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Abstract 44 

The distribution of Atlantic cod (Gadus morhua) in northern Norwegian waters is expanding eastward 45 

and northward in the Barents Sea and along western Svalbard. In the Arctic fjords of Svalbard, cod 46 

has become abundant, but little is known about the biology, origin, or residence patterns of these 47 

populations. To address this issue, we used Laser Ablation Inductively Coupled Plasma Mass 48 

Spectrometry (LA-ICP-MS) to quantify the trace elemental composition of cod otoliths at age-0, age-3 49 

and the year of spawning at five distinct locations in northern Norway and western Svalbard. 50 

Chemical composition data was used to identify natal sources of cod, their broad-scale migration 51 

patterns, and to determine if cod are currently resident in Arctic fjords. Our results suggest that cod 52 

collected at Kongsfjord, Isfjord, outside Svalbard, Lofoten, and Porsangerfjord recruited mainly from 53 

the Barents Sea, conforming to the Northeast Arctic cod ecotype. The degree of chemical overlap 54 

between Porsangerfjord and Isfjord cod, however, varied with fish age, suggesting individual 55 

movements consistent with the Norwegian coastal cod ecotype. Finally, the chemical composition of 56 

mature fish at Isfjord, and to a lesser extent Kongsfjord, suggest that cod from the Barents Sea might 57 

have recently established residency in these two Arctic fjords. 58 

 59 
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Introduction 67 

The current era of climatic warming is changing the distributions of marine ectotherms as they seek 68 

to follow their optimal thermal tolerance limits (Sunday et al. 2012). These changes in biogeography 69 

may be due to the direct effects of temperature on physiological functioning. At the same time, 70 

temperature may also lead to altered trophic structure, for example by stimulating zooplankton 71 

production and shifting energy flows from benthic to pelagic food webs (Carroll and Carroll 2003) or 72 

changes in the ranges of competitors (Lancaster et al. 2017).  73 

 74 

In the Barents Sea, warming trends are causing shifts in ecosystem structure and function, 75 

subsequently affecting landings of commercially important species (Beaugrand et al. 2014; 76 

Wiedmann et al. 2014; Fossheim et al. 2015). Indeed, during warm periods, the distribution of the 77 

northeast Arctic population of Atlantic cod (Gadus morhua), expands farther east and north in the 78 

Barents Sea and along western Svalbard (Nakken and Raknes 1987; Fossheim et al. 2015; Fall et al. 79 

2018) while spawning tends to occur farther north along the Norwegian Coast (Sundby and Nakken 80 

2008). Recruitment (Hjermann et al. 2007) and somatic growth rate (Michalsen et al. 1998) also tend 81 

to be higher than during colder periods, with the net effect of increasing overall cod productivity 82 

(Brander 2010). Recently, the Barents Sea cod biomass has achieved record high levels due to the 83 

interaction between favorable climate and fisheries management, as increased temperature and 84 

lower fishing mortalities have promoted higher recruitment and growth (Lilly et al. 2013; Kjesbu et al. 85 

2014). 86 

 87 

Cod populations in the northern North Atlantic are genetically distinct. There is a suite of local 88 

populations along the Norwegian coast including the fjords of western Svalbard that are often 89 

designated as Norwegian Coastal Cod (NCC), though cod from different fjords are often genetically 90 
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distinct from one another (Fevolden and Pogson 1997). Cod in the coastal complex are stationary in 91 

contrast to the migratory Northeast Arctic Cod (NEAC), and ample attention has focused on genetic 92 

differences between these ecotypes (e.g. Nordeide et al. 2011; Michalsen et al. 2014). The migratory 93 

ecotypes of cod, and in particular the NEAC, sustain very large populations in comparison to 94 

stationary populations such as those in the NCC complex. NEAC and NCC also contrast in life history 95 

traits (reviewed in Yaragina et al. 2011; Ottersen et al. 2014). Briefly, the NCC spawns along the coast 96 

of Norway and within fjords (Jakobsen 1987; Michalsen et al. 2014). Cod spawning in sheltered fjord 97 

areas have more local recruitment dynamics than cod spawning in more open coastal areas, with 98 

pelagic eggs and larvae remaining mostly in coastal environments while offspring grow close to their 99 

spawning sites (Knutsen et al. 2007; Myksvoll et al. 2011; Rogers et al. 2014). Given these limited 100 

movements, NCC have significantly different population genetic structures throughout its entire 101 

range (Dahle et al. 2018). NEAC are typically found across the Barents Sea (Bergstad et al. 1987; 102 

Michalsen et al. 2014), spawning along the Norwegian coast, but especially near the Lofoten Islands 103 

and the Møre region (Bergstad et al. 1987; Sundby and Nakken 2008; Olsen et al. 2010). After 104 

spawning, the pelagic eggs, larvae and pelagic juveniles are carried northeastwards by the Norwegian 105 

