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Abstract 24 

Small-bodied wrasse species are important for structuring coastal marine ecosystems 25 

but are also increasingly harvested as parasite cleaners on farmed salmon. Identifying 26 

management regulations that will support long-term sustainability of wrasse fisheries is 27 

challenging, because there is still limited knowledge about the impacts of fisheries on 28 

the demography of these intermediate predators in their natural environments. To this 29 

end, we studied individual growth histories of goldsinny wrasse (Ctenolabrus rupestris) 30 

at a fine spatial scale across replicated marine protected areas (MPAs) and areas open to 31 

commercial harvesting on the Norwegian coast. The MPAs were established 1-7 years 32 

prior to our sampling. We detected significant fine-scale spatial variation in wrasse 33 

asymptotic body size, but found no consistent difference between MPAs and fished 34 

areas. Male wrasses reached larger asymptotic body sizes than females, while fyke nets 35 

captured individuals with larger asymptotic body sizes compared to baited traps. These 36 

are the two commonly used gear types in wrasse fisheries. An extended use of baited 37 

traps, along with slot-size limits, could therefore aid in protecting large-growing 38 

phenotypes such as nest-guarding males.  39 
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Introduction 48 

Small-bodied wrasses such as the goldsinny (Ctenolabrus rupestris) are increasingly 49 

being harvested as cleaner fish for the Northern European aquaculture industry 50 

(Skiftesvik et al., 2014). However, these intermediate predators may also play a key role 51 

in structuring coastal marine ecosystems, as prey for apex carnivores and predators on 52 

planktivorous and benthic herbivores (Moksnes et al., 2008; Baden et al., 2010). In 53 

northern European coastal systems, a proposed trophic cascade involves more abundant 54 

intermediate predators, such as wrasses, following intense harvesting and depletion of 55 

Atlantic cod (Gadus morhua) apex predator populations (Fernández-Chacón et al., 56 

2015).  Wrasses prey on algae-grazing amphipods and isopods, and could thereby 57 

influence the state of nearshore seagrass (Zostera marina) and seaweed (Fucus spp.) 58 

ecosystems (Östman et al., 2016). 59 

Marine protected areas (MPAs) are to an increasing extent used as a management 60 

tool in coastal systems (Fenberg et al., 2012). Specifically, MPAs could help to protect 61 

spatial- and behavioural diversity of fish populations as well as a naturally broad 62 

composition of age- and size-classes of spawner fish against selective harvesting 63 

(Berkeley et al., 2004a; Baskett and Barnett, 2015). In theory, MPAs could also drive 64 

reductions in individual growth because of potential crowding effects (e.g., intensified 65 

competition for food) when population densities of species protected within MPAs are 66 

increasing (Gårdmark et al., 2006). Smaller species may suffer from increased predation 67 

when species at higher trophic levels recover within MPAs (Babcock et al., 2010). 68 

The goldsinny wrasse (Ctenolabrus rupestris) is an abundant intermediate predator 69 

distributed in shallow coastal waters of the North-East Atlantic from Morocco to 70 

Norway. The species typically prefers rocky- or vegetated substrates with access to 71 
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refuges such as spaces between rocks, crevices or caves (Costello, 1991; Sayer et al., 72 

1993; Gjøsæter, 2002a). Goldsinny wrasse may reach 20 years of age and a body length 73 

of 18 cm (Darwall et al., 1992; Sayer et al., 1995). The eggs are pelagic and males 74 

defend territories up to 2 m2 which they may keep for several years (Hilldén, 1981; 75 

Sayer, 1999). Commercial exploitation of small-bodied wrasses such as the goldsinny 76 

began in the 1990’s in Norway and on the British Isles, when it was discovered that 77 

their natural behaviour as parasite cleaners on other fish (Potts, 1973) could be used to 78 

reduce sea-lice (Lepeophtheirus salmonis and Caligus elongatus) infestation in 79 

salmonid aquaculture (Darwall et al., 1992; Deady et al., 1995; Sundt and Jørstad, 80 

