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Abstract: An understanding of marine ecosystems and their biodiversity is relevant to sustainable
use of the goods and services they offer. Since marine areas host complex ecosystems, it is important
to develop spatially widespread monitoring networks capable of providing large amounts of
multiparametric information, encompassing both biotic and abiotic variables, and describing the
ecological dynamics of the observed species. In this context, imaging devices are valuable tools that
complement other biological and oceanographic monitoring devices. Nevertheless, large amounts of
images or movies cannot all be manually processed, and autonomous routines for recognizing the
relevant content, classification, and tagging are urgently needed. In this work, we propose a pipeline
for the analysis of visual data that integrates video/image annotation tools for defining, training, and
validation of datasets with video/image enhancement and machine and deep learning approaches.
Such a pipeline is required to achieve good performance in the recognition and classification tasks of
mobile and sessile megafauna, in order to obtain integrated information on spatial distribution and
temporal dynamics. A prototype implementation of the analysis pipeline is provided in the context of
deep-sea videos taken by one of the fixed cameras at the LoVe Ocean Observatory network of Lofoten
Islands (Norway) at 260 m depth, in the Barents Sea, which has shown good classification results on
an independent test dataset with an accuracy value of 76.18% and an area under the curve (AUC)
value of 87.59%.

Keywords: cabled observatories; artificial intelligence; deep learning; machine learning;
deep-sea fauna
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1. Introduction

1.1. The Development of Marine Imaging

Over the past couple of decades, imaging of ocean biodiversity has experienced a spectacular
increase [1], revolutionizing the monitoring of marine communities at all depths of the continental
margins and the deep sea [2]. At the same time, a relevant development has taken place in
robotic platforms bearing different types of imaging devices in association with a diversified set
of environmental sensors [3]. Among these assets there are cabled observatories as video-functioning
multiparametric platforms connected to shore by fiber optic cables [4]. These fixed platforms are being
used to acquire image material from which animals of different species can be identified and then
counted in a remote fashion, at a high frequency and over consecutive years [5–9]. Then, extracted
biological time series are used to estimate how populations and species respond to the changes in
environmental conditions (also concomitantly measured) [10–14].

1.2. The Human Bottleneck in Image Manual Processing

Although a large amount of scientific literature has been produced in recent years about underwater
content-based image analysis [15–19], the processing of video data within ecological application contexts
is still mostly manual and cabled observatory platforms and their networks are not yet equipped
with permanent software tools for the automated recognition and classification of biological relevant
image content [3,20]. In this context, cabled observatory networks such as Ocean Network Canada
(ONC, www.oceannetworks.ca), European Multidisciplinary Seafloor and water-column Observatories
(EMSO, http://emso.eu/), and Lofoten-Vesterålen (LoVe, https://love.statoil.com/) among others, are
missing the opportunity to increase their societal impact by enforcing service-oriented image acquisition
and automatically processing target species of commercial relevance.

At the same time, the development of artificial intelligence (AI) oriented to image treatment
for animal counting and classification requires the development of analysis tools for ecological
annotation, as well as semantic infrastructures for combining datasets and recognition and classification
algorithms [21]. To do this, it is necessary to create relevant and accessible ecological repositories (e.g.,
Fish4Knowledge, http://groups.inf.ed.ac.uk/f4k/ and SeaCLEF, https://www.imageclef.org/) and, in
them, to define effective ground-truth datasets for an effective classification [6].

1.3. Objectives and Findings

The cabled Lofoten-Vesterålen (LoVe) observatory network is located in the Norwegian deep
sea, in the Norwegian continental slope of Lofoten Islands, in the Barents sea at 260 m depth, an area
hosting one of the highest abundance cold-water coral (CWC) reefs in the world [22–24]. CWCs host
a rich associated fauna [25], especially fish, with several species of high commercial value for the
local fishery, such as the rockfish Sebastes spp. [26]. Presently, the monitoring of its local population
and other species in the surrounding community has not yet been undertaken, which is relevant to
the production of some ancillary data for fishery-independent and ecosystem-based management
models (e.g., how fish respond to other species or oceanographic variations and how this is reflected in
commercial availability).

