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Micronutrient supplementation affects transcriptional and epigenetic regulation 
of lipid metabolism in a dose-dependent manner
Takaya Saitoa, Paul Whatmorea, John F. Taylorb, Jorge M.O. Fernandes c, Anne-Catrin Adama, 
Douglas R. Tocherb, Marit Espea, and Kaja H. Skjærven a

aFeed and Nutrition, Institute of Marine Research, Bergen, Norway; bInstitute of Aquaculture, Faculty of Natural Sciences, University of 
Stirling, Scotland, UK; cFaculty of Biosciences and Aquaculture, Nord University, Bodø, Norway

ABSTRACT
Micronutrients (vitamins and minerals) have been less well studied compared to macronutrients 
(fats, proteins, and carbohydrates) although they play important roles in growth, metabolism, and 
maintenance of tissues. Hence, there is growing interest to understand the influence of micro-
nutrients across various aspects in nutritional research. In the last two decades, aquaculture feeds 
have been shifted to containing more plant-based materials to meet the increasing demand and 
maintain the sustainability in the industry. A recent whole life cycle feeding trial of Atlantic salmon 
(Salmo salar) with graded levels of micronutrient packages has concluded that the levels of several 
B-vitamins and microminerals need to be increased from the current recommendation levels for 
optimal growth and fish welfare when plant-based diets are used. Here, we show the effect of 
micronutrient supplementation on hepatic transcriptional and epigenetic regulation in a dose 
dependent manner. . Specifically, our aim is to reveal the mechanisms of altered cell metabolism, 
which results in improved growth performance by micronutrient surpluses, at gene expression 
and DNA methylation levels. Our results strongly indicate that micronutrient supplementation 
suppresses gene expression in lipid metabolism in a dose-dependent manner and broadly affects 
DNA methylation in cell-adhesion and cell-signalling. In particular, it increases DNA methylation 
levels on the acetyl-CoA carboxylase alpha promoter in a concentration-dependent manner, which 
further suggests that acetyl-CoA carboxylase alpha is an upstream epigenetic regulator controlling 
its downstream lipid biosynthesis activities. This study demonstrates a comprehensive analysis to 
reveal an important role of micronutrients in lipid metabolism through epigenetic control of gene 
expression.
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Introduction
Micronutrient status is a major environmental vari-
able to increase growth performance and long-term 
phenotypic changes [1,2]. A deficiency in dietary 
micronutrients has various health consequences, 
such as risks of morbidity and even mortality, that 
are highly linked to a world-wide problem known as 
hidden hunger for humans [3]. As fish are a rich 
source of micronutrients [4], achieving a sustainable 
development of aquaculture that aims to produce 
healthy and nutritiousfish is important to tackle 
human micronutrient deficiencies but also a key fac-
tor for healthy growth for aquaculture species like 
Atlanticsalmon (Salmo salar).

The rapid expansion of the salmon farming 
industry over the last two decades has led to an 
increased demand for sustainable protein and lipid 

sources to replace traditional marine-based ingre-
dients in aquafeeds [5]. As a consequence, fish 
meal and fish oil have been progressively replaced 
with plant meal and plant oil in salmon feed [6,7]. 
For instance, the level of plant ingredients utilized 
in Norwegian salmon feed has increased from 
9.5% (9.5% starch) in 1990 to 71.1% (10.6% starch, 
20.2% plant oil, and 40.3% plant protein) in 2016 
[8]. This shift of ingredients has led to subsequent 
changes in the composition and contents of micro-
nutrients in salmon feed [9,10]. In addition, plant 
ingredients often contain anti-nutrient com-
pounds that prevent efficient absorption of micro-
nutrients in fish [11], which may cause potential 
nutrient deficiencies even though the feed compo-
sition satisfies the required level of micronutrients. 
In this regard, the recommendations for optimal 
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levels of micronutrients have been re-evaluated for 
salmon feed by taking account of plant ingredients 
along with the nutrient package containing pre-
mixed vitamins and minerals [12–15].

Vitamins and minerals as micronutrients are 
a diverse group of bioactive compounds required 
in tiny amounts to regulate cellular structure and 
metabolism. For instance, they can work as co- 
factors of essential enzymes for growth, immune 
responses, and energy expenditure [16]. Key 
micronutrients associated with growth perfor-
mance are vitamin B6, vitamin B12, and folate 
(vitamin B9) [17] that together comprise part of 
the one-carbon (1 C) nutrients [18]. In contrast to 
other micronutrients, 1 C nutrients showed signif-
icant influence on growth performance in zebra-
fish [17] and salmon [12–15] feeding trials. 
Moreover, the 1 C nutrients are primary compo-
nents of the 1 C metabolism, which influences 
different developmental stages and conditions, 
such as embryonic development, cancer, and neu-
rodegenerative diseases [18–20]. The 1 C metabo-
lism supports S-adenosyl methionine (SAM), 
a universal methyl donor, that can transfer 
a methyl group to various reactions where methy-
lation occurs, including the cytosine within a CpG 
site for DNA methylation [21].

DNA methylation is an epigenetic regulatory 
mechanism that interacts with environmental 
stimuli to control cell stability, differentiation, 
and development [16,18]. As DNA methylation 
is transmitted and inherited during cell replica-
tion, it may contribute to long-term gene regu-
latory alterations [22]. DNA methylation 
regulates gene transcription especially when it 
is located in promoter regions [23,24]. 
Moreover, DNA methylation is highly associated 
with histone modifications [25], which also play 
an important role in epigenetic mechanisms as 
a result of alternating chromatin structure. For 
instance, H3K4me3, which represents the tri- 
methylation at the fourth lysine residue of the 
histone H3, is enriched at active promoters near 
transcription start sites (TSSs) [26].

Here, the aim of our study is to bridge nutrition, 
metabolism, genetics, and epigenetics by analysing 
multiple data sources from a whole life cycle feed-
ing trial (~54 weeks) of Atlantic salmon [15]. In 
this trial, fish were split into three dietary groups 

and fed with graded levels of a nutrient package 
(NP). Based on the recommendation level for 
Atlantic salmon [12–14,27], the NP contains 24 
micronutrient components, including 13 vitamins, 
eight minerals, two crystalline amino acids, and 
cholesterol. The feed for the control group con-
tains 1x NP, whereas the feed for the other two 
treatment groups contains 2x and 4x NPs. 
Furthermore, the formulation of the feed mainly 
consists of plant-based ingredients by replacing 
conventional fish meal (FM) and fish oil (FO) 
based ingredients. During the course of the trial, 
the proportions of micronutrient levels were main-
tained in a graded manner even though the other 
factors, such as pellet sizes and FM/FO inclusion 
rates, altered. Vera and colleagues summarized the 
main outcome of the trial regarding optimal 
micronutrient levels, fish growth, and fish welfare 
[15], and they recommended that the levels of 
several B-vitamins (niacin, riboflavin, and cobala-
min) and microminerals (zinc and selenium) 
should be increased from the widely used NRC 
(National Research Council) recommended levels 
[27] for optimal growth and fish welfare when the 
feed includes high rates of plant-based ingredients. 
Hence, the present study focuses on providing 
insights into genetic and epigenetic regulations 
potentially influenced by these micronutrient 
surpluses.

