICP MS,
Agilent series 7500cx) by Ultra-Trace Analysis Aquitaine (UT2A, Pau, France) according to Vacchina and Dumont
[51], with a calculated uncertainty of 15 µg/kg and a limit of quantification of 3 µg/kg.

4.3. Sampling

The broodstock fish were anaesthetized with benzocaine for stripping and afterwards euthanized
by a sharp blow to the head for liver dissection in both males and females. For each individual
female, samples of pooled oocytes after stripping (1 g sized samples) and progeny at swim-up fry
stage (whole-body fry) killed by an overdose of benzocaine were withdrawn. Moreover, a total of
36 individual swim-up fry livers were randomly dissected on the same day at the Ecology and Fish
Population Biology facility in Saint-Pée-sur-Nivelle, France [52], originating from 12 females (n = 4
females per dietary treatment). The three individual livers per female were pooled into a single sample
tube for DNA extraction. All collected samples were immediately frozen in liquid nitrogen and stored
at −80 ◦C until further analysis.

4.4. Metabolite Analysis

In 0.1 g of pooled whole-body swim-up fry, free amino acids and other N-metabolites were analyzed
using the Biochrome Analyzer and post column ninhydrin reaction following deproteinization, as
previously described [53]. The aminothiols of the transsulfuration and glutathione pathway including
homocysteine, cysteine, γ-glutamyl-cysteine, reduced glutathione and cysteinyl-glycine as well as SAM
and SAH were measured by HPLC using one sample extract. First, 0.3 g of broodstock liver tissue, 1 g
of pooled oocytes or 1 g whole-body swim-up fry were homogenized with an ultra-turrax in a 20 mM
phosphate, 1 mM EDTA (pH = 6.4) buffer. After centrifugation (10,000 g, 15 min, 4 ◦C), deproteinization
of the supernatant was performed using a 10% metaphosphoric acid solution. The protocol for
aminothiol analysis was adapted from Toyooka and Imai [54]. Derivatization was performed by adding
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62.5 µL AccQ·Fluor™ borate buffer (Waters, Guyancourt, France), 5 µL 1.55N NaOH and 4.5 mM
ABD-F buffer to 25 µL sample aliquot for 20 min at 60 ◦C. After, the reaction was stopped by addition
of 12.5 µL of 1N HCL and cooling at 4 ◦C for 15 min. Separation was performed using a AccQTaqTM

column at 40 ◦C using gradient elution: 0–2 min 97% A, 3% C; 20 min: 96% A, 4% C; 25 min: 20% B,
80% C; 30–35 min: 97% A, 3% C with (A) aqueous solution of AccQTagTM Eluent A; (B) ultra-pure
water and (C) methanol. Aminothiols were detected with fluorescence (excitation 385 nm, emission
515 nm). SAM/SAH measurement was adapted from She et al. [55] with separation on a Revolve C18
at 40 ◦C with the following gradient: 0–10 min 95% A, 5% B; 20 min 30% A, 70% B; 35–45 min 95% A,
5% B with (A) 20mM phosphate buffer with 8mM OSA (pH 2.7, TFA adjusted) and (B) methanol. In 0.1
g of pooled whole-body swim-up fry, pyridoxine, pyridoxal and pyridoxamine were measured by
ultra-performance liquid chromatography (UPLC) [56] and vitamin B12 and total folate were analyzed
microbiologically using Lactobacillus delruceckii ssp. lactis and Lactobacillus rhamnosus, respectively, as
previously described [57].

4.5. RNA Extraction and RT-qPCR

The RNA was extracted and analyzed by quantitative RT-qPCR on 0.1 g samples of broodstock
liver and a pool of three whole-body swim-up fry, as previously described [6]. The primer sequences
are given in Table 5.

Table 5. Oligonucleotide primers used to assay mRNA levels by Fluidigm PCR.

