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We propose a trend estimation and classification (TREC) approach to estimating dominant common trends among multivariate time series
observations. Our methods are based on two statistical procedures that includes trend modelling and discriminant analysis for classifying sim-
ilar trend (common trend) classes. We use simulations to evaluate the proposed approach and compare it with a relevant dynamic factor
analysis in the time domain, which was recently proposed to estimate common trends in fisheries time series. We apply the TREC approach
to the multivariate short time series datasets investigated by the ICES integrated assessment working groups for the Norwegian Sea and the
Barents Sea. The proposed approach is robust for application to short time series, and it directly identifies and classifies the dominant trends
underlying observations. Based on the classified trend classes, we suggest that communication among stakeholders like marine managers, in-
dustry representatives, non-governmental organizations, and governmental agencies can be enhanced by finding the common tendency be-
tween a biological community in a marine ecosystem and the environmental factors, as well as by the icons produced by generalizing
common trend patterns.
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Introduction
The integrated ecosystem assessment (IEA) is one approach to

organizing scientific information at multiple scales and across

sectors to support ecosystem-based fisheries management

(EBFM) (Levin et al., 2009). IEA aims to analyse and synthesize

information on a wide range of ecosystem components and

pressures and to identify status, changes, relationships, and

processes at the ecosystem level (WKINTRA report, ICES

2018). The outcome of an IEA can take multiple forms, which

generally include descriptions of the main interacting ecosys-

tem, human components, and past changes in these compo-

nents. Eventually, it also gives an assessment of the risks

associated with possible future trajectories of the ecosystem.

This information can then be fed back into the design of dedi-

cated observational efforts (monitoring plans), the definition of

multi-sectorial management objectives, or the establishment of

new indicators and associated reference points (Levin et al.,

2009, 2014; DePiper et al., 2017).

There is a long history of making quantitative assessments of

individual fish stocks, and with it, common vocabularies and

practices that support efficient communication between natural

scientists, managers, the fishing industry, and other interested

stakeholders (Hilborn and Walters, 1992; ICES, 2013). Even

when the numerical methods used to reconstruct individual fish

stock histories are complex, the outputs of fish stock assessments

are communicated in a standardized manner that can generally
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be understood and used by different stakeholders. The same situ-

ation does not apply to IEAs, for which no methodological stand-

ards yet exist. Instead, many IEAs are still predominantly in the

developmental phase, and a variety of methods have been ex-

plored. IEA results can reflect various aspects of an ecosystem be-

yond dynamics, status, and future risks, and they tend to be

reported in an ad hoc fashion. For example, WKINTRA ICES

(2018) reports using integrated trend analyses (ITA), which are

used for IEA as a way to summarize changes that have occurred

in recent decades in ecosystems in the north Atlantic and to high-

light the possible connections among the physical, biological, and

human ecosystem components. These methods cover graphical

analyses as well as univariate and multivariate statistical analyses.

Some methods have focused on individual components, while

others have provided simplified representations of major past

trends in the system or conveyed additional information on pos-

sible connections and causalities in the system. Unlike stock as-

sessment models for which there are established benchmarking

practices, no such practice exists for IEA. This can lead to ambig-

uous results or spurious interpretations, as was shown in the case

of multivariate analysis applied to time series inappropriately

(Kawasaki, 2004; Vanhatalo and Kulahci, 2016; Planque and

Arneberg, 2018; Hallin et al., 2018) or in the case of a statistical

method applied to a short time series dataset (Hardison et al.,

2019; Solvang and Subbey, 2019). Therefore, to describe past

changes in individual ecosystem components, more robust and

theoretically correct trend analysis is required in IEA, and then

the approach should be validated by benchmarking practices to-

wards becoming a methodological standard.

Temporal changes in ecosystems can take the form of long-run

movements—sometimes referred to as long-term trends or

drifts—as well as short-/middle-run cyclic terms and noise com-

ponents. The long-run changes entail a drift in time, a character-

istic of temporal processes with a non-stationary mean (Kitagawa

and Gersch, 1996). On the other hand, the cyclic and noise terms

are considered stationary processes in the practical sense of time

series analysis. When constructing statistical time series models, it

is often useful to identify non-stationary trends and cyclic terms

separately. Several structural time series models of this kind have

been proposed in psychology and economics since the mid-1980s

(Harvey, 1989; Kitagawa and Gersch, 1996; West and Harrison,

1997). When building multivariate time series models, it is also

possible to decompose a non-stationary mean and cyclic compo-

nents or seasonal components using a time series model (Kato

et al., 1994, 1996). Multivariate time series analysis has

recently been used to model marine ecosystem dynamics

(Solvang et al., 2017) and to investigate population’s dynamics

through causal inference (Solvang and Subby, 2018; Solvang and

Subbey, 2019).