Within the envisaged development of the LoVe observatory network, aiming to establish a
science-based infrastructure for continuous online monitoring of the ocean interior including benthic,
pelagic, and the demersal habitats, we propose a user-friendly integrated library of tools (specifically
developed for that cabled observatory network), aimed at the following: (i) The generation of
ground-truth datasets through semi-automatic image annotation, (ii) the training of supervised
underwater image classifiers based on ground-truth datasets, and (iii) the automated classification of
underwater images acquired by cameras installed on fixed and mobile platforms. These tools support
the video/image analysis of the LoVe still imaging outputs dedicated to the tracking and classification
of different species of the local deep-sea community.

www.oceannetworks.ca
http://emso.eu/
https://love.statoil.com/
http://groups.inf.ed.ac.uk/f4k/
https://www.imageclef.org/
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In order to explore and maintain the wide biodiversity and life of underwater ecosystems,
monitoring and subsequent analysis of the information collected is necessary. Due to the numerous
underwater images, as well as videos collected at sea, manual analysis becomes a long and tedious
task, therefore, this study proposes a pipeline to solve this task automatically.

The objective of this study is to introduce a pipeline for underwater animal detection and
classification, which includes image enhancing, image segmentation, and manual annotation (to define
training and validation datasets), and automated content recognition and classification steps. This
pipeline has demonstrated good results in the classification of animals of the Norwegian deep sea,
reaching an accuracy value of 76.18% and an area under the curve (AUC) value of 87.59%.

The paper is organized as follows: Section 2 presents the dataset used in this work, and describes
the processing pipeline and the experimental setup, within the chosen evaluation metrics; Section 3
shows the obtained results; while Section 4 introduces the discussion about the preliminary results;
and finally, Section 5 presents our conclusions.

2. Materials and Methods

2.1. The Cabled Observatory Network Area

The LoVe observatory is located 20 km of the Lofoten Islands (Norway) in the Hola trough
(Figure 1) and was deployed in 2013. This glacially deepened trough is 180 to 260 m deep and incises
the continental shelf in a northwest to southeast direction from the continental slope to the coast. The
location of the observatory (∼260 m deep) is enclosed by two 100 m deep banks, Vesterålsgrunnen in
the northeast and Eggagrunnen in the southwest. The trough has a diverse topography with sand
wave fields of up to 7 m high, 10 to 35 m high ridges, and approximately 20 m high CWC mounds [27].
The CWC mounds are predominantly found in the southeastern part of the trough at a depth of ∼260 m
just south of the Vesterålsgrunnen bank, being mostly constituted by CWC Desmophyllum pertusum [28].
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Bathymetric map of the canyon area showing (in red) the observatory area and (in yellow) relevant 
Desmophyllum pertusum reef mounds around it (adapted from [24]), (B) three-dimensional (3D) 
detailed representation of the area showing (encircled in white) the video node providing the footage 
used to train AI procedures, (C) enlarged view of the areas surrounding the node where D. pertusum 
reefs are schematized, and finally (D) the field of view as it appears in the analyzed footages (B, C, 
and D) taken from the observatory site at https://love.statoil.com/. 

Figure 1. Overview of the study area where the Lofoten-Vesterålen (LoVe) observatory is located: (A)
Bathymetric map of the canyon area showing (in red) the observatory area and (in yellow) relevant
Desmophyllum pertusum reef mounds around it (adapted from [24]), (B) three-dimensional (3D) detailed
representation of the area showing (encircled in white) the video node providing the footage used to
train AI procedures, (C) enlarged view of the areas surrounding the node where D. pertusum reefs are
schematized, and finally (D) the field of view as it appears in the analyzed footages (B, C, and D) taken
from the observatory site at https://love.statoil.com/.

The following three platforms compose the data collection system of this area: The X-Frame, which
measures water current and biomass in water (with an echosounder); Satellite 1, which collects multiple

https://love.statoil.com/
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types of data, such as photos, sound, chlorophyll, turbidity, pressure, temperature, conductivity, etc.;
and Satellite 2, which only collects photos. The images used in this paper were acquired with Satellite
1 (see also Section 2.3).