Gene Accession No. Forward Primer Reverse Primer Amplification Size

amd1a XM_021611778.1 ccgtaccatcccaaggtttga tcctgcttgtcggtctttgt 87
amd1b XM_021600287.1 cagccagattttcccaaacgg gcatgctcgttctcccagaa 108
bhmt FR908041.1 cagagaagcacggtaactgg ttctttgtgctgcatcaggt 188
cbs NM_001124686.1 ccacctcaggcaatacaggt aacatccaccttctccatgc 107
cgl EU315111.1 caccaaccccaccatgaaag gcgctggaagtaggctgaca 118

dnmt1 XM_021557911.1 ttgccagaagaggagatgcc cccaggtcagcttgccatta 152
gnmt XM_021585680.1 ctcaagtacgcgctgaagga cactctggtcccctttgaagt 187
mtr XM_021576690.1 aatgcaggtctgcccaatac ctgatgtgtgcaggagtcgt 137
sahh XM_021609053.1 atcaaacgggccacagatgt tcgtaccttccatggcagc 167
β-actin AJ438158.1 gatgggccgaaagacagcta tcgtcccgtggtgacgat 105

amd1, adenosylmethionine decarboxylase 1; bhmt, betaine-homocysteine S-methyltransferase 1; cbs, cystathionine
beta-synthase; cgl, cystathionine gamma-lyase; dnmt1, DNA methyltransferase 1; gnmt, glycine N-methyltransferase;
mtr, methionine synthase; sahh, adenosylhomocysteinase.

4.6. Statistical Analysis on Metabolic Analysis and Gene Expression Data

Results are given as the mean ± SEM. Statistical analysis was performed using statistical software
R (R Core Team). All data were tested for normality and homogeneity. Gene expression data were rank
transformed before further analysis. Principle component analysis (PCA) was performed on the free
amino acid dataset in search for biological clusters and outliers (R: factoextra [58]). One-way ANOVA
was used to identify differences between Se treatments or sex. Tukey’s HSD was used as a post hoc test
in case a significant difference (p < 0.05) was detected.

4.7. DNA Extraction, RRBS Library Preparation and Sequencing

DNA extraction on swim-up fry livers was performed using a QIAGEN DNeasy Blood and Tissue
Kit (cat. no. 69504), following the manufacturer’s instruction. DNA quantity was measured using
Qubit fluorometric quantitation (Life Technologies, Carlsbad, California, USA), ensuring that the
sample contained a minimum of 200 ng of DNA. The DNA extract was stored at −20 ◦C before DNA
methylation was measured by reduced representation bisulfate sequencing (RRBS) performed at the
Biomedical Sequencing Facility BSF in Vienna, Austria.

The RRBS library preparation was performed, as previously described [23], on 100 mg genomic
DNA including DNA digestion (Msp1 20 U, 16h at 37 ◦C), enzymatic adapter ligation (T4 DNA
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Ligase rapid), quantification and pooling. Bisulfite conversion was performed using EZ DNA
Methylation-Direct Kit D5020, Zymo Research, but conversion reagent was used at 0.9× concentration
with incubation for 20 cycles of 1 min at 95 ◦C, 10 min at 60 ◦C and a desulphonation time of 30 min
to increase the number of CpG nucleotides covered. Enrichment PCR was performed after AMPure
XP clean up and library concentrations were quantified with the Qubit Fluorometric Quantitation
system (Life Technologies) and size distribution by a Bioanalyzer High Sensitive DNA Kit (Agilent).
Sequencing was performed on Illumina HiSeq 3000/4000 instruments. The data have been stored in
SRA [59] under the accession number PRJNA629594.

4.8. Rainbow Trout Genome and Genomic Annotation

The reference genome data of rainbow trout (Omyk_1.0) were downloaded from the NCBI
assembly site (https://www.ncbi.nlm.nih.gov/assembly/ GCF_002163495.1).

For genes with multiple RefSeq sequences, only the longest sequence was kept after eliminating
overlapped isoforms. All the CpG sites in the genome were identified and split into four regions—gene
body (GB), promoter (P), flanking regions around mRNA (flanks), and intergenic. Gene body was
further divided into two sub-regions, intron and exon, whereas promoter was also divided based on
the distance from the transcriptional start site (TSS) as P250 (1 bp–250 bp), P1K (251 bp–1000 bp) and
P6K (1001 bp–6000 bp). Flanks were defined as a combination of 4K upstream from the 5′ end of P6Ks
(equivalently 6001–10,000 bp from TSS) and 10K downstream of the 3′ end of mRNA. All the regions
outside of gene bodies, promoters and flanks were annotated as intergenic. Each CpG site was defined
as a unique and non-redundant region or sub-region according to the precedence of exon > intron >

P250 > P1K > P6K > flanks > intergenic.