To evaluate which genes and pathways might be 
under epigenetic regulations by micronutrient 
supplementation, we measured gene expression 
using RNA sequencing (RNA-seq) and DNA 
methylation using reduced representation bisul-
phite sequencing (RRBS) [28]. The present study 
revealed the effect of micronutrients in salmon 
feed on transcriptional and epigenetic gene regula-
tion in various regulatory pathways mainly in lipid 
metabolism. Due to the fact that our experimental 
feeds were formulated by three graded levels, we 
could effectively interpret the gradient patterns of 
gene expression and DNA methylation, which 
enabled us to produce more robust outcomes 
than dealing with only two experimental groups. 
We believe our results contribute to understanding 
the long term and potentially trans-generational 
effects of micronutrients, which would be critical 
knowledge for the sustainable development within 
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the salmon farming industry as well as across 
a wide range of fields in nutritional research.

Results

Manufactured diets for our feeding trial show 
graded concentrations of micronutrient

The feeding trial was implemented by allocating 
triplicate groups of parr, through smoltification, to 
final harvest stage (Figure 1(a)). The three feeding 
groups were fed L1, L2, and L3 diets with graded 
levels of micronutrient supplementation through-
out the experiment (Figure 1(a)). L1 contained 
100% of the recommended level [12–14,27], 
whereas L2 and L3, respectively, contained twice 
(200%) and four times (400%) of the recom-
mended level (Supplementary Table 1). The inclu-
sion of plant raw materials progressively increased, 
while marine-based ingredients decreased from 
23% at smolt to 8% at final harvest 
(Supplementary Tables 2 & 3), which resembles 
a current common practice in the farmed salmon 
industry.

To investigate the actual concentrations of 
micronutrient in manufacture diets, we selected 
over 20 micronutrients from the NP and analysed 
them in the diet of pellet size 3.5 mm. We calcu-
lated the concentration ratios of L2 and L3 based 
on L1 so that the absolute ratios would be 2 
(200%) for L2/L1 and 4 (400%) for L3/L1 if only 
NP nutrients were considered without the base 
ingredients. The results confirmed that all micro-
nutrients in L1 were in a range of recommended 
levels (Supplementary Table 4), while L2 and L3 

showed gradient concentration levels as expected 
(Supplementary Figure 1).

Atlantic salmon fed micronutrient-rich diets show 
improved growth

To measure the growth performance by diet, we 
calculated average body weights at two sampling 
points (Figure 1(b)). At smolt, all the diet groups 
were significantly different among each other, with 
L2 showing the best growth in terms of weight 
gain (~113% in average compared to L1) followed 
by L3 (~109% compared to L1). At harvest, both 
L2 and L3 showed significantly better growth 
(~112% for both L2 and L3) than L1 
(Supplementary Table 5).

Apart from the body weight, we also analysed 
three additional measures – mortality, hepatoso-
matic index (HSI), and Fulton’s condition factor 
(K) at the same sampling points (Supplementary 
Table 5). HSI is an indirect predictor of energy 
reserve in liver as calculated from the relative liver 
weight [29]. Condition factor (K) is an indicator of 
health calculated from the body weight and length 
[30] that has a high positive correlation with total 
body lipid [31]. Firstly, there were no significant 
mortality differences between diet groups through-
out the experiment. Secondly, L1 had 
a significantly higher HSI than L2 and L3 at 
smolt, suggesting L1 retained more energy in the 
liver than L2 and L3 before sea transfer. 
A potential explanation is that liver cells store 
excess energy as fat when micronutrients were 
barely sufficient. Finally, condition factor (K) was 

Figure 1. Fish fed L2 and L3 diets show better growth at smolt and final harvest in a whole life cycle feeding trail. (a) The schematic 
diagram shows the experimental outline of this study. The diagram includes the trial duration, experimental groups with types of the 
feed given throughout the trial, pellet sizes, the inclusions of fish mean and fish oil, and sampling points where we performed 
different analyses. (b) Two bar plots show the mean body weights for L1, L2 and L3 at smolt and final harvest. Letters indicate 
significant groups (p < 0.05, one-way ANOVA) by the compact letter display of Tukey’s HSD.
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significantly higher for L3 compared to L1, and L2 
intermediary to both at final harvest.

Micronutrient supplementation affects gene 
expression in a concentration-dependent manner

We performed gene expression analysis on 18 
male liver samples collected at final harvest, with 
each group having an equal number of samples 
(n = 6, Supplementary Table 6). Following RNA- 
seq sample pre-processing, we examined overall 
gene expression patterns. A principal component 
analysis (PCA) on the top 500 high variance genes, 
which were selected to eliminate potential noises, 
clearly showed three clusters by diet on the first 
component (Figure 2(a)). Specifically, L1 and L3 
were distinctly separated with L2 being intermedi-
ary. A further PCA using all of the genes still 
showed a similar separation pattern although clus-
ters were less distinct (Supplementary Figure 2).

To evaluate the effect of micronutrient supple-
mentation on each gene, we calculated the differ-
ences in gene expression as log fold changes 
(LFCs) along with the p-values comparing both 
L2 and L3 against L1 as control, and subsequently 
denoted as L2:L1 and L3:L1 thereafter. Differential 
gene expression (DE) analysis revealed 74 differ-
entially expressed genes (DEGs; adjusted p-value < 
0.01) for L2:L1 (Figure 2(b)) and 245 DEGs for L3: 
L1 (Figure 2(c)). As expected from PCA, L3:L1 
had more DEGs with lower p-values than L2:L1, 
indicating that the differences in gene expression 
between L1 and L3 were larger than those between 
L1 and L2 for most of the DEGs.

Combining the DEGs from both L2:L1 and L3: 
L1 resulted in 26 common DEGs (12 down- 
regulated and 14 up-regulated) DEGs between 
L2:L1 and L3:L1 (Supplementary Table 7). All 12 
down-regulated DEGs showed gradient expression 
in a concentration-dependent manner with L2 
being intermediary (L3 < L2 < L1), whereas only 
six out of the fourteen up-regulated DEGs showed 
gradient expression with L2 again intermediary 
(L1 < L2 < L3; Supplementary Table 7). Among 
them, HMG-CoA reductase (hmgcr) was one of the 
down-regulated DEGs with proper gene symbols 
(non-provisional) assigned for Atlantic salmon 
(Figure 3b, Figure 3c); hmgcr regulates an early 

rate-limiting step of cholesterol biosynthesis path-
way [32].

The results of DE analysis implied that micro-
nutrient supplementation affected more down- 
regulated genes in a concentration-dependent 
manner than up-regulated genes, especially when 
the differences of gene expression were significant.

