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Abstract

Oceans constitute over 70% of the earth's surface, and the marine environment and ecosystems are 

central to many global challenges.  Not only are the oceans an important source of food and other 

resources, but they also play a important roles in the earth's climate and provide crucial ecosystem 

services.  To monitor the environment and ensure sustainable exploitation of marine resources, 

extensive data collection and analysis efforts form the backbone of management programs on 

global, regional, or national levels.

Technological advances in sensor technology, autonomous platforms, and information and 

communications technology now allow marine scientists to collect data in larger volumes than ever 

before.  But our capacity for data analysis has not progressed comparably, and the growing 

discrepancy is becoming a major bottleneck for effective use of the available data, as well as an 

obstacle to scaling up data collection further.

Recent years have seen rapid advances in the fields of artificial intelligence and machine learning, 

and in particular, so-called deep learning systems are now able to solve complex tasks that 

previously required human expertise.  This technology is directly applicable to many important data 

analysis problems and it will provide tools that are needed to solve many complex challenges in 

marine science and resource management.  

Here we give a brief review of recent developments in deep learning, and highlight the many 

opportunities and challenges for effective adoption of this technology across the marine sciences.  
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observations; resource management

Introduction
In March 2016, Google DeepMind pitched their computer program AlphaGo (Silver et al. 2016) 

against expert go player (ranked 9th dan) Lee Sedol in a five-game match, and won. This happened 

twenty years after IBM's chess playing computer Deep Blue famously played to a draw against grand 

master Gary Kasparov (Campbell et al. 2002). Go is considered a notoriously difficult game for 

computers, and the event was widely reported in the press as an important milestone in the 

development of artificial intelligence (Wood 2018), and it was listed in Science as runner-up for the 

title of Breakthrough of the Year (Science 2016).

Yet this is only one of a series of remarkable achievements brought forth by recent developments in 

the field of artificial intelligence, and the triumph was soon overshadowed by new successes, for 



instance when AlphaZero managed to surpass human level skill in go, chess, and shogi solely from 

the experience it gathers playing against itself (Silver et al. 2017).

Systems that are becoming increasingly intelligent are now being deployed on every scale, from 

mobile phones to supercomputers, and they are involved in a diversity of tasks, including 

personalized ranking of search results, selecting relevant advertisements, assisting vehicle driving, 

recognizing handwriting, and understanding spoken commands. Common to these successes is the 

application of a new approach called deep learning (LeCun et al. 2015).

Many of the high-profile uses of deep learning originate from corporations like Google, Facebook, 

Microsoft, and Amazon.  These are consumer-oriented, technology-driven companies with access to 

large data repositories and computing resources (three of the four run commercial cloud services).  

Interestingly, these companies are also on the forefront of academic research, Google lists (Google 

2018) close to 1500 research papers on machine intelligence, perception, and translation, and 

another 380 on natural language processing.  Microsoft reports publishing 239 papers on artificial 

intelligence in 2017 alone (Microsoft 2018).

Technological progress has made data collection less costly, and this also affects the marine sciences.

Large infrastructure projects are being developed to store and organize the data, and analysis is 

increasingly becoming a bottleneck.  In order to meet many of the global challenges in marine 

science and management, it is necessary to realize the potential of collected data through 

automating more of the analysis.  Here we explore how new analysis technologies can be exploited 

to meet this goal.

Navigating an ocean of data
More than two thirds of the planet is covered by oceans. The marine environment is a key 

component of the earth's climate, and its diverse ecosystems provide about half the global biological

production and essential ecosystem services. The UN sustainability goals 2 (food security) and 3 

(health) indirectly address the ocean, whereas goal 14 (use of oceans) explicitly acknowledges the 

need for sustainable development for the oceans and seas.

Marine science must rise to these challenges and provide the knowledge needed to ensure 

sustainable use of the marine environment. The necessity of an ecosystems approach to marine 

management is accepted worldwide (Pikitch et al. 2004; Bianchi and Skjoldal 2008; Koslow 2009; 

Link and Browman 2014) and is reflected in the [revised] European common fisheries policy (CFP) 

and the marine strategy framework directive (MSFD). Further development of models and observing 

systems is needed to meet these requirements, and a key challenge is how to extract relevant 

information when data volumes increases, data complexity increases, and data quality varies.

