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Assessing the performance of statistical classifiers to
discriminate fish stocks using Fourier analysis of otolith shape
Szymon Smoliński, Franziska Maria Schade, and Florian Berg

Abstract: The assignment of individual fish to its stock of origin is important for reliable stock assessment and fisheries
management. Otolith shape is commonly used as the marker of distinct stocks in discrimination studies. Our literature review
showed that the application and comparison of alternative statistical classifiers to discriminate fish stocks based on otolith
shape is limited. Therefore, we compared the performance of two traditional and four machine learning classifiers based on
Fourier analysis of otolith shape using selected stocks of Atlantic cod (Gadus morhua) in the southern Baltic Sea and Atlantic
herring (Clupea harengus) in the western Norwegian Sea, Skagerrak, and the southern Baltic Sea. Our results showed that the
stocks can be successfully discriminated based on their otolith shapes. We observed significant differences in the accuracy
obtained by the tested classifiers. For both species, support vector machines (SVM) resulted in the highest classification accuracy.
These findings suggest that modern machine learning algorithms, like SVM, can help to improve the accuracy of fish stock
discrimination systems based on the otolith shape.

Résumé : L’affectation d’un poisson donné à son stock d’origine est importante pour la fiabilité des évaluations de stocks et de
la gestion des pêches. La forme des otolites est communément utilisée comme marqueur de stocks distincts dans des études
de discrimination. Notre examen de la documentation a montré que l’application et la comparaison de différents critères de
classification statistiques pour discriminer des stocks de poissons sur la base de la forme des otolites constituent une approche
d’usage limité. Nous avons donc comparé la performance de deux critères de classification traditionnels et quatre critères
d’apprentissage machine reposant sur l’analyse de Fourier de la forme des otolites pour des stocks choisis de morue (Gadus
morhua) dans la mer Baltique méridionale et de hareng (Clupea harengus) dans la mer de Norvège occidentale, le Skagerrak et la
mer Baltique méridionale. Nos résultats montrent que les stocks peuvent être discriminés efficacement sur la base des formes
d’otolites. Nous observons des différences significatives de l’exactitude obtenue en utilisant les différents critères de classifica-
tion évalués. Pour les deux espèces, les machines à vecteurs de support (MVS) produisent la plus grande exactitude de classifi-
cation. Ces constatations donnent à penser que des algorithmes d’apprentissage machine modernes, tels que les MVS, peuvent
aider à rehausser l’exactitude de systèmes de discrimination des stocks de poissons basés sur la forme des otolites. [Traduit par
la Rédaction]

Introduction
Discrimination of fish stocks is essential for reliable fisheries

resource management and is currently an integral part of modern
fish stock assessments (Begg et al. 1999). Many commercially ex-
ploited fish stocks show strong habitat overlaps, resulting in a
temporal mixing. A disregard of stock mixing, particularly when
stocks differ in productivity, may lead to the overexploitation of
unique spawning components (Kell et al. 2004; Kerr et al. 2017).
Therefore, individuals from mixed-stock catches need to be as-
signed to their stock of origin using reliable stock discrimination
methods with high classification accuracy (Cadrin et al. 2014).

One widely applied stock discrimination technique involves
otoliths, which are calcium carbonate structures located in the
inner ear of fishes (Campana and Casselman 1993). Otolith shape
is mostly driven by a combination of environmental and genetic
factors and contains stock-specific features, which are usable as a
relevant marker of distinct stocks (Vieira et al. 2014; Berg et al.
2018). In recent years, diverse methods enabling the description of

the otolith shape were developed and tested, such as curvature-
based descriptors, wavelets, shape geodesics, or mirroring tech-
niques (Parisi-Baradad et al. 2005; Nasreddine et al. 2009; Harbitz
and Albert 2015). However, otolith outlines are still most fre-
quently investigated with a mathematical scheme of Fourier de-
composition, namely fast Fourier transform or elliptical Fourier
analysis (Stransky 2014). Both fast Fourier transform and elliptical
Fourier techniques decompose shape, which is a polygon of two-
dimensional coordinates, into a spectrum of harmonically related
trigonometric curves and calculate coefficients describing each of
these curves (for details see Haines and Crampton 2000; Kuhl and
Giardina 1982). Calculated coefficients may be then used as pre-
dictors for the discrimination of fish stocks in multivariate statis-
tical analysis (Stransky 2014).