Coastal Current and concentrate mainly in the central Barents Sea (Vikebø et al. 2005). The 0-group 106 

switches from a pelagic to a demersal phase with the highest concentrations occurring in the 107 

southeastern Barents Sea and along the Polar Front. A large proportion of fish that are four years or 108 

more in age follow the spawning migration of capelin, thus moving from the Polar Front southward 109 

to the coast in late winter, remaining there during the spring and migrating north again during the 110 

summer. The mature part of the population extends this winter-feeding migration farther 111 

southwards to the spawning areas during the spawning season in February and March (Yaragina et al. 112 

2011; Ottersen et al. 2014).  113 

 114 
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Changing environmental conditions can lead to range expansion (or contraction) and to increasing 115 

interactions between ecotypes along the northern Norwegian coast and especially in the Barents 116 

Sea. The northward expansion of cod and other North Atlantic fish may have ecosystem-level 117 

implications for Svalbard fjords (Renaud et al. 2012; Berge et al. 2015; Brand and Fischer 2016), 118 

which have been traditionally inhabited by local cod (NCC). During the warm years of 1873-1882, cod 119 

were abundant in Svalbard fjords as well as in coastal waters on the west and northwest Spitzbergen. 120 

By 1879, the hand-held line fishery operating in shallow waters yielded 595 000 individuals. The 121 

subsequent cooling period yielded catches in 1883 of only three individuals (Iversen 1934). Since 122 

about 1913 however, warming of waters around Svalbard and its Spitsbergen fjords have favored 123 

increased abundances of boreal species which have been expanding their distribution in the Arctic 124 

(Blacker 1957, 1965; Drinkwater 2006; Pavlov et al. 2013; Fossheim et al. 2015; Falk-Petersen et al. 125 

2015; Misund et al. 2016; Leopold et al. 2019). It remains uncertain however, if cod in Svalbard fjords 126 

have settled permanently, resembling the NCC stocks, or are only transient residents and undertake 127 

seasonal migrations much as NEAC.  128 

 129 

Because of the focus on distinguishing migratory and non-migratory (NEAC vs NCC) cod (Nordeide et 130 

al. 2011), most of the genetic and morphological markers have only recently been developed with 131 

resolution to detect fine-scale changes in origin or distribution. This level of resolution is required to 132 

determine connectivity patterns and interactions of cod from different areas. Otolith trace element 133 

analysis can aid in addressing questions of origin and distribution in fish as the chemical composition 134 

of the calcium carbonate-based material can provide insight into the overall physiological condition 135 

of the organism, its relationship to the environment, and be used to infer the environmental 136 

conditions fish experience over their lifespan, and/or movements and migration patterns (Campana 137 

and Thorrold 2001; Chang and Geffen 2013; Morales-Nin and Geffen 2015; Tanner et al. 2016). 138 

Incorporated trace elements from sequential sampling along the growth axis of otoliths have 139 
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provided high-resolution records of seawater chemistry for interpreting spatial and temporal 140 

patterns in temperature, salinity, hydrography, food supply, as well as behavioral aspects such as 141 

migrations (Vander Puten et al. 2000; Gillikin and Bouillon 2007; Chang and Geffen 2013; Morales-142 

Nin and Geffen 2015; Reis-Santos et al. 2018). For cod, otolith microchemistry has successfully been 143 

applied to identify drift and mixing of cod from different geographic origins (e.g. Campana et al. 144 

1994; Jónsdóttir et al. 2006; Thorisson et al. 2011; Wright et al. 2018).  145 

 146 

In this study, we analyzed the chemical composition of cod otoliths collected from five distinct 147 

locations in Northern Norway and western Svalbard to identify possible natal sources of cod in these 148 

areas, broad-scale migration patterns, and to determine if cod are resident in Arctic fjords. Special 149 

emphasis was placed on otoliths collected in the Svalbard fjords, where abundance of cod has 150 

increased markedly in parallel with warming temperatures. In particular, the years 2006-2013, for 151 

which otoliths were selected, corresponds to a period of increased water temperatures and reduced 152 

winter ice formation in the Svalbard fjords, which might have enabled NEAC to move into the 153 

Svalbard fjords.  We thus aim to understand whether cod sampled in Svalbard represent a range 154 

extension by migratory NEAC or NCC fish that have adapted to the Svalbard environment.  155 

 156 

Materials and Methods 157 

Sample selection and study sites 158 

Cod otoliths were selected from a collection at the Norwegian Institute of Marine Research (IMR). 159 

We focused on five distinct locations: the Lofoten area (Nordland), the fjords Porsangerfjord 160 

(Finnmark), Kongsfjord (Spitsbergen) and Isfjord (Spitbergen), and outside the Svalbard archipelago 161 

(Figure 1). Otoliths from 2006-2013 had been classified by stock (NCC and NEAC) by age readers using 162 

standard morphological features (Sundby and Nakken 2008; Nordeide et al. 2011). Samples were 163 
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selected for this study based on the following criteria: 1. Place of collection (Isfjord, Kongsfjord, 164 