Increased data volumes
A direct consequence of improvements in sensor technology is an increase in data volume, usually 

accompanied by lower cost.  This is brought about by several factors: higher data rates, decrease 

cost of sensor equipment, and for sensors operating in situ, advances in autonomous platforms 

technologies.  New or upgraded sensors now allow us to observe essential ocean variables (EOVs) as 

well as other biological data, both in the field and in the laboratory, at scales that were earlier 

beyond our ability.  A few cases serve to illustrate this.

Acoustics is the primary sensor on acoustic-trawl surveys (MacLennan and Simmonds 2005), and 

calibrated high-quality echo sounders are mounted on research vessels. These are now commonly 

installed on a wider range of platforms including vessels of opportunity, e.g. fishing vessels



(Honkalehto et al. 2011; Fassler et al. 2016) and autonomous platforms, e.g. autonomous 

underwater vehicles (Fernandes et al. 2003), gliders (Guihen Damien et al. 2014), observatories

(Godø et al. 2014) and autonomous surface vehicles (Mordy et al. 2017). In concert these sensors 

could form an observation system that can inform ecosystem models (Handegard et al. 2013), but 

the traditional manual data processing is a major bottleneck.

Research projects now routinely sequence the full genomes (e.g., Berthelot et al. 2014; Lien et al. 

2016) or transcriptomes of tens or hundreds of individuals (Schunter et al. 2014), resulting in several 

terabytes of data.  Since the landmark Human Genome Project (Venter et al. 2001), sequence costs 

have plummeted six orders of magnitude, and molecular methods are now used in new contexts like

sequencing of marine communities to reveal its species composition or functional diversity 

(metagenomics) (e.g., Jackson et al. 2015; Kodzius and Gojobori 2015), or using genomic methods to 

investigate population structure, evolution and migration patterns (Larson et al. 2014; Malde et al. 

2017).

Camera equipment have become more advanced, robust, and inexpensive.  Still and moving images 

are now used in a wide range of applications, including baited video surveys (Cappo et al. 2007), 

benthic monitoring (Buhl-Mortensen et al. 2015), in-trawl monitoring (Rosen et al. 2013), plankton 

imaging (Stemmann and Boss 2012).  Processing the resulting wealth of image data still often 

requires manual or partially manual labeling to extract meaningful information. In some cases, 

training data can be simulated (Figure 1), but often the lack of good training data hampers 

exploitation of technological advances and limits mass deployment of cameras.

Increased data complexity
Besides increased data quantity, new methods and technology often let us collect and derive 

increasingly more complex data and information. This is true for model outputs and observations 

alike, and combining and analyzing complex data is challenging since the relationships are often non-

linear.  Like for data quantity, the increased complexity applies almost universally, and a few cases 

are presented for illustration.

Early echo sounders emitted a single frequency, and received an intensity representing the reflected 

signal, conveniently plotted in a 2D diagram with time and depth (Sund 1935). Multi-frequency 

equipment emits several frequencies simultaneously, and the difference in signal response provides 

valuable information about parameters like fish species, sizes, and orientations (Kloser et al. 2002; 

Korneliussen and Ona 2003). But the multiple diagrams are more demanding to interpret. 

Broadband equipment (Stanton et al. 2010) replaces the multiple frequencies with continuous 

spectra, adding further complexity. Methods that can deal with these data have the potential to 

increase the information we get from the observations.

Similarly, most cameras capture visible light in the three primary colors corresponding to the 

photoreceptors in the human eye. In many cases, information is conveyed outside this spectrum, as 

evidenced by species like the mantis shrimps (Stomatopoda spp.), whose eyes have 16 different 

photoreceptors and the ability to detect both ultraviolet and polarized light (Marshall and 

Oberwinkler 1999). Hyperspectral or multi-spectral photography that can record images both within 

and beyond the visible spectrum are likely to be useful in many settings, since light absorption and 

reflection of many substances strongly depend on the wavelength. For instance, the "color" of the 

ocean is determined by the interactions of incident light with substances or particles present in the 

water. By exploiting multispectral data with fine spectral resolution several services provide frequent

updates of a wide range of products based on the ocean color (e.g., NASA 2018). Methods to further 

exploit the increased data complexity are needed.