However, once shape coefficients are extracted, little attention
has been paid to apply and compare performances of alternative
statistical systems to assign fish individuals to known groups (stocks
or species) based on their otolith shape. Available classifiers arise
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from different fields, like statistics (e.g., linear discriminant analy-
sis), artificial intelligence and data mining (e.g., decision trees), or con-
nectionist approaches (e.g., neural networks) (Fernández-Delgado et al.
2014). Most machine learning (ML) algorithms are not yet part of the
traditional statistical modeling; hence, their application in ecology is
still scarce (Olden et al. 2008). However, modern ML algorithms have
a high potential to outperform traditional parametric classifiers in
solving real-world classification problems (Fernández-Delgado et al.
2014). They are much more flexible than conventional models and
are able to handle the nonlinear relationships and interacting
elements that often characterize biological data (Guisan and
Zimmermann 2000). Current computational capabilities and
freely available statistical software allow relatively easy imple-
mentation of these modern algorithms, and they may be valuable
in the development of fish stock discrimination routines. The
advantages of ML applications have been already considered in
other stock discrimination approaches, like in otolith chemistry
(e.g., Mercier et al. 2011) or analysis of parasitological markers
(e.g., Perdiguero-Alonso et al. 2008). These studies strongly suggest
that current ML classifiers are already well suited to assign fish to
stocks and that classification abilities are improved compared
with traditional discriminant analysis.

Few studies used ML algorithms and Fourier analysis of otolith
shape to discriminate fish stocks (e.g., Zhang et al. 2016; Mapp
et al. 2017). However, these studies did not compare the ML per-
formance with traditional classifiers like linear discriminant anal-
ysis. Only recently Jones and Checkley (2017) compared random
forest with discriminant analysis to identify otoliths found in
sediment cores and showed that the ML approach outperformed
the traditional classifier. However, they applied these algorithms
to distinguish between species (i.e., between higher taxonomic
groups that naturally show stronger otolith shape differences
than between fish stocks). To the best of our knowledge, no com-
prehensive comparison of traditional and modern ML classifiers
to assign individuals to fish stocks has been conducted.

Here, we apply six statistical classifiers (two traditional: linear
discriminant analysis (LDA), quadratic discriminant analysis (QDA)
and four ML classifiers: K-nearest neighbors (KNN), classification
and regression trees (CART), random forest (RF), and support vec-
tor machines (SVM)) to discriminate stocks of two commercially
exploited fish species, where Fourier analysis of otolith shape is
required for accurate estimation of mixing ratios for a proper
stock assessment: Atlantic cod (Gadus morhua) in the southern
Baltic and Atlantic herring (Clupea harengus) in the northeastern
Atlantic.

This paper aims to (i) conduct a systematic review of the avail-
able scientific literature focusing on statistical classifiers associ-
ated with Fourier analysis of otolith shape for discrimination
purposes; (ii) investigate the otolith shape variability of cod and
herring stocks by applying elliptical Fourier analysis; and (iii) as-
sess the performance of traditional and recent ML classifiers to

assign fish individuals to their group of origin based on their
otolith shape.

Materials and methods

Literature review of the use of statistical classifiers
Peer-reviewed literature was searched in the Web of Science

Core Collection database using the keywords “otolith$” and “Fou-
rier”. Only English-language studies on otolith shape that applied
Fourier analysis to discriminate fish groups at different biosys-
tematics levels (ecotype, stock, population, species) were chosen
for further investigation. Selected literature was reviewed to ana-
lyze which statistical classification algorithm was applied to dis-
criminate different fish groups. Different types of algorithms
based on the framework of Fisher discriminant analysis (Fisher
1936), including parametric and nonparametric extensions, were
aggregated as one group (discriminant analysis). The list of
106 publications used in the review process is given in the online
Supplementary materials (Table S1).1

Study species and datasets

Atlantic cod (Gadus morhua)
Atlantic cod is one of the most important commercially ex-

ploited fish species across the North Atlantic Ocean, inhabiting
also the brackish waters of the Baltic Sea. Here, Baltic cod is man-
aged as two separate stocks: one western stock (ICES subdivisions
(SDs) 22–24) and one eastern stock (SDs 24–32; ICES 2019a). The
genetically distinct cod stocks coexist in the Arkona Basin (SD 24;
Hemmer-Hansen et al. 2019; Weist et al. 2019), resulting in uncer-
tainties in the stock assessment. Since the ICES benchmark in
2015, otoliths of cod from commercial samples from the mixing
area are assigned to their respective stock of origin using elliptic
Fourier descriptors and LDA (ICES 2015, 2019b; Hüssy et al. 2016).
For this study, we used otolith images of genetically validated
Baltic cod samples (N = 507; Weist et al. 2019) from the mixing area
(SD 24; Fig. 1) and from adjacent areas (Belt Sea (SD 22), Øresund
(SD 23), and Bornholm Basin (SD 25)). The dataset consists of 52%
western Baltic cod (WBC) and 48% eastern Baltic cod (EBC)
(Table 1). For further details refer to Schade et al. (2019).