2.2. The Target Group of Species

The area around the LoVe observatory is rich in biodiversity, and the following species were
identified according to the local fauna guides [29–31] (Figure 1 and Table 1): Sebastes sp., Lithodes
maja, Sepiolidae, Bolocera tuediae, Pandalus sp., Echinus esculentus, Brosme brosme, Cancer pagurusa, and
Desmophyllum pertusum. Some other species were also targeted by our automated protocol but could
not be classified and are generically categorized as ”hermit” crab and ”starfish”.

Table 1. An example of video-detected species used for building the training dataset for reference at
automated classification.

Class (alias) Species Name # Specimens per Species in Dataset Image in Figure 2

Rockfish Sebastes sp. 205 (A)
King crab Lithodes maja 170 (B)

Squid Sepiolidae 96 (C)
Starfish Unidentified 169 (D)

Hermit crab Unidentified 184 (E)
Anemone Bolocera tuediae 98 (F)

Shrimp Pandalus sp. 154 (G)
Sea urchin Echinus esculentus 138 (H)
Eel like fish Brosme brosme 199 (I)

Crab Cancer pagurus 102 (J)
Coral Desmophyllum pertusum 142 (K)

Turbidity - 176 (L)
Shadow - 101 (M)
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Figure 2. An example of video-detected species used for building the training dataset for reference at
automated classification: (A) Rockfish (Sebastes sp.), (B) king crab (Lithodes maja), (C) squid (Sepiolidae),
(D) starfish, (E) hermit crab, (F) anemone (Bolocera tuediae), (G) shrimp (Pandalus sp.), (H) sea urchin
(Echinus esculentus), (I) eel-like fish (Brosme brosme), (J) crab (Cancer pagurus), (K) coral (Desmophyllum
pertusum), and finally (L) turbidity, and (M) shadow.

Among these species, only Sebastes (Figure 2) has commercial importance. This is a genus
of fish in the family Sebastidae, usually called Rockfish, encompassing 108 species, two of them
(Sebastes norvegicus and Sebastes mentella) inhabiting Norwegian deep waters and presenting very
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similar morphological characteristics including coloring [32]. Sebastes norvegicus has been reported
in LoVe Desmophyllum areas up to six times with higher density as compared with the surrounding
seabed [25,29]. Accordingly, we referred to Sebastes sp. for all rockfish recorded at the LoVe observatory.

Another two elements were selected due to their abundance in the footage, turbidity, and shadows.
The so-called ”turbidity” class refers to the cloudiness sometimes seen in water containing sediments
or phytoplankton, while the ”shadow” class corresponds to the shadows cast by some of the fish.

2.3. Data Collection

The images used for testing the proposed tools were extracted from time-lapse footages (image
acquisition period of 60 min) generated with photos obtained by the camera from Satellite 1 (see
previous Section 2.1 and Figure 1) in two time windows, the first from 4 October 2017 to 27 June 2018
and the second from 10 December 2018 to 29 June 2019. Accordingly, a total of 8818 images were
available continuously over the 24 h period during 372 consecutive days. Some images were missing
due to the observatory structure maintenance.

2.4. Image Processing Pipeline for Underwater Animal Detection and Annotation

The images provided by LoVe observatory were acquired in an uncontrolled environment,
characterized by a heterogeneous background of coral bushes, where turbidity and artificial lighting
changes make it difficult to detect elements with heterogeneous shapes, colors, and sizes.

An image processing pipeline (Figure 3) was designed and developed based on computer vision
tools for enhancing the image contrast and for segmenting relevant image subregions [19,33]. To speed
up this process, the images were resized from 3456 × 5184 pixels to a quarter of their size, i.e., 964 ×
1296 pixels.
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First, a background image was generated for each day, that is, obtaining the average of the 24
images for each 24 h. These images were used to perform the background subtraction after applying
different techniques to the images.

