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The intestinal epithelium is a selectively permeable barrier
for nutrients, electrolytes and water, while maintaining effective
protection against pathogens. Combinations of stressors
throughout an animal’s life, especially in agriculture and
aquaculture settings, may affect the regular operativity of this
organ with negative consequences for animal welfare. In the
current study, we report the effects of a three-week
unpredictable chronic stress (UCS) period on the intestinal
morphology and transcriptome response of Atlantic salmon
(Salmon salar) parr midgut and hindgut. Midgut and hindgut
from both control and UCS fish were collected for histology
and RNA-sequencing analysis to identify respective changes in
the membrane structures and putative genes and pathways
responding to UCS. Histological analysis did not show any
significant effect on morphometric parameters. In the midgut,
1030 genes were differentially expressed following UCS,
resulting in 279 genes which were involved in 13 metabolic
pathways, including tissue repair pathways. In the hindgut,
following UCS, 591 differentially expressed genes were detected
with 426 downregulated and 165 upregulated. A total of
53 genes were related to three pathways. Downregulated
genes include cellular senescence pathways, p53 signalling
and cytokine–cytokine receptor pathways. The overall results
corroborate that salmon parr were at least partly habituating to
the UCS treatment. In midgut, the main upregulation was
related to cell growth and repair, while in the hindgut there
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were indications of the activated apoptotic pathway, reduced cell repair and inhibited immune/anti-

inflammatory capacity. This may be the trade-off between habituating to UCS and health resilience.
This study suggests possible integrated genetic regulatory mechanisms that are tuned when farmed
Atlantic salmon parr attempt to cope with UCS.
publishing.org/journal/rsos
R.Soc.open

sci.7:191480
1. Introduction
The gut barrier has several significant biological functions and in addition to the primary function of
absorbing nutrients, it is also an essential barrier between the fish and the external environment,
controlling the loss of nutrients and preventing the uptake of noxious substances. Furthermore, it also
harbours an extensive microbiota that can aid in nutrient utilization and protect against pathogen
agents [1]. However, several factors can interfere with gut functionality, with serious implications for
the health and welfare of the organism [2].

Because of the recognized and considerable impact to human and high-value livestock health, stress-
related alteration of gastrointestinal integrity has received considerable attention in mammalian and
human systems [3]. Emotional and physical acute and chronic stress has been shown to reduce the
physical barrier function leading to increased intestinal permeability, functional dyspepsia, irritable
bowel syndrome and peptic ulcer disease [4–8].

Fish experience stress under both wild and culture conditions, and there is an increasing body of
information on the effect of stressors regarding intensity, duration, predictability and controllability
[9]. Stress causes barrier dysfunction and increased intestinal permeability [10,11] and shortening of
intestinal villi structures and inflammation [12–14]. In European eel (Anguilla anguilla L.), social
chronic stress has been shown to cause stomach epithelium atrophy, gastric glands degeneration in
addition to swollen mitochondria and impaired cell-to-cell contacts [15]. In addition, in carp (Cyprinus
carpio), catch and transportation dependent stress caused loss of intestinal mucus-producing cells
(goblet cells) and detachment of columnar absorptive epithelial cells [16]. However, quite often results
are unclear and even inconsistent. While high stocking densities have been reported to reduce goblet
cells (GC) in number and size, as well as villi length in channel catfish (Ictalurus punctatus) [17], no
such effects were seen in rainbow trout (Oncorhynchus mykiss) [18]. These differences are likely a result
of species differences and the lack of proper comparative experimental protocols. Furthermore, there is
limited information on the transcriptional mechanisms activated in fish intestine during stress, though
some studies have investigated the transcriptional profile of the fish intestine after stress [19]. In Asian
Seabass (Lates calcarifer), partial repression of the intestinal immune system is seen after being
challenged by pathogen or immune modulators [20]. Sending Japanese Medaka to the international
space station resulted in a greater transcriptional change in the gut compared to other organs, while
almost no difference was seen in morphology [21].