Atlantic herring (Clupea harengus)
Atlantic herring is a commercially exploited fish species in the

northeastern Atlantic that has been a key species for stock dis-
crimination studies (Geffen 2009). Herring stocks in this region
consist of multiple spawning components. In this study, we ana-
lyzed otoliths from four distinct spawning components (Table 1):
Norwegian spring spawners (NSS, 27% of herring data), coastal
Skagerrak spring spawners (CSS, 20%), Greifswald Bay herring
(GB, 31%), and central Baltic northern component (CBNC, 22%)
(ICES 2018a, 2018b). While NSS is clearly a separate stock, CSS and
GB are managed within the stock of western Baltic spring spawners

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfas-2019-0251.

Table 1. Summary of analyzed samples, including fish species, stocks, components, capture years, sample size (N),
mean total fish length (TL) ± standard deviation (SD), and mean and range of age (in years).

Species Stock Component Years N Mean TL ± SD (cm) Mean age Age range

Cod EBC — 2015, 2016 243 43.11±5.24 NA NA
WBC — 2015, 2016 264 47.71±9.86 2.89* 1–6*

Herring WBSS CSS 2006, 2012, 2017 157 29.25±1.40 5.40 5–6
NSS NSS 2018 207 31.08±1.63 5.20 5–6
CBH CBNC 2017 170 19.39±1.81 5.51 5–6
WBSS GB 2018 238 27.63±1.32 5.28 5–6

*Owing to age reading difficulties of eastern Baltic cod (EBC), age was only determined for western Baltic cod (WBC) captured in SD 22
and SD 23. WBSS, western Baltic spring spawners; NSS, Norwegian spring spawners; CBH, central Baltic herring; CSS, coastal Skagerrak
spring spawners; CBNC, central Baltic northern component; GB, Greifswald Bay. NA, not available.
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Fig. 1. Distribution of sampling locations of cod and herring. The shape and color of the points indicate the fish species and stock component,
respectively. Size of the point shows the number of fish analyzed from the given location. EBC, eastern Baltic cod; WBC, western Baltic cod;
NSS, Norwegian spring spawners; CSS, coastal Skagerrak spring spawners; GB, Greifswald Bay; CBNC, central Baltic northern component. The
map was created based on the layer of ICES statistical areas (ICES 2019c). [Colour online.]
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(WBSS), whereas CBNC is part of the central Baltic herring (CBH)
stock. To ensure that distinct components were sampled, we only
used herring sampled in spawning condition. Further, only her-
ring of ages 5–6 were selected to reduce age effects on shape
variability (Libungan et al. 2015). Herring were mainly collected
during scientific surveys, except for GB and some samples of CSS
that were caught by local fishers using gillnets.

Otolith shape analysis
For cod and herring, shape images of clean and unbroken sag-

ittal otoliths were used. Images of the right otolith were pre-
ferred; otherwise, the image of the left otolith was flipped. There
are no differences between left and right otoliths for cod
(Campana and Casselman 1993; Cardinale et al. 2004) and herring
(Libungan et al. 2015). High-resolution images were binarized us-
ing the threshold function of the GNU Image Manipulation pro-
gram (Natterer and Neumann 2008).

For the shape analysis, outlines were automatically obtained from
converted images using the Momocs package (Bonhomme et al. 2014)
in the R environment (R Core Team 2018). Elliptical Fourier analysis
proposed by Kuhl and Giardina (1982) was used to quantify otolith
outlines. This technique decomposes two-dimensional shape with a
sum of harmonics, where each harmonic is described by four
coefficients (two for x-axis and two for y-axis coordinates). Preci-
sion of approximate reconstruction of shapes increases with the
number of harmonics used, but it is recommended to reduce the
number of harmonics for multivariate analysis. To define the ap-
propriate number of harmonics, 100 otoliths were randomly
sampled from the whole set, and the Fourier power (PFn) spectrum
and cumulated Fourier power (PFc) were calculated with the fol-
lowing formulas:

PFn �
An

2 � Bn
2 � Cn

2 � Dn
2

2

PFc � �
1

n

PFn

where An, Bn, Cn, and Dn are the coefficients of nth harmonic (Lord
et al. 2012). The number of harmonics that reaches 99% of cumu-
lated Fourier power of 30 harmonics were chosen to summarize
shapes of otoliths (Stransky et al. 2008b; Vieira et al. 2014). The
first three coefficients were taken as fixed values (A1 = 1; B1 = C1 = 0)
to normalize otoliths for size, orientation, and starting point
(Tracey et al. 2006). Mean otolith shapes of different stock compo-
nents were calculated by invert transformation of Fourier coeffi-
cients. Overall variance in the shape of otoliths was assessed with
principal component analysis (PCA) integrated with morphos-
paces (theoretical shapes were reconstructed based on the PCA
scores; Bonhomme et al. 2014).