4.9. RRBS Data Processing

Illumina2bam tools (1.17.3; https://github.com/wtsi-npg/illumina2bam) were used to de-multiplex
pooled samples. SAMtools [60] was used to convert BAM files into FASTQ, before quality check
by FastQC (Babraham Institute; https://www.babraham.ac.uk) and MultiQC [61]. Adapters and
low-quality reads in the RRBS mode based on Cutadapt [62] were removed with Trim Galore!
(Babraham Institute). Long reads were trimmed to 50 bp, and reads were selected by in-house python
scripts to keep only those digested by MspI and TaqI.

Reads were aligned to the rainbow trout genome by Bismark [63] with Bowtie 1 [64]. Two Bismark
tools, bismark_methylation_extractor and coverage2Cystosine, were used to retrieve methylation calls
at CpG sites. Reads were filtered by methylKit tool [65] when either the number of reads was above
99.9th percentile or less than or equal to 10.

Cluster analysis was performed by Rtsne [66] for t-SNE [67], with perplexity = 2 and factoextra [58]
for PCA, scree plot and hierarchical clustering with Ward’s method.

Prior to differential methylation calculation, the unite function of methylKit was used to form
SS:NC and SO:NC with NC as control and SO:SS with SS as control. Methylation differences were
calculated by methylKit for all the CpG sites with methylation calls as a percentage and p-values by
logistic regression. The SLIM method [68] was used to calculate q-values. CpG sites with a q-value of
< 0.01 and ≥ 20% methylation difference were defined as differentially methylated cytosines (DMCs).
Genes with at least one DMC in the gene body or promoter region are considered to be differentially
methylated genes (DMGs).

In-house R and Python scripts were coordinated in a pipeline by using Snakemake [69].

4.10. Functional Annotation and Statistical Analysis of DMGs

To find Kyoto Encyclopedia of Genes and Genomes (KEGG) [70] orthologues that correspond to
rainbow trout genes, the results of BLASTKoala, GhostKoala [71] and KEGG Automatic Annotation
Server (KAAS) [72] were merged. The precedence of BLASTKoala > GhostKoala > KASS was applied
when conflicting annotation occurred. A total of 22501 orthologues along with 168 KEGG pathways

https://www.ncbi.nlm.nih.gov/assembly/
https://github.com/wtsi-npg/illumina2bam
https://www.babraham.ac.uk
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were identified. Over representation analysis (ORA) on KEGG pathways and Gene Ontology (GO)
terms [73] was performed on DMGs by the R package clusterProfiler [74,75].

The Wilcoxon signed-rank test (Wilcox) was used to test the differences of methylation rates
between two groups in a pair-wise manner for KEGG pathways.

A bootstrap version of the Kolmogorov–Smirnov test (KS-boot; the number of iterations: 1000) was
used to test the methylation differences that are associated with a KEGG pathway against the methylation
differences of the whole CpG sites in a region. All three methods of enrichment analysis were performed
for all the defined regions, and the p-values were adjusted by the Benjamini–Hochberg procedure.

5. Conclusions

Our results demonstrate that in rainbow trout, parental Se nutrition decreased transsulfuration and
modified the methionine cycle, as summarized in Figure 7. A decrease in the methyl donor SAM was
noticed in parental fish and their offspring by Se supplementation. In the offspring, significant changes
in the DNA methylation pattern were identified, especially for genes related to signal transmission
and immune function, by parental Se supplementation with organic and inorganic Se forms. It could
be suspected that such epigenetic changes might persist during subsequent growth and development
of the fish, leading to long-term molecular and metabolic alterations in the progeny, which deserves
further investigation.

Author Contributions: Conceptualization, S.F.-D., S.J.K. and P.A.J.P.; methodology, C.H. and K.H.S.; software, T.S.;
formal analysis, P.W. and T.S.; investigation, P.W., C.H., P.A.J.P., S.F.-D. and K.H.S.; resources, C.H.; data curation,
T.S.; writing—original draft preparation, P.W.; writing—review and editing, S.F.-D. and K.H.S.; visualization,
T.S. and P.W.; supervision, B.F., P.A.J.P., S.F.-D. and K.H.S.; project administration, S.J.K., P.A.J.P. and S.F.-D.;
funding acquisition, S.J.K., P.A.J.P., S.F.-D. and K.H.S. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by I-SITE E2S: ENERGY AND ENVIRONMENTAL SOLUTIONS from the
UNIVERSITY OF PAU AND PAYS ADOUR, UPPA (contract number 2017-17 and contract number 2018–178),
INSTITUTE OF MARINE RESEARCH (ParSel project number 15329), ADISSEO FRANCE SAS (SelGen contract
number 22001062 labelled by the Institut Carnot France Futur Elevage IC-F2E).