Most stress-related experiments on fish have examined acute stress, or a chronic exposure to a design
of repeated single stressors [22–26]. Although these studies have provided important information on
basal fish physiology, they would not be good models for studying chronic stress, because fish tend to
adapt to most normal stressors within a week or so [27–29]. The same had been observed earlier in
mammalian studies [30–33], underlining the importance of developing new tools that could study the
mechanisms of true chronic stress. To study these mechanisms the unpredictable chronic stress (UCS)
paradigm was devised, where an animal would be exposed to several mild stressors in a random,
unpredictable manner [34]. As a consequence, the animal would develop typical chronic stress
conditions without being exposed to severe physical treatment [34,35].

The UCS paradigm has been more recently adopted in fish studies, with considerable focus on
developing experimental methods that would not damage or harm the fish [36]. A recent study by
Madaro et al. [37] used a three-week UCS paradigm on Atlantic salmon (Salmon salar) parr focusing
on the regulation of the hypothalamic-pituitary-interrenal (HPI) stress axis. The procedure caused no
physical harm to the fish, but a decrease in appetite and malregulation of the HPI axis suggested the
procedure had been successful. By the end of the three weeks, some habituation was observed, and
fish appetite started to increase.

The aim of this study was to investigate the effect of UCS on Atlantic salmon smolt intestine. We
report the effects of a three-week UCS trial on the intestinal histology and transcriptome response of
Atlantic salmon parr midgut and hindgut. The overall results corroborate that salmon parr were at
least partly habituating to the UCS treatment, activating an adaptive mechanism to ensure essential



Table 1. Description of the stressors randomly given to Atlantic salmon parr throughout the experiment [37].

stressor time (min) description

chasing 5 stirring in the tank with a net

netting 3 net and release fish with a dip net including brief air exposure (±1 s)

temperature shock

12–4°C

120 reduction of the water temperature from 12°C to 4°C and up to 12°C

temperature shock

12–19°C

120 rise of the water temperature from 12°C to 19°C and down to 12°C

noise 5 knocking on the tank with a metal object

darkness + flashlight 5 turn off the tank lighting and use of a white intermittent LED light

brief hypoxia 5 closure of water inflow until the oxygen saturation of the water

reaches 40%

emptying the tank 5 removal of the tank plug while leaving the water flow open with a

constant 3 cm deep layer of water as a result
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functions relating to cell/tissue integrity while the fish immunity decreased. Results provide new insight
into the understanding of integrated genetic adaptive pathways activated by farmed Atlantic salmon
parr intestine in order to cope with UCS.
2. Material and methods
2.1. Experimental animals and facilities
Atlantic salmon eggs (Aqua Gen strain, Aqua Gen AS, Trondheim, Norway) were hatched and reared at
the Institute of Marine Research, Matre, Norway. Experimental fish were kept in 10 000 l outdoor tanks
under natural conditions (9°C). A month before the start of the experiment, 740 fish (approx. 10 months
old) were transferred into six indoor tanks (400 l; density: 7 kg fish/tank) supplied with flow-through
freshwater. Fish were kept at 12°C on a 12 : 12 photoperiod with a water flow of 15 l min−1, which
provided an approximately 92% oxygen saturation. Fish were fed with dry pellets (2 mm Skretting
Nutra Olympic, Stavanger, Norway) until satiety three times a day with automatic feeders. (Arvo-tec
feeding units: Arvo-Tec T drum 2000, Huutokoski, Finland). Uneaten feed was collected from the
outlet pipes. Tank conditions were monitored and regulated by a fully automated system (SD Matre,
Normatic AS, Nordfjordeid, Norway).

2.2. Experimental design
The experimental design is described in Madaro et al. [37]. Briefly, at the beginning of the experiment
(4 February 2013), six tanks were divided into two groups (n= 3 replicates), of which one received a
set of random stressors (UCS) while the other was left undisturbed (control group). The UCS group
was stressed three times per day (08.30 h, 13.00 h and 17.00 h) using a total of eight types of stressors
given in random and unpredictable order throughout one week, and this protocol was then repeated
for the next two weeks over a total of 23 days. Stressors (table 1) were chosen such that there would
be no physical damage to the fish (such as major scale loss or fin damages). Disturbance for the
control group was reduced to a minimum and limited to routine practices of tank maintenance and
sampling. Fish were fed with dry feed for a duration of 1 h, 30–60 min after each stress event (i.e. at
09.00–10.00 h, 13.30–14.30 h and 17.30–18.30 h). All uneaten food was collected, and dry weight
recorded 15 min after feeding. On day 23, fish were sampled from each tank, subjected to UCS and
compared with fish from each of the unstressed control tanks.