In this article, we focus on modelling the non-stationary mean

trend (hereafter called “trend”), which represents the long-run

movements in observations. In particular, we focus on finding

similar trends, called Common trends, which refer to similar long-

term tendencies across ecosystem components. Identifying com-

mon trends can be useful as a diagnostic tool to reveal past

changes and to explore the relationships among biological com-

munities and between these communities and environmental

conditions.

Individual and common trends are not observed directly; in-

stead, these trends are assumed to exist and are represented as la-

tent components in time series models. Such unobserved

common components are termed “factors” (Helmut, 1993) in

classical factor analysis. For the analysis of time series, dynamic

factor analysis (DFA) has been applied to summarizing the infor-

mation in macroeconomic analysis and to forecasting in a data-

rich environment (Darné et al., 2013; Ward et al., 2019). The fac-

tor models are described via a spectral approach in the frequency

domain (Hallin and Lippi, 2013). This approach works well when

the observed time series consists of a large number of observa-

tions that can be transferred from the time domain into the fre-

quency domain using a Fourier transformation. However, data

from marine ecosystem monitoring programmes often consist of

relatively short time series, for which it is thus difficult to apply

frequency-based methods. As an approach to facing this chal-

lenge, Zuur et al. (2014) suggested the use of DFA to estimate

common trends in the time domain using structural time series

modelling. The approach is implemented as a general modelling

framework for state space representation in the MARSS library of

the R language (Holmes et al., 2018). The state space form is a

useful way to express several hidden components in the time do-

main, and the state is estimated by a Kalman filter or the ex-

panded filtering theory (Shumway and Stoffer, 1982; Harvey and

Pierse, 1984; Kitagawa and Gersch, 1996). Using DFA, Zuur et al.

(2003) investigated the relationships between the estimated com-

mon trends for a biological community and environmental varia-

bles. In that work, an environmental variable was considered as

an explanatory variable, and it was used for only the predicted bi-

ological responses that are fitted to observations. Zuur et al.

(2003) used canonical correlations between the sea surface tem-

perature series and common biological trends to explore possible

relationships. In a canonical correlation, variations in a multivari-

ate system are assumed to follow a stationary Gaussian process,

although some formulations have proposed correcting for certain

departures from the Gaussian assumption (Min and Tsay, 2005).

In the case of biological and environmental variables in large ma-

rine ecosystems, it is reasonable to assume that multidecadal time

series are a non-stationary process, not a stationary Gaussian pro-

cess, in response to ongoing climate change and the associated bi-

ological responses.

For such non-stationary mean time series data consisting of

environmental variables and biological communities, we propose

a more direct approach to estimating individual trends, classify-

ing these trends, and extracting a set of underlying common

trends. We term this method TREC, for trend estimation and

classification. The non-stationary mean time series are modelled

using polynomial trend models (Solvang et al., 2008) or a sto-

chastic trend model by state space representation, commonly

used as detrending models in time series analysis (Kitagawa and

Gersch, 1996). Then, classification for common configurations of

the trends is performed using discriminant analysis (Solvang et

al., 2008). The common configurations are further subdivided

into sets of underlying common trends based on the target trends

selected from the estimated trends. The common trends identified

for each class are representative of dominant non-stationary pat-

terns for these classes and are interpreted as common variations

of biological and environmental data. TREC can be applied to
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short time series data, and it is not necessary to apply a stationary

Gaussian assumption to the estimated trends to investigate the

relationships among them. We expect that the results can be com-

municated in an easily accessible form to serve the needs of multi-

ple stakeholders. We evaluate the proposed approach using

simulated datasets, including short and long time series, and ap-

ply the method to multidimensional time series observations

from the ICES IEA working group for the Barents Sea (WGIBAR,

ICES 2016) and the Norwegian Sea (WGINOR, ICES, 2015).

Method for TREC
Trend models
The observation model of a time series is given by

yðnÞ ¼ tðnÞ þ uðnÞ; n ¼ 1; � � �;N ; (1)

where tðnÞ is the trend component and uðnÞ is the residual com-

ponent at time step n. In this article, we apply two different kinds

of parametric trend models: a polynomial trend model using a

polynomial regression model (Solvang et al., 2008) and a stochas-

tic trend model using a dth order difference equation model

(Kato et al., 1994, 1996).

The polynomial trend model was combined with the discrimi-

nant trend analysis examined in Solvang et al. (2008), given by

tðnÞ ¼ b0 þ b1nþ � � � þ bp�1np�1 with an unknown vector

b � ðb0; b1; � � �;bp�1Þ0 2 R
p. The apostrophe symbol in vector b

denotes transposition. The least squares estimator for b is given

by

b̂LSE � ðZ0ZÞ
�1

ZY; (2)

where

Z ¼

1; 1; 12; � � �; 1p�1

1; 2; 22; � � �; 2p�1

..