End to end ecosystem models have been proposed to be a key tool in integrated fisheries 

assessments, (e.g., Fulton et al. 2014). These models include components from physical forcing, 

geochemistry, primary production, and higher trophic levels, and the resulting model framework and

model states are complex. Methods to extract relevant information, and often combining 

information from several sources are required, e.g. through ensemble modeling (Olsen et al. 2016) 

or combining information from different data types. The state space from these models can be 

considered a complex data set and analyzed as such. Methods to be able to find patterns and signals 

in the model states are needed.

Data quality
Improved technology generally leads to higher quality data, but occasionally increased data volumes 

are obtained by trading off quality for quantity. An example of this is research vessel surveys, which 

are costly to scale up. An alternative could be to collect data from the commercial fishing fleet, but 

with loss of rigid sampling design employed on research vessel surveys (Fassler et al. 2016). 

Alternatively, relatively simple autonomous platforms could collect acoustics data, but without trawl 

sampling that has key information on age structure and species composition. Similarly, ARGO floats

(Roemmich et al. 2009) collect oceanographic data at a fraction of the cost of surveys using research 

vessels, but they can only drift with ocean currents, and we lose the ability to actively set up 

sampling designs or collect water samples.  The information from increased data quantities may 

compensate for a loss of quality, but the lack of rigid designs will often introduce biases which pose 

new challenges for analysis.

While the cases we highlight here exemplify the growing data volumes, increasing data complexity, 

and deteriorating data quality, they are not exhaustive.  Rather they demonstrate how analysis 

increasingly is becoming a bottleneck for effective use of collected data across diverse fields and 

technologies.  Relying on manual scrutiny by human experts does not scale well, and automatic 

analysis of data is necessary to alleviate a rapidly narrowing analysis bottleneck.

The deep learning revolution
Machine learning at a glance
A classical computer program is an executable expression of an algorithm. That is, the programmer 

formulates a precise stepwise description of how to produce the desired result from the input. In 

contrast, a machine learning program requires the programmer to specify only a more general 

model or architecture for the solution. The model is then trained using available data. Typically, 

training consists of gradually adjusting the parameters of the model, causing the program to produce

increasingly accurate results. By definition, a machine learning program is a program that is able to 

improve its performance from experience (Mitchell 1997).

In principle, statistical methods like linear regression and estimation of probability distributions can 

be considered machine learning methods, but here we use the term to refer to more complex 

systems, like artificial neural networks, random forests, and support vector machines. And in 

contrast to statistical methods where the parameters are inherently meaningful, the parameters of 

more complex machine learning systems often capture some general pattern in the data in an 

opaque way, and the interpretation of the individual parameters can be difficult.

Neural networks
One of the archetypal machine learning systems, and a cornerstone of the recent revolution in 

machine learning, is the artificial neural network (Parker 1985; Rumelhart et al. 1986). It is 

conceptually simple, yet can solve complex problems, in fact, by the universal approximation 



theorem any function can be modeled by a neural network (Hornik et al. 1989; Cybenko 1989). A 

neural network consists of layers of simple computational units (or neurons), arranged so that the 

output of the units in one layer feed into the inputs of the next layer's units (Figure 2). Each unit 

calculates a weighted sum of it inputs, and applies a function (the activation function), f ( ∙ ) , that 

introduces nonlinearity into the system. The weights, w ij, of the inputs to each unit constitute the 

parameters to be learned.  This is usually achieved using back propagation (Rumelhart et al. 1986) to

calculate the gradient for a cost function, which is then minimized iteratively using some variant of 

gradient descent.