2.3. Sampling
The sampling is described in Madaro et al. [37]. Briefly, fish were starved for 12 h before sampling. All
groups were sampled early in the morning (09.00) and all samples required less than 2 min per fish to
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be processed. Fish received an overdose of anaesthesia (100 mg 1−1 Tricaine methanesulfonate, buffered

with 100 mg l−1 sodium bicarbonate (Finquel®vet.)) which rendered them completely motionless (no
opercular movement) within 10 s of immersion. For each individual fish, fork length and body mass
were recorded, and blood samples collected using a 1 ml heparinized syringe with a 23 G needle.
Blood samples were centrifuged at 13 000 rpm for 2 min and stored at −80°C for cortisol analysis.

Tissue samples from midgut and hindgut for the transcriptome study were collected from all
individuals, rinsed in PBS and stored in RNAlater (RNAlater® RNA Stabilization Solution, Life
Technology, Oslo, Norway) at 4°C for 24 h before transferring to −80°C until RNA isolation. From the
same fish, a fragment of midgut and hindgut was collected, rinsed in PBS and fixed in Karnovsky
fixative for histological analyses. At the end of the trial, no fish were observed with any physical
damage and there was no mortality due to the UCS regime.

2.4. Blood analyses
The concentration of plasma cortisol was quantified by radioimmunoassay (Perkin Elmer, Groningen,
The Netherlands), and evaluated using two-way ANOVA followed by Fisher’s LSD test, as previously
described in Madaro et al. [37].

2.5. Histological analyses
Midgut and hindgut samples were taken from five unstressed fish and six UCS-exposed fish (N=5/6,
from all three replicates), and embedded in Technovit® 7100 (Kulzer, Germany). Two micrometre
sections were obtained by a Microtome Jung Autocut 2055 (Leica, Germany) using carbide metal
blade (Leica TC65 microtome blade). Sections were stained with HE (haematoxylin and eosin) (Merck,
Germany), mounted with Neo-Mount® (Merck, Germany) and scanned at 40× magnification using a
digital slide scanner (NanoZoomer SQ, Hamamatsu Photonics, Japan) using the image software
NDP.view2 (Hamamatsu Photonics, Japan). All measurements were done manually on the scanned
images. Within each preparation, four to five villi structures were randomly selected, and villi height
calculated, all with a longitudinal cross section through the lamina propria of the fold. Within the
marked area, GC, intraepithelial leucocytes and granulocytes within the mucosa were counted. In
addition, the degree of widening of each villi lamina propria was measured at apical, mid and basal
part. Halfway up the villi, total enterocyte height was measured. The parameters were as follows:
(i) the abundance of GC within the villi, numbers per 0.1 mm−2; (ii) intraepithelial leucocytes,
numbers per 0.1 mm−2; (iii) number of granulocytes in the lamina propria, numbers per 0.1 mm−2;
(iv) the degree of widening of the lamina propria at apical, mid and basal regions. Data reported as
the mean of 5 measurements per area; (v) enterocyte height at midsections of the villi (mean of
10 measurements) and (vi) villi height (mean of 6 per preparation). For each measurement,
the mathematical mean for each fish was calculated and used as the basis for statistical analysis giving
N= 5 for control and N=6 for UCS. Stress and control groups were compared using student’s t-test
with significance accepted as p<0.05.

2.6. RNA extraction
RNA extractions were carried out at NTNU Institute for Biology, Trondheim, Norway. Midgut and
hindgut total RNA were isolated using RNeasy Plus Universal Mini Kit (Qiagen, Hilden Germany)
according to the manufacturer’s instructions. RNA concentration and purity were determined using
Nanodrop 8000 (Thermo Scientific, Wilmington, USA). RNA integrity was checked by using Agilent
2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). A RIN equal or above eight
confirmed excellent quality RNA. Three fish from the control group and four fish from the UCS group
were selected from two and three replicates, respectively, and samples from midgut and hindgut were
used to construct the sequencing libraries (14 samples in total).