Micronutrient supplementation suppresses gene 
expression in the pathways related to lipid 
metabolism

For the functional annotation of the DEGs, we per-
formed an over-representation analysis (ORA) with 
the 168 pathways annotated for Atlantic salmon in the 
KEGG database [33]. ORA revealed one enriched 
pathway for L2:L1 and six enriched pathways for L3: 

Figure 2. Both L2 and L3 diet significantly affect gene expres-
sion but L3:L1 show more DEGs than L2:L1. a) The PCA bi-plot 
shows top 500 high variance genes of RNA-seq counts with VST 
(variance stabilization transformation). The three diet groups 
are indicated by colours as red for L1, green for L2 and blue for 
L3. b) and c) Two volcano plots show log2 fold changes vs - 
log10 adjusted p-values for L2:L1 and L3:L1. Gene symbols 
(when available) are shown for the genes with -log10 adjusted 
p-value > 3 for L2:L1 and -log10 adjusted p-value > 10 for L3: 
L1.
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L1 (Table 1; adjusted p-value < 0.01). The number of 
enriched pathways for L3:L1 increased to 16 when 
adjusted p-values were less than 0.05, but the number 
remained the same for L2:L1 (Supplementary 
Table 8). The enriched pathways were mostly linked 
to lipid metabolism for L3:L1 (Supplementary 
Table 9), and the steroid biosynthesis pathway 
(sasa00100) was enriched for both L2:L1 and L3:L1 
(Table 1).

In addition to KEGG, we performed an ORA 
on the GO (gene ontology) database [34], which 
consists of a hierarchical structure with the three 
root terms: cellular component (CC), biological 
process (BP), and molecular function (MF). 
ORA on GO identified three enriched terms (1 
BP and 2 MFs) for L2:L1 and 52 enriched terms 
(4 CCs, 39 BPs, and 9 MFs) for L3:L1 
(Supplementary Table 10). Moreover, the 
enriched BP terms had a large overlap with the 
enriched KEGG pathways. The most significantly 
enriched BP terms for L3:L1 were lipid biosyn-
thetic process (GO:0008610) and steroid meta-
bolic process (GO:0008202).

Along with ORA, gene set enrichment analysis 
(GSEA) is a popular functional annotation method 
that works with a set of the whole genes in the 

genome instead of selecting DEGs. GSEA also 
indicates either up-regulation or down-regulation 

Figure 3. Micronutrient supplementation down-regulate genes in steroid biosynthesis in a concentration-dependent manner. (a) The 
pathway diagram is part of the KEGG steroid biosynthesis pathway (sasa00100) using only 24 out of the total 59 genes in the 
pathway. Green boxes represent significantly down-regulated genes in L3:L1, whereas blue rectangles represent other pathways that 
are connected to this steroid pathway. (b) Box plots show the normalized read counts of down-regulated genes from all individual 
samples. The counts were normalized with the median ratio method provided by the DESeq2 package.

Table 1. Enriched KEGG pathways for DEGs.
Pathway KEGG ID ORAa GSEAb

L2: 
L1 L3:L1 L2:L1 L3:L1

Steroid biosynthesis sasa00100 9/ 
38**

18/ 
107**

−2.53 −2.76

Terpenoid backbone 
biosynthesis

sasa00900 - 8/ 
107**

−2.31 −2.47

PPAR signalling pathway sasa03320 - 10/ 
107**

−1.58 -

Fatty acid metabolism sasa01212 - 8/ 
107**

−1.72 −2.20

Pyruvate metabolism sasa00620 - 5/ 
107**

- −1.86

Carbon metabolism sasa01200 - 11/ 
107**

−1.59 −1.97

Butanoate metabolism sasa00650 - 3/ 
107*

−1.94 −1.87

Glycine, serine and 
threonine metabolism

sasa00260 - 4/ 
107*

−2.24 −1.71

Synthesis and degradation 
of ketone bodies

sasa00072 - 2/ 
107*

−1.85 −1.75

Glutathione metabolism sasa00480 - 4/ 
107*

−1.61 −1.94

aThe value represents gene ratio as (# of DEGs in the pathway)/(# of 
DEGs). Adjusted p-values < 0.01(**) and < 0.05 (*) were used to 
define enriched pathways. bOnly 10 pathways supported by both 
ORA and GSEA are shown among 30 pathways enriched for L2:L1 and 
49 pathways enriched for L3:L1 by GSEA. Negative NES (normalized 
enrichment score) values indicate down-regulation. a,b”-” represents 
a pathway with no significant test result. 
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for the detected pathways. GSEA on KEGG 
revealed 30 enriched pathways for L2:L1 and 49 
enriched pathways for L3:L1 (Supplementary 
Table 11). Among them, 21 pathways were com-
monly enriched for both L2:L1 and L3:L1 
(Supplementary Table 12). Furthermore, 8 out of 
the 21 common pathways were supported by ORA 
(Table 1). All the enriched pathways supported by 
both ORA and GSEA had negative NESs (normal-
ized enrichment scores), which indicates that most 
of the genes involved in the detected pathways 
were down-regulated in L2 and L3 when com-
pared to the corresponding genes in L1.

From the results of functional annotation, we 
concluded that micronutrient supplementation 
significantly suppressed hepatic expression of 
genes involved in pathways related to lipid 
metabolism.

Most genes in the enriched pathways show 
gradient gene expression patterns

To explore the enriched pathways in depth, we 
first examined the expression pattern of the 
genes involved in the steroid biosynthesis path-
way (sasa00100). We selected a sub-pathway 
that partially consists of 24 nodes out of the 
total 59 nodes (Supplementary Figure 3), where 
all but one node (altsqle) had corresponding 
orthologues for Atlantic salmon (Figure 3(a)), 
which were further trimmed down to 12 non- 
redundant genes (Figure 3(b)). All 12 genes 
were significantly down-regulated in L3:L1 and 
had a clear gradient expression pattern as L2 
being intermediary (L3 < L2 < L1), except 
dhcr24 (Figure 3(b)).

In addition to the steroid biosynthesis pathway, we 
investigated other five enriched pathways identified 
by ORA (adjusted p-value < 0.01) with a full GSEA 
support (both L2:L1 and L3:L1; terpenoid backbone 
biosynthesis, fatty acid metabolism, and carbon 
metabolism; Supplementary Figure 3–5) and partial 
GSEA support (either L2:L1 or L3:L1; PPAR signal-
ling pathway and pyruvate metabolism; 
Supplementary Figures 6 & 7). Among the total of 
35 genes associated with the five pathways, almost all 
the down-regulated genes (28 out of 29) showed clear 
gradient expression with L2 being intermediary (L3 
< L2 < L1), whereas two-thirds of the up-regulated 

genes (4 out of 6) showed clear gradient expression 
with L2 being intermediary (L1 < L2 < L3).

The results from the individual gene expression 
analysis strongly indicated that micronutrient sup-
plementation affected hepatic gene expression in 
multiple pathways related to lipid metabolism, 
mainly by L3 having the lowest expression level 
followed by L2 and then L1.