1998). Already during the early wrasse fisheries there was concern about the long term 81 

sustainability of the fishery, since reductions in the abundance of larger and older fish 82 

coincided with the emergence of the fishery (Sayer et al., 1996; Varian et al., 1996). 83 

The wrasse catches remained relatively low throughout the 1990’s and 2000’s, when 84 

wrasses were only complementary to chemical treatments. However, more recently, the 85 

lice infestation problem in salmonid aquaculture worsened considerably and the annual 86 

landings of wild-caught wrasse in Norway have surpassed 20 million individuals 87 

(Gonzalez and de Boer, 2017). Wrasses are caught with small vessels using fyke nets 88 

and baited pots at shallow depths on rocky, kelp covered habitat (Gjøsæter, 2002b; 89 

Skiftesvik et al., 2015). Four different species are being harvested in Norway: the 90 

goldsinny wrasse, corkwing wrasse (Symphodus melops), ballan wrasse (Labrus 91 

bergylta) and rock cook (Centrolabrus exoletus). A case study from one Norwegian 92 

fjord suggests that corkwing wrasse and goldsinny wrasse hold the larger share of the 93 

landings (Skiftesvik et al., 2014, 2015). The official landings statistics from the 94 

Norwegian directorate of fisheries confirm this pattern, where goldsinny wrasse and 95 
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corkwing wrasse each constituted ca. 45 %, followed by ballan wrasse (8 %) and rock 96 

cook (2 %) (Gonzalez and de Boer, 2017). In Norway, the first management measures 97 

for wrasse were implemented in 2011, introducing a minimum size limit of 11 cm and 98 

closure of the fishery during the spring spawning period. However, these regulations 99 

have apparently been unsuccessful in protecting mature fish, especially males 100 

(Halvorsen et al., 2016).  101 

In this study, we explore fine scale spatial variation in life histories of goldsinny 102 

wrasse across a network of Norwegian coastal MPAs. Originally, these MPAs were 103 

implemented to protect and rebuild depleted populations of European lobster (Homarus 104 

gammarus) and are managed through gear restrictions allowing only hook and line 105 

fishing (Moland et al., 2013a). Therefore, the MPAs are not strict no-take marine 106 

reserves. However, wrasse fishing for the aquaculture industry is conducted with fixed 107 

gear types (fyke nets and baited traps) which are not permitted within the MPAs.  Due 108 

to its small size, the goldsinny wrasse is not harvested as a food fish by anglers using 109 

hook and line (Vølstad et al., 2011). Wrasses are typically sedentary reef fishes with 110 

limited home ranges and may therefore benefit from small coastal MPAs (Hilldén, 111 

1981; Villegas-Ríos et al., 2013). Indeed, the abundance of wrasse is now generally 112 

higher within the Norwegian MPAs than in neighbouring harvested areas (Halvorsen et 113 

al., 2017a). Albeit relatively small (0.6 – 5.3 km2), the MPAs also offer partial 114 

protection to upper-trophic-level predators such as the European lobster and Atlantic 115 

cod (Gadus morhua), the latter being a potential predator on wrasses (Hop, 1992). On 116 

the Norwegian coast, both cod and lobster display sedentary behaviour (Moland et al., 117 

2011; Villegas-Ríos et al., 2017) and survival rates and body size have increased within 118 
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the MPAs for both species (Moland et al., 2013a,b; Fernández-Chacón et al., 2015, 119 

2017).  120 

We model individual growth trajectories of goldsinny wrasse based on otoliths from 121 

scientific samples collected in replicated MPAs and neighbouring harvested areas. A 122 

working hypothesis is that the MPAs will protect all phenotypes, including fish that 123 

grow to reach a large body size, likely to be correlated with bolder behaviour and 124 

selected against in fisheries operating outside the MPAs (Biro and Post, 2008; Réale et 125 

al., 2010; Biro and Sampson, 2015). Because the MPAs were implemented only in 2006 126 

and 2012, we focus on exploring the footprints of ongoing selection (a demographic 127 

effect) rather than the long-term consequences of selection (an evolutionary change). 128 