.

1; t ; t2; � � �; tp�1

0
BBB@

1
CCCAand Y

�
�

yð1Þ; yð2Þ; � � �; yðNÞ
�0
: (3)

The trend component is estimated by

tðnÞ � ð1; n; n2; � � �; np�1Þb̂LSE; (4)

which is defined on all time steps f1; 2; � � �;Ng. Assuming that

the residual uðnÞ obeys a normal distribution with variance r2,

the estimated variance is given by

r̂2 ¼ 1

N

XN

n¼1

�
yðnÞ � b̂0 � b̂1n� � � � � b̂p�1np�1

�2

¼ 1

N

XN

n¼1

�
yðnÞ � t̂ ðnÞ

�2

: (5)

The log-likelihood of the polynomial trend model for this is

given by

lðb̂; r̂2Þ ¼ �N

2
ðlog 2pþ 1þ log r̂2Þ: (6)

The stochastic trend model is defined by the dth order differ-

ence equation, which was posed as the smoothing problem by

Whittaker and Robinson (1924). This model allows for more flex-

ible trends than does the polynomial regression model. The sto-

chastic trend model is expressed in the following way:

rdt ðnÞ ¼ vt ðnÞ; (7)

where r is a difference operator rtðnÞ ¼ tðnÞ � tðn� 1Þ and

vt ðnÞ is assumed to be a white noise sequence. If d ¼ 1, tðnÞ �
tðn� 1Þ and the trend is known as a random walk model. If

d ¼ 2, tðnÞ � 2tðn� 1Þ þ tðn� 2Þ � 0 (Kitagawa and Gersch,

1996). Provided that the variance of vt ðnÞ is sufficiently small,

tðnÞ yields a smooth trend.

The model can be represented in state space form as

zðnÞ ¼ Fzðn� 1Þ þ GvðnÞ;

yðnÞ ¼ HzðnÞ þ wðnÞ;
(8)

where zðnÞ is the state vector corresponding to tðnÞ, vðnÞ is the

system noise vector with mean 0 and unknown variance r2
v , F , G,

and H indicate integer or matrices, and wðnÞ is observation error

with mean 0 and unknown variance r2
w . The state zðnÞ is taken as

a latent factor, since we cannot directly observe it from the data.

Corresponding to the above dth order difference equation, when

d ¼ 1,

zðnÞ ¼ ½tðnÞ�; F ¼ G ¼ H ¼ 1: (9)

When d ¼ 2, the state vector and matrices are as follows:

zðnÞ ¼ tðnÞ
tðn� 1Þ

� �
; F ¼ 2� 1

1 0

� �
; G ¼ 1

0

� �
; and H ¼ 1

0

� �
:

(10)

The observation error corresponds to uðnÞ in (1) in this case.

The trend component is estimated using a Kalman filter, which is

a powerful numerical algorithm that recursively operates the state

estimation, prediction and filtering (Kato et al., 1994, 1996):

Prediction:

zðnjn� 1Þ ¼ Fzðn� 1jn� 1Þ

V ðnjn� 1Þ ¼ FV ðn� 1jn� 1Þ þ GQG0;
(11)

Filtering:

KðnÞ ¼ V ðnjn� 1ÞH 0ðHV ðnjn� 1ÞH 0 þ RÞ�1

zðnjnÞ ¼ zðnjn� 1Þ þ KðyðnÞ � Hzðnjn� 1ÞÞ

V ðnjnÞ ¼ ðI � KHÞV ðnjn� 1Þ:

(12)

Here, zðnjn� 1Þ and V ðnjn� 1Þ are the conditional mean and

conditional variance, R is the observation error, and K is Kalman

gain. This trend model includes the parameter vector

h ¼ ðd; r2
v ; r

2
wÞ. The log-likelihood function lðhÞ of this model is

given by
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lðhÞ ¼
PN

n¼1 log f ðyðnÞjY ðn� 1Þ; hÞ;

¼
PN

n¼1 log
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞ2detRðnÞ
q exp � 1

2
DyðnÞ0RðnÞ�1DyðnÞ

� �9=
;
;

(13)

where Y ðn� 1Þ ¼ ðyð1Þ; yð2Þ; � � �; yðn� 1ÞÞ, DyðnÞ ¼ yðnÞ�
Hzðnjn� 1Þ, and RðnÞ ¼ HðnÞV ðnjn� 1ÞH 0ðnÞ þ r2

w . The flexi-

bility of the estimated trend depends on r2
v . The optimum r2

v can

be determined by maximum likelihood within an arbitry variance

range. The variance r2
w can be directly set to the variance of the

observation.