Experimental groups show no distinct clustering 
when all the mapped CpGs were used

To analyse the effects of micronutrient supplementa-
tion on DNA methylation patterns, we used 21 liver 
samples collected at final harvest, with L1 having 9 
samples, and L2 and L3 having 6 samples each 
(Supplementary Table 13). These samples were 
from both male and female fish, while the RNA-seq 
samples were from male fish. After RRBS sample 
pre-processing, we used a non-linear dimensionality 
reduction method, called t-SNE (t-distributed sto-
chastic neighbour embedding), to find whether any 
overall methylation patterns could be observed when 
all the mapped CpGs with methylation call were 
used. The result of t-SNE showed no distinct clusters 
by diet (Figure 4(a)), which was further supported by 
linear clustering methods, including PCA, hierarch-
ical clustering, and correlation analysis 
(Supplementary Figure 9). To test a potential con-
founding factor caused by mixing male and female 
samples, we again used t-SNE and PCA but with sex 
instead of diet for labelling samples, which also 
resulted in no distinct separation (Supplementary 
Figure 10). Moreover, there were no clear differences 
of the methylation rates between the diet groups as 
the average rate was approximately 84% for all of 
them (Supplementary Table 13). Thereafter, we 
directed our attention towards investigating DNA 
methylation patterns in a more region-specific man-
ner rather than focusing on the overall methylation 
pattern using all the mapped CpGs.

mRNAs and their surroundings have a higher 
RRBS coverage than intergenic regions

RRBS fragments represent only part of the whole 
genome and mainly originate from CpG rich 
regions. To identify the original locations of the 
RRBS fragments, especially within mRNAs and 
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their surroundings, we defined three regions in 
the genome; regulatory sequence (RS), promoter 
(P), and gene body (GB), which were further 
divided into six sub-regions; flanks (flanking 
regions both 10 K upstream and downstream 
around mRNAs), P250 (promoter region between 
1 bp and 250 bp upstream from the TSS), P1K 
(promoter region between 251 bp and 1 K bp), 
P6K (promoter region between 1001 bp and 6 K 
bp), exon, and intron (Figure 4(b)). Flanks were 
for covering enhancer regions, whereas P250 and 
P6K were, respectively, for proximal and distal 
promoters. In addition, we defined the remaining 
part of the genome outside of the sub-regions as 
intergenic. All the regions and sub-regions satis-
fied non-redundant representation for all the 
positions in the genome as a site in the genome 

always has only one corresponding region or sub- 
region.

The proportion of the mapped CpGs increased 
from the original proportion of 30% (19% gene 
body, 4% promoter, and 7% flanks) to 68.9% 
(51.4% gene body, 7.5% promoter, and 10% flanks) 
in mRNAs and their surroundings (Figure 4(c)). 
Among the sub-regions, introns showed the high-
est coverage (39.9%), followed by exons (11.6%) 
and then flanks (10%). The odds ratios (ORs) of all 
the sub-regions except for intergenic showed sig-
nificant enrichment compared to the original pro-
portions (Supplementary Table 14), indicating that 
mRNAs and their surroundings had a higher 
RRBS coverage than intergenic regions.

In addition to regional representations of RRBS 
fragments, average methylation rates were also 
noticeably various among different regions 

Figure 4. Micronutrient supplementation affects DNA methylation profiles in mRNAs and their regulatory sequences. (a) The t-SNE 
plot shows clustering of 21 RRBS samples with the three diet groups indicated by colours as red for L1, green for L2, and blue for L3. 
The perplexity parameter was set to 2. (b) Definition of the genomic regions used in our study. (c) Four stacked bars show the 
percentages of regional distributions of mapped CpGs in gene bodies and promoters. (d) Two violin plots show the density of overall 
methylation differences for L2:L1 and L3:L1 with scattered dots indicating the values of the significantly methylated CpG sites 
(q-value < 0.01 and the percentage methylation difference ≥ 20%).
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(Supplementary Figure 11), which was ranged 
from the lowest for P250 (~23%) followed by 
P1K (~57%) and to the highest for intergenic 
(~87.7%). The rate of exons (~76%) was lower 
than that of P6K (~83.5%) because first exons 
near the TSS tend to have lower methylation rates.

Even though DNA methylation in intergenic 
regions has important roles to suppress the expres-
sion of potentially harmful genetic elements, such 
as transposons [22], it would convey little infor-
mation about the epigenetic regulations on pro-
tein-coding genes. Therefore, throughout the 
subsequent RRBS analyses, we used the CpG sites 
with methylation calling from mRNAs and their 
surroundings.

The overall influence of regional DNA 
methylation appears to be similar between L2 
and L3 diets

We defined differentially methylated CpG sites 
(DMCs) with a logistic regression model [35,36], 
again based on L1 as control, when a CpG site 
with methylation call had a q-value lower than 
0.01 and the difference of methylation rates equal 
to or larger than 20% between dietary groups. 
Moreover, DMCs were distinguished either hypo- 
methylated or hyper-methylated depending on 
either negative or positive methylation differences 
based on L1.

As expected from the t-SNE analysis, the num-
ber of DMCs was similar between L2:L1 and L3:L1 
as well as having the balanced number of hypo- 

methylated and hyper-methylated sites (Figure 4 
(d)). Even when divided into the six sub-regions, 
the distributions of DMCs remained similar 
between L2:L1 and L3:L1 (Figure 4(d)). Although 
promoter regions were under-represented regard-
ing the number of DMCs, they appeared to have 
significantly more DMCs than the original propor-
tion among the mapped regions (Supplementary 
Table 15).

The analysis of DMC distributions inferred that 
micronutrient-rich diets affected regional methyla-
tion pattern in liver when the differences of 
methylation rates were significant, but the graded 
micronutrient levels seemed to have limited 
impact on the pattern.

Micronutrient supplementation affects the DNA 
methylation patterns in the pathways related to 
to cell adhesion and cell signalling

To perform functional annotation with CpG 
methylation call, we defined differentially methy-
lated genes (DMGs) as protein-coding genes that 
contained at least one DMC. ORA with DMGs on 
KEGG revealed five enriched pathways for L2:L1 
and two enriched pathways for L3:L1 (Table 2). 
Most enriched KEGG pathways were associated 
with cell adhesion and cell signalling mainly 
through DMCs in gene bodies. Moreover, ORA 
on GO resulted in 18 enriched terms (2 CCs, 10 
BPs, and 6 MFs) for L2:L1 (Supplementary Table 
16) and 22 enriched terms (6 CCs, 8 BPs, and 8 
MFs) for L3:L1 (Supplementary Table 17). 

Table 2. Enriched KEGG pathways for DMGs.
Dataset Pathway KEGG ID ORA (gene ratio)a Wilcoxb KS-bootc

L2:L1 Cell adhesion molecules 
(CAMs)

sasa04514 RS+GB (38/616), P+ GB (32/517), Gene body 
(31/420), Intron (26/339)

RS+GB, Flanks RS+GB, Flanks, P+ GB, 
Gene body, Exon

RNA degradation sasa03018 - RS+GB P+ GB
Glycosaminoglycan 
degradation

sasa00531 P1K (2/21) - -

Mitophagy – animal sasa04137 Promoter (7/99), P1K (3/21) - -
Apelin signalling pathway sasa04371 P+ GB (28/517) - -
Starch and sucrose 
metabolism

sasa00500 P6K (4/74) - -

L3:L1 Cell adhesion molecules 
(CAMs)

sasa04514 RS+GB (37/573), P+ GB (30/465), Gene body 
(27/388), Intron (27/320)

RS+GB RS+GB, P+ GB, Gene 
body, Intron

ECM-receptor interaction sasa04512 Intron (15/320) - -
mTOR signalling pathway sasa04150 - RS+GB, Gene 

body, Intron
RS+GB, P+ GB, Gene 
body, Intron

C-type lectin receptor 
signalling pathway

sasa04625 - RS+GB, Exon Exon

aAdjusted p-values < 0.01 were used to define ORAs. bWilcoxon signed rank test (adjusted p-value < 0.05). cKolmogorov–Smirnov test with 
bootstrap p-value calculation (adjusted p-value < 0.01). 
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Similarly, most of the enriched GO terms were 
associated with cell adhesion (cell-cell adhesion, 
GO:0098609) and cell signalling (cell-cell signal-
ling, GO:0007267).