Furthermore, we explore how the wrasse fishery could be developed towards a more 129 

balanced exploitation regime where population productivity benefits from a natural 130 

diversity in life-histories (Schindler et al., 2010; Zhou et al., 2010). We do this by (1) 131 

comparing how the two commonly used gear types used in the fishery (fyke nets and 132 

baited traps) capture faster versus slower growing life histories, and (2) by sampling 133 

across different coastal regions (each holding an MPA) to resolve the spatial scale of 134 

life-history structure in this species. Sex is included as a covariate because the territorial 135 

behaviour of nesting males could correlate with fast growth trajectories and 136 

vulnerability to fishing (Darwall et al., 1992; Halvorsen et al., 2016, 2017b).  137 

 138 

Material and methods 139 

Sampling and age determinations 140 

Goldsinny wrasse was sampled within four MPAs and neighbouring control areas open 141 

to harvesting along the Norwegian Skagerrak coast from 24 August to 12 September 142 



 7 

2013 (Figure 1). Two of these MPAs, Flødevigen and Risør, were established in 2006. 143 

The two other MPAs included in this study, inner and outer Tvedestrand fjord, were 144 

established in 2012 and are managed with the same gear restrictions as the Flødevigen 145 

and Risør MPAs. Wrasse were sampled using un-baited fyke nets (diameter: 55 cm, 146 

leader: 5 m, mesh size: 30 mm) and two-chamber pots (size: 70  40  29 cm, entrance 147 

diameter 75 mm, mesh size: 15 mm) baited with shrimp (Pandalus borealis; for details 148 

on sampling effort, see Table 1). The gear was set over night (19-26  hours) at 0-7 m 149 

depth on vegetated or rocky substrate. A total of 935 goldsinny was sampled and 150 

measured for length and weight. Sex was determined by examining morphology and 151 

gonads, while age was determined from sagittal otoliths (Richter and McDermott, 1990; 152 

Gordoa et al., 2000). For this purpose, whole otoliths were placed in a 96% ethanol bath 153 

on a black background, and digital pictures were taken using a Leica microscope (MZ 154 

16 A) and camera (DFC425 C) with 20 x magnification. A total of 109 fish were 155 

excluded from further analyses because the otoliths were of poor quality and could not 156 

be reliably interpreted. For the remaining 826 fish (Table 1), interannual distances 157 

(growth zones) were measured along a transect through the horizontal plane of the 158 

otolith as the distance from the centre (nucleus) to the outer margin of each opaque 159 

annulus, using the open-source image analysis program ImageJ (Abràmhoff et al., 160 

2004). Individual otoliths were always read and interpreted by two persons. The age 161 

was determined after agreement between both observers. As shown by Sayer et al. 162 

(1995), we found that the sagittal otoliths were characterised by a white opaque nucleus 163 

followed by distinctive alternate transparent and opaque zones (Figure 2), which made 164 

age- and growth estimation fairly straight-forward. The Dahl-Lea equation was used for 165 
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back- calculation of lengths-at-age based on the distances measured on the otoliths 166 

(Francis, 1990): 167 

 168 

La = (Oa / Oc) Lc, 169 

 170 

where La is the estimated length-at-age a, Lc the length at capture, Oa the distance from 171 

the centre of the otolith to the outer edge of the annulus defining age a, and Oc the 172 

distance from the centre to the outer margin of the otolith. 173 

 174 

Growth analyses and statistical modelling 175 

Growth trajectories were back-calculated using von Bertalanffy (VB) growth curves:  176 

 177 

L (t) = L∞  (L∞  L0)e
kt,  178 

 179 

where L(t) is fish length at age t, L∞ the asymptotic length, L0 the average length at t 180 