Denoting the number of parameters by c, the Akaike

Information Criterion (AIC) (Akaike, 1974) value of the model,

given the estimate of optimum orders p for the polynomial trend

model and d for the stochastic trend model, is

AICðcÞ ¼ �2lð�Þ þ 2c: (14)

The log-likelihood function can also be represented by Laplace

approximation, and the optimum parameters can be estimated by

a numerical optimization tool such as the AD Model Builder

package (Fournier et al., 2012) or TMB (Kristensen et al., 2016).

Discrimination analysis of trends
For the estimated trend, we apply discriminant analysis, as pro-

posed by Solvang et al. (2008). First, let us consider the following

simple example of two-category discrimination:

P1 : model ð1Þ with trend function T1ðnÞ
P2 : model ð1Þ with trend function T2ðnÞ:

(15)

Suppose that we observe new data and that the trend is esti-

mated as t̂ ðnÞ, which is assumed to belong to P1 or P2. The clas-

sification is performed with the following divergence measure:

Lðt̂ : TjÞ �
XN

n¼1
fTjðnÞ � t̂ ðnÞg2

; j ¼ 1; 2: (16)

If Lðt̂ : T2Þ > Lðt̂ : T1Þ, the retained category is P1, otherwise

it is P2. The probability of misclassifying the observation from

Pi into Pj ði 6¼ jÞ converges to zero as n!1. We define the

discriminate function D � Lðt̂ : T2Þ � Lðt̂ : T1Þ for use as a dis-

criminant score (Solvang et al., 2008). In practical use, we fix two

reference trends corresponding to T1 and T2 and make the re-

spective trend estimators T̂ 1ðnÞ and T̂ 2ðnÞ using model (1). For

common trend classification, it is considered in practice that

T̂ 1ðnÞ and T̂ 2ðnÞ represent different (opposite) shapes, namely

increasing and decreasing. In other words, we assume that we can

obtain a rising tendency and a declining tendency for annual

changes. The different shapes result in a large distance between

the two categories. Then, the discriminant function for observa-

tion yðjÞðnÞ, j ¼ 1 to 2, is defined by

D̂ j ¼
XN

n¼1
fT̂ 2ðnÞ � t̂ jðnÞg

2 � fT̂ 1ðnÞ � t̂ jðnÞg
2
: (17)

If D̂ j > 0, category P1 is chosen, otherwise, category P2 is

chosen. Applying the nearest neighbour method, we can classify

groups according to similar D̂ j , e.g. upward, downward, and flat,

including convex or concave. In this article, we first apply a two-

category discriminant analysis to the estimated trends to roughly

divide them into three groups representing configurations related

to upward, flat, and downward. If it is necessary to classify them

into groups of more concrete patterns from the three rough-

configuration groups, this two-category classification can be eas-

ily extended to multiple-category discrimination. The problem is

then specified in the following way:

Pj : model ð1Þ with trend function TjðnÞ; j ¼ 1; 2; � � �; k:
(18)

The divergence measure in this case is given by

Lðt̂ : TjÞ �
XN

n¼1
fTjðnÞ � t̂ ðnÞg2

; j ¼ 1; 2; � � �; k: (19)

We provide a divergence measurement vector given by

f ¼
�

Lðt̂ : T1Þ; Lðt̂ : T2Þ; � � �; Lðt̂ : TkÞ
�
: (20)

The classification rule is defined as the requirement that the es-

timated trend t̂ belong to Pl to satisfy

Lðt̂ : TlÞ ¼ minðfÞ: (21)

In practice, the reference trend Tj should be predefined in the

three configurations groups obtained by the two-category dis-

criminates. Finally, the reference trend Tj is assigned as a general

reference, called an icon, which is an easily accessible form that

can be used to serve the needs of stakeholders.

The entire numerical procedure and the icons we predefine in

this study are summarized in Figure 1. TREC is implemented us-

ing the MATLAB code (MATLAB ver. R2018b), which is available

on request.

Common trend approach by dynamic factor model
As mentioned in the Introduction, DFA is an appropriate method

for analysing time series data and investigating the common

trends across ecosystem components. Therefore, we refer to the

approach provided by Zuur et al. (2003) and compare it with

TREC. This comparison is considered in detail in the

Supplementary Text.

Simulation study
Evaluation of TREC
We performed a simulation study to evaluate the performance of

TREC. First, we defined two common trends t1ðnÞ and t2ðnÞ and

a series xeðnÞ used as exogenous variables (Supplementary Figure

S1):

t1ðnÞ ¼ t1ðn� 1Þ þ 0:1� rt1ðnÞ;
t2ðnÞ ¼ 2� t2ðn� 1Þ � t2ðn� 2Þ þ 0:5� rt2ðnÞ;
xeðnÞ ¼ 0:35� xeðn� 1Þ þ 0:13� t1ðnÞ þ reðnÞ;

where rðnÞ assumes normal distribution with 0 mean and 1 stan-

dard deviation.