To use all available methylation data like GSEA in 
gene expression analysis, we used Wilcoxon signed 
rank test (Wilcox) to compare two groups of methy-
lation rates in a pair-wise manner and also Bootstrap 
Kolmogorov–Smirnov test (KS-boot) to compare 
sets of methylation differences against background 
distribution (see Supplementary Methods for details 
with examples). A combined result from both 
Wilcox and KS-boot revealed two enriched pathways 
for L2:L1 and three enriched pathways for L3:L1 
(Table 2).

Only cell-adhesion molecules (CAMs; sasa04514 
& GO:0098609) were detected by all the four meth-
ods. In gene expression analysis, GSEA on KEGG 
showed CAMs as significantly up-regulated path-
way both in L2:L1 and L3:L1 (Supplementary Table 
11). Nonetheless, unlike the gene expression result, 
CAMs had no clear methylation trends regarding 
either hypo- or hyper-methylation.

The functional annotation results suggested that 
micronutrient-rich diets affected pathways related 
to cell adhesion and cell signalling mainly through 
the CpG sites in gene bodies, but the involved 
CpG sites showed both higher or lower methyla-
tion rates compared to L1.

Combing the DMCs from L2:L1 and L3:L1 has 
identified five common DMGs strongly affected 
by both L2 and L3 diets

Combining the DMCs from both L2:L1 and L3:L1 
in a region-specific manner resulted in 319 com-
mon DMGs (Supplementary Table 18), which 
were further filtered to 31 DMGs with at least 
two common DMCs in the same region type 
(Supplementary Table 19) and similarly five com-
mon DMGs with more than two common DMCs 
(Table 3, Table 4). Like the functional annotation 
of DMGs, all five DMGs were linked to GO terms 
related to signalling, synapse, and immune 
response (Supplementary Table 20). The five com-
mon DMGs showed a consistent number of hypo- 
and hyper-methylated DMCs between L2:L1 and 
L3:L1 (Table 3).

Among them, the gene CD28 (T-cell-specific sur-
face glycoprotein CD28-like, LOC106574316), 
which is involved in T-cell activation, prolifera-
tion, and survival, contained five common hyper- 
methylated DMCs in its P6K (Table 3). Although 
the gene expression of CD28 showed no significant 
differences for L2:L1 and L3:L1, all the common 
DMCs showed gradient methylation rates with L2 
being intermediary (L1 < L2 < L3; Supplementary 
Figure 12), suggesting that micronutrient supple-
mentation influenced DNA methylation of CD28 
in a concentration-dependent manner.

Linking DEGs with DMCs has identified multiple 
genes whose gene expression and DNA 
methylation are under the influence of 
micronutrient supplementation

To identify the effect of micronutrient supplemen-
tation on both gene expression and DNA methyla-
tion, we merged DEGs with DMCs, which resulted 
in 10 DEGs that contain at least one DMC within 
their gene body and its surroundings (Table 3). 
We subsequently selected three genes as candi-
dates for further analysis.

Firstly, sqle (squalene monooxygenase-like, 
LOC106605546) squalene monooxygenase-like, 
which is involved in the steroid biosynthesis path-
way (sasa00100), contains a hypo-methylated 
DMC in its promoter for L2:L1. The expression 

Table 3. DMGs with at least three common DMCs between L2: 
L1 and L3:L1.

Gene ID Gene name Region
# 

DMCsa
Hypo/ 
Hyperb

L2:L1
L3: 
L1

106,574,316 T-cell-specific surface 
glycoprotein CD28-like

P6K 5 0/5 0/ 
5

106,578,606 homeobox protein 
engrailed-2a-like

Exon 5 5/0 5/ 
0

106,590,111 disks large-associated 
protein 1-like

Intron 4 0/4 0/ 
4

106,560,380 rho GTPase-activating 
protein 39-like

Intron 3 1/2 1/ 
2

106,579,972 calcium-binding 
mitochondrial carrier 
protein SCaMC-2-A-like

Flanks 3 3/0 3/ 
0

106,586,910 zinc finger CCCH 
domain-containing 
protein 15-like

Flanks 3 3/0 3/ 
0

aNumber of common DMCs between L2:L1 and L3:L1. bNumber of hypo 
and hyper DMCs. 
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of sqle, however, showed down-regulation instead 
of up-regulation, which is inconsistent with the 
common gene regulation by DNA methylation in 
promoter regions [37].

Secondly, KIAA0825 ortholog (kiaa0825) con-
tains three hyper- and one hypo-methylated 
DMCs in its introns. The methylation level of 
the first intron is known to have inverse associa-
tion with gene expression [38]. Nonetheless, 
none of the four DMCs resides in the first 
intron of kiaa0825.

Finally, acetyl-CoA carboxylase alpha (acaca) 
has multiple DMCs in its promoter region. Also, 
acaca is part of the pyruvate metabolism 
(sasa00620) enriched in L1:L2 and fatty acid meta-
bolism (sasa01212) enriched in both L2:L1 and L3: 
L1 (Table 1). The gene expression of acaca was 
significantly down-regulated in L3:L1 while all of 

the DMCs were hyper-methylated, which matches 
with a well-studied gene regulation by DNA 
methylation in promoter regions [37]. Thus, we 
specifically targeted acaca to understand the 
potential effect of micronutrient supplementation 
on epigenetic regulation.

Micronutrient supplementation affects gene 
expression and DNA methylation of acetyl-CoA 
carboxylase alpha (acaca) in a 
concentration-dependent manner

acaca is an enzyme that catalyses the initiation of 
fatty acid biosynthesis by converting acetyl-CoA to 
malonyl-CoA [39]. It encodes a long primary tran-
script (60031 bp), with having one long non- 
coding RNA (lncRNA; LOC106568087) in the 
opposite strand of the promoter region (Figure 
5). The lncRNA LOC106568087 is completely cov-
ered by a long terminal repeat (LTR) retrotranspo-
son (Figure 5), suggesting that the gene may have 
similar functionality of retrotransposon. The 
lncRNA and acaca may share a bidirectional pro-
moter although LOC106568087 had no expression 
detected in our liver samples.

Table 4. List of 10 DEGs that contain at least one DMCs.