= 0, and k the intrinsic growth rate (von Bertalanffy, 1938). Non-linear least squared 181 

regression, with L0, L∞ and k as free model parameters, was used to fit VB curves to the 182 

individual back-calculated growth trajectories (Pardo et al., 2013). Only fish with an 183 

otolith age of four years or older were included in these analyses (n = 413), since VB 184 

curves could not be reliably fit to three data points (back-calculated lengths at age) or 185 

less. Linear models, fitted in the statistical software package R using a Gaussian error 186 

distribution (R Development Core Team, 2012), were used to investigate effects of 187 

MPAs, sex and gear type (as factors) on growth trajectories. We focussed the analyses 188 

on L∞ as the key parameter capturing growth differences as it is strongly and negatively 189 
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correlated with k (Charnov 1993). Region was included as a factor in the model (four 190 

levels: Flødevigen, inner Tvedestrand fjord, outer Tvedestrand fjord, and Risør). We 191 

hypothesised that potential effects of MPA treatment and sex on goldsinny wrasse 192 

growth trajectories could depend on the sampling region, and thus inclucded two-way 193 

interaction terms between these factors in the starting model (Table 2). We also 194 

hypothesised that an effect of gear type could depend on sex, perhaps due to 195 

behavioural differences, and therefore included this interaction effect in the starting 196 

model as well (Table 2). Prior to model selection data were explored following the 197 

protocol described by Zuur et al. (2010; see also, Zuur et al., 2016). One outlier with an 198 

estimated asymptotic length of 710 mm was excluded from further analyses. The 199 

response variable (L∞) was log-transformed to improve normality.  A residual plot 200 

indicated that our starting model, including all relevant factors and interaction effects, 201 

fitted the data adequately and thus provided a good starting point for model selection 202 

(Supplementary material). The Akaike information criteria AIC was used for model 203 

selection, where the model having the lowest AIC value was considered the most 204 

parsimonious one and used for inference (Burnham and Anderson, 1998). We 205 

acknowledge that some uncertainty in the response variable, associated with the fitting 206 

of VB growth curves, will not be accounted for in the linear model. However, the VB 207 

curves closely fitted the back-calculated lengths (see Results). Also, by focussing the 208 

analyses on fish that were at least four years old, our results will not be biased by 209 

incomplete juvenile growth curves with potentially greater uncertainty in parameter 210 

estimates.     211 

 212 

Results 213 
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The otoliths revealed considerable variation in back-calculated growth trajectories of 214 

goldsinny wrasse (Figure 2). The fastest growing fish were approximately 100% larger 215 

at age compared to the slowest growing fish (Figure 2). VB curves closely fitted to the 216 

back-calculated growth trajectories; R2 ranged between 97.9 and 100%. The most 217 

parsimonious linear model supported a two-way interaction effect between sex and gear 218 

type, as well as between MPA treatment and region, on asymptotic length (Table 2, 219 

Table 3). This model, on which we based inference about variation in goldsinny wrasse 220 

asymptotic lengths, had an AIC value 1.7 units below the second best model that also 221 

included a two-way interaction effect between sex and region (Table 2). Excluding the 222 

interaction effect between sex and gear type from the best model increased the AIC by 223 

2.6 units. Thus, the data provided fairly strong support for this interaction effect on 224 

wrasse growth histories. Overall, male goldsinny wrasse reached larger asymptotic 225 

lengths compared to females, while the baited traps captured goldsinny wrasse with 226 

smaller asymptotic lengths than the fyke nets (Figure 4). The difference in asymptotic 227 

length between sexes was significantly larger for baited traps compared to fyke nets (i.e. 228 

the interaction effect, Figure 4). Excluding the interaction effect between MPA 229 

treatment and region from the best model increased the AIC by 61.1 units. Thus, the 230 

data provided very strong support for this interaction effect, showing that there was no 231 

consistent difference in asymptotic length between MPAs and control areas across the 232 

four regions. Compared to neighbouring harvested areas (controls), asymptotic lengths 233 

were larger in the Flødevigen MPA and the MPA from the outer Tvedestrand fjord, 234 

while the opposite pattern was seen in the Risør region and the inner Tvedestrand fjord 235 