We then derive six variables as follows:
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x1ðnÞ ¼ 0:3� t1ðnÞ þ r1ðnÞ;
x2ðnÞ ¼ t1ðnÞ þ xeðnÞ þ r2ðnÞ;
x3ðnÞ ¼ �0:5� t1ðnÞ þ r3ðnÞ;

x4ðnÞ ¼ 0:0004� t2ðnÞ þ 0:5� xeðnÞ þ r4ðnÞ;
x5ðnÞ ¼ 0:00045� t2ðnÞ þ r5ðnÞ;

x6ðnÞ ¼ 1:5� xeðnÞ þ r6ðnÞ;

where r1ðnÞ; � � �; r6ðnÞ are random variables normally distributed

with zero mean and unit variance. We simulated series with

lengths of 50- and 200-time steps (Supplementary Figure S2).

We first applied the polynomial and stochastic trend models to

x1ðnÞ; � � �; x6ðnÞ and xeðnÞ. Supplementary Table S1a summarizes

the calculated log-likelihood and AIC obtained by applying the

stochastic trend model for d ¼ 1 and d ¼ 2. The results suggest

that the model fits best for d ¼ 1. The optimum order p (based

on AIC) for the polynomial trend model and the optimum vari-

ance Q for the stochastic trend model are summarized in

Supplementary Table S1b. For optimizing Q, we set 0:01 � Q �
0:1 as a search range. This procedure was conducted for each

time series, and it resulted in a set of estimated polynomial trends

(Supplementary Figure S3a and b, red lines) and stochastic trends

(Supplementary Figure S3c and d, red lines). The filtering of state

vector zðnÞ in the stochastic model (Supplementary Figure S3c

and d, blue lines) was generally more variable than the associated

polynomial trend. This is because the state vector can follow data

fluctuations according to each time point by using a Kalman fil-

ter. The prediction values usually indicated more fluctuation than

the filtering values.

Next, we performed a two-category discrimination analysis.

The estimated trends for x2 and x3 were defined as the reference

trends T̂ 1ðnÞ and T̂ 2ðnÞ to calculate the discriminant function.

The value obtained by the function was then used as a distance

metric to perform hierarchical clustering, applying the

unweighted centre of mass distance as the linkage between clus-

ters. In Supplementary Figure S4, the dendrograms for polyno-

mial (a and b) and stochastic trends (c and d) indicate a

discrimination between upward, flat, and downward trends,

which are coloured by red, blue, and black thick lines, respec-

tively. Based on the reference trends, two categories for down-

ward and upward were classified by D > 0 or D < 0. Some D

values around 0 belonged to the flat group. In the case of data us-

ing 50 time points (Supplementary Figure S4a and c), it might be

appropriate to classify the polynomial trend x5ðnÞ into the up-

ward configuration group rather than to the flat configuration

group, while the stochastic trend of x5ðnÞ appears slightly up-

ward. Classifications in the case of data using 200 time points

(Supplementary Figure S4b and d) indicate consistent grouping.

Verification for discriminant function and divergence
measure for j > 2
Solvang et al. (2008) mentioned the possibility that several com-

mon configuration groups were classified by the discriminant

function for only the two-category setting. However, if the esti-

mated trends present an exactly symmetrical configuration, e.g.

convex and concave, both trends may be appropriate to deal with

classifying in the flat condition. We demonstrated such a case us-

ing the artificial trend series generated by quadratic and exponen-

tial functions shown in Supplementary Figure S5. By selecting

number 33 and 30 trends as reference trends T̂ 1ðnÞ and T̂ 2ðnÞ,
the two-category discriminant was considered. The bar plots for

D̂ j are illustrated in Supplementary Figure S6. The bars in groups

for upward and downward correspond to positive and negative

D̂ j values, that is, all data can be divided into two main catego-

ries. D̂ j corresponding to patterns such as convex or concave is

clearly indicated around 0 (Supplementary Figure S6, trends 1–

20). This can be resolved using multi-category discrimination,

with j> 2, as defined in previous works (18)–(20). In this case,

eight-category discrimination was performed, with trends 33, 30,

1, 2, 29, 21, 38, and 32 set as the reference trends. Applying this

eight-category discrimination, all data were classified into certain

categories that include similar configurations as shown in

Supplementary Table S2. The predefined icons set in Section 2

were also assigned according to the reference trend’s patterns.