Dataset Gene symbol Gene name
Log2 
FCa

Meth diffs 
(region)b

L2:L1 LOC106605546 Squalene 
monooxygenase- 
like

−3.53 −24.3 (P1K)

LOC106591920 3-beta- 
hydroxysteroid- 
Delta(8)

−1.14 25.9 (Flanks)

LOC106602919 Putative 
monooxygenase 
p33MONOX

1.23 30.5 (Intron)

L3:L1 kiaa0825 KIAA0825 ortholog −2.50 30.5 (Intron), 
33.7 (Intron), 
20.4 (Intron), 
−27.0 (Intron)

LOC106570447 Gamma- 
aminobutyric acid 
type B receptor 
subunit 2-like

−1.88 30.3 (Flanks), 
−22.8 (Intron)

acaca Acetyl-CoA 
carboxylase alpha

−1.04 24.7 (P250), 
23.8 (P1K), 
20.9 (P1K), 
20.0 (P250)

LOC106589294 Unconventional 
myosin-Id-like

1.11 23.0 (Intron)

LOC106587564 Carbohydrate 
sulfotransferase 
8-like

1.15 22.0 (Intron)

LOC106604175 Solute carrier 
family 25 member 
48-like

1.21 −21.8 (Flanks)

LOC106573734 Potassium/sodium 
hyperpolarization- 
activated cyclic 
nucleotide-gated 
channel 2-like

1.9 24.8 (Intron)

aLog2 FC: log 2 fold change. DEGs with adjusted p-value < 0.05 and 
absolute log2 FC > 1 were selected. bMeth diffs: methylation differ-
ences in percentage. DMCs with absolute methylation difference 
>20% and Q-value <0.01 were selected. 

Figure 5. Micronutrient supplementation affect DNA methyla-
tion in the promoter region of acetyl-CoA carboxylase alpha 
(acaca) in a concentration-dependent manner. The region con-
tains the 3� end of acaca and part of its promoter region. It 
shows four significantly methylated genes that are highlighted 
in vertical green lines. Methylation rates are calculated as the 
average rates separately for L1, L2, and L3. The region also 
contains part of a long tandem repeat (gypsy) and a long non- 
coding RNA (LOC106568087).
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Both ChIP-seq (chromatin immunoprecipita-
tion sequencing) and ATAC-seq (assay for trans-
posase-accessible chromatin using sequencing) 
[40] identified that the first intron of acaca has 
peaks of H3K4me3 makers. The peaks are outside 
of its promoter region, but they are still located at 
around 6300 bp downstream from the TSS 
(Supplementary Figure 13).

Although acaca was not a DEG in L2:L1, the 
gene expression of acaca showed gradient expres-
sion with L2 being intermediary (L3 < L2 < L1). In 
addition, acaca is involved in fatty acid metabo-
lism (sasa01212), where all of the eight DEGs in 
L3:L1 including acaca had gradient expression 
with L2 being intermediary (L3 < L2 < L1; 
Supplementary Figure 5), which was further sup-
ported by NESs of GSEA (Table 1) as L3:L1 (−2.2) 
< L2:L1 (−1.7). Conversely, DNA methylation 
rates of all the four DMCs in L3:L1 for acaca 
showed gradient methylation rates of L1 < L2 
< L3 (Figure 5). Moreover, three out of these 
four CpG sites had significantly higher methyla-
tion rates in L2 compared to L1, but their methy-
lation differences were slightly lower than 20% at 
19.8%, 18.9%, and 17.5% (Supplementary Table 
20). Thus, the gradient patterns infer that micro-
nutrient supplementation affects gene expression 
and DNA methylation of acaca in a concentration- 
dependent manner.

Discussion

We show for the first time that graded levels of 
supplemented micronutrient through a whole life 
feeding trial have gradient effect on suppression of 
gene expression in lipid biosynthesis and incre-
ment of DNA methylation in the promoter of 
acetyl-CoA carboxylase alpha (acaca), which 
encodes the enzyme acetyl-CoA (ACC). ACC cat-
alyses the first crucial step of fatty acid metabolism 
in vertebrates, and its activity is complex and 
versatile, including phosphorylation, allosteric reg-
ulation, and protein–protein interaction [41].

In mammals, multiple promoters are known to 
initiate the transcription of acaca [42]. For exam-
ple, in cattle, four promoters (PI, PIA, PII, and 
PIII) have been identified for acaca [43]. Among 
them, PIA is tissue specific as it is active in liver, 
adipose tissue, and mammary gland. Intriguingly, 

PIA can be nutritionally controlled as observed in 
human and rat [44]. Furthermore, in sheep, PI is 
a GC-rich bidirectional promoter shared between 
acaca and another gene, transcriptional adaptor 2A 
(TADA2L), which encodes a component of chro-
matin-modifying complexes [45]. Thus, micronu-
trient supplementation might alternate the 
isoforms of acaca through DNA methylation in 
its promoter and also potentially reform the chro-
matin structure around the TSS, which collectively 
could affect its direct downstream regulation of 
lipid biosynthesis.

High macronutrient intakes with low micronu-
trients are associated with overweight and obesity 
[46], and alternated DNA methylation of acaca is 
also linked with obesity and diabetes [47]. A study 
using human liver samples showed that an ATF 
(activating transcription factor) binding site in 
ACACA was significantly hypo-methylated for 
both ‘obese with non-diabetic’ and ‘type 2 diabetic’ 
groups compared to the non-obese group [47]. 
The regulation of lipid metabolism is highly con-
served among vertebrates, and as such further 
studies need to verify if our findings could relate 
to a world-wide problem of micronutrient defi-
ciencies [3] as well as the increasing burden faced 
by ever-rising rates of obesity.

Apart from acaca, micronutrient supplementa-
tion also affected DNA methylation among genes 
associated with cell-adhesion and cell-signalling 
mainly through their gene bodies. The detailed 
mechanism of DNA methylation on cell- 
adhesion is unknown. Nonetheless, a human 
blood epigenome study reported that the 
improved quality of diets and physical activities 
affected DNA methylation patterns of the genes 
related to cell-adhesion via plasma-membrane 
[48]. A feeding trial that evaluated the effect of 
two different selenium supplements in rainbow 
trout (Oncorhynchus mykiss) also reported that 
diets with enriched selenium affected DNA 
methylation patterns in cell-adhesion [49]. 
Hence, many genes involved in cell adhesion 
may epigenetically respond to different nutrient 
status via DNA methylation in their gene bodies. 
Although the function of DNA methylation in 
gene bodies remains largely unclear, evidence sug-
gests that methylation rates in gene bodies are 
positively correlated with gene expression 
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especially in highly dividing cells [22]. Also, DNA 
methylation in gene bodies can be involved in 
splicing regulation [50]. In the transcriptome ana-
lysis, GSEA revealed that micronutrient supple-
mentation significantly up-regulated gene 
expression in cell-adhesion and cell-signalling. 
Hence, micronutrient supplementation may con-
tribute to up-regulation of several genes involved 
in cell-adhesion and cell-signalling through alter-
nated DNA methylation in their exons and 
introns.