Porsangerfjord, Lofoten or outside Svalbard), 2. Fish age (0, 3 and presence of at least one spawning 165 

zone (Rollefsen 1935)), and 3. Readability (i.e. ease of age interpretation) (Table 1). Fish in 166 

Kongsfjord, Isfjord and outside Svalbard were collected in the months of August and September. 167 

Porsanger samples were collected in October and November and finally, Lofoten samples were 168 

collected in April.   169 

 170 

The rationale behind choosing otoliths with a spawning zone from such sites and ages is based on the 171 

life history traits and movement patterns of cod, e.g. migrations from the Barents Sea to major 172 

spawning sites in the Lofoten area (NEAC). NCC from the fjords of the northern coast and Svalbard 173 

probably spawn locally. As such, the following assumptions were made: 174 

  175 

i) Fishes from a common natal source are expected to show a similar otolith chemical 176 

composition at age-0, irrespective of location of collection;  177 

ii) Differences in chemical composition with age denotes fish movement across 178 

different environments while similarities suggest residency in the same environment. 179 

 180 

Environmental conditions at collection sites 181 

Marine environmental conditions vary considerably among sites and differences in otolith chemistry 182 

were expected. Specifically, Kongsfjord (231 km2; length 27 km; width 4-10 km) and Isfjord (area 183 

3084 km2; length 98 km; width 24 km) in Svalbard are strongly influenced by the south-to-north 184 

flowing West Spitsbergen Current, though colder and fresher water masses are often located in the 185 

nearshore from glacial and river inputs. Mean yearly freshwater input into Kongsfjord and Isfjord has 186 

been estimated at 7 X 106 m3 and 3400 X 106 m3 respectively (for more hydrographical information, 187 
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see Svendsen et al. 2002; Nilsen et al. 2008). Due to recent changes in large-scale atmospheric 188 

circulation patterns, warm Atlantic water is brought into the fjords more frequently, which halts ice 189 

formation and also facilitates the introduction of more southerly species (Pavlov et al. 2013; 190 

Gluchowska et al. 2016; Muckenhuber et al. 2016; Nilsen et al. 2016; Wiencke and Hop 2016). Prior 191 

to 2007, these and other fjords of Svalbard were regularly covered by sea ice during winter, but 192 

regular winter ice cover has become rare (Cottier et al. 2007; Nilsen et al. 2008; Nilsen et al. 2016; 193 

Wiencke and Hop 2016). All Kongsfjorden otoliths (n = 6) and most Isfjorden otoliths (7 out of 9) 194 

were collected after 2006 coinciding with this period of low ice coverage in the fjords and 195 

temperatures similar to those experienced by cod in the Barents Sea. 196 

 197 

Porsangerfjord (1877 km2) in northern Norway is an open fjord with relatively little fresh water input, 198 

though there is a gradient along the fjord from warmer Atlantic waters near the ocean to colder, 199 

fresher waters inland. There is ice formation between January and May (Eilertsen and Skarðhamar 200 

2006; Myksvoll et al. 2012; Fuhrmann et al. 2015; Cieszyńska and Stramska 2018). Spawning of 201 

coastal cod occurs in Porsangerfjord from the end of February to the middle of April (Otterå et al. 202 

2006) with potential for high egg retention (Jakobsen 1987; Myksvoll et al. 2012).  Farther south, the 203 

Lofoten archipelago is considered the main spawning ground for both NEAC and NCC. Here, the 204 

Norwegian Coastal Current splits into two branches, the smaller branch entering Vestfjord, while the 205 

major branch passes the islands to the west and mixes with the warmer Norwegian Atlantic Current 206 

(Mitchelson-Jacob and Sundby 2001; Höffle et al. 2014).  207 

 208 

Trace element analysis 209 

The selected otoliths were embedded in epoxy and then sectioned using a low speed saw at the 210 

Institute of Marine Research otolith lab facilities (Bergen, Norway). Thin sections were cut to 211 

approximately 0.6 mm thick and mounted on microscope slides. Trace element analysis was 212 
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conducted at the Woods Hole Oceanographic Institute Plasma Mass Spectrometry Facility (Woods 213 

Hole, Massachusetts, USA) by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-214 

MS) using a Thermo Finnigan Element 2 sector field ICP-MS coupled with a New Wave Research UP 215 

193nm excimer laser.  LA-ICP-MS setup was similar to that of Günther and Heinrich (1999) as 216 

modified by Thorrold et al. (2001).  Laser sampling was set to 150um spots with 100% output power 217 

and a 10Hz repetition rate. The isotopes 7Li, 25Mg, 48Ca, 55Mn, 138Ba, 88Sr, and 208Pb were measured.  218 