2.7. Library preparation
Library preparations were carried out at the Centre for Integrative Genetics (CIGENE, ÅS, Norway) using
TruSeq Stranded mRNA Sample Prep HS Protocol (Illumina, San Diego, CA, USA), selecting for 500 bp
fragments. Briefly, polyA containing mRNAmolecules were purified from the total RNA according to the
polyA selection method and then fragmented with the fragmentation buffer. Cleaved RNA fragments
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were primed with random hexamers into first-strand cDNA using reverse transcriptase and random

primers. After, a double-stranded cDNA is synthesized by replacing the RNA template with a second
cDNA strand. The synthesized cDNA was then subjected to end-repair, phosphorylation and ‘A’ base
addition, according to Illumina’s library construction protocol. Libraries were sequenced using single-
end high-throughput mRNA sequencing (RNA-Seq) on Illumina Hiseq 2500 (Illumina, San Diego, CA,
USA) at the Norwegian Sequencing Centre (Oslo, Norway).

2.8. RNA-seq raw data quality control and mapping
Across all 14 samples, a total of 354.7 million single-end, 120 bp reads were sequenced, with an average
17.7 million reads per sample.

Sequences were quality trimmed using cutadapt (v. 1.8.1), whereupon adapter sequences, low-
quality bases (Phred score < 20) and reads with fewer than 40 bases were removed. Trimmed reads
were aligned to the salmon reference genome (ICSASG_v2) using STAR (v. 2.5.2a). Read counts per
gene were quantified from aligned reads using HTSeq-count (v. 0.6.1p1), with gene names annotated
from the NCBI salmon genome annotation (available for download at https://v1.salmobase.org/
download.html). Raw sequence files (fastq) were uploaded to the NCBI sequence read archive (SRA).
SRA accession number is SRP169832.

Thevariance of geneexpressionbetweenandwithin experimental groupswas examinedusinghierarchical
clustering. Plots were generated using the tables of normalized read counts per gene. Hierarchical clustering
and heat maps were generated using the R package heatmap, using a between-sample euclidean distance
matrix generated by the base R package ‘dist’.

2.9. Differential expression analysis and functional annotations
Downstream analysis including differential expression (DE) and functional annotation was completed in
R v. 3.4.1 (http://cran.rproject.org/). Genes were initially annotated with Entrez gene identifiers and
were subsequently annotated to gene symbols and gene descriptions. While gene symbols are
presented in this paper, Entrez IDs were used for KEGG and GO enrichment analysis. Electronic
supplementary tables of DE genes and enriched pathways contain all three identifiers for each
associated gene—Entrez ID, gene symbol and gene description. To quantify levels of DE per gene, a
table of read counts per gene per sample were input into DESeq2 [38], which estimates significant DE
based on a Wald test, using a negative binomial generalized linear model. DESeq2 performs internal
normalization for both sequencing depth (library size) and RNA composition, based on the geometric
mean per gene across all treatment samples.

Significantly DE genes were considered those that had a false-discovery adjusted (Benjamini–
Hochberg) p-value of less than 0.05. We did not include a fold change cutoff but relied on DESeq2 to
identify which genes were significantly DE, as DESeq2 controls for false positives and is sensitive to
small, true differences.

Functional annotation for KEGG and GO pathways was completed using the ClusterProfiler package
v. 3.6.0 [39]. The statistical machinery for enrichment analysis in ClusterProfiler is provided by the DOSE
(disease ontology semantic and enrichment analysis) package v. 3.4.0 [40]. Using DOSE, we identified
enriched pathways by performing an over-representation test, based on a hypergeometric model.
KEGG pathways and GO terms were determined to be significantly enriched if they had Benjamini–
Hochberg adjusted p-values (q-values) of less than 0.05.
3. Results
3.1. Feeding, growth and plasma cortisol
Food consumption, growth data and plasma cortisol were analysed for the whole trial and are presented
in Madaro et al. [37] (electronic supplementary material, figures S13–S15). The UCS group showed a
reduced appetite throughout the experiment; however, the appetite increased in the last 7 days. The
UCS group also showed a significant reduced growth in terms of body mass compared to the control
group after 23 days. Plasma cortisol were significantly elevated in the UCS fish compared to control
fish throughout the experiment, though a lower response was observed during the acute stress test
(5 min chasing) at the end of the experiment (results presented in Madaro et al. [37]).