Several genes have multiple common DMCs 
clustered within a short distance. Such clusters 
are potential candidates of differentially methyla-
tion regions (DMRs), whose status are strongly 
associated with specific development stages and 
reprogrammed progresses [51]. For instance, 
CD28 (LOC106574316) has a DMR in the distal 
promoter region (PK6), where four common 
DMCs are located within a range of 50 bp. 
Although the gene expression of CD28 was non- 
significant both in L2:L1 and L3:L1, the gene could 
be under epigenetic regulation influenced by 
micronutrients in other tissues or developmental 
stages.

The results of functional annotation between 
RNA-seq and RRBS showed less overlap than 
expected. One possible explanation is that the 
methylome detected by RRBS is less comprehen-
sive than the transcriptome detected by RNA-seq. 
RRBS represents only CpG rich regions in the 
genome with having strong dependencies on the 
restriction enzymes. Many genes in lipid metabo-
lism could be under the influence of DNA methy-
lation; nonetheless, RRBS might have failed to 
detect them since they lack restriction enzyme 
sites. Development of a tool that can detect the 
coverage of restriction enzyme sites can be bene-
ficial to RRBS experiments especially for studies 
with non-model organisms as the distributions of 
restriction enzyme sites are species specific. 
Another issue related to DNA methylation studies 
is that one gene may have multiple DNA methyla-
tion statuses spreading over the gene body and its 
vicinity. In this regard, a gene could be simulta-
neously associated with both hypo- and hyper- 
methylation.

In addition to species-specific distributions 
of restriction sites and multiple methylation 

status per gene, we encountered serval other 
obstacles during our RRBS analysis. The 
Atlantic salmon genome contains a number of 
duplicated genes through the salmonid whole 
genome duplication event as well as a high 
coverage of repeated sequences, estimated 
approximately 60% of the whole genome [52]. 
These duplicated and repeated sequences could 
be negative factors for accurate read alignments 
of sequence data. The average percentage of 
uniquely aligned reads was around 47% for 
our liver samples. Development of an algorithm 
that utilizes the reads mapped on multiple loca-
tions could be beneficial to enhance the CpG 
coverage for RRBS studies with salmonids. 
Furthermore, our original experimental design 
for RRBS was to analyse the same liver samples 
used for RNA-seq. Some of the male liver sam-
ples for RRBS, however, failed to pass our qual-
ity control screening, which led to our decision 
to add extra female liver samples that would 
decrease potential false positives. Among them, 
nine male samples are originated from the same 
fish used in RNA-seq (Supplementary Table 
22). Adding extra 12 female samples consider-
ably reduced the number of DMCs approxi-
mately from 20 000 to 2 500 (Supplementary 
Table 23). We extensively performed correla-
tion and clustering analyses (for instance, 
Supplementary Figure 10) to ensure that extra 
female samples could be added without causing 
a batch effect.

To gain a better understanding of epigenetic 
regulations associated with micronutrients in 
metabolic pathways, it is crucial to analyse the 
data from different perspectives, to be aware of 
the species-specific limitations of RRBS, and to 
compare the data between multiple species as 
well as other tissue types. To serve as resources 
for further studies, we provide nine different data 
sets with annotated information for DEGs, DMCs, 
and DMGs in spreadsheets (see Data availability).

Conclusion

Our main aim was to elucidate the effect of micro-
nutrient supplementation in Atlantic salmon feed 
by combining results of growth performance, gene 
expression profiles, and DNA methylation 
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patterns. Using three experimental groups with 
graded levels of micronutrients helped to interpret 
the results of gradient patterns encountered in 
multiple analyses. To conclude, we show that 
micronutrient supplementation suppresses liver 
gene expression in the pathways related to lipid 
metabolism and increases the methylation rates in 
the acaca gene, which is involved in the upstream 
regulation of the lipid biosynthesis pathway.

Materials and methods

Ethical considerations

All experimental procedures and husbandry prac-
tices were conducted in compliance with the 
Animals Scientific Procedures Act 1986 (Home 
Office Code of Practice) in accordance with EU 
regulation (EC Directive 86/609/EEC) and 
approved by the Animal Ethics and Welfare 
Committee of the University of Stirling. All fish 
were monitored daily by the Named Animal Care 
and Welfare Officer (NACWO).

Fish and experimental diets

The trial was carried out with Atlantic salmon 
obtained from SalmoBreed AS (Norway). Feeds 
were formulated to reflect standard practice in 
commercial salmon feeds in terms of protein, oil 
and energy contents. Also, feeds were supple-
mented with a nutrient package (NP) based on 
the given requirement levels reported for Atlantic 
salmon according to the EU-funded ARRAINA 
project [12,13,15]. The NP contains 24 micronu-
trient components, including 13 vitamins (A, B1, 
B2, B3, B5, B6, B7, B9, B12, C, D3, E, and K3), 
eight minerals (Ca, Co, I, Se, Fe, Mn, Cu, and 
Zn), two crystalline amino acids (L-taurine and 
histidine), and cholesterol. Three diet treatments 
with different levels of NP content were prepared 
as L1 with 100% NP, L2 with 200% NP, and L3 
with 400% NP (Supplementary Table 1). All 
feeds were produced at the BioMar Tech-Centre 
(Brande, Denmark). See Supplementary methods 
and materials for more details.

Micronutrient analysis of experimental diets

Micronutrient analysis was performed by several 
different technologies and methods as described 
previously [53]. Vitamins were determined by 
microbiological methods and high-performance 
liquid chromatography (HPLC), whereas minerals 
were determined by inductively coupled plasma 
mass spectrometry (ICP-MS). See Supplementary 
Methods for more details.

Feeding trial

The freshwater phase was carried out at the Niall 
Bromage Freshwater Research Facility (Stirlingshire, 
UK). Initially, 500 diploid salmon parr (initial mean 
weight, 38.2 ± 5.8 g) were stocked (September 2014) 
into nine 1.6 m3 circular fibreglass tanks (3 tanks/ 
diet). Fish were fed continuously during the light 
period of the light/dark cycle by automatic feeders 
(Arvotec T2000, Arvotec, Finland).

Post-smolts were transferred (November 2014) 
to the Marine Harvest (Mowi) Feed Trial Unit 
(Ardnish, Scotland) and on-grown for 12 months 
in 5 x 5 × 5 m sea pens under natural photoperiod 
and ambient water temperatures ranging from 6 to 
16 °C. Triplicate groups of 250 post-smolts from 
respective tanks were stocked per pen and on- 
grown to a final size of ~3.0 Kg. Fish were fed 
continuously during daylight by automatic feeders 
(Arvotec T2000) with automatic feed collection to 
ensure fish were fed to satiation. See 
Supplementary Methods for more details.

Measurement of growth and morphometric 
indices

For body weights and fork lengths, all fish per pen 
were individually measured. Following measure-
ment, all fish were allowed to recover in aerated 
water before returning to their original experimen-
tal pens. Fulton’s condition factor (K) was calcu-
lated using: K = (W * 100)/L3 where W is body 
weight (g) and L is fork length (mm). 
Hepatosomatic index (HSI) was calculated as 
liver weight (g)/body weight (g) * 100.
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DNA and RNA extraction

At the end of the feeding trial, liver tissue for both 
RNA and DNA extraction was dissected from the 
same area of each individual and snap frozen in 
liquid nitrogen. DNA and RNA were extracted 
from the same fish. For both RNA and DNA 
extraction, tissue samples were homogenized 
using ceramic beads. See Supplementary Methods 
for more details.