Deep learning and the renaissance of neural networks
Work on neural networks in the 1980s and 90s (Parker 1985; Rumelhart et al. 1986) was limited by 

computational power, lack of sufficiently large labeled datasets for training, and limitations in the 

learning algorithms. Hence, the dominant approach to machine learning was to use application 

dependent hand-designed features to describe the data in a compact form, reducing its 

dimensionality. For instance, computer vision would typically preprocess input images with a 

manually designed program to detect features like edges and corners (Lowe 2004; Dalal and Triggs 

2005). Classification algorithms like decision trees, shallow neural networks and support vector 

machines (Boser et al. 1992) would then be applied to learn patterns from the features, rather than 

from the raw image data. Although generalized and reusable features like SIFT (scale-invariant 

feature transform, Lowe 1999) or HOG (histogram of oriented gradients, Dalal and Triggs 2005) were

successful for many image classification applications, there is a necessary trade-off between 

generality and the specific task at hand, and generalized features cannot capture the inherent 

complexity of many objects, nor translate easily to non-image or higher-dimensional data.

In recent years, the availability of computational power from the use of graphics processing units 

(GPUs) (Chellapilla et al. 2006; Bergstra et al. 2010) and distributed computing (Dean et al. 2012), 

large annotated datasets like ImageNet (Russakovsky et al. 2015) as well as algorithmic 

improvements (Nair and Hinton 2010; Hinton et al. 2012b; Ioffe and Szegedy 2015; He et al. 2016) 

has allowed the construction of much larger and deeper neural networks than before. The added 

complexity allows a network to learn relevant features in the data automatically, which is a defining 

element of deep learning (Schmidhuber 2015; LeCun et al. 2015). As a result of this process, the 

lower layers in the network learn to recognize primitive, general features like edges and corners in 

an image. Higher layers learn to identify more abstract features as combinations of features (e.g., 

object parts formed by primitive features). Finally the highest layers learn to identify abstract classes

as combinations of object parts. This hierarchical structure of the deep convolutional neural 

networks thus naturally models the hierarchical composition of the objects to be recognized.

In contrast to feature-specific machine learning, deep learning is simultaneously a more general 

approach, while providing solutions more specific to the problem. Neural network architectures still 

benefit when tailored to specific data types and problems, but the ability of deep networks to learn 

the primitive features directly from the raw data makes the technology directly applicable to a wide 

range of problems.

Convolutional neural networks and computer vision
Convolutional neural networks (Fukushima 1988; LeCun et al. 1999)  are structured as stacks of 

filters, each recognizing increasingly abstract features in the data.  This approach is very effective for 

many image analysis problems, where objects are often recognized independent of their location.  

The convolutional network applies the same set of filters to all parts of the image, recognizing the 



same kinds of features regardless of their position.  This leads to a dramatic reduction in the number 

of weights and consequently a reduction in training effort and data requirement.

In 2012, (Krizhevsky et al. 2012) demonstrated that deep convolutional networks could obtain 

substantially higher image classification accuracy on the ImageNet Large Visual Recognition 

Challenge (ILSVRC) (Russakovsky et al. 2015) than competing systems. Their success was a result of 

designing a deep CNN and training it using new and more efficient strategies, including rectifying 

nonlinearities (ReLUs) (Nair and Hinton 2010; He et al. 2015; Xu et al. 2015) and dropout 

regularization (Srivastava et al. 2014). In order to train a CNN with performance metrics comparable 

to the ones reported by (Krizhevsky et al. 2012), a substantial amount of labeled training images is 

needed, in addition to sufficient computational power (e.g., parallel computers orGPU accelerators).

The great improvements demonstrated by Krizhevsky et al. (2012) were followed by a sequence of 

increasingly successful ILSVRC contestants using deep neural networks (Zeiler and Fergus 2014; Long 

et al. 2015; Yu and Koltun 2015; Badrinarayanan et al. 2015), and have placed image recognition 

tasks at the center of an ongoing deep learning revolution.  Similar techniques have been extended 

to object localization by identifying their coordinates and bounding boxes (Ren et al. 2015; Redmon 

et al. 2016). Related tasks are semantic segmentation, where individual pixels are mapped to classes 

representing different objects (Long et al. 2015; Yu and Koltun 2015; Badrinarayanan et al. 2015; 

Chen et al. 2018), and instance segmentation, where each instance of an object is identified in 

addition to being segmented (He et al. 2017).