Statistical classifiers
Among the six selected algorithms, LDA and QDA were chosen

as two of the most popular classifiers, widely implemented in
otolith-based fish stock and species discrimination (e.g., Paul et al.
2013; Zhang et al. 2013). They are applied to predict the affiliation
of observations from two or more known classes. Both classifiers
use the best combination of several characters that provide the
strongest separation of classes by maximizing the standard devi-
ation between obtained groups and minimizing them within
groups (Fisher 1936).

KNN algorithm is one of the simplest ML classifiers that can be
applied both to binary and multiclass problems (Hall et al. 2008).
In the first step, it selects the nearest neighbors and then deter-
mines the class of observation using these selected neighbors.

One of the KNN advantages is its higher tolerance of the data
structure (Hastie et al. 2009).

Similarly, CART, a nonparametric procedure, requires no as-
sumptions about the distribution of the data. These models are
obtained by recursively partitioning the data space and fitting a
simple prediction model within each partition. As a result, the
partitioning can be represented graphically as a decision tree (Loh
2011).

RF is an ensemble technique, based on a set of CARTs, where a
bootstrap approach is implemented to select a random set of ob-
servations and variables used to construct each tree in ensemble.
Finally, decisions of all trees on object allocation are aggregated,
and the majority is used to provide final class prediction (Breiman
2001).

SVM was selected among the broad range of ML approaches
because of its ability to deal with high-dimensional datasets and
its flexibility in modeling diverse data sources (Ben-Hur et al.
2008). This technique uses kernel functions to project the predic-
tive variables into feature space with more dimensions than the
initial space of the input data, allowing the construction of linear
models (Cortes and Vapnik 1995).

Statistical analysis
All predictors (Fourier coefficients) were examined for normal-

ity with graphical tools (Zuur et al. 2010). None of the variables
showed significant deviation from normal distribution. For each
fish species, differences in total fish length between stock compo-
nents were tested and found to be significant using one-way
ANOVA (Tukey HSD, p < 0.001). To test allometric effects of fish
length on shape coefficients, we conducted analyses of covariance
(ANCOVAs). Information on stock components origin was in-
cluded in the model as fixed factors and fish length as covariate. If
the interaction between fixed factor and covariate was significant,
the variable was excluded from the dataset; otherwise, shape co-
efficients with significant fish length effect were standardized
using the common slope for all stock components (Zhuang et al.
2014).

Classification and regression training package caret (Kuhn
2008) for R was used to compare performances of selected classi-
fiers. The package allows for different algorithms to be trained in
a consistent environment and to conduct the tuning of the ML
parameters. All predictor variables were scaled and centered in a
preprocessing stage. Optimal hyperparameters of KNN (k), CART
(cp), RF (mtry), and SVM (� and C) were defined during preliminary
tuning (Figs. S1 and S21). Following Mercier et al. (2011) and Zhang
et al. (2016), a fourfold cross-validation resampling method was
used to provide the data for the assessment of the performance of
each classifier. This validation method is advised as a reasonably
stable and low biased measure of model performance (Hastie et al.
2009), but typically indicates lower accuracy of the evaluated al-
gorithms than most often applied leave-one-out cross-validation.
Datasets were randomly split into four equal subsets with preser-
vation of class ratios, where three subsets (75% of observations)
were used as training data to classify the remaining subset (25% of
observations). Validation was repeated for each of the four
splits. Additionally, 100 repetitions of the whole process were
conducted using a bootstrap approach with independent resam-
pling (Hastie et al. 2009). Confusion (error) matrices (e.g., Kuhn
2008; Perdiguero-Alonso et al. 2008) were generated, and classi-
fication accuracy (the percentage of fish correctly assigned to
their actual class) was calculated as a measure of classifier quality.
To assess the influence of the number of Fourier harmonics used for
the shape representation on classification accuracy, we conducted each
cross-validation procedure (400 repetitions) on datasets produced
with between 2 to n harmonics, where n is the number of harmon-
ics that reach 99% of cumulated Fourier power. When number of
variables was lower than the specified optimal hyperparameter
mtry for RF, the default mtry was applied, which equals the
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square root of the number of variables. Moreover, to assess the
influence of the number of classes on the performance of classifi-
ers, the herring dataset was split into two-class subsets and similar
cross-validation was run for each pair of spawning components.
The algorithms were developed in parallel, using the same train-
ing and test sets. Therefore, paired t tests with adjusted p values to
control false discovery rates (Benjamini and Hochberg 1995) were
used to test differences in accuracies of classifiers in relation to
the dataset with the n number of Fourier harmonics. The impor-
tance of Fourier descriptors was calculated with the varImp func-
tion of the caret package and was visualized in decreasing order
using mean importance for all models. All of the models were
built using the following R packages: LDA and QDA with MASS
(Ripley et al. 2015), KNN with caret (Kuhn 2008), CART with rpart,
RF with randomForest (Liaw and Wiener 2002), and SVM based on
the radial basis function (RBF) kernel with kernlab (Karatzoglou
et al. 2015).