Field observations
We applied the proposed method to the time series compiled by

the ICES integrated assessment working groups for the Barents

Sea (WGIBAR, ICES, 2016) and the Norwegian Sea (WGINOR,

ICES, 2015). Time series lengths vary among variables, so we se-

lected the periods with continuous records (no missing data) un-

til the final year of observation for all biotic and abiotic data. The

WGIBAR dataset consists of 35 annual time series for the period

1980–2015, including 7 abiotic, 18 biotic, and 8 human impact

variables. The WGINOR dataset consists of 24 annual time series

Figure 1. Flow chart of the proposed TREC procedure and
predefined icons.
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Table 1. Abbreviations used in figures and tables.

Type
Abbreviation used in
figures and tables Explanation of relevant data

a. WGIBAR data
Abiotic 1: ArW Area of Arctic water

2: AW Area of Atlantic water
3: BSO Barents Sea opening
4: FB Fugløya-Bear Island section
5: KolaS Salinity level in Kola section
6: KolaT Atlantic water temperature in Kola section
7: NAO Winter North Atlantic Oscillation index

Biotic 8: Jel Jellyfish biomass, mostly Cyanea capillata
9: Krill Krill biomass
10: Shr-a Relative shrimp stock biomass from assessment
11: Cap0n Abundance 0-group capelin
12: CapS Capelin SSB, spawning-stock biomass
13: CapT Capelin TSB, stock biomass (age 1þ)
14: Her0n Abundance 0-group herring
15: Her1 Herring stock biomass (ages 1 and 2)
16: Lump1 Number of lumpfish age 1 and older
17: LumpJ Number of juvenile lumpfish
18: Polcd0n Abundance 0-group polar cod
19: Cod0n 0-group cod abundance
20: CodRe Recruitment of cod at age 3
21: Cod3 þ b Cod stock biomass (age 3þ)
22: GH0n 0-group Greenland halibut abundance
23: Had0n 0-group haddock abundance
24: HadR3 Recruitment of herring at age 3
25: HadSSB Spawning-stock biomass of haddock, ages 6–8

Human impact 26: CdF510 Fishing mortality of cod, ages 5–10
27: HadF47 Fishing mortality of haddock, ages 4–7
28: RelFc Relative fishing mortality calculated as sum of catches of capelin in fall and next

spring divided by biomass in August/September
29: RelFS Relative fishing mortality of shrimp
30: HarpSL Landings of harp seals
31: MinL Landings of minke whales
32: PolcdL Landings of Barents Sea polar cod
33: ShrL Landings of shrimp in Barents Sea

b. WGINOR data
Abiotic 1: NAO Winter North Atlantic Oscillation index

2: SPGw Sub-polar gyre index from satellite ssh data, centred in January
3: NLgy Area averaged wind stress curl within 2 000-m isobaths in Norwegian Sea
4: SvicT Temperature in layer 50–200 m, using stations over 1 010-, 1 075-, and 1 185-m

depths in Svinoy section
Biotic 5: MaxN Maximum chlorophyll a level in Norwegian basin

6: MaxL Maximum chlorophyll a level in Lofoten basin
7: HerR Recruitment of herring per year class at age 2
8: BWR Recruitment of blue whiting per year class at age 1
9: MacR Recruitment of mackerel per year class at age 0
10: HerB Spawning-stock biomass of herring
11: BWB Spawning-stock biomass of blue whiting
12: MacB Spawning-stock biomass of mackerel
13: BRedB Spawning-stock biomass of beaked redfish
14: SaiB Large saithe (9þ for North Sea and Faroese stocks and 10þ for Northeast Arctic stock)
15: HerrW6 Weight at age 6 in herring stock
16: BWW6 Weight at age 6 in blue whiting catch
17: MacW6 Weight at age 6 in mackerel stock
18: Puff Puffin stock size by sum of counts from Runde, Sklinna, Røst, and Anda
19: Kitw Kittywake stock size by sum of counts from Runde, Sklinna, Røst, and Anda
20: Guill Guillemoth stock size by sum of counts from Runde and Røst
21: ZB48W Zooplankton biomass in Norwegian Sea
22: ZBB Zooplankton biomass in Lofoten and Norwegian basins
23: ZNEI Zooplankton, northeast of Iceland
24: GHB Greenland halibut biomass and >45 cm body length
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Figure 2. Estimated trends in applying polynomial and stochastic trend models to WGIBAR dataset, which consists of 35 annual time series
for the period 1980–2015. (a) Estimated polynomial trends (red: trend, black: observation). (b) Estimated stochastic trends (red: prediction,
blue: filtering, black: observation).
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Figure 3. Estimated trends in applying polynomial and stochastic trend models to WGINOR dataset, which consists of 24 annual time series
for the period 1995–2015. (a) Estimated polynomial trends (red: trend, black: observation). (b) Estimated stochastic trends (red: prediction,
blue: filtering, black: observation).
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for the period 1995–2015, including 6 abiotic and 18 biotic varia-

bles. The abbreviations of individual time series variables are

listed in Table 1, including the data that are missing less than

three time points.