Acknowledgments: The authors wish to thank P. Maunas and N. Turonnet for the care of the fish and F. Terrier, F.
Sandres and A. Lanuque for the preparation of diets. We are grateful to M. Parailloux for RNA extraction and
qPCR analysis and the IMR technical staff for analytical assistance. We also thank Amelie Nemc, Bekir Ergüner
and Christoph Bock at the Biomedical Sequencing Facility at CeMM, Research Centre for Molecular Medicine
(Vienna Austria), for RRBS library preparation, sequencing and bi-sulfite read pre-processing.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

amd Adenosylmethionine decarboxylase
bhmt Betaine-homocysteine S-methyltransferase
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cgl Cystathionine gamma-lyase
CpG Cytosine phosphate guanine
DMCs Differentially methylated cytosines
DMGs Differentially methylated genes
DNMT DNA methyltransferase
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Appendix A

Table A1. Alignment statistics of 12 RRBS samples.

No Name Diet Total Reads Uniquely Mapped (%) Multi-Mapped (%) Non-Mapped (%)

1 PSL1 NC 53 987 762 26 310 305 48.7 19 820 505 36.7 7 856
952 14.6

2 PSL2 NC 39 364 790 19 543 117 49.6 14 534 198 36.9 5 287
475 13.4

3 PSL3 NC 54 833 812 27 173 708 49.6 20 233 149 36.9 7 426
955 13.5

4 PSL4 NC 63 481 758 30 305 331 47.7 24 622 757 38.8 8 553
670 13.5

5 PSL5 SS 59 570 698 27 527 855 46.2 23 489 555 39.4 8 553
288 14.4

6 PSL6 SS 45 143 094 21 814 078 48.3 17 312 386 38.4 6 016
630 13.3

7 PSL7 SS 67 495 806 31 151 354 46.2 27 389 024 40.6 8 955
428 13.3

8 PSL8 SO 54 472 443 25 214 607 46.3 22 345 586 41.0 6 912
250 12.7

9 PSL9 SO 69 558 057 33 562 782 48.3 26 840 717 38.6 9 154
558 13.2

10 PSL10 SO 79 827 373 38 293 256 48.0 31 322 516 39.2 10 211
601 12.8

11 PSL11 SO 55 391 941 25 516 081 46.1 21 796 848 39.4 8 079
012 14.6

12 PSL12 SS 51 950 394 23 789 256 45.8 20 152 309 38.8 8 008
829 15.4
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Figure A1. Clustering of the 12 RRBS samples by different algorithms. (A + B) PCA biplot by dietary 
treatment. (C + D) Scree plot with percentage of explained variance within the top 10 dimensions of 
the PCA. (E) Heatmap with sample–sample distance calculated by normalized Pearson’s correlation 
coefficient in a range between 0 and 1, with d = 0 as r = 1 and d=1 as r = –1. (F) Dendrogram with 
hierarchical clustering. 
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Figure A1. Clustering of the 12 RRBS samples by different algorithms. (A + B) PCA biplot by dietary
treatment. (C + D) Scree plot with percentage of explained variance within the top 10 dimensions of
the PCA. (E) Heatmap with sample–sample distance calculated by normalized Pearson’s correlation
coefficient in a range between 0 and 1, with d = 0 as r = 1 and d=1 as r = –1. (F) Dendrogram with
hierarchical clustering.
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Appendix C

Table A2. Top five DMGs in the dataset SS:NC, with the highest number of CpG in each sub-region.