https://v1.salmobase.org/download.html
https://v1.salmobase.org/download.html
http://cran.rproject.org/
http://cran.rproject.org/
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3.2. Histological evaluation

The sum of results is seen in table 2 and histological sections are represented in figure 1. The villi in the
midgut were in the range 300–407 µm in the hindgut, but with relatively large variation. Enterocyte at the
midsection of the villi had a mean total height of around 50 µm, generally slightly larger in the hindgut
section. The lamina propria was generally widest at the apical part of the villi in midgut followed by the
basal region; however, there was no significant different in size. In hindgut, differences were less notable,
although apical parts still were generally wider than other parts of the villi. The number of GC was
around 60–70 per 0.1 mm−2 in midgut, which was roughly double what was found in the hindgut
sections. Intraepithelial leucocytes were scattered throughout the basal parts of the enterocytes and
totalled around 70 0.1 mm−2. Granulocytes in the lamina propria were difficult to identify with HE
staining and were only positively identified in the midgut where they totalled around 6 per 0.1 mm−2.
Subjecting the fish to three weeks of chronic stress did not appear to have any effect on the gross
histology as measured by the current parameters (figure 1).

3.3. Differentially expressed genes
Gene identification was based on the Atlantic salmon ICSASG_v2 reference genome. Annotation to the
44 868 Atlantic salmon reference genes produced around 29% of duplicated Entrez gene identifiers, but
the vast majority (greater than 99%) of these duplicates were transfer RNA. None of the DE genes were
duplicates. Of the 1030 genes that were differentially expressed (DE) in the midgut, 329 were
downregulated and 701 upregulated (figure 2a; electronic supplementary material, table S4). In the
hindgut 591 genes were differentially expressed, of which 426 were downregulated and 165
upregulated (figure 2b; electronic supplementary material, table S3). There were 114 genes that were
concordantly differentially expressed in both midgut and hindgut (electronic supplementary material,
table S6). The top 2 concordant genes, both strongly downregulated, were rho-associated protein
kinase 2-like (−6.10 log2fc in hindgut and −5.32 log2fc in midgut) and von Willebrand factor A
domain-containing protein 7-like (−4.43 and −5.03 log2fc in hindgut and midgut, respectively).

In terms of global expression patterns, hierarchical clustering showed that midgut and hindgut
samples clustered separately, except for one midgut sample which grouped with the hindgut samples.
UCS and control treatment groups showed less separation in both midgut and hindgut, indicating less
overall within-group variation (UCS versus control) than between the gut regions (midgut versus
hindgut) (electronic supplementary material, figure S1).

3.4. Significantly changed pathway analysis
In themidgut 13 KEGG pathways were significantly enriched (Benjamini–Hochberg adjusted p-values<0.05),
with most pathways involved in cell metabolism and DNA replication and repair (figure 3a, table 3). Within
the two most significantly changed pathways, ribosome (n=49, adjusted p=3.8×10−21) and cell cycle
(figure 4, n=37, adjusted p=1.2×10−10), all associated genes in these pathways were upregulated.

In the hindgut three pathways were significantly enriched (figure 3b, table 4). In the cytokine–
cytokine receptor pathway (n= 25, adjusted p=2.3 × 10−06) all DE genes were downregulated,
whereas cellular senescence (n=18, adjusted p= 5.1 × 10−03) and p53 signalling pathway (n=10,
adjusted p=4.0 × 10−03) contained both down and upregulated genes. Figures for all significantly
enriched KEGG pathways, showing up and downregulated genes, can be found in the electronic
supplementary material, figure S2–S13.