The Microanalytical Carbonate Standard (MACS-3, U.S. Geological Survey) was ablated and used as a 219 

standard to relate measurements to elemental concentration A blank and the MAC-3 standard were 220 

run after every twelfth sample. 48Ca was used as an internal standard by normalizing the 221 

concentrations of all other elements to the calcium concentration, as a ratio of elemental 222 

concentration to calcium concentration by molecular weight. Samples were ablated at the end of the 223 

growth year at age-0, age-3, and the year after the first spawning zone (age-S).  For most individuals, 224 

the age at first spawning was 6 years (average 6.7 years, ±1.24 SD), as determined by the visual 225 

change in otolith growth referred to as a spawning zone (Rollefsen 1935). For individuals that 226 

spawned for the first time in the year of capture, samples were taken at the edge of the otolith.  227 

 228 

Statistical analysis 229 

Two statistical approaches were used to assess whether the composition of otoliths differed with 230 

respect to fish age, site of sampling, or year of capture. First, non-metric multidimensional scaling 231 

(NMDS) was performed on Euclidean distance dissimilarity matrices calculated on three dimensions 232 

from the natural logarithm (ln(x)) transformed element data using the computer program Canoco 5 233 

ver. 5.12© (1997-2019 Biometris, Wageningen Research Foundation, Wageningen University and 234 

Research, the Netherlands and Peter Šmilauer, Czech Republic). The data were ln-transformed to 235 

reduce the effect of extreme values. The NMDS plots indicated the level of similarity between 236 

microelement data of each fish with respect to age (0, 3, mature) and calendar year of the sample. 237 
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For example, a 6-year-old fish caught in 2006 that spawned first at age-5, yielded measurements for 238 

the years 2000 (age 0), 2003 (age 3), and 2005 (age-5). To test whether chemical composition was 239 

statistically different between the three age groups at each site, ANOSIM analyses were performed 240 

using the computer program Primer 7 ver. 7.0.13 © PRIMER-E (Quest Research Limited). In order to 241 

explore whether residency was similar among mature fish, an NMDS was performed on mature fish 242 

(age-S) data only. The NMDS scores for each site were then compared using ANOVA.   243 

 244 

The second approach was to calculate a likelihood score for each fish at each site of collection (LS). 245 

Here we assumed that the elemental signal of each collection site is represented by the mature fish 246 

signal of individuals collected at that site. We subsequently tested how similar the elemental values 247 

of each age-0 and age-3 fish were compared to mature fish signature of each site. The score was 248 

calculated for each element as: 249 

𝐿𝐿𝐿𝐿 =  
𝐸𝐸𝐸𝐸 − �̅�𝑥 (𝐸𝐸𝐸𝐸𝐸𝐸)

 𝜎𝜎 (𝐸𝐸𝐸𝐸𝐸𝐸)
 250 

Where  251 

Ev = Otolith element concentration (ln-transformed) 252 

Evs = Otolith element concentration at maturity (ln-transformed) 253 

σ = standard deviation  254 

x̅ = mean  255 

 256 

The likelihood score for each site and fish is the sum of the otolith chemical elements. The site with 257 

the lowest score is the most likely site (given our data availability) that an individual fish resided at 258 

each age. Initial exploratory data analyses indicated a lack of differences between the sites when the 259 

elemental values of Mg and Sr were included in the analyses due to their high concentrations and 260 
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consistency in values. Therefore; all subsequent analyses concerned only the elements Li, Mn, Ba and 261 

Pb.  262 

 263 

For some of the sites, only a small number of otoliths were collected in the same year (Table 1). To 264 

test whether our results could be affected by temporal variability in elemental values (i.e. a year 265 

effect), four mixed effect models were run on the scores from an exploratory NMDS analysis 266 

performed on all otolith data (Morrongiello and Thresher 2015):   267 

 268 

• Model 1. A random intercept model for fish ID. 269 

• Model 2. A random intercept for fish ID, with the factor age as fixed effect. 270 

• Model 3. A random intercept for Fish ID with the factor year as fixed effect. 271 

• Model 4. A random intercept for fish ID, with the factors age and year as fixed effects. 272 

  273 

Where “fish ID” refers to the different fish individuals (taking the repeated measurement structure of 274 

the data into account), “age” refers to the age (0, 3 or S) of the fish, and “year” refers to the calendar 275 

year of the sample. The best model was selected based on the Akaike information criterion (AIC). 276 

Note that in these analyses we are not trying to explain clustering patterns. Our aim here was to test 277 

if some of the variance in NMDS scores is better explained by fish age and/or by calendar year. Of 278 

course, additional variance is likely explained by residence location, but collection site was not 279 

included as a factor in these analyses, because fish residence is unknown for fishes at age-0 and age-280 

3.  281 

 282 
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Results 283 

Trace element trends  284 

All trace element concentrations from samples were greater than the limit of detection outlined in 285 