Results and discussion
The stochastic trend models with d ¼ 1 outperformed the sto-

chastic trend model for d ¼ 2, for both datasets, as indicated by

the AIC values (Supplementary Figure S7a for WGIBAR and

Supplementary Figure S7b for WGINOR). The estimated polyno-

mial and stochastic trends visible in Figure 2 (WGIBAR) and

Figure 3 (WGINOR) and the optimum numbers of parameters

are summarized in Supplementary Table S4. While the order of

polynomial trend models can vary among individual time series,

the values of optimum Q are mainly equal to 0.1, reflecting the

fact that flexible stochastic trends are predominantly selected.

The clustering of trends is visualized in Supplementary Figures

S8 (WGIBAR) and S9 (WGINOR). The classification procedure

via discriminant analysis requires the pre-selection of reference

trends. As mentioned, the reference trends for the two-category

discriminant should be clearly opposite shapes, such as upward

and downward. For WGIBAR, trends 16 (number of lumpfish

age 1þ) and 30 (landings of harp seals) were used as references

for both polynomial and stochastic trend models. For WGINOR,

trends 5 (Maximum chlorophyll a level in Norwegian basin) and

9 (recruitment of mackerel) were used as references for polyno-

mial trend models, and trends 2 (sub-polar gyre index from satel-

lite ssh data) and 18 (puffin stock size) were used as references for

stochastic trend models.

The trends were first divided into two categories and further

classified into three categories: upward, flat, and downward.

Tables 2 and 3 list the abiotic and biotic data for the common

configurations. For most individual trends, the classification into

upward, flat, and downward groups was consistent between the

polynomial and the stochastic trend models. A few trends were

exceptions to this general pattern: while in the WGIBAR analysis

polynomial trend 15 (ages 1 and 2 herring stock biomass) was

convex and polynomial trend 31 (Landings of minke whales) was

concave, the corresponding stochastic trends 15 and 31 display

more fluctuations and are not discriminated into flat configura-

tions. Similar tendencies were observed in trends 8 (recruitment

of blue whiting per year class at age 1), 15 (weight at age 6 in her-

ring stock), and 16 (weight at age 6 in blue whiting catch) for

WGINOR. The simulation study in the case of 50 time points

also indicated inconsistent classification in Supplementary Figure

S4a and b. This suggests that a polynomial trend could be han-

dled in a simpler way to assign trend estimates to several icon

configurations using multi-category discrimination.

Using polynomial trend estimates, we set more reference

trends in the three groups and classified all trends precisely into

groups by multi-category discrimination. The subdivided outputs

in three common trends are summarized in Figure 4 for

WGIBAR and Figure 5 for WGINOR. Tables 4 and 5 list the

details for classified data in each category. To each classified

trend, we associated an icon representation that could be used to

simply and efficiently communicate information on long-term

changes in variables. The estimated trends by the polynomial

model present rough long-term changes and may be more useful

for assigning icons. On the other hand, the estimated trend by the

stochastic trend model can follow more precise changes according

to data fluctuations. Therefore, analysers could select the polyno-

mial or stochastic trend model to investigate long-term changes

in their data depending on their aim or interest.

The icons presented in Table 4 highlight the observation that

in the Barents Sea there has been a continuous increase in tem-

perature. It is visible in the increasing temperature trends in the

Bear Island trough (4) and the Kola section (6) and in the in-

creasing extent of the area occupied by Atlantic water (2) as well

as the decreasing trend in the extent of area occupied by Arctic

water (1). These changes have been paralleled by increases in the

biomass of jellyfishes (8), the abundance of juvenile lumpsuckers

(17), and haddock recruitment (24) and by decreases in fishing

mortality of shrimps (29) and landings of shrimps (33) and harp

seals (30). The increasing trends in krill biomass (9) and

Table 2. Results of discrimination analysis for WGIBAR data: three common configuration groups of trends by two-category discriminates
and the assigned data.

Common trend configuration Abiotic Biotic Human impact

Upward 2: AW, 4: FB, 5: KolaT, 6:
KolaS

8: Jel, 9: Kril, 11: Cap0n, 14: Her0n, 16:
Lump1, 17: LumpJ, 19: Cod0n, 20: CodRe,
21: Cod3 þ b, 23: Had0n, 24: HadR3, 25:
HadSS

–

Flat 3: BSO, 7: NAO 10: Shr-a, 12: Cap S, 13: CapT, 15: Her1, 18:
Polcd0n

31: MinL, 32: PolcdL

Downward 1: ArW 22: GH0n 26: CdF51, 27: HadF47, 28: RelFc, 29: RelFS,
30: HarpSL

Table 3. Results of discrimination analysis for WGINOR data: three common configuration groups of trends by two-category discriminates
and the assigned data.