These challenges are important in their own right, but also pave the way towards complete scene 

understanding, a core computer vision problem that is important for a number of applications, 

including autonomous driving (Litman 2014), human-machine interaction (Baccouche et al. 2011), 

earth observation (Kampffmeyer et al. 2016; Maggiori et al. 2017), image search engines (Wan et al. 

2014), to name a few.

Beyond images
In many cases, machines exceed human level accuracy, e.g, for optical character recognition

(Goodfellow et al. 2013), face verification (Taigman et al. 2014), and recognition of specialized object

categories, like different breeds of dogs or species of birds (Xiao et al. 2014). Even text obfuscated 

for the specific purpose of distinguishing humans from computers (so-called captchas) are ironically 

deciphered more accurately by computers than by humans (Goodfellow et al. 2013).  Deep learning 

has led to rapid advances in many other areas beside computer vision, and it has successfully been 

applied to problems like speech recognition (Hinton et al. 2012a), machine translation (Sutskever et 

al. 2014; Zhang et al. 2015), and financial applications (Heaton et al. 2017). The technology is 

starting to be applied to data analysis in many sciences, including high energy physics (Baldi et al. 

2014), drug activity prediction (Dahl et al. 2014), and visual processing of microscope data to 

reconstruct 3D models of brain tissue (Knowles-Barley et al. 2014).

Machine learning in marine science
The growing data volumes, increased data complexity, and reduced data quality pose challenges for 

the marine science discipline, but at the same time recent advances in machine learning offer new 

possibilities of addressing them. Systems for automatic data analysis can be considered on several 

levels, from making manual work more efficient to novel analyses of complex and heterogeneous 

data.



Emulating basic human expertise
Machine learning systems are typically trained to emulate human curation, and thus a natural 

application is to use such systems to replace labor intensive steps in existing analysis pipelines.  

Reliance of manual curation is currently limiting effective data use, and automatic systems can 

reduce cost or increase throughput, for instance identifying fish species from images (Allken et al. In 

press; Siddiqui et al. 2018; Villon et al. 2018) or automatic age reading of otoliths (Moen et al. in 

press). The latter is perhaps of particular interest, as it demonstrates that a deep learning can obtain 

an accuracy comparable to human curators.  This is in contrast to Fisher and Hunter (2018), who 

reviewed traditional machine learning approaches, and concluded that they provided no substantial 

advantage over human curation.

A fully automated system with accuracy comparable to a human curator is ideal, but more limited 

systems also have merit. The ability to sort out irrelevant data (e.g., frames with no objects of 

interest in them) can reduce manual work by orders of magnitude, and rudimentary classifiers with 

limited accuracy can reduce it further. As a bonus, with an automatic system taking care of tedious 

routine and trivial cases, the curation work remaining for the human expert is likely to be more 

interesting and rewarding.

In many cases, less than perfect accuracy may be sufficient. For instance, in cases where the 

sampling variance is large, a small bias may be acceptable if a larger number of observations can be 

exploited.  Analysis of plankton images often have many and variable categories and be confounded 

by detritus and variation in visibility and lightning conditions, and machine learning methods are 

often used to guide or assist the human curator (Uusitalo et al. 2016).  Furthermore, where 

judgement of human experts vary, automated systems are consistent and can be duplicated as 

needed. They are likely to be cheaper and easier to deploy in hostile conditions. And although initial 

systems may have an unsatisfactory accuracy, technology improves over time.  With improved 

systems, data can be reanalyzed with little effort.

Advancing beyond the human expert
In many cases, overwhelming data volumes means that automatic systems are necessary for 

analysis. But for an increasing number of tasks, machine learning systems can surpass human 

experts in quality as well as quantity.

Some tasks that can be solved in principle are still too complex in practice, even for human experts. 

Analysis can be elusive when systems consist of many different factors which interact in many 

different ways, ecosystems being a typical example. We may have knowledge of each species 

involved, their migratory behavior, predators and prey relationships, reproductive biology, and so 

on, and a species can be isolated in the lab and its behavior and responses studied. However, 

aggregating this information and deriving the behavior of complex systems in the wild is challenging. 

Instead, we often rely on complex ecosystem models based on assumed interactions between the 

various components, and make inferences about the system from the model results (Fulton et al. 