Note that tables 3 and 4 show the Atlantic salmon gene symbol for each DE gene per enriched
pathway. As the Atlantic salmon reference genome has been constructed relatively recently, most of
these are ‘placeholder’ symbols in the form of ‘LOC….’ and are associated with homologous genes in
other species. More information for each of these gene symbols can be found in electronic
supplementary material, tables S1 and S2, including Entrez ID, full gene description, log2 fold change
and false-discovery adjusted p-values.
4. Discussion
The current study presents a snapshot of the transcriptome response of Atlantic salmon parr midgut and
hindgut after three weeks of a UCS regime and displays mechanisms that may be tuned in order to cope
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(a) (b)

(c) (d)

Figure 1. Midgut sections in Atlantic salmon parr before (a) and after three weeks (b) exposure to unpredictable stress. Hindgut
sections from the same fish before (c) and after three weeks after stress (d ). G = goblet cells, arrow = Intraepithelial lymphocytes,
arrow head = Granulocytes. Bar = 25 um.
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Figure 2. Overview of fold changes in gene expression in Atlantic salmon midgut (a) and hindgut (b). y-axis indicates the statistical
adjusted p-value, and x-axis indicates the log2-fold change between reads per gene. Up arrows indicate upregulated and down
arrows represent downregulated genes. Significantly DE genes are coloured (Benjamini–Hochberg adjusted p-values< = 0.05)
and non-significant DE genes are grey.
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with long-term exposure to stress. The midgut transcriptome data clearly reveals upregulation of several
processes that sustain the renewal of the tissue following chronic stress at different levels, from DNA
replication to protein synthesis. Conversely, in the hindgut UCS resulted in mostly downregulation of
transcriptome regulatory pathways involved in the immune-inflammatory host response, cell ageing
and apoptosis, in the attempt to cope with chronic stress and limit the ‘wear and tear’ of the body
[41,42]. A comparison of both histological sections for midgut and hindgut did not show significant
differences in their morphology, number of GC, intraepithelial leucocytes and granulocytes.

In humans, stress is linked to several gastrointestinal diseases, like peptic ulcer, functional dyspepsia,
inflammatory bowel disease and irritable bowel syndrome [5]. Stress has also been shown to effect the
gastrointestinal tract across fish species. For example, former studies on fish have reported that acute
stress caused detachment of the intestinal mucus layer, increased permeability and loss of junctional
complexes [10,11]. However, most of these studies are limited to acute stress and single stressor, and
an increasing number of studies are also showing that many fish, including salmonids, have a
remarkable ability to adapt to stressors [29,37,43].

Chronic stress is also known to reduce appetite and growth in salmonids [37,44,45]. Accordingly, at
the end of the 23-day experiment, the stressed group showed a null growth, but no loss of body weight
compared the control fish. Initially, fish had a reduced feed intake and elevated cortisol response
following a stress test, showing all signs of chronic stress [37]. However, appetite increased in the UCS
group while the cortisol response to stress decreased towards the end of the trial, clearly showing
signs of habituation to the treatment. The hypothesis that fish started to habituate to stress may also
be supported by the fact that after the end of the trial, following smoltification and seawater transfer,
the UCS group showed an overall higher specific growth rate compared with unstressed control
groups (data showed in Vindas et al. [46]). The recovery of the fishes’ appetite and habituation to
stressors in the final part of the experiment may also explain the lack of histological features expected
after stress, such as epithelial flattening or changes in immune cell density [12–14]. Sampling at an
earlier timepoint may have revealed different morphological features. Transcriptomic data, on the
other hand, indicate some reduction in expression of the mucin-2 gene in both midgut and hindgut,
but the reduction was not related to changes in GC size or abundance. Transcriptomic data also did
not show any significant effects on tight junction or cell-to-cell adherence which is a common feature
in chronic stressed animals [12,14]. The lack of appetite in the initial part of the trail could also
influence the intestinal morphology. However, a previous study done on fasting Atlantic salmon
showed that the intestine was regenerated to a normal state after only 7 days of refeeding [47].