Results

Literature review of the use of statistical classifiers
Among 106 selected papers published in the period from 1990 to

2018 that incorporate Fourier analysis as the method for otolith
shape description, the framework of Fisher discriminant analysis
(DA) was the most popular statistical approach. Studies that ap-
plied only DA constituted �92%, while one study (<1%) used DA
and RF in parallel (Jones and Checkley 2017). The remaining �7%
of the publications applied classifiers other than DA to assign
samples to their respective class (e.g., SVM or KNN classifier
(Reig-Bolaño et al. 2010b; Benzinou et al. 2013), boundary-based
shape classification (Nasreddine et al. 2009), between-class corre-
spondence analysis (Ponton 2006), or RF (e.g., Zhang et al. 2016)).

Application of more than one classifier in the same analysis was
scarce (�8% of papers). Comprehensive comparison of accuracy of
nine ML algorithms was done by Mapp et al. (2017), including

naive Bayes, Bayesian networks, logistic regression, HyperPipes,
C4.5, RF, KNN, SVM, and rotation forest. Jones and Checkley (2017)
showed that RF algorithms outperformed DA in terms of accu-
racy. Torres et al. (2000) presented that QDA was superior to LDA,
while Finn et al. (1997) found no differences between LDA and
QDA models. SVM performed better than KNN in terms of correct
classification rate, but the latter classifier resulted in more stable
performances across the classes and has been chosen for discrim-
ination of fish based on otolith shape in Benzinou et al. (2013).

Otolith shape variability
Precision of approximate reconstruction of shapes increased

with the number of harmonics used (Fig. 2). For both species,
13 harmonics were needed to achieve 99% of cumulative Fourier
power summarizing the otolith shapes. Consequently, the first
13 harmonics were used in further analyses. Owing to the signifi-
cant interaction between stock components and fish total length
in the ANCOVA models (p < 0.001), six and 12 Fourier descriptors
were excluded from cod and herring data, respectively. A further
23 (cod) and 29 (herring) descriptors were corrected for the fish
length effect using a common slope.

Visual inspection of mean otolith shape identified differences
between cod stocks and herring components (Fig. S31). Among cod
stocks, WBC had wider otoliths than EBC. Otoliths of NSS and

Fig. 2. Cumulative Fourier power (PFc) calculated for cod and
herring showing examples of reconstructions of otolith outline with
different numbers of harmonics. The box represents the interquartile
range (IQR) with the median (midline) and the first and third
quantiles at the bottom and top of the box, respectively. Lower and
upper whiskers are restricted to 1.5 × IQR, and black dots represent
outliers. [Colour online.]

Fig. 3. Principal component analysis (PCA) conducted on the Fourier
coefficients of otolith shape for cod (a) and herring (b). The levels of
variance explained by the first PCA axes are shown on the axes. The
morphospace plotted over the observations represents theoretical
shapes reconstructed based on the PCA scores. Refer to Fig. 1 for
definitions of acronyms. [Colour online.]
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CBNC herring were generally wider than those of CSS and GB
herring, which means otolith shapes were very similar.

For cod, the first two PCA axes explained 72.6% of the overall
variance in the shape of otoliths (Fig. 3a). The two cod stocks were
mainly separated along the first axis, even though a strong over-
lap was observed. For herring, 66.3% of the overall variance was
explained by the first two axes (Fig. 3b).

Classification accuracy
The classification accuracy of cod otoliths increased with in-

creasing number of harmonics but stayed relatively constant for
six and more harmonics (Fig. 4a). One exception is QDA, where the
accuracy slightly decreased with a higher number of harmonics.
In comparison, the accuracy continued to increase for herring
otoliths with increasing number of harmonics (Fig. 4b).

The accuracy differed significantly between classifiers, except
for QDA and KNN for cod otoliths as well as LDA and KNN for
herring (Table 2). For both species, SVM resulted in the highest
classification accuracy (Fig. 4), even when herring data were se-

quentially split into two-class subsets (Fig. S41). LDA resulted in
slightly but significantly lower accuracy for cod (Fig. 4a; Table 2).

The fourfold cross-validation using SVM (best classifier) and
13 harmonics (accounting for 99% variance of the otolith shape)
resulted in an accuracy of 79.54% for cod and 74.13% for herring
(Table 3). For cod, the misclassification rate was equal in both
stocks (�10%). For herring, the highest misclassification occurred
between GB and CSS herring (�7%). Misclassification among the
other herring components was low (<1%).

The relative importance of individual Fourier descriptors was
consistent among statistical classifiers for both species (Fig. 5),
except for CART. CART and RF both rely on the importance of only
a few descriptors (about eight or fewer), while the other classifiers
rely on the importance of a higher number of Fourier descriptors.