The contrast limited adaptative histogram equalization (CLAHE) technique [34] was applied
to enhancing the image background/foreground contrast. While the traditional adaptive histogram
equalization [35] is likely to amplify noise in constant or homogeneous regions, the CLAHE approach
reduces this problem by limiting the contrast amplification using a filtering technique [36–38]. After
this equalization, a bilateral filtering [39] was applied in order to discard irrelevant image information
while preserving the edges of the objects that are to be extracted.
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The background subtraction took place at this time. In this way, a frame was obtained with only
the elements detected in the original image.

A binary thresholding value, which was chosen by testing different values, was performed to
obtain the mask of the elements in the image [19,33,40–43] and different morphological transformations
such as closing, opening, and dilation were applied to remove noise.

Global features were extracted for subsequent classification, which is explained later.
Finally, the contours of the threshold image were detected in order to identify the relevant elements

in the input image. The whole process was carried out with Python, OpenCV [44], and Mahotas [45].
As the size of the collected set was only a total of 1934 elements, we decided, first, to apply data

augmentation techniques to 80% of the images (a total of 1547 images), which are the ones that made
up the training set.

Data augmentation involves different techniques in order to generate multiple images from an
original one to increase the size of the training set. Within this work, several image transformations
were used such as image flipping, rotation, brightness changes, and finally zoom. After applying data
augmentation techniques, the training set increased from 1547 to 39,072 images.

Because global features such as texture or color features have obtained good results in the
classification task in the literature [46–48], we extracted and combined several global features from all
images, which are summarized in Table 2.

Table 2. Extracted global features from each image.

Type Description Obtained Features

Hu invariant moments [49]

They are used for shape matching,
as they are invariant to image
transformations such as scale,

translation, rotation, and
reflection.

An array containing the image
moments

Haralick texture features [50]

They describe an image based on
texture, quantifying the gray tone
intensity of pixels that are next to

each other in space.

An array containing the Haralick
features of the image

Color histogram [35,51]
The representation of the

distribution of colors contained in
an image.

An array (a flattened matrix to one
dimension) containing the

histogram of the image

For the classification part, several algorithms were compared with each other to clarify which one
obtained a more accurate classification result. Traditional classifiers such as support vector machine
(SVM), k-nearest neighbors (K-NN), or random forests (RF) have been widely used for underwater
animal classification. For example, in [52], the authors made a comparison between many classical
algorithms obtaining an accuracy value higher than 0.7. Another study reached 82% of correct
classification rate (CCR) with a SVM [53]. In recent years, deep learning (DL) approaches [54] have
gained popularity due to their advantages, as they do not need the input data to be processed and
often they get better results for problems related to image quality, language, etc. [23]. Accordingly, we
decided to make a comparison between both types of methods; evaluating the results and performance
of four classical algorithms and two different neural networks.

SVM is a supervised learning approach that can perform both linear or nonlinear classification
or regression tasks [55–57] and has shown good results in the classification of underwater image
features [58,59].

K-NN is a fast algorithm that classifies an object by a majority vote of its k (a positive integer)
nearest neighbors [60], being a recurrent classifier used in this domain [40,53].

Decision trees (DTs) are algorithms that perform both classification and regression tasks, in
addition, they use a tree structure to make decisions [61,62]; each middle leaf (called node) of the tree
represents an attribute, the branches are the decisions to be made (by rules), and each leaf of the tree
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that is a final node, corresponds to a result. This kind of classifier is also popular in underwater animal
classification, thus, the obtained results are quite good [63,64].

RF is an ensemble of DTs [65,66]. It normally applies the technique of bootstrap (also called
bagging) at training. It uses averaging of the DT results to improve the predictive accuracy and to
avoid over-fitting. Although RF have not been used as much as other algorithms, they have shown
their performance and results [67].

Convolutional neural networks (CNNs or ConvNets) have shown good accuracy results solving
underwater classification problems [68–70]. Deep neural networks (DNNs) have also been used
successfully in this field [71].

Different structures, training parameters, and optimizers were chosen in order to make a
comparison between them and determine which of the combinations obtained the best results. This is
described in the next section.