RNA-seq library preparation and sequencing

RNA-sequencing (RNA-seq) was performed by the 
DeepSeq sequencing facility at Nord University, 
Bodø, Norway. RNA-seq library preparation was 
completed using an NEBNext Ultra II Directional 
RNA Library Prep Kit for Illumina using the man-
ufacturer protocol and workflow (New England 
Biolabs). Libraries were ligated with four primers 
using NEBNext Multiplex Oligos for Illumina 
Index Primer Sets 1, 2, 3 and 4. Samples were 
multiplexed into two pools of nine samples, with 
multiplexing barcodes ligated to each sample dur-
ing the PCR amplification step, and further 
sequenced on the NextSeq500 machine (Illumina).

RRBS library preparation and sequencing

Extracted genomic DNA was digested by MspI 
and TaqI prior to size selection and bisulphite 
conversion. RRBS libraries were sequenced on 
Illumina HiSeq 3000/4000 instruments. See 
Supplementary Methods for more details.

Atlantic salmon genome and genomic 
annotation

The reference sequence data (ICSASG version 2) 
were downloaded from the NCBI assembly site 
(https://www.ncbi.nlm.nih.gov/assembly/GCF_ 
000233375.1).

Multiple mRNAs with alternative splicing were 
filtered to keep only one transcript with the long-
est length for RRBS. Promoter region was split 
into three sub-regions based on the distance from 
the transcription start site (TSS) as P250 (1–250), 
P1K (251–1 K) and P6K (1001–6 K). Flanking 
regions (flanks) were defined as 5 K upstream 

from the 5� end of P6Ks and 10 K downstream 
of the 3� end of mRNAs. Non-annotated sites 
were categorized as intergenic. In case of overlap-
ping, a site is assigned to the sub-region with 
a higher precedence as exon > intron > P250 
> P1K > P6K > flanks > intergenic.

Quality trimming, alignment and quantification 
of RNA-seq reads

Adaptors, low-quality bases, low-quality reads 
(phred scores < Q30) and reads less than 20 
bases in length were trimmed from sequence 
reads using cutadapt [54]. Quality trimmed reads 
were aligned to the Atlantic salmon RefSeq refer-
ence genome (ICSASG version 2). HISAT2 [55] 
was used to index the reference genome and align 
reads to the indexed genome. The number of reads 
per gene was quantified using featureCounts [56], 
based on gene region definitions (GFF) from the 
ICSASG reference genome (version 2).

Differential gene expression analysis

Prior to differential expression (DE) analysis, sam-
ples were assessed for batch effects and outliers 
using principal component analysis (PCA) and 
hierarchical clustering. DE analysis was completed 
using the DESeq2 package [57]. We adjusted the 
p-values by Benjamini-Hochberg and selected 
genes as differentially expressed genes (DEGs) 
when their adjusted p-values were less than 0.05.

Functional enrichment of DEGs using KEGG 
pathways and GO terms

The list of significant DE genes per experimental 
treatment was used to examine functional enrich-
ment [58] in KEGG (Kyoto Encyclopaedia of 
Genes and Genomes) pathways [59] and GO 
(Gene Ontology) terms [34]. For KEGG pathways, 
we used over representation analysis (ORA) [58] 
and gene set enrichment analysis (GSEA) [60], 
whereas we used only ORA for GO terms. The 
R package clusterProfiler [61,62] was used to ana-
lyse and visualize functional enrichment. We 
adjusted the p-values by Benjamini-Hochberg 
and defined function enrichment when adjusted 
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p-values were <0.05 for ORA for KEGG and <0.01 
for ORA for GO and GSEA.

Quality trimming, alignment and clustering of 
RRBS reads

Pooled samples were de-multiplexed by 
Illumina2bam tools (1.17.3; https://github.com/ 
wtsi-npg/illumina2bam). BAM files were con-
verted into FASTQ files by SAMtools [63], and 
the reads quality was checked by FastQC 
(Barbraham Institute; https://www.babraham.ac. 
uk), and MultiQC [64]. Adapters and low-quality 
reads were removed by Trim Galore! (Barbraham 
Institute) with the RRBS mode based on Cutadapt 
[54]. All reads with >50 bp were trimmed down to 
50 bp. In-house Python scripts were used to keep 
only the reads digested by MspI and TaqI (around 
97% of the total reads).

Reads were aligned to the Atlantic salmon gen-
ome by Bismark [65] with Bowtie 1 [66]. 
Methylation calls at CpG sites were retrieved by 
using bismark_methylation_extractor and covera-
ge2cytosine provided by Bismark [65]. Reads with 
less than or equal to 10 and above the 99.9th 
percentile of coverage were discarded by 
methylKit [35].

For clustering analysis, the tsne package 
obtained from CRAN (Comprehensive R Archive 
Network; https://cran.r-project.org) was used to 
perform t-SNE analysis [67] with perplexity 2. 
The factoextra packages from CRAN were used 
to perform other clustering analyses: PCA, scree 
plots, sample-sample distance plot based on 
Pearson’s correlation coefficients, hierarchical 
clustering with Ward’s method and gap statis-
tic [68].

Differential methylation analysis

The methylKit R package [35] was used to calcu-
late percentage methylation differences with 
p-values for all the CpG sites with methylation 
calls. P-values were calculated by logistic regres-
sion [35], and SLIM method [36] was used to 
calculate q-values. DMCs were defined as the 
CpG sites with q-values less than 0.01 and percen-
tage methylation differences greater than or equal 
to 20%.

Functional enrichment of DMCs using KEGG 
pathways and GO terms

We defined genes as differentially methylated 
genes (DMGs) if they had at least one DMCs. 
Enrichment analysis with KEGG [59] and GO 
[34] were performed on DMGs by the 
clusterProfiler R package [61]. Enriched GO 
terms and KEGG pathways were defined by 
adjusted p-values <0.05.

For KEGG pathways, we used over representation 
analysis (ORA) [58], Wilcoxon signed rank test 
(Wilcox) [69], and Kolmogorov–Smirnov with boot-
strap p-value calculation (KS boot) [70], whereas we 
used only ORA for GO terms. See Supplementary 
Methods for more details about Wilcox and KS boot.

Linking DNA methylation with RNA expression

CpG sites with methylation calls were merged with 
corresponding mRNA expression levels by Entrez 
gene IDs, which we used as our internal IDs for 
both RNA-seq and RRBS analyses. The merged 
data were filtered by DMCs with 20% threshold 
and DEGs with adjusted p-values <0.01. The plot 
of the genomic features around the acaca locus 
was generated by the Gvis R package [71].

Bioinformatics pipelines

For RNA-seq, shell and R scripts were used to 
develop a pipeline. For RRBS, R and Python 
scripts were coordinated in a pipeline by using 
Snakemake [72].
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