The expression profile in the midgut sections showed that the main effect of UCS was the
upregulation of genes related to regeneration pathways such as regulation of cell cycle and DNA
replication pathways, indicating that the fish are using more energy to maintain homeostasis in the
midgut, and therefore are still affected by the UCS even after habituation. The enriched KEGG
pathways include cell cycle, Ribosome and DNA replication among others (figure 3a; electronic
supplementary material, figures S2, S4–S7, S9–S13). Of interest was that UCS caused upregulation of
all the genes that translate for the mini-chromosome maintenance protein complex (MCM, figure 4),
which is essential for cell growth, initiation and elongation steps in DNA replication [48].
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Figure 4. KEGG metabolic pathway map showing significantly differentially expressed genes within the cell cycle pathway for
midgut control versus UCS. Red coloured genes are downregulated and purple coloured genes upregulated. All DE genes were
upregulated in this pathway.
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Under DNA duplication, the enteric epithelia requires strict control to avoid errors that may lead to
the permanent alteration of the nucleotide sequence of the genome. The proliferating cell nuclear antigen
( pcna) gene, which was upregulated in the UCS fish, is a well-known cell cycle marker that plays a central
roles in cell cycle control and DNA replication [49], but is also involved in DNA excision repair,
chromatin assembly and RNA transcription [50]. In the same context, the UCS upregulated the
heterotrimeric replication protein a (rpa) gene, which is also involved in DNA replication, repair,
recombination and telomere maintenance, coordinating the cellular response to DNA damage.
Replication protein A, together with the upregulated recombination protein A (rad51), play an
important role in the disposal of nuclear DNA waste.

The transcriptional data show that the fish require an increasing amount of energy to support midgut
cell growth and renewal under stress, as indicated by enrichment of cell cycle and oxidative
phosphorylation pathways. In fact, UCS fish showed an upregulated expression of 18 genes involved
in the oxidative phosphorylation metabolic pathways (electronic supplementary material, figure S4), in
which nutrients are oxidized to release energy required to produce adenosine triphosphate (ATP)
inside mitochondria [51]. Interestingly, when nutrients are abundant, a similar upregulation of these
pathways is observed in oncogene cells, which release energy to support cell growth and proliferation
[52]. In addition to the regeneration of new tissue, the transcriptome data also indicated that removal
of older/damaged tissue was occurring, as evidenced by the upregulation of 21 genes involved in the
construction of both the proteolytic core 20S, and the regulatory subunit that constitute the
proteasome protein complex (electronic supplementary material, figure S9).

Transcriptome results showed fewer differentially expressed genes and enriched pathways in the
hindgut, compared to the midgut. Nevertheless, UCS caused a major downregulation of the
differentially expressed genes in the hindgut tissue. Unfortunately, it was only possible to associate a
small part of the differentially expressed set of genes to metabolic pathways (figure 3b and table 4)
and, in addition, most of these genes were correlated at the cytokine–cytokine receptor interaction
(figure 5). Cytokines are crucial intercellular regulators involved in immune and inflammatory
responses [53]. Both cytokines and their receptors can be grouped by structure into different families.



Table 4. List of enriched (adjusted p< 0.05) KEGG pathways containing significantly differentially expressed genes (adjusted p< 0.05)
in the Atlantic salmon hindgut.

description count p-value adjusted p q-value genes

cytokine–cytokine

receptor

interaction

25 2.1 × 10−08 2.3 × 10−06 2.1 × 10−06 LOC106613637, LOC106608548,

LOC106568165, LOC106606534,

LOC106563690, LOC106573901,

LOC106579503, ccr6,

LOC106590519, LOC106606846,

LOC106612744, LOC106591126,

LOC106564390, LOC106611874,

ccr9, il2rb, LOC106566619,

LOC106588537, LOC106563758,

LOC106601456, LOC106607522,

LOC106607352, LOC106571057,

LOC106564996, LOC106597311

cellular senescence 18 7.4 × 10−05 4.0 × 10−03 3.6 × 10−03 LOC106603043, LOC106607826,

LOC106582436, pik3cd,

LOC106582833, LOC106583670,

LOC106588377, LOC106562702,

LOC106565716, ccnb1,

LOC106566708, LOC106573197,

cdc2, LOC106608573,

LOC106611545, LOC106587590,

ccnb2, LOC106567114

p53 signalling

pathway

10 1.4 × 10−04 5.1 × 10−03 4.7 × 10−03 OC106607826, gtse1, ccnb1,

LOC106566708, LOC106573197,

cd82, LOC106583799, cdc2,

ccnb2, rrm2
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Of the downregulated genes in the cytokine–cytokine receptor interaction pathway (figure 5), the
subfamily CC chemokines receptor ccr6, ccr7 and ccr9 and the ligand ccl4 can be found, which are
critical for the leucocyte migration during inflammation [54,55], and activation of the secondary
immune response [56]. Interestingly, also in human clinical trials, using a ccr9 antagonist to reduce
ccr9 gene expression has been modelled as an effective treatment in preventing inflammatory bowel
disease, a chronic inflammation of the gastrointestinal tract that causes long-term tissue damages and
often irreversible impairment of the structure and functions [57].