2.5. Experimental Setup

Two versions of SVM were selected. The first one is a linear SVM (LSVM) with C = 1, which is a
parameter used to determine the margin that separates the hyperplane for classification and influences
the objective function. The second one is also a LSVM but with stochastic gradient descent (SGD) [72]
training, which is an iterative method commonly used for optimizing, with hinge as the loss function
and elasticnet [73] as the regularization term.

Regarding the K-NN algorithm, for the selection of the k-value, three criteria were considered
as follows:

The selected number is preferable to be odd in order to avoid confusion between two classes;
The k value should be accurately selected, since small values could lead to overfitting and large

values would make the algorithm computationally expensive [74,75];
The approximation used to set the k-value was the result of calculating the square root of the total

number of samples in the training set [74], following Equation (1)

k =
√

# samples training set. (1)

Using the last criteria, two K-NN classifiers were tested, one with k = 39 and the other k = 99.
As was explained in the previous section, DTs have gained popularity and two DTs were chosen.

For the proposed analysis, the selected number of nodes between the root and the leaves, was 3000
and 100,000.

Regarding RFs, two different RFs were selected, each with different parameters. The first one with
75 trees, 300 nodes, and 10 features to consider when performing the splitting; the second one with 50
trees, 1000 nodes, and 50 features.

The implementation of all the classical algorithms used are within the Scikit-learn library [76]
(https://scikit-learn.org).

In the case of the DL approach, we selected four CNNs and four DNNs.
Two different structures were selected for the four CNNs. The first structure (CNN-1 and CNN-3)

was composed of two blocks of convolution, activation, and pooling layers, while the second one
(CNN-2 and CNN-4) contained three blocks. The activation function selected was rectified linear unit
(ReLU), which is a commonly used function with CNNs. The four models have fully connected layers
at the end, with an activation layer bearing a softmax function, which is a categorical classifier widely
used in DL architectures [68]. For training, two different optimizers were selected. For the CNN-1
and CNN-2, Adadelta [77] was used and for the second group, CNN-3 and CNN-4, RMSProp was
used [78]. The training parameters, such as epochs and batch size, were established on the basis of
initial tests in which it was observed that Networks 1 and 2 (which have the optimizer in common)
reached high accuracy values in the early epochs, while CNN-3 and CNN-4 took longer to improve
their accuracy. In this way, for CNN-1 and CNN-2 the number of epochs was 50 and the batch size was

https://scikit-learn.org
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356. For the other two networks, CNN-3 and CNN-4, the number of the epochs was 150 and the batch
size was decreased to 128.

The DNNs models have a similar layer structure. Similar to the previous network groups, the
first structure (corresponding to DNN-1 and DNN-3) contains an input layer followed by three dense
layers, each one followed by one activation layer. The first activation layer contains a ReLU function,
whereas the others have a hyperbolic tangent function (tanh). Even this function is not as common
as ReLU because it can cause training difficulties, it has obtained good results with some optimizers
such as SGD [79]. These layers are followed by a dropout layer to prevent overfitting [80]. The second
structure (for DNN-2 and DNN-4) is basically the same as the previous one but has one layer more
and the activation function for each layer is the ReLU function. This time, RMSPprop and SGD were
selected as the optimizers. As DNNs can be trained faster than the CNNs, the number of epochs
selected was 500 for all DNNs, while the batch size was 518 for DNN-1 and DNN-2 and 356 for DNN-3
and DNN-4. A summary of the experimental setup of the DL models is shown in Table 3.

Table 3. Summary of the experimental setup of the different neural networks.

CNN-1 CNN-2 CNN-3 CNN-4

Structure 1 Structure 2 Structure 1 Structure 2
Optimizer 1 Optimizer 1 Optimizer 2 Optimizer 2
Parameters 1 Parameters 1 Parameters 2 Parameters 2

DNN-1 DNN-2 DNN-3 DNN-4

Structure 1 Structure 2 Structure 1 Structure 2
Optimizer 1 Optimizer 1 Optimizer 2 Optimizer 2
Parameters 1 Parameters 1 Parameters 2 Parameters 2

Each one of the networks was fed with the extracted global features from each element of the
training dataset. These features were stacked together in a one-dimensional (1D) array. The output of
each of the networks is one of the 13 classes defined in Table 1.