Discussion
The presented review of the literature showed that the applica-

tion and comparison of alternative classifiers to discriminate fish
groups based on their otolith shape is limited. In this study, stock-
specific differences in otolith shapes for cod and herring could be
detected, which enables the assignment of individual fish to its
respective stock of origin. Moreover, a comparison of different
statistical classifiers suggested that ML algorithms, in particular
SVM, can improve the accuracy in stock discrimination approaches
using the shape of otoliths.

Table 2. Comparison of algorithm accuracies for cod and herring.

LDA QDA KNN CART RF SVM

Cod
LDA — 6.63 7.29 12.18 3.50 –0.90
QDA <0.001 — 0.66 5.55 –3.13 –7.53
KNN <0.001 0.0689 — 4.88 –3.79 –8.20
CART <0.001 <0.001 <0.001 — –8.67 –13.08
RF <0.001 <0.001 <0.001 <0.001 — –4.41
SVM <0.001 <0.001 <0.001 <0.001 <0.001 —

Herring
LDA — –4.69 –0.48 8.80 –2.96 –11.20
QDA <0.001 — 4.21 13.49 1.73 –6.50
KNN 0.204 <0.001 — 9.28 –2.48 –10.71
CART <0.001 <0.001 <0.001 — –11.76 –19.99
RF <0.001 <0.001 <0.001 <0.001 — –8.24
SVM <0.001 <0.001 <0.001 <0.001 <0.001 —

Note: Dataset for the comparison was built on 13 harmonics (accounting for
99% variance of the otolith shape). Estimates of the difference (% accuracy) are
reported in the upper diagonals, while p values (with Bonferroni adjustment) for
the hypothesis of no difference are reported in the lower diagonals. LDA, linear
discriminant analysis; QDA, quadratic discriminant analysis; KNN, K-nearest
neighbors; CART, classification and regression trees; RF, random forest; SVM,
support vector machines.

Table 3. Cross-validated (fourfold, repeated 100 times) confusion ma-
trix obtained for cod and herring stocks with the best classifier (sup-
port vector machines) on Fourier descriptors of otolith shape.

Prediction

Reference

CSS NSS CBNC GBEBC WBC

EBC 38.0 10.5 — — — —
WBC 9.9 41.6 — — — —
CSS — — 10.7 0.9 0.7 6.3
NSS — — 0.9 23.1 2.2 0.8
CBNC — — 0.4 2.3 17.7 1.1
GB — — 8.4 0.4 1.4 22.6

Note: Entries are percentual average cell counts across resamples. Average
accuracy (sum of diagonal cells): cod = 79.54; herring = 74.13. Refer to Table 1 for
definitions of acronyms.

Fig. 4. Classification accuracy of different statistical models based
on different numbers of Fourier harmonics of otolith shapes. Lines
represent median accuracy, shading represents 10th and 90th
percentiles. Models in the legend were arranged according to the
median accuracy of classification on the dataset with highest
number of harmonics. SVM, support vector machines; LDA, linear
discriminant analysis; RF, random forest; QDA, quadratic discriminant
analysis; KNN, K-nearest neighbors; CART, classification and regression
trees. [Colour online.]
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Literature review of the use of statistical classifiers
The literature review emphasized that traditional DA was used

in most of the studies for the classification of fish groups based on
the elliptical Fourier descriptors of otolith shape, while applica-
tion of alternative classifiers was less common. For example,
Zhang et al. (2016) used RF to discriminate stocks of the Japanese
Spanish mackerel (Scomberomorus niphonius) based on Fourier de-
scriptors of otolith shapes, but no comparison with other classifi-
ers was reported. Mapp et al. (2017) used nine ML algorithms for
fish stock separation of two clupeid species using otolith shapes.
However, the study of Mapp et al. (2017) was not focused on the
absolute classification accuracy, but on the applicability of mor-
phometric approaches that incorporate size information. No com-
parison with traditional classifiers, like LDA, was made in Mapp
et al. (2017), while Jones and Checkley (2017) showed that RF algo-
rithms were superior to DA during classification of fish individu-
als into different taxonomic groups based on the morphological
descriptors and elemental compositions of otoliths.

Studies comparing more than one statistical classification algo-
rithm indicated that the success of fish classification can be sig-
nificantly improved by alternative classifiers (Torres et al. 2000).
These findings stress the need for the comparison of different
classifiers (i.e., different approaches should be explored so that
the best method is used to achieve the best possible assignment).
More accurate assignment of individual fish allows for more ro-
bust estimation of the contribution of different fish stocks within
the mixing areas (i.e., a mixed stock scenario; Hüssy et al. 2016).
Accurate estimates of mixing levels can help to understand how
movement and mixing affect stock dynamics and provide the
quantitative basis for annual stock assessments and scientific ad-
vice (Horbowy 2005; Taylor et al. 2011).