(Figure 5). Overall, asymptotic lengths were smallest in the MPA from the inner 236 

Tvedestrand fjord and largest in the control area in Risør (Figure 5).  237 
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 238 

Discussion 239 

This study from the Norwegian coast revealed that growth histories of goldsinny wrasse 240 

can differ considerably at a spatial scale of five km or less. Our data did not, however, 241 

support a consistently positive effect of coastal MPAs on the asymptotic body size of 242 

this intermediate predator. Outside the MPAs, the goldsinny wrasse is increasingly 243 

harvested as a cleaner fish for the aquaculture industry. By comparing the two gear 244 

types commonly used in this fishery, our study showed that baited traps tend to capture 245 

fish caracterised by smaller asymptotic body sizes compared to those captured in 246 

unbaited fyke nets. Overall, male goldsinny wrasse also grew to reach larger asymptotic 247 

body sizes compared to females. These findings may guide future management of the 248 

wrasse fishery. 249 

Our working hypothesis was that the MPAs would protect fish that grow to reach a 250 

large body size, a life history which is often correlated with bold behaviour and selected 251 

against in fisheries (Swain et al., 2007; Uusi-Heikkilä et al., 2015; Alós et al., 2016; 252 

Klefoth et al., 2017). Data from the Flødevigen region and the outer Tvedestrand region 253 

provided some support for this hypothesis. Here, the estimated asymptotic body size 254 

was larger inside the MPA compared to the neighbouring fished area. However, data 255 

from the two other study regions, Risør and the inner Tvedestrand fjord, showed an 256 

opposite pattern. We note that the MPAs included in this study are still young 257 

(established 1-7 y before our sampling took place) relative to the potential life span of 258 

the goldsinny wrasse, which is about 20 y (Darwall et al., 1992). Thus, the demographic 259 

footprints of ongoing protection from fishing might not yet be fully realised. That said, 260 

there was no consistent difference between older and younger MPAs, since a positive 261 
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effect was seen in one of the old MPAs (Flødevigen) as well as one of the young MPAs 262 

(outer Tvedestrand).  263 

Unfortunatley, we lack robust estimates of other biotic and abiotic environmental 264 

factors that could potentially explain the observed fine-scale spatial variation in 265 

goldsinny wrasse life histories, and that might also have clarified a potential demograhic 266 

effect of the MPAs. For instance, density-dependent growth is likely a widespread 267 

phenomenon in marine fish (Lorenzen and Enberg, 2002) and is also seen for juvenile 268 

Atlantic cod in our study region (Rogers et al., 2011). Goldsinny wrasse typically 269 

defend territories on rocky shores, and there is some evidence suggesting that territory 270 

size decrease at higher population densities (Sayer, 1999). An earlier study found that 271 

the abundance of wrasse is now generally higher within the Norwegian MPAs than in 272 

neighbouring harvested areas (Halvorsen et al., 2017a), but the temporal resolution of 273 

those data do not match the growth trajectories estimated in our study. Lastly, the 274 

Atlantic cod has suffered a major decline in Skagerrak, but still plays a  role as an apex 275 

predator on wrasses and other intermediate predators in this coastal ecosystem (Hop et 276 

al., 1992; Olsen et al., 2009; Roney et al., 2016). Atlantic cod tend to be larger inside 277 

the MPAs but so far there is no clear sign of a recovery of population abundance 278 

(Moland et al., 2013a). 279 

Interestingly, our study shows that, compared to fyke nets, baited traps captured 280 

wrasse that typically grew to reach smaller asympotitic sizes. These are the two gear 281 

types commonly used in commercial wrasse fisheries in Norway (Skiftesvik et al., 282 