Jochum et al.  (2012). Trace elemental analyses revealed differences in the element concentrations of 286 

otoliths from different sites (Online Resource 1). The highest trace element values were in general 287 

found in Age-0 fishes (Figure 2). For mature fish (Age-S), the molecular weight ratios values of Li 288 

ranged from 3.12E-06 mmol mol-2 in Porsangerfjord to 6.48E-05 mmol mol-2 in Isfjord. On average, 289 

the highest Li values were found in otoliths from Lofoten and the lowest from Porsangerfjord. The 290 

values of Mn ranged from 1.23E-07 in Kongsfjord to 3.38E-05 outside Svalbard. Mn values were on 291 

average highest in Lofoten and lowest in Kongsfjord. Ba values varied from 1.37E-06 in Isfjord to 292 

1.21E-05 outside Svalbard.  Ba was lowest in the Lofoten otoliths, on average, and highest in 293 

Porsangerfjord otoliths. Pb varied from 1.10E-09 in Isfjord otoliths to 3.27E-07 in Kongsfjord otoliths. 294 

Otoliths sampled outside Svalbard had the lowest Pb average values and Kongsfjord otoliths the 295 

highest.  296 

 297 

Non-metric multidimensional scaling analyses 298 

The NMDS plots show the level of similarity among the otolith elemental composition at age for each 299 

of the sites (Figure 3). The combined variation explained between axis 1 and 2 varied from 79.4% 300 

(Svalbard outside) to 86.6% (Kongsfjord). At all sites, clustering of elemental values occurred around 301 

each age group (0, 3, mature), rather than at each individual otolith. The greatest distances between 302 

clusters of age groups occurred between age-0 and maturity suggesting different occupancy at age. 303 

This was especially the case for samples from outside Svalbard and Lofoten, where overlapping in 304 

chemical concentrations occurred to a higher degree between age-3 and maturity. Interestingly at 305 

these two sites, the age-0 formed a more compact cluster than at any of the other sites/age groups. 306 
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Kongsfjord showed almost no overlapping, with three very distinct age groups. In contrast, the 307 

chemical composition in samples from the fjords Porsangerfjord and Isfjord overlapped for all age 308 

classes, especially between age-0 and age-3.  The ANOSIM test revealed significant differences in 309 

otolith chemical composition between most of the age groups at each location (Table 2) except 310 

Lofoten (age 3, matured) and Kongsfjorden (age 0, 3 and age 3, matured). The R statistic values, 311 

which when close to unity are indicative of complete group separation (Clarke and Warwick 2001), 312 

were in the high range (R > 0.7) only for the pair wise comparisons between ages 0 and 3 in Lofoten 313 

(R = 0.71) and between ages 0 and mature in Lofoten, Isfjorden, Kongsfjorden and Svalbard (R > 314 

0.78).  At Isfjorden, R values between age 0 and mature were somewhat high (R = 0.51).  315 

 316 

For mature cod, the non-parametric ANOVA performed on the NMDS scores on mature fish data 317 

revealed that “site” had a significant effect on the scores (Figure 4). We assume here that the 318 

chemical composition measured in the year after first spawning is representative of the chemical 319 

signature of their collection site. A pairwise t-test showed that the Svalbard fjords of Isfjord, and to a 320 

lesser extent Kongsfjord, are different from the rest of the sample sites (p-value = 0.0052; corrected 321 

Bonferroni p-value = 0.052). At these two sites, the year of capture coincided with year of spawning 322 

in five out of eight samples from Kongsfjord and four out of six fish from Isfjorden), which increases 323 

the confidence in using the Age-S composition as a local marker.  324 

 325 

Among the four mixed effect models used to test for a potential “year effect”, “age” explained most 326 

of the variance, with the lowest AIC. Inclusion of the factor “year” (model 3) did not improve the AIC 327 

score suggesting that more of the clustering is explained by fish age than by calendar year (Online 328 

resource 2).  329 

 330 
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Likelihood scores 331 

The likelihood scores revealed possible overlapping distributions among fish at age 0, 3 and mature 332 

fish across collection sites (Figure 5A). Again, the central assumption in this analysis is that the 333 

chemical composition of the increment after reaching maturity adequately represents the chemical 334 

signature of their collection site. Most age-0 and age-3 fishes collected in the Svalbard Fjords (Isfjord 335 

and Kongsfjord) and Lofoten have a chemical composition most similar to the mature individuals 336 

collected outside Svalbard. For Porsangerfjord the results are more variable. However, none of the 337 

collection sites showed evidence of resident populations.  338 

As the chemical signature of otoliths from mature individuals did not significantly differ among  339 

Porsangerfjord, Lofoten, and outside Svalbard , and between mature individuals from Isfjord and 340 