Otolith shape variability
Our results support the previous studies showing that Baltic cod

stocks can be successfully discriminated based on the elliptical Fou-
rier analysis of otolith outlines (Paul et al. 2013; Hüssy et al. 2016).
Significant differences in otolith shape were also reported for other
stocks and spawning populations of cod (e.g., the Northeast Arctic
and Norwegian coastal cod (Stransky et al. 2008a), Faroe Plateau cod
(Cardinale et al. 2004) or Icelandic cod (Petursdottir et al. 2006)).
Mean shapes reconstructed on the calculated Fourier descriptors
indicated that the otolith outline of WBC and EBC differ in the
large-scale shape characteristics (mainly length–width relation-
ship), where otoliths from the western stock are wider and
rounder than those from the eastern stock, which is in line with
previous observations (Paul et al. 2013; Hüssy et al. 2016). Differ-
ences in circularity and rectangularity of otoliths were also
reported in other cod stocks (Campana and Casselman 1993;
Cardinale et al. 2004).

Similarly, discrimination methods based on the analysis of oto-
lith outlines were applied to separate populations of herring in
the northern Atlantic (e.g., Burke et al. 2008; Libungan et al. 2015).
Our study revealed differences in otolith shape between herring
components. Most of the differences were based on the relation-
ships between the length and width of the whole otolith. NSS and
CBNC have wider otoliths, but the rostrum of NSS herring otoliths
is clearly longer. Confusion matrices of the cross-validated models
(Table 3) indicated that a relatively large number of individuals
from the CSS and GB were misassigned, suggesting similarity in
otolith shape. This result supports the current assessment ap-
proach, where both spawning components are considered as one
stock (WBSS) because of the high level of overlap (ICES 2018b).
Although selected herring spawning components were discrimi-
nated with a high level of accuracy, further studies need to in-
clude other stock components in this region, such as the autumn
spawners and the southern component of CBH (ICES 2018a).

The differences in the shape of fish otoliths, for both fish spe-
cies, may be associated with a combination of environmental and
genetic drivers (Cardinale et al. 2004; Vignon and Morat 2010). To
explore how these factors influence otolith shape, we need to
perform further analyses, including experimental and laboratory
studies with appropriate control of the potentially confounding
variables (e.g., Berg et al. 2018). However, even without the mech-
anistic understanding of the sources of shape variability, these
results support the applicability of Fourier analysis of otolith
shape in stock discrimination routines and assessment of fish
stocks (Cadrin et al. 2014). The use of otoliths as indicators of stock
identity has been previously advocated because otoliths are rou-
tinely collected for aging in traditional fish monitoring, providing
a robust and cost-effective method for stock discrimination
(Campana and Casselman 1993; Cardinale et al. 2004).

Assessment of statistical classifiers
There were significant differences in accuracy among the six

statistical classifiers tested. The highest accuracy of fish classifica-
tion was achieved by SVM, one of the rapidly developing ML clas-

Fig. 5. Variable (Fourier descriptors) relative importance obtained
for cod (a) and herring (b) from otolith shape classification models.
Refer to Fig. 4 for definitions of acronyms. [Colour online.]
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sifiers. Accuracy of the SVM model trained on cod data was only
0.9% higher than of the second-best performing classifier (LDA),
but differences were significant. However, the accuracy of the
SVM trained on herring data was 7% to 20% higher than the other
classifiers. Good performance of the SVM algorithm, as well as
other ML algorithms, has been previously shown in discrimina-
tion studies of stocks, species, or higher taxonomic levels of fishes
based on their otolith shapes (Reig-Bolaño et al. 2010a; Benzinou
et al. 2013; Zhang et al. 2016; Mapp et al. 2017).

These findings suggest that ML algorithms are a good alterna-
tive to traditional classifiers and can help to improve the accuracy
of routine fish stock discrimination using the shape of the otolith.
Although SVM achieved the highest accuracy in this study, we
strongly advise to test a range of statistical classifiers in discrimi-
nation studies, because the selection of the best-performing algo-
rithm can be case-specific and depends, for example, on the
number of classes, similarity between groups, or type and number
of variables in the dataset (Fernández-Delgado et al. 2014).

Caution is warranted, however. The proposed benchmark of
different statistical classifiers should be conducted only in sys-
tems with well-defined units. The ability of ML classifiers to find
structures and clusters in the data needs to be considered with
caution. Application of the ML algorithms for the discrimination
of fish groups, where training baselines are not validated (e.g., by
genetics or by sampling spawning individuals in their respective
spawning area), may potentially lead to confusing results and
recognition of subgroups, which may not represent the real bio-
logical or management units. The practical problems of managing
natural resources with poorly defined units continue to be an
important issue (Geffen 2009). For these reasons, the definition of
robust baselines for the training of classification algorithms is a
crucial point in the development of operational discrimination
systems (Cadrin et al. 2014; Hüssy et al. 2016; Schade et al. 2019).