UCS was also associated with a downregulation of the interleukin 6 signal transducer (il6st) also known
as gp130 that, conversely to its name, is not only specific for Il6 but it is shared by all cytokines in the
family [53]. In a similar manner, UCS downregulated the interleukin 2 receptor subunit beta (il2rb) and
gamma (il2rg). IL2RG is an important signalling component of many interleukin receptors as a
common signal transducer in their receptor complex, including those of interleukin -2, -4, -7–9, -15
and -21, and it is thus referred to as the common gamma chain. IL2RB, on the other hand, is only
shared by IL2 and IL15. In mammals, stress can have biphasic actions on the immune system: when
the stressor is acute it activates the acquired immune response and/or stimulates the production of
immune mediators locally; on the contrary, chronic exposure to stress causes immune suppression
[58]. Similarly, in this study, it appears that chronic stress led to a general downregulation of many
cytokine pathways. Cortisol, above the other stress-regulated hormones, is recognized as one of the
main factors inhibiting the release of proinflammatory cytokines (for an exhaustive review see Yada
and Tort [59]). We hypothesize that under a chronic stress regime, the expression pattern just
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Figure 5. KEGG metabolic pathway map showing significantly differentially expressed genes within the cytokine–cytokine receptor
interaction pathway for hindgut control versus UCS. Red coloured genes are downregulated and purple coloured genes upregulated.
All DE genes were downregulated in this pathway.
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described would prevent energy expenditure on one side, but on the other reduce the fish immune
response and inflammations. Therefore, this coping mechanism could potentially cause a reduced
immune resistance of fish and a major susceptibility to pathogen infection.

More intricate is the link between UCS and the identified differentially expressed genes involved in
the p53 signalling and cellular senescence (electronic supplementary material, figures S3, S8). In
mammals, the activation of the p53 pathways are induced by several stress signals, including DNA
damage, oxidative stress and activated apoptosis. The p53 protein is a transcriptional activator of
several p53-regulated genes. Interestingly, though many genes of the p53 pathway were differentially
expressed in the hindgut, the p53 gene itself was not. Unfortunately, it is not possible to say which
kind of stress signal activated genes that are associated with this pathway.
5. Conclusion
Midgut and hindgut transcription and histological analyses were conducted on Atlantic salmon
following three weeks of UCS. Histological analysis did not show any significant effect on
morphometric parameters. In the midgut, 1030 genes were differentially expressed following UCS, of
which 329 were downregulated and 701 upregulated. Of these 279 genes were involved in 13
pathways. Upregulated pathways include tissue repair pathways such as cell cycle, DNA replication,
mismatch repair, nucleotide excision repair, base excision repair, ribosome and ribosome biogenesis,
RNA transport, spliceosome, pyrimidine metabolism, proteasome, homologous recombination and
oxidative phosphorylation. In the hindgut, UCS resulted in a regulation of 591 differentially expressed
genes where 426 were downregulated and 165 upregulated. A total of 53 genes were related to three
pathways. Downregulated genes include cellular senescence pathways, p53 signalling and cytokine–
cytokine receptor pathways.

Although the data represents a snapshot of the gut condition at the end of a 23-day trial, results
indicate that salmon were at least partly habituating to the UCS treatment. Even though no
morphological differences were seen, the transcriptional patterns show that the fish were still affected
by the UCS. In the midgut, the main upregulation was related to cell growth and repair, while in
the hindgut there were indications of the activated apoptotic pathway, reduced cell repair and
inhibited immune/inflammatory capacity. This may be the trade-off between habituating to UCS
and health resilience.
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