The environment used for training the selected algorithms and the defined models was Google
Colaboratory (also known as Colab). Colab operates currently under Ubuntu 18.04 (64 bits) and it is
provided by an Intel Xeon processor and 13 GB RAM. It is also provided with a NVIDIA Tesla K80
GPU. Traditional algorithms were trained on CPU, while deep learning models were trained on GPU.

2.6. Metrics

On the basis of the choices made by some studies in the literature of similar scope [47,76], every
classifier was validated by 10-fold cross-validation by considering that the elements of each class were
distributed evenly in each one of the folds. The performance of the models was evaluated by the
accuracy, loss, and area under the curve (AUC) average scores [81].

The accuracy is given by Equation (2):

Accuracy =
TP + TN

P + N
=

TP + TN
TP + FP + TN + FN

(2)

where TP is true positive, TN is true negative, FP is false positive, FN is false negative, P is real
positives, and N is real negatives.

The AUC measures the area underneath the receiver operating characteristic (ROC) curve, as
shown in Figure 4:
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The true rate positive (TPR) or sensitivity is given by Equation (3), while the false rate positive
(FPR) or specificity is defined by Equation (4):

TPR =
TP
P

=
TP

TP + FN
(3)

FPR =
FP
N

=
FP

FP + TN
(4)

The accuracy and AUC values were calculated by the macro called averaging technique, which
calculates metrics for each label, without considering the label imbalance.

The loss function measures the difference between the prediction value and the real class. It is a
positive value that increases as the robustness of the model decreases.

3. Results

Accuracy and AUC average values obtained for all classes and for each classifier were obtained
performing cross-validation. The average training time is also shown in Table 4. The obtained confusion
matrices of RF-2 and DNN-1 are summarized in Figures 5 and 6 respectively, while the remaining
detailed results are found in the supplementary material (Appendix A).

Table 4. Accuracy and area under the curve (AUC) values with test dataset and training time obtained
by different models.

Type of Approach Classifier Accuracy AUC Training Time (h:mm:ss)

Traditional
classifiers

Linear SVM 0.5137 0.7392 0:01:11
LSVM + SGD 0.4196 0.6887 0:00:28
K-NN (k = 39) 0.4463 0.7140 0:00:02
K-NN (k = 99) 0.3111 0.6390 0:00:02

DT-1 0.4310 0.6975 0:00:08
DT-2 0.4331 0.6985 0:00:08
RF-1 0.4326 0.6987 0:00:08
RF-2 0.6527 0.8210 0:00:08

CNN-1 0.6191 0.7983 0:01:26
CNN-2 0.6563 0.8180 0:01:53

DL

CNN-3 0.6346 0.8067 0:07:23
CNN-4 0.6421 0.8107 0:08:18
DNN-1 0.7618 0.8759 0:07:56
DNN-2 0.7576 0.8730 0:08:27
DNN-3 0.6904 0.8361 0:06:50
DNN-4 0.7140 0.8503 0:07:16
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Figure 6. Confusion matrix for the classification results (accuracy) obtained by deep neural network
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Referring to traditional classifiers, the worst result was reached by K-NN with k = 99, as it barely
reached an AUC value of 0.6390. However, the other K-NN (k = 39) achieved better results, as it
reached an AUC value of 0.7140. The two DTs and the RF-1 performed quite well, as they almost
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achieved an AUC of 70%. The linear SVM reached an AUC of 0.7392 but also had the longest training
time, which was 1 minute and 11 seconds. The SVM with the SGD optimization function did not work
as well as the linear SVM, as it barely reached an AUC value of 0.6887. The RF-2 gained the highest
AUC value, 0.8210, using a short training time of 8 s. The accuracy values are much lower for every
classifier as compared with the AUC values.