Study limitations and future implications
In this study, a simple approach was applied, using only Fourier

descriptors of otolith shapes as predictors of fish stock affiliation.
The focus was exclusively on the differences of statistical classifier
accuracies on the length-normalized descriptors of otolith shape
(Hüssy et al. 2016). However, incorporation of other potentially
informative variables, such as shape indices or routinely collected
information on length-at-age and sex of individual fish can fur-
ther improve the predictive abilities of classification algorithms
(Burke et al. 2008; Mapp et al. 2017). Further, alternatives to recon-
struct the otolith shape like wavelet transformation or curvature
scale space representation should be reconsidered. Fourier de-
scriptors focusing on periodic phenomena (Harbitz and Albert
2015) might be more suited for cod otoliths that are almost ellip-
tical. For more complex otolith shapes with very localized land-
marks, like herring otoliths, wavelet transformation could be
better-suited (Sadighzadeh et al. 2014). Besides otolith shapes, ML
algorithms were already used successfully in other stock discrimina-
tion fields (e.g., population genetics (Guinand et al. 2002), otolith
microchemistry (Mercier et al. 2011), hydroacoustics (Robotham
et al. 2010), or parasitology (Perdiguero-Alonso et al. 2008)), even
though the application is still rare.

In our study, the analysis of Fourier power spectrum indicated
that 13 harmonics were needed to explain 99% of the variance in
the otolith shape both for cod and herring. Interestingly, high
accuracy for the cod assignment was already obtained with only
five to six harmonics, suggesting that additional higher-frequency
harmonics do not incorporate much information for the discrim-
ination of these stocks. These results are in line with the analysis
of variable importance, which showed that lower-rank descrip-
tors (D5, D1 — describing a global form of otoliths) were the most
powerful predictors in all models. The broadly applied practice to
include only a certain subset of harmonics (e.g., first N harmonics
needed to describe 99% of shape variance) may not be optimal in

the context of classification model performance. For fish species
with simple otolith shapes, a reduced number of Fourier harmon-
ics may be advantageous. Conversely, the inclusion of a larger
number of harmonics in classification systems developed for spe-
cies with more complex otolith structures, like herring, can help
to achieve a better quality of classification models. In our study, a
steady improvement of model accuracy with increasing number
of harmonics was observed for SVM and RF, trained on the herring
dataset. In the case of increasing dimensionality, the ML algo-
rithms clearly outperform traditional classifiers due to their abil-
ity to integrate information from many variables without the high
risk of overfitting (Breiman 2001; Ben-Hur et al. 2008). Improve-
ment of the ML models accuracy can also be obtained by the
elimination of noninformative variables during the model build-
ing (e.g., Smoliński 2019). Furthermore, heterogeneous ensemble
techniques combining predictions of different model types could
also be applied to improve the classification of fish stocks. Such an
approach could help to minimize model-specific errors in class
predictions and to obtain a more robust assignment of the fish
origin.

The ability of SVM and other ML algorithms to model complex
and nonlinear patterns without any assumptions is of great im-
portance in many biological applications (Noble 2006). Therefore,
the variable transformations are not needed for the application of
these algorithms, which make the preprocessing more straight-
forward and faster. Moreover, variables with non-normal distribu-
tion (typically required for the traditional parametric models) do
not need to be excluded after an unsuccessful transformation,
preventing the loss of information potentially valuable for the
discrimination of fish groups (Mercier et al. 2011).

Future operationalization of developing stock discrimination
methods needs profound analyses of the level of temporal vari-
ability of within- and between-group differences, particularly in
otolith shapes. The presented results are based on the samples col-
lected within a short period of time, limiting the influence of the
year classes and long-term environmental effects on otolith shape.
However, if the temporally stable character of fish otolith shapes can
be confirmed for particular stocks, it may enable continuous en-
largement of databases. In consequence, better performance of ML
algorithms can be achieved, because their classification accuracy
typically improves with increasing size of training datasets.

Conclusions
Our study emphasized the potential for applying novel ML al-

gorithms to improve the accuracy of classification systems based
on the otolith shape of fish. We recommend conducting compar-
isons of different statistical classifiers in systems of well-identified
stock structures using validated baselines. When temporal mix-
ing of different fish stocks or stock components occurs, as with
Baltic cod and herring in the Northeast Atlantic, possible im-
provements of stock discrimination processes by modern classifi-
ers may be of great importance. More accurate assignment of fish
individuals may help to more precisely estimate the contribution
of different fish stocks within the mixing areas and, in conse-
quence, provide a more reliable quantitative basis for annual
stock assessments and scientific advice.
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