Common trend configuration Abiotic Biotic

Upward 4: SPGw, 6: SVicT 9: MacR, 10: HerB, 12: MacB, 13: BRedB, 14: SaiB, 15: HerrW6, 24: GHB
Flat 3: NAO, 5: NLgy 7: HerR, 8: BWR, 11: BWB, 16: BWW6
Downward 1: MaxN, 2: MaxL, 17: MacW6, 18: Puff, 19: Kitw, 20: Guill, 21: ZB48W, 22:

ZBB, 23: ZNEI
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abundance of age 1þ lumpsuckers (16) have been accelerating,

while the increasing trends in cod (20) and herring (14) recruit-

ment have been decelerating. Furthermore, the decreasing trend

in fishing mortality of adult cod (26) and haddock (27) has been

accelerating in recent years. A similar understanding of trends in

the main abiotic, biotic, and human factors in the Norwegian Sea

can be achieved based on the icons presented in Table 5. As seen

by these interpretations of the outputs, these icons can be used in

ecological “dashboards” displaying a list providing summaries of

ecological states and trends.

Figure 4. Subdivided common trends in three groups for WGIBAR data. The reference trends are assigned to the icons in Table 4 as follows:
u1: 25.HadSSB, u2: 24.HadR3, u3: 20.CodRe, u4: 9.Krill, f1: 23.Had0n, f2: 15.Her1, f3: 13.CapT, d1:31.ShrL, d2:30.HarpSL, and d3:26.CdF510.

Figure 5. Subdivided common trends in three groups for WGINOR data. The reference trends are assigned to the icons in Table 5 as follows:
u1: 24.GHB, u2: 9.MacR, u3: 13.BRedB, u4: 8.BWR, f1: 7.HerR, f2: 5.MaxN., f3: 3.NLgy, d1:22.ZBB, d2:18.Puff, and d3:2.SPGw.
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The combination of trend identification, classification, and

icon representations provides an easily accessible representation

of the trends in abiotic, biotic, and human factors, which can

support discursive interpretations while still being rooted in an

objective statistical approach.

In reality, the majority of marine ecosystems do not have com-

plete datasets for a full time series to be analysed. For such miss-

ing data, the provided trend models support he interpolation of

them. In the case of a polynomial trend model, Solvang et al.

(2008) showed the interpolated trend estimates and the classifica-

tion. Furthermore, the stochastic trend model can fill the missing

data in the Kalman filter recursions (Kitagawa and Gersch, 1996).

Considering the meaning of common trend, the dominant

trend’s configuration presents long-run movements towards

comprehensive data and it may be useful for a biologist or ecolo-

gist if the fluctuations in environmental factors and fish commu-

nities could be easily interpreted as upward, flat, or downward. In

the case of analysis by the DF model (Zuur et al., 2014) summa-

rized in Supplementary Text, the obtained common factors in-

clude several patterns mixing long-term trend and cyclic

fluctuations, and thus, it may be difficult to interpret the physical

meaning of such factors. Since most relevant observations have a

small sample size of data points in the time series data, comparing

configurations may provide a simple and useful way to gain a pre-

liminary understanding of an ecosystem. TREC helps to provide a

simple interpretation of which trend pattern is dominant over all

relevant data for abiotic and biotic cases. When we predefined the

reference trends used for discrimination, no prior knowledge was

considered, that is, it was simply done in an arbitrary manner in

this article. However, it would also be possible to predefine refer-

ence trends based on the prior knowledge of marine biologists or

ecologists.

Conclusion
TREC is proposed as an approach to analysing common trends in

a marine ecosystem. It consists of two procedures: (i) estimating

trends with statistical trend models and (ii) classifying the esti-

mated trends into categories of common configurations. The

classification step enables us to find specific configurations by

representing the estimated trend patterns. A simulation clarified

the performances of two different trend models and their flexibil-

ity for use with several representative patterns, which can be pre-

defined as icons. We applied TREC to two real time series

datasets provided by the ICES integrated assessment working

groups. Abiotic, biotic, and human impact data were classified

into common trend groups. The proposed TREC focuses on

long-term trends of data, and it works for any length of time

steps. TREC could become a methodology established for ITA in

IEA by validation through benchmarking practices. Studies con-

ducted to investigate precise ecosystem functions using TREC are

expected as further extensions of this work.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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