2014). Shifting the fishery towards the use of baited traps could therefore aid in 283 

protecting large-growing phenotypes (depending on gear-specific mesh sizes). As noted 284 

by Berkeley et al. (2004a), introducing slot-size limits (i.e., a combination of minimum- 285 
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and maximum legal size) could also benefit fast growing fish reaching larger asymptotic 286 

body sizes, in addition to a general reduction in fishing pressure. Individuals that reach 287 

a larger asymptotic body size are likely to be more productive, since, for many species 288 

including wrassses, there is a positive relationship between fish body length and 289 

fecundity (e.g., Oosthuizen and Daan, 1974; Alonso-Fernández et al., 2014). Also, there 290 

is often a positive association between offspring quality and maternal size or age 291 

(Trippel, 1998; Berkeley et al., 2004b). Building on this, a recent study concluded that 292 

current fishery models may have substantially underestimated the positive contribution 293 

of larger fish to population replenishment (Barneche et al., 2018).  294 

We found that goldsinny wrasse growth curves differed between the sexes, with 295 

males reaching a larger asymptotic size than females. Under the current management 296 

regime relying on a 11 cm minimum size limit, goldsinny wrasse fisheries are therefore 297 

likely to be sex-selective. In particular, many of the asymptotic body sizes of females 298 

captured in baited pots fell below the 11 cm limit, while the asymptotic body sizes of 299 

males captured in fyke nets were usually well above. Sex-selective fisheries could 300 

impact the matings system of targeted populations via effects on sex-ratios and size-301 

structure, with potential negative consequences for population productivity (Rowe and 302 

Hutchings, 2003; Zhou et al., 2010; Sørdalen et al., 2018). Specifically, Darwall et al. 303 

(1992) predicted that wrasse fisheries for the aquaculture industry could alter population 304 

structure and social structures, particularly by the selective removal of larger and 305 

dominant territorial males that are guarding nests. The current Norwegian wrasse 306 

fisheries are known to be selective on larger nest-guarding males of corkwing wrasse  307 

(Halvorsen et al., 2017b). Sex-ratios nevertheless appear to be similar among coastal 308 

MPAs and neighbouring fished areas, suggesting that current MPAs may need to be 309 
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enlarged to account for potential sexual differences in behaviour (Halvorsen et al., 310 

2017a). 311 

In summary, our study reveals fine-scale and sex-specific life history diversity of the 312 

goldsinny wrasse, which, along with several other wrasse species, is increasingly 313 

harvested as cleaner fish for the aquaculture industry. Life history traits such as 314 

asymptotic body size are key determinants of population productivity. Identifying and 315 

maintaing life-history diversity, large-growing fish in particular, is therefore important 316 

from a management perspective (Berkeley et al., 2004a; Zhou et al., 2010; Kuparinen et 317 

al., 2016; Barneche et al., 2018).  To this end, we suggest that selective fishing with 318 

fyke nets should be disfavoured over fishing with baited traps, and that slot size limits 319 

should be considered for additional protection of large-growing fish. Lastly, we suggest 320 

that MPAs are a useful tool for long-term assessment of the impact of wrasse fisheries 321 

on the demography, evolution and population dynamics of local wrasse populations (see 322 

also, Alós and Arlinghaus, 2013), while current and future MPAs may need to be 323 

enlarged to fully protect against size- and sex-selective fisheries. 324 
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Figure 1: Study area (A) in southern Norway (D), showing the four regions that were 543 

sampled inside MPAs (red) and harvested control areas (green); B: Risør region, C: 544 

Inner Tvedestrand fjord region, E: Outer Tvedestrand fjord region, and F: Flødevigen 545 

region. 546 

 547 

Figure 2: The study species (A) goldsinny wrasse (photo by E. Moland, Institute of 548 

Marine Research) and two examples of sampled otoliths (B). The otolith on the left is 549 

from a seven year old and 159 mm long female goldsinny sampled in the outer 550 

Tvedestrand region (see Figure 1). The otolith on the right is from a four year old and 551 