Kongsfjord, these sampling sites were merged (Figure 5B). The likelihood scores when then 341 

recalculated using only the two categories Isfjord/Kongsfjord and Porsangerfjord /Lofoten/Svalbard-342 

outside. These analyses indicated that fish at age-0 and age-3 generally have a chemical composition 343 

most similar to mature fish from areas outside Svalbard.  Some age-3 fish, however, were classified 344 

as having a similar chemical composition of matured fish collected in Isfjord/Kongsfjord, suggesting 345 

some individuals may migrate into these fjords well before spawning. 346 

 347 

Discussion 348 

Otoliths have been shown to record the chemical environment experienced by an individual fish 349 

throughout its lifetime and as such can be employed as a natural marker to identify fish that inhabit 350 

different environments (Campana and Thorrold 2001; Kerr and Campana 2014; Tanner et al. 2016; 351 

Reis-Santos et al. 2018). We analyzed the composition of cod otoliths collected at five sites across 352 

Arctic Norway to identify possible natal sources and large-scale migration patterns. We also sought 353 

to determine if cod populations are resident or visitors in Artic fjords, where sea temperatures have 354 
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been increasing, thus providing more suitable environments for the establishment of temperate 355 

species. Our general expectation was that a high degree of overlap between microelement 356 

composition of fish in different age groups would denote residency (NCC), and little overlap between 357 

age groups would suggest large seasonal migrations (NEAC). Our results suggest that cod collected at 358 

Kongsfjord, Isfjord, outside Svalbard, Lofoten, and Porsangerfjord recruited mainly from the Barents 359 

Sea, conforming to the Northeast Arctic cod ecotype. The degree of chemical overlap between 360 

Porsangerfjord and Isfjord cod, however, varied with fish age, suggesting individual movements 361 

consistent with the Norwegian coastal cod ecotype. Finally, the chemical composition of mature fish 362 

at Isfjord, and to a lesser extent Kongsfjord, suggest that cod from the Barents Sea might have 363 

recently established residency in these two Arctic fjords. 364 

 365 

Lofoten, open waters of Svalbard and Kongsfjord samples 366 

At Lofoten, open waters outside Svalbard, and Kongsfjord, all otoliths were classified as NEAC based 367 

on morphology. The NMDS analysis and the R pairwise values in the ANOSIM test revealed little 368 

overlap with respect to chemical composition at age, with the age-0 group clustering separately from 369 

age-3 and mature groups, which indicated pronounced movement patterns. The likelihood scores 370 

suggested that the chemical composition of individual otoliths collected at Lofoten and Kongsfjord is 371 

closest to those of mature fish collected outside Svalbard, suggesting that these fish may share a 372 

common origin. These results match the current understanding of NEAC stock distribution and life 373 

history, which is widely spread along the Norwegian coast and the Barents Sea, especially between 374 

the continental slope and the Polar Front.  375 

  376 

Consistent with these findings, the adult portion of NEAC performs large-scale migrations (up to 1000 377 

km) from the Barents Sea to feed and spawn along the Norwegian coast, with spawning usually 378 

occurring from early March to the end of April (Bergstad et al. 1987; Yaragina et al. 2011; Färber et 379 
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al. 2018). The exact location of the spawning sites varies with temperature, but the main spawning 380 

sites are located near Lofoten (Sundby and Nakken 2008; Yaragina et al. 2011; Langangen et al. 381 

2019). After spawning, eggs and larvae drift north from the spawning grounds and east into the 382 

Barents Sea. The highest concentrations occur in the central Barents Sea, near the Polar Front during 383 

August-September when the age 0-group fish settle to the demersal phase (Yaragina et al. 2011). Age 384 

groups 1-3 concentrated mostly in the southeastern Barents Sea and along the Polar Front, and their 385 

migrations tend to follow the seasonal shifts in the front. Cod shift from planktivory to piscivory, and 386 

by age 4, a large proportion follow and feed on spawning capelin during their migrations to the coast 387 

(Yaragina et al. 2011). During the NEAC feeding and especially the spawning migrations, an overlap in 388 

distribution occurs with NCC (Jakobsen 1987; Yaragina et al. 2011; Michalsen et al. 2014). A higher 389 

overlap between the age-3 and mature groups at Lofoten and outside Svalbard as shown in our 390 

results might be a result of these purported migrations into the coast.  391 

 392 

Porsangerfjord and Isfjord samples 393 

Porsangerfjord and Isfjord samples differed chemically from the other sites, with an apparent 394 

discrepancy between the NMDS and likelihood analyses. First, the NMDS analysis showed some 395 

overlap among all age groups within each fjord, indicating a common residency among fishes at 396 

different ages. At these two locations, most of the R values obtained from the ANOSIM test were 397 

close to zero (0.11-0.34), except for Isfjorden (r = 0.51 at ages 0 and mature) indicating little 398 

segregation among groups (Clarke and Warwick 2001). Porsangerfjord, where all otoliths were 399 

classified as coastal cod based on morphological properties, previous tagging studies have shown 400 

high recapture rates of marked cod within the fjord (93%) (Jackobsen 1987) providing evidence 401 

residency. In addition, numerical models suggest a high retention rate for cod eggs in Porsangerfjord 402 