2003). This assumes that we have successfully included the key processes in our model and that we 

have correctly parameterized them. A common critique is that we rely too much on the assumptions

(Planque 2015). Another, more parsimonious, approach is to use conventional statistical models to 

fit the data, but these models may be too simplistic since non-linear effects are difficult to handle. 

The deep learning approach may offer a third approach, where the analysis is still based on observed

data, but the system is more capable detect and model non-linearities. However, it is prudent to 

note that the information that we can extract from the data is limited by the information content in 

the first place. Even so, deep learning methods may be able to tease out patterns the other methods

fail to do. 



Gaining new scientific insights 
A common criticism of many machine learning methods is that the resulting model is opaque: 

although it can be shown empirically to work, it is often not clear how the model works, or what 

knowledge the model captures. For instance, the learned parameters of a linear regression have 

clear interpretations as slope and intercept. In contrast, the individual weights in a trained neural 

network do not carry any obvious meaning and can have very different significance for different 

inputs.  This is analogous to human knowledge. As observed by (Polanyi 2009), many tasks require 

knowledge that we are unable to express explicitly. For instance, we can recognize a face instantly, 

yet we are at a loss for describing the exact process of doing so. In science the goal is often to 

understand a phenomenon. This is often achieved by exploring model dynamics, but is less 

transparent in typical deep learning models.

Despite this opacity, it is nevertheless possible to get a glimpse of the knowledge embedded in a 

machine learning system. For instance, convolutional layers in deep neural networks often recognize

specific features of the input. By identifying regions of the data (parts of an image, say) where 

specific neurons are triggered, we can observe the feature recognized by that neuron. Such an 

approach could for instance reveal whether a system of automatic otolith reading (Moen et al. in 

press) is counting rings, or whether it is using other geometric features, like shape or size, and to 

what extent each feature is informative.

A slightly different method consists of feeding the network noise, and then using a variant of back 

propagation to amplify elements of the input data that cause a particular classification result (Erhan 

et al. 2009). Several variations of this method have been developed (Yosinski et al. 2015; Bach et al. 

2015), producing synthetic images (Figure 3) that illustrates the type of features used by the network

to identify a certain class.  While recognizable, the resulting image is not necessarily representative 

for actual data 

Reproducibility of science and improved processes
Marine science and management advice for marine resources go hand in hand. A data processing 

pipeline for management, starting with data collection, going through various analyses and 

simulations, and ending with stock forecasts and management advice, are central to many marine 

science institutions. Currently, this process contains several interpretation steps, where a human 

expert must examine data to extract information for use as input to subsequent steps.

Automating these interpretation steps gives us several advantages. First, the whole process becomes

deterministic and reproducible. Verifying the model output from the input data can be done by 

simply rerunning the pipeline, and this helps build confidence in the results. More importantly, it lets

researchers experiment with the model, adjusting its parameters and inputs to discover how they 

affect the output, and let us quantify the consequences of changes. For instance, one can estimate 

the effect of reducing cruise activities in favor of less expensive floats or autonomous stations, or 

whether deployment of more advanced equipment is justifiable. This knowledge will be important 

for optimizing resource usage and reduce uncertainty in the results.

Heterogeneous data and integrative analysis
Ecosystems are complex networks of biological, chemical, and physical factors which also includes 

human activities.  It is unclear to what extent such systems can be understood from a reductionist 

approach of isolating and studying each component.  That a more holistic approach is necessary is a 

key tenet of  transdisciplinary science (Nicolescu 2008). But multi- and interdisciplinary approaches 

could also benefit marine science to a larger extent.  For instance, molecular methods could 

complement traditional surveys for detecting the presence of species (Foote et al. 2012; Thomsen et

al. 2012), cameras can detect fragile species that are destroyed by more intrusive methods (Remsen 



et al. 2004), and autonomous platforms (Mordy et al. 2017) could augment data from more 

traditional surveys.  Integrative approaches could collect data from multiple databases representing 

a variety of collection regimes and scientific disciplines, and reanalyze these data in new ways to 

derive new information.  Making data interoperable is a key step for effective integrative analysis, 

and several large efforts aim at providing centralized infrastructures and standardized organization 

for data collected by third parties.