The DL approaches obtained better results than almost every other traditional classifier. The eight
networks obtained AUC values from 80% to 88%. CNNs achieved an AUC values between 0.7983 and
0.8180. The four DNNs obtained results between 0.8361 and 0.8759, respectively. Similar to the case
of the accuracy values obtained by traditional classifiers, the accuracy achieved by DL approaches
was also lower than AUC values. However, despite being lower values, all neural networks exceeded
values of more than 60%; and most of the DNNs exceeded accuracy values of 70%.

The confusion matrix of Figure 5 corresponds to the results obtained by RF-2, were the X axis
shows the predicted label and the Y axis shows the true label. For some classes, such as anemone, crab,
sea urchin, shadow, shrimp, squid, and turbidity worked well, as it predicted values correctly between
70% to 93%. Coral, fish and starfish classes were misclassified by 59%, 57%, and 59%. Other classes
such as hermit crab, king crab, and rockfish were also misclassified, but at least 60% of the elements
were correctly classified.

Figure 6 shows the confusion matrix for the classification results obtained by DNN-1, which
achieved good results for almost every class. In this case, three classes (anemone, sea urchin, and
squid) were classified correctly at 100%, and the worst ranked class (coral) had 64% correctly labeled.

The performance of the four DNNs had different accuracy and loss values during the training, as
shown in Figure 7a,b. The first two, which are the ones that obtained the best results, in the first 50
epochs, had already reached an accuracy value close to the final value (just over 0.60) and at the same
time, the loss value also decreased to the final minimum value reached.
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Figure 7. Training accuracy and loss plots of the DNNs with different structures. The X axis of all
of plots shows the number of epochs, while the Y axis show the loss or accuracy value that reached
the trained model. Training accuracy and loss plots of DNN-1: (a) Accuracy values obtained in every
epoch at training time and (b) loss values obtained in every epoch at training time. Training accuracy
and loss plots of DNN-4: (c) Accuracy values obtained in each epoch at training time and (d) loss
values obtained in each epoch at training time.
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However, both DNN-3 and DNN-4 took a longer amount of epochs to reach the highest accuracy
value, as well as the lowest loss value, as shown in Figure 7c,d. As it progressively reached more
optimal values, it did not reach the best values until at least 450 epochs.

DNN-1 was used to extract the time series of organism abundance, that is, it was used to detect,
classify, and count animals in a short period of time in order to compare that result with the ground
truth. This was performed on images not used during the training and test phase, corresponding to
the period from 17 November 2017 to 22 November 2017.

Figure 8 shows three different time series for the rockfish, shrimp, and starfish during that period
of six days, which covers 80 images. The classifier detected rockfish in 27 images, whereas with the
manual detection, animals were detected in 24 images, which means that there are at least three false
positives. In the other time series, the difference is much higher.Sensors 2020, 20, 726 13 of 27 
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Figure 8. Time series of detections per day of (a) rockfish, (b) starfish, and (c) shrimp taxa. In the three 
plots, the X axis shows consecutive dates, while the Y axis shows the number of detections. The black 
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automatic process. 

  

Figure 8. Time series of detections per day of (a) rockfish, (b) starfish, and (c) shrimp taxa. In the three
plots, the X axis shows consecutive dates, while the Y axis shows the number of detections. The black
lines correspond to the manual detection and the grey lines correspond to the estimated counts by the
automatic process.
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4. Discussion

In this study, we have presented a novel pipeline that can be used in an automatic pipeline for
analysis of video image with the goal of identification and classification of organisms belonging to
multiple taxa. The environment is difficult due to the turbidity that can sometimes be seen in the
water, which makes it hard to appreciate the species; the small size of the dataset, which limits the
appearance of some of the animals; the colors of the species detected, as well as the size of some
of them, which sometimes blend in with the environment. All this can sometimes lead to incorrect
classifications. Despite all this, we obtained successful classification results over the thirteen different
taxa that we identified.

The image preprocessing pipeline automatically extracted 28,140 elements. Among them, between
90 and 200 specimens were manually selected from the 13 different classes of organisms (Table 1).