110 mm long male sampled in the Flødevigen region. Hyaline rings (winter zones) are 552 

marked with horizontal bars. 553 

 554 
Figure 3: Individual goldsinny wrasse growth trajectories back-calculated from 555 

distances measured on otoliths.  556 

 557 
Figure 4: Goldsinny wrasse asymptotic lengths, showing the median (bold horizontal 558 

line), quartiles (box) and outliers (black dots) for female (red) and male (blue) fish 559 

captured in fyke nets (Fyke) and baited traps (Pot). 560 

 561 
Figure 5: Goldsinny wrasse asymptotic lengths, showing the the median (bold 562 

horizontal line), quartiles (box) and outliers (black dots) for fish captured in a marine 563 

protected area (MPA, blue) or harvested area (Control, red) within four different regions 564 

along the Norwegian Skagerrak coast: Flødevigen (Flode), Risør (Risor), inner 565 

Tvedestrand fjord (TvedeInn) and outer Tvedestrand fjord (TvedeOut). 566 

 567 
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Table 1. Summary statistics of goldsinny wrasse sampled from four MPAs and 569 

neighbouring control areas along the Norwegian Skagerrak coast in August and 570 

September 2013, showing the sample size (N) for each of the two gear types (unbaited 571 

fyke nets and baited pots) with effort (number of nets or pots) in parenthesis, mean body 572 

length and age of sampled fish (range).  573 

Region Treatment Nfyke Npot Length, mm Age, years 

Flødevigen MPA 23 (46) 118 (30) 104 (75147) 4.1 (113) 

 control 34 (47) 102 (31) 98 (70129) 4.3 (210) 

Tvedestrand inner MPA 17 (14) 68 (8) 98 (76133) 5.3 (213) 

 control 50 (24) 24 (15) 106 (78139) 4.2 (113) 

Tvedestrand outer MPA 48 (6) 58 (6) 107 (68147) 3.9 (112) 

 control 20 (9) 74 (7) 105 (81142) 4.0 (28) 

Risør MPA 35 (16) 98 (12) 99 (67128) 3.3 (19) 

 control 29 (18) 28 (12) 107 (75137) 3.2 (18) 
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Table 2. Comparison of linear models for predicting goldsinny wrasse asymptotic body 584 

length (L∞), showing the structure, R2 value and Akaike Information Criterion (AIC) of 585 

each model. Fishing gear type (Gear) , sex, MPA treatment (Treat) and region (Reg) 586 

were included as predictor variables (factors). The most parsimonious model selected 587 

for inference is shown in bold. 588 

Model structure R2 AIC 

L∞ = Sex*Gear + Sex*Reg+ Treat*Reg 0.38 -563.2 

L∞ = Sex*Gear + Treat*Reg 0.38 -564.9 

L∞ = Sex + Gear + Treat*Reg 0.37 -562.3 

L∞  = Sex*Gear + Treat + Reg 0.27 -503.8 
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Table 3. Parameter estimates (standard error, SE) from the most parsimonious linear 602 

model explaining variation in goldsinny wrasse asymptotic length, including effects of 603 

fishing gear type, sex, MPA treatment and region. Fyke nets, females, harvested control 604 

areas and the Flødevigen region were set as reference levels in the model. 605 

Model term Par SE p-value 

Intercept 4.744 0.019 <0.0001 

Sexmale 0.071 0.019 <0.0001 

Gearpot -0.096 0.018 <0.0001 

TreatMPA 0.093 0.019 <0.0001 

RegRisør 0.125 0.033 <0.0001 

RegTvedestrand inner 0.126 0.024 <0.0001 

RegTvedestrand outer 0.100 0.022 <0.0001 

Sexmale * Gearpot 0.052 0.025 0.035 

TreatMPA * RegRisør -0.127 0.041 0.002 

TreatMPA * RegTvedestrand inner -0.264 0.032 <0.0001 

TreatMPA * RegTvedestrand outer -0.063 0.032 0.046 
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