(Myksvoll et al. 2011; Myksvoll et al. 2012). The high retention of eggs and residency rates suggest 403 

that Porsangerfjord cod could complete its life cycle within the fjord. Little is known about cod life 404 
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history in Isfjord, but a similar life strategy to that of Porsangerfjord cod is plausible (see section 4.3). 405 

In general, our Porsangerfjord and Isfjord NMDS results show agreement with expectations regarding 406 

NCC, which tend to be resident in fjords and have short spawning migrations (Jakobsen 1987; 407 

Michalsen et al. 2014). The likelihood analysis showed, however, that most of the age-0 and age-3 408 

samples at Isfjord and Porsanger were chemically more similar to the mature samples from Svalbard 409 

and Lofoten, indicating that fishes generally recruit in offshore waters before moving into the fjords. 410 

Again, for mature cod, the ANOVA analysis showed that Porsangerfjord cod had a more similar 411 

chemical otolith composition to mature fishes collected at Lofoten and outside Svalbard. A possible 412 

explanation of this apparent discrepancy between our analyses could be due to the overlap in 413 

distribution of the NEAC and NCC cod that can occur during spawning and feeding migrations (Olsen 414 

et al. 2010), or when fjord-spawning cod leave the fjords after spawning to inhabit coastal areas 415 

(Jacobsen et al. 1987). At these times, both stocks will experience similar environmental conditions 416 

which likely will be reflected in the otolith chemical composition. The variety of reproductive life 417 

history traits displayed by coastal cod described above (limited movement, migration to coastal 418 

areas, outside/inside fjord spawning, local retention of eggs, etc.) is likely the cause a higher chemical 419 

overlap between fish of different ages (age-0, 3 and matured) at Porsangerfjord, as well as the higher 420 

variability of NMDS scores of mature fish. 421 

 422 

Kongsfjord and Isfjord settlement and spawning movements 423 

Otoliths from mature fish from Isfjord showed a different chemical composition than those from the 424 

other localities, except Kongsfjord, suggesting that some of the mature fishes in these Svalbard fjords 425 

remain in the fjords instead of joining spawning migrations to the south. Moreover, about 65% of the 426 

Kongsfjord and Isfjord otoliths were collected on the same year as the formation of the first 427 

spawning zone, suggesting that these fish might have spawned within or in areas near the fjord. The 428 

age-0 likelihood results, however, indicated offshore recruitment into both fjords. Together, these 429 
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results might indicate a new settlement of Barents Sea cod into the fjords, presumably related to the 430 

more favorable conditions for cod due to climate warming. Most of our Svalbard fjord samples were 431 

collected after 2006, coinciding with the period of increased temperatures that have facilitated the 432 

establishment of boreal species in the Arctic, including Svalbard fjords (Berge et al. 2015; Fossheim et 433 

al. 2015; Bergstad et al. 2017; Leopold et al. 2019). The hypothesis of new settlement finds further 434 

support in the 2-category likelihood analyses, showing that some of age-3 fish have similar chemical 435 

composition to mature Isfjord/Kongsfjord otoliths. It is conceivable that these fish recruited into the 436 

fjords before age-3 and then remained there for the rest of their life, thus presumably reflecting the 437 

environmental chemical composition there. A similar case has occurred with the mussels Mytilus 438 

spp., which have resettled in Svalbard after a 1000-year absence, triggered by warming oceans 439 

(Berge et al. 2005). The likely vectors for the reestablishment of these mussels, that are now 440 

reproducing locally, are larval advection by ocean currents and introductions by ship traffic (Leoplold 441 

et al. 2019).  442 

 443 

In this paper we assume otolith chemistry composition variation to occur due to the differences in 444 

environmental factors experienced by fishes at different ages and/or sites. Otolith chemistry, 445 

however, is influenced not only by environmental factors but also by physiological and genetic 446 

factors (Chang and Geffen 2013; Grønkjær 2016; Izzo et al. 2018). Yet regardless of the intrinsic 447 

processes regulating the incorporation of the trace elements in the otolith, environmental factors are 448 

considered the main drivers of variation for certain elements (Reis-Santos et al. 2018). Thus, 449 

exposure to site-specific environmental conditions can provide otolith trace elements signatures 450 

(Brown et al. 2019). For cod, multielement otolith chemistry analyses have proven effective 451 

identifying regional differences over large geographic areas (Chang and Geffen 2013), lending 452 

support to a microchemical approach. We acknowledge that we based our analyses on relatively few 453 

individuals, which may introduce greater uncertainty than with higher replication. Yet, given the 454 
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strong overlap between the sites for most micro-elements (for age-S fishes) it is questionable if a 455 

larger sample size would have increased precision and changed the main findings of our study. Some 456 

uncertainty is caused by our assumption that the chemical composition of age-S fishes reflects the 457 

chemical composition of the collection sites, as well as due to variation in the year of sampling. 458 