Two different types of methods were used in this study, i.e., classical algorithms and DL techniques.
In general, the training phase for a DL approach needs hundreds of thousands of examples [82–84] or
as an alternative, it can benefit from transfer learning approaches [85,86]. On the contrary, the proposed
work uses only images acquired by the LoVe observatory with the aim of using the proposed image
processing tools for incrementing the training set during the operational activities of the observatory.

Data augmentation was applied to the training dataset to obtain a richer one. The final training
dataset consists of 39,072 images as follows: 2886 specimens of anemone, 3034 of coral, 3034 of crab,
3034 of fish, 3034 of hermit crab, 3034 of king crab, 3034 of rockfish, 3034 of sea urchin, 2997 of shadow,
3034 of shrimp, 2849 of squid, 3034 of starfish, and 3034 of turbidity. Similar studies also detected the
advantages of DL over ML methods in marine environments [87–90].

With respect to the structures and training parameters chosen for all the networks, it can be seen
that, for CNNs, the ones that obtained the best results were the CNN-2 and CNN-4, which had the same
structure (the one with more layers) but different optimizers and parameters. However, in the case
of DNNs, the DNN-1 and DNN-2 which share optimizer and parameters but not the same structure,
obtained better results. Since the difference in results was not very large, it is necessary to perform
more exhaustive experiments in order to conclude which element has the greatest influence on the
results. In order to improve the pipeline and, consequently, the result, more work and in-depth study
is needed.

As future work in this research line, the pipeline for the automated recognition and classification
of image content introduced in this study should be permanently installed on the LoVe observatory
augmented with the mobile platforms developed within the ARIM (Autonomous Robotic Sea-Floor
Infrastructure for benthopelagic Monitoring) European project. The introduced pipeline could be
used to notably increase the ground-truth training and validation dataset and obtain more accurate
image classifiers. Within this application context, the development of neural networks could be further
extended, creating models with different structures (adding and removing layers, modifying the
number of units for each layer) and applying distinct parameter configuration (such as increasing
or decreasing the number of epochs, batch size, and varying the chosen optimizer for training, or
combining different activation functions). Other types of methods that have been proven to be
successful should be considered, such as transfer learning approaches. Many studies have shown that
the use of pretrained neural networks overcome results from non-pretrained neural networks [91,92].
This method is commonly used to improve the extraction of features and the classification when the
training set is small [93,94], although this was not the case in this study, and it is less and less, because
LoVe collects more images.

Changing the dataset would be challenging, as we could select images or videos with other
characteristics, such as a moving background similar to [95], where they collected underwater sea
videos using an ROV camera. Other possibilities include modifying the dataset, cropping images, or
dividing fish into pieces to compare results, similar to [96].

Considering all the above, based on this work, we could make use of the transfer learning
technique on a new network, and test it in other datasets.
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5. Conclusions

The aim of this study was to design an automatic pipeline for underwater animal detection and
classification, performing filtering and enhancing techniques, and using machine learning techniques.
We obtained results with accuracy values of 76.18% and AUC of 87.59%, so the objective was achieved.

As can be seen in this study, our results reaffirm that unexplored underwater environments can
be analyzed with the help of classic approaches and DL techniques. Moreover, DL approaches such
as complex neural networks have shown that it is quite appropriate to identify and classify different
elements, even if the images quality is sometimes low [74].

The improvement and enhancement of underwater images also plays an important role in
detecting elements. It would be interesting to deepen in these methods, since a clear improvement of
the images could reduce the later work of detection of features and obtain better classification rates.

The use of traditional classifiers and DL techniques aimed at the detection of marine species and,
consequently, their assessment, both qualitative and quantitative, of the environment corresponding to
each one, demonstrates that it can be an important advance in this field.

If we contemplate the advances in the acquisition of images and other parameters in different
underwater ecosystems, it is easily deduced that the amount of information provided by the different
acquisition centers would be impossible to analyze if it was not through this type of automatic technique.
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Appendix A

This appendix contains the rest of the confusion matrices of the results obtained on the test dataset
from Table 4.
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