An advantage of machine learning methods is their ability to work well with ambiguous data. Deep 

learning methods work directly on the raw data (e.g., as images or free-form text), and systems 

identify and extract salient features automatically.  Relevant structure and information content in 

the data is thus captured implicitly by the model. This has allowed e.g. natural language processing 

systems using deep learning methods to deal with ambiguities and imprecision in human languages. 

This robustness is not limited to language, and allows us to construct compound systems with the 

ability to deal usefully with existing data that may be incomplete, inconsistent, ambiguous, and 

weakly structured (Raghupathi and Raghupathi 2014).

Challenges
To realize the potential of automatic analysis, we need effective methods capable of handling the 

large amounts of data generated. Although successful projects that apply deep learning in the 

marine sciences exist (ICES 2018), the technology has not yet seen widespread deployment, and 

several obstacles must be overcome for successful development and implementation.

Data availability in a form suitable for analysis
One obstacle is the lack of large and well-structured datasets suitable for training machine learning 

models. There is considerable third party interest in machine learning, and online competitions like

(Kaggle 2018) show that the availability of clearly defined problems and curated datasets attracts 

expertise and effort. Current efforts to aggregate data in central data servers and to standardize 

formats and metadata are steps in the right direction, but it is important that such efforts are 

developed in concert with intended analysis. In many cases, new methods for unsupervised or semi-

supervised analysis of data need to be developed.

Perhaps the most common problem is the lack of adequate metadata (in this context referring to 

response variables, classes, annotations or labels). Large volumes of raw data are collected and 

stored, but the specific and detailed results from analysis are not systematically recorded (Harris et 

al. 2010), leaving the data essentially unannotated. In other cases, annotation is available, but made 

in an ad hoc manner. So where one annotator might label a plankton image "copepod, large", 

another might label it "large copepod". Often classes are poorly defined and inconsistent, and do not

make use of available standards. And even when both data and metadata are available, in some 

cases the link between them is unreliable.

Anchoring projects in existing infrastructure and pipelines
The value of data is in its use, and for marine data to be useful, it must be analyzed and the output 

used in science, for resource management, or by industry. With data sets available, methods can 

readily be developed, but without integration into existing processes, the impact is small or 

nonexistent. To reap the benefits of new methods, it is crucial to involve the whole value chain, from

data collection, to data storage and management, to analysis, and final use of the information. 

Projects must seek to involve existing stakeholders and have long term implementation as a central 

goal, i.e. technology on its own has no merit in this context.



Developing new expertise and methods
Since Krizhevsky et al. (2012), machine learning has seen a tremendous increase in interest. In 

particular, many large, data-oriented corporations, including Google, Facebook, Amazon, Microsoft, 

IBM, and Baidu, are aggressively recruiting people with machine learning expertise. The academic 

sector is struggling to compete with enterprises for competence, and recruitment of experienced 

academic personnel to the commercial sector is likely to impede development of solutions needed 

for scientific progress; as well as having negative consequences for the education and training that 

the commercial sector itself depends on.

Structures are needed that encourage development and retention of machine learning expertise in 

the marine sciences. There is a need to provide motivation and opportunities for people with this 

background to work closely with stakeholders in the marine domains. For standard problems like 

image classification, it may be sufficient to adopt methods from other fields, but when dealing with 

data types and problems that are more particular to marine sciences, interdisciplinary approaches 

are needed, and scientists need to understand both machine learning and the relevant disciplines 

like biology or oceanography.

Software tools and frameworks
Deep learning has proven to be an effective tool in many similar situations and fields, and several 

popular software packages now exist that can be downloaded, adapted, and deployed quickly and 

easily.  TensorFlow (Abadi et al. 2015) is a flexible framework that abstracts computing hardware, 

but which has a steep learning cure.  Keras (Chollet and others 2015) builds on top of TensorFlow or 

Theano (Bergstra et al. 2010), providing an easier to use, but less flexible interface.  PyTorch (Paszke 

et al. 2017) is another popular framework combining ease of use with expressive power.  These 

frameworks are general and can be adapted to challenges in the marine domain with relative ease

(e.g., Allken et al. In press; Moen et al. in press; Siddiqui et al. 2018; Villon et al. 2018).  The vast 

number of online tutorials and documentation is a major advantage, and pre-trained models are 

available from public repositories (often referred to as model zoos). Although these are usually 

aimed at generic tasks like classification of standard image data sets, they accelerate development of

specific solutions by providing well-tested architectures and initial parameters that are useful as a 

starting point (Orenstein and Beijbom 2017) for further training.