Nevertheless, our results from the Barents Sea and Porsanger tend to corroborate what is known 459 

about movement patterns of NEAC and NCC. For Kongsfjord and Isfjord, where cod life history is less 460 

investigated, most otoltihs were collected on the same year as spawning occurred, thus presumably 461 

reflecting the environmental chemical composition there. 462 

 463 

If the cod in Svalbard fjords are indeed newly settled, then they might establish local populations 464 

leading to eventual local life history adaptations, as the species can be highly sedentary (Knutsen et 465 

al. 2011; Rogers et al. 2014; Michalsen et al. 2014; Dahle et al. 2018). Our results so far indicate a life 466 

history more similar to that of Porsanger cod. Tagging and tracking experiments with a posteriori 467 

otolith chemical analysis might elucidate whether fishes from the Svalbard fjords are in fact, 468 

establishing resident populations in the fjords, as will be expected as global warming progresses. 469 

 470 
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Table 1 707 

Table 1. Location, year of collection and age of cod (Gadus morhua) otoliths employed for 708 
microelement analyses. NEAC = Northeast Arctic Cod; NCC = Norwegian Coastal Cod 709 

Place of collection, 
morphological type/year 

Age at capture 
6 7 8 9 10 11 12 Total 

Isfjord (All NEAC) 2 3 2 2    9 
2006 1       1 
2008   1 1    2 
2009 1 3 1     5 
2013    1    1 

Kongsfjord (All NEAC)  3 1 2    6 
2007  3 1     4 
2013    2    2 

Lofoten (All NEAC)  3 5 1 1 1  11 
2006  1 1 1    3 
2008  1 2     3 
2011   1   1  2 
2013  1 1  1   3 

Porsanger (All NCC)  4 4 2 1 1  12 
2008  1      1 
2011  1 2     3 
2013  2 2 2 1 1  8 

Svalbard_outside (All NEAC)  3 3 6 2  1 15 
2009  1      1 
2012    2 1  1 4 
2013  2 3 4 1   1 

Grand Total 2 16 15 13 4 2 1 53 
 710 
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Table 2 720 

Table 2. Analysis of similarity (ANOSIM) of cod (Gadus morhua) otolith chemical composition with 721 
age as a factor at each sampling site.  722 

 723 

 
  R Statistic 

Area Sample statistic (R) Significance level Age 0, 3 Age 0, S Age 3, Matured 

Lofoten 0,57 0,10 % 0,708* 0,903* 0,051 

Porsangerfjorden 0,194 0,10 % 0,132* 0,342* 0,111* 

Isfjorden 0,296 0,10 % 0,312* 0,506* 0,179* 

Kongsfjorden 0,367 0,30 % 0,091 0,783* 0,207 

Svalbard outside 0,476 0,10 % 0,522* 0,794* 0,126* 
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Figure 1 742 

 743 

Figure 1. Map of collection stations for cod (Gadus morhua) as well as the distributions of the 744 

Northeast Arctic cod (NEAC) and the Norwegian coastal cod (NCC) stocks. Thick arrows depict warm 745 

Atlantic currents while thin arrows depict cold Arctic currents. The white line depicts the average 746 

position of the Polar Front. Background map from, Google Earth Pro (US Dept of State Geographer, 747 

Image IBCAO copyright 2019 Google, Image Landsat Copernicus) and ocean currents and polar front 748 

from BarentsWatch (www.barentswatch.no). 749 
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Figure 2 750 

 751 

Figure 2. Microelement concentration of cod (Gadus morhua) otoliths collected at five sampling sites. 752 

 753 
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Figure 3 763 

 764 

Figure 3. NMDS analyses of cod (Gadus morhua) otolith chemical composition for different ages at 765 
five sampling sites. Data labels indicate samples at age-0, age-3 and maturity. 766 
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Figure 4 767 

 768 

  769 

Figure 4. Box plot of site differences in NMDS scores (for first dimension) in cod (Gadus morhua) 770 
otoliths of mature fishes, using four elements (Li, Mn, Ba, Pb). Letters indicate significant differences 771 
at a p-value < 0.05 with a Bonferroni correction. Outliers are denoted by dots either below or above 772 
the whisker lines which extend from the quartiles. 773 
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Figure 5 789 

 790 

Figure 5. Visualization of likelihood scores among the five sites, the black box indicating the lowest 791 
score likelihood. (A) Possible residence of cod (Gadus morhua) at different ages for each sampling 792 
site. (B) Re-calculated likelihood scores using only two categories: Isfjord/Kongsfjord and 793 
Porsangerfjord /Lofoten/Svalbard-outside following a merger of sampling sites based on similarities 794 
in chemical signature of mature individuals (see text for details). All otoliths collected in Kongsfjord, 795 
Isfjord, Svalbard outside and Lofoten were classified as Northeast Arctic Cod based on morphological 796 
features. Porsangerfjord otoliths were classified as Norwegian Coastal Cod. 797 
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