Gene
Symbol Gene ID Gene Name Total DMC DMC in the Region Hyper-/Hypomethylated CpG

Exon

LOC110496419 110496419
Glycoprotein

endo-alpha-1,2-mannosidase-like
protein

10 10 0/10

LOC110503414 110503414 TCDD-inducible poly [ADP-ribose]
polymerase-like 10 8 8/0

LOC110497587 110497587 SAM and SH3 domain-containing
protein 1-like, transcript variant X2 10 7 0/7

LOC110520294 110520294
Von Willebrand factor C

domain-containing protein 2-like,
transcript variant X1

7 7 5/2

LOC110529233 110529233
MAM domain—containing

glycosylphosphatidylinositol anchor
protein 2-like

6 5 5/0

Intron

CTNNA2 110534326 Catenin alpha-2 18 18 11/7
alk 110506268 ALK receptor tyrosine kinase 17 17 13/4

lsamp 110507545
Limbic system-associated

membrane protein, transcript
variant X5

15 15 9/6

NRXN2-like 110531840 Neurexin-2-like 16 12 5/7
CDH4-like 110532012 Cadherin-4-like 13 12 5/7

P250

LOC110498119 110498119 Radical S-adenosyl methionine
domain-containing protein 2-like 5 5 0/5

LOC110493563 110493563 Septin-9-like 4 2 0/2
COX6A2 100335037 Cytochrome c oxidase subunit VIa 3 2 0/2

TIMP2-like 110487076 Metalloproteinase inhibitor 2-like 2 2 0/2

LOC110490026 110490026 Mitogen-activated protein kinase
kinase kinase 8-like 2 2 2/0

P1K

LOC110534101 110534101 Matrin-3-like 4 4 4/0
LOC110489756 110489756 Transmembrane protein 14C-like 4 3 0/3
LOC110486159 110486159 Proline-rich protein 15-like protein A 3 3 2/1

TNFR11B-like 110506163 Tumor necrosis factor receptor
superfamily member 11B-like 3 3 0/3

TPPP3X2-like 110518569
Tubulin polymerization-promoting

protein family
Member 3-like, transcript variant X2

3 3 0/3

P6K

COX4I2-like 110492636 Cytochrome c oxidase subunit 4
isoform 2, mitochondrial-like 8 8 8/0

LOC110523211 110523211
Oocyte zinc finger protein

XlCOF6-like, transcript
Variant X2

8 8 0/8

LOC110498688 110498688 Fatty acid-binding protein,
liver-type-like 7 7 7/0

LOC110505815 110505815
Gamma-aminobutyric acid

receptor subunit rho-2-
like

6 5 0/5

LOC110503024 110503024 Ras-related C3 botulinum toxin
substrate 3-like 5 4 0/4

Genes in bold are commonly highly affected also in SO:NC and SO:SS.

Table A3. Top five DMGs in the dataset SO:NC, with the highest number of CpG in each sub-region.

Gene
Symbol Gene ID Gene Name Total DMC DMC in the Region Hyper-/Hypomethylated CpG

Exon

LOC110490066 110490066 E3 ubiquitin-protein ligase
rififylin-like, transcript variant X2 6 6 5/1

LOC110520294 110520294
von Willebrand factor C

domain-containing protein 2-like,
transcript variant X1

6 6 3/3

LOC110531157 110531157 Serine/threonine-protein kinase
WNK2-like 7 5 0/5

LOC110497587 110497587 SAM and SH3 domain-containing
protein 1-like, transcript variant X2 6 5 1/4

LOC110506316 110506316 Muscarinic acetylcholine receptor
M4-like, transcript variant X1 6 5 0/5
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Table A3. Cont.

Gene
Symbol Gene ID Gene Name Total DMC DMC in the Region Hyper-/Hypomethylated CpG

Intron

lsamp 110507545
Limbic system-associated

membrane protein, transcript
variant X5

24 24 9/15

LOC110505581 110505581 Placenta growth factor-like 15 15 9/6

LOC110501635 110501635 Serine/threonine-protein kinase
BRSK2-like 14 14 10/4

LOC110506270 110506270 Protein kinase C-binding protein
NELL1-like, transcript variant X1 13 13 5/8

Catenin
alpha-2 110534326 Catenin alpha-2 13 13 6/7

P250

LOC110501919 110501919
Alkyldihydroxyacetonephosp
hatesynthase,peroxisomal-like,

transcript variant X2
5 3 2/1

LOC110494831 110494831 Complement C1q-like protein 2 4 3 0/3

LOC110508922 110508922 MARVEL domain-containing protein
2-like, transcript variant X2 4 3 3/0

CRIP2-like 110505831 Cysteine-rich protein 2-like 3 3 3/0

LOC110497531 110497531 Uncharacterized LOC110497531,
transcript variant X2 4 2 2/0