Until recently, developing and applying advanced analysis methods required programming skills as 

well as a good understanding of methods and software frameworks.  A variety of programming 

languages – Fortran, MatLab, C++, Java, and R, to name a few -- are used in marine science, but the 

bulk of commercial and academic development of new machine learning methods targets Python.  A

lack of familiarity with Python could limit uptake of new technologies, or restrict developers to an 

inferior selection of tools and frameworks available in their preferred language.

We are also seeing the introduction of tools and libraries that target the marine sciences specifically.

Such domain-specific solutions provide solutions that are tailored to common use cases and with 

intuitive interfaces.  This can help to make the technology much more accessible for non-experts.  

One recent example is the VIAME toolkit (Dawkins et al. 2017), which is an ambitious project that 

integrates data processing and analyses in a comprehensive framework, and supports multiple 

programming languages.  

In conclusion there are several levels for which the user can use and deploy these techniques. In 

general, there is a trade off between ease of use and flexibility, and choice of framework and 

methods must be tailored to the competence and ambitions of each individual project.  The authors 



of this paper use Keras and Theano daily and have found they serve as a reasonable balance 

between flexibility and ease of use.

Conclusions
In the near future, the volume and complexity of marine data is expected to increase by orders of 

magnitude.  Autonomous platforms already drift, float, sail, and glide across the ocean surface and 

below it, collecting large amounts of data at relatively low cost.  Additional data is collected from 

commercial and other non-scientific vessels, and from stationary observatories.  Simultaneously, 

sensor technology is advancing rapidly, increasing resolution and detail level of the collected 

information.  

Deep learning and convolutional neural networks have made impressive advances, and is likely to 

change the way we interpret, analyze, and collect data. For classification or regression over large, 

regularly structured data, existing methods can be (and is) applied more or less directly.  Similarly, 

methods exist that can deal with time series and textual data.  More speculatively, techniques from 

deep learning aimed at dealing with large numbers of parameters may bring insights in how to 

better model complex adaptive systems.

Nevertheless, some moderation is warranted, and it is not sufficient merely to accumulate vast 

amounts of data and expect a clever enough algorithm to readily extract valuable insights.  All data 

are not created equal, and no analysis will be able to extract information that is not present in the 

data.  Careful design of surveys and experiments is and will remain important.  Also, deep learning 

methods often perform well within its domain, but can give unpredictable results on unfamiliar data.

When such methods are deployed, a regime of careful monitoring of performance and subsequent 

adjustments will be necessary.

The transition into a data rich science is a paradigm shift with important implications.  Current sparse

sampling regimes and population based models can be replaced with comprehensive monitoring at 

high resolution, sometimes down to the individual level.  For locations of particular interest, like 

rivers or spawning grounds, it is already within our reach to register the presence of each individual 

fish, and classifying its species as well as behavior and interactions.  But data collection on this scale 

requires data analysis capabilities well beyond current manual methods, and will only be realized 

when the analysis bottleneck is solved.   
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Tables

Figure Legends
Figure 1. Simulated image mimicking output from the Deep Vision trawl camera solution. The 

simulator produces infinite training data for a classifier by producing random collages of fish images 

pasted onto an empty background. Image courtesy of Thomas Mahiout and Tiffanie Schreyeck.

Figure 2. An artificial neural network typically consists of one input layer, several hidden layers and 

one output layer. Each unit calculates a weighted sum of the inputs, and applies an activation 

function, (f).  For simplicity, we have omitted bias terms.

Figure 3. Images constructed by running a neural network "in reverse”, illustrating the neural 

network's conception of geese and ostriches.  Although noisy and abstract, the general features of 

the objects are clearly recognizable (Simonyan et al. 2013).
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