P1K

LOC110493345 110493345 Gastrula zinc finger protein
XlCGF17.1-like, transcript variant X1 4 4 4/0

LOC110521247 110521247 Lactadherin-like, transcript variant
X1 4 4 4/0

LOC110533598 110533598 Ras-related protein Rab-24-like,
transcript variant X1 4 4 0/4

LOC110498119 110498119 Radical S-adenosyl methionine
domain-containing protein 2-like 3 3 3/0

NFATC3-like 110506757 Nuclear factor of activated T-cells,
cytoplasmic 3-like 3 2 0/2

P6K

LOC110505815 110505815 Gamma-aminobutyric acid
receptor subunit rho-2-like 8 5 4/1

LOC110519930 110519930 Uncharacterized LOC110519930,
transcript variant X2 6 5 0/5

LOC110520086 110520086 Collagen alpha-1(XXVIII) chain-like 5 5 3/2

taf6l 110531860 TATA-box binding protein associated
Factor 6 like, transcript variant X1 5 5 5/0

LOC110537362 110537362 Glutamate receptor 3, transcript
variant X3 5 5 5/0

Genes in bold commonly highly affected also in SS:NC and SO:SS.

Table A4. Top five DMGs in the dataset SO:SS, with the highest number of CpG in each sub-region.

Gene
Symbol Gene ID Gene Name Total DMC DMC in the Region Hyper-/Hypomethylated CpG

Exon

CDH2-like 110506386 Neural-cadherin-like 10 10 7/3

PLEKHG7-like 110497700
Pleckstrin homology

domain-Containing family G
member 7-like

9 9 0/9

NRXN2-like 110531840 Neurexin-2-like 21 8 2/6

LOC110496419 110496419
Glycoprotein

endo-alpha-1,2-mannosidase-like
protein

8 8 8/0

LOC110496815 110496815 Glutamate receptor ionotropic,
kainate5-like 8 7 7/0

Intron

lsamp 110507545
Limbic system-associated

membrane protein, transcript
variant X5

22 22 9/13

LOC110500600 110500600 Adhesion G protein-coupled receptor
L3-like, transcript variant X5 23 20 17/3

FBXL17X1 110525966 F-box and leucine rich repeat protein
17, transcript variant X2 18 16 13/3

LOC110535694 110535694 Glutamate receptor ionotropic,
delta-2, transcript variant X3 17 15 5/10

ZNF407-like 110501552 Zinc finger protein 407-like 16 15 3/12
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Table A4. Cont.

Gene
Symbol Gene ID Gene Name Total DMC DMC in the Region Hyper-/Hypomethylated CpG

P250

LOC110488021 110488021 Calcitonin gene-related peptide type
1 receptor-like 8 7 7/5

GATA 2-like 110494514 GATA-binding factor 2-like 7 6 6/0

LOC110498119 110498119 Radical S-adenosyl methionine
domain-containing protein 2-like 4 3 3/0

LOC110508922 110508922 MARVEL domain-containing protein
2-like, transcript variant X2 3 3 3/0

CRIP2-like 110505831 Cysteine-rich protein 2-like 4 2 2/0

P1K

LOC110527134 110527134 Methyltransferase-like protein 7A 5 5 0/5
SEMA5A-like 110489566 Semaphorin-5A-like 6 4 0/4

LOC110493345 110493345 Gastrula zinc finger protein
XlCGF17.1-like, transcript variant X1 4 4 4/0

LOC100135939 100135939 Proteoglycan 4, transcript variant X2 4 4 1/3

GRTP1a-like 110527156 Growth hormone-regulated TBC
Protein 1-A-like 4 4 0/4

P6K

LOC110523211 110523211 Oocyte zinc finger protein
XlCOF6-like,transcript variant X2 8 8 8/0

MARVELD2-like 110523471 MARVEL domain-containing protein
2-like 8 8 8/0

MED12-like 110488993 Mediator of RNA polymerase II
transcription subunit 12-like 9 7 7/0

LOC110522593 110522593 F-box only protein 31-like, transcript
variant X1 7 7 0/7

LOC110505815 110505815 Gamma-aminobutyric acid
receptor subunit rho-2-like 6 6 6/0

Genes in bold are commonly highly affected also in SS:NC and SO:NC.
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