1	The role of marine mammals in the Barents Sea food web
2	Marie-Anne Blanchet ^{1*} , Raul Primicerio ¹ , Andre Frainer ^{1,2} , Susanne Kortsch ³ , Mette Skern-
3	Mauritzen ⁴ , Andrey V. Dolgov ⁵ , Michaela Aschan ¹
4	¹ Norwegian College of Fishery Science, UiT the Arctic University of Norway, 9037 Tromsø,
5	Norway
6	² Norwegian Institute for Nature Research, Fram Center, 9296 Tromsø, Norway
7	³ Environmental and Marine Biology, Faculty of Science and Engineering, Åbo Akademi
8	University of Turku, Finland
9	⁴ Institute for Marine Research, Bergen, Norway
10	⁵ Knipovich Polar Research Institute of Marine Fisheries and Oceanography (PINRO), 6
11	Knipovich Street, 183038 Murmansk, Russia
12	Corresponding author: tel: +47 77 72 32 55; e-mail:marie-anne.e.blanchet@uit.no
13	ORCID 0000-0001-6704-8568
14	
15	Abstract: 200 words
16	Marine mammals are important players in the Barents Sea ecosystem but their food web role
17	is poorly known. We identify food web-related characteristics within and between
18	phylogenetic groups for 19 marine mammals. As a group, they are directly connected to the
19	most central species in the Barents Sea (i.e. cod and haddock) and consume over half of the
20	available species. Pinnipeds are the most homogenous phylogenetic group with high
21	omnivory and many prey species. Mysticetes are split between well-connected species with
22	high omnivory like the humpback whale, and peripheral specialists like the blue whale. Some

23 species are consistently clustered together based on food web-derived indices, suggesting

redundancy in topological role forming two groups. One is dominated by Arctic seals and the other by baleen whales. Marine mammals generally contribute to network modularity as their trophic links are mostly within their module. However, Atlantic species such as grey seals act as module connectors decreasing modularity which might negatively affect ecosystem robustness with perturbation effects spreading further and quicker in the food web. In the Arctic reaches of the Barents Sea, climate warming is likely to bring about extensive changes in food web structure and robustness through a redistribution of species.

31

Key words: Food webs - Barents Sea - Marine mammals – Network – Topological role

34 Introduction:

Marine mammals are top predators that influence food webs through direct predation 35 36 indirect cascading effects and risk-mediated effects (Frank et al., 2005; Frid et al., 2007a; Heithaus et al., 2008; Baum and Worm, 2009; Roman et al., 2014; Hammerschlag et al., 37 38 2019). Although marine mammals are generally thought to be important players in many marine ecosystems due to their abundance, large body size and high trophic status (Bowen, 39 1997; Estes et al., 2009), their food web structural role as a group and per species is rarely 40 41 assessed. A few studies have considered bottom-up or top-down forcing and include a complete food chain (Springer et al., 2003; Bundy and Fanning, 2005; Trites et al., 2006). 42 Yet, the focus has been on a single species or a few species in relation to their main prey 43 abundance and distribution (Mackinson et al., 2006; Bluhm and Gradinger, 2008; Skern-44 Mauritzen et al., 2011; Durant et al., 2014) or their habitat use (Moore, 2008). Marine 45 mammals are a diverse phylogenetic group with a variety of diet and habitat requirements, but 46 they may also display some degree of resource overlap in certain regions (Spitz et al., 2006; 47 Bogstad et al., 2015; Haug et al., 2017). However, the ecological role of marine mammals 48

from a food web perspective and their degree of dietary overlap have not been investigated, 49 50 nor the similarities and differences between species. These knowledge gaps challenge conservation and management practices while drastic changes are occurring in most marine 51 52 ecosystems especially at high latitudes (Dalpadado et al., 2014; Laidre and Regehr, 2017). The role of top predators in an ecosystem can rarely be assessed empirically, except in cases 53 of extirpation or sharp decline in a species' abundance (Frid et al., 2007a; Heithaus et al., 54 55 2008), and is thus usually evaluated by modelling approaches (Lindstrøm *et al.*, 2009; Morissette et al., 2012; Heymans et al., 2014). Food web topology can help to assess the 56 ecological role of species within an ecosystem (Jordán et al., 2006) without the extensive and 57 58 detailed data requirements of a fully parametrized ecosystem model. Food web analyses are useful tools to address ecological role in ecosystems based on a 59 species' links to prey and predators and on its position in the ecological network (Luczovich 60 61 et al., 2003; Dunne, 2009; Jordán, 2009; Lai et al., 2012). Food webs provide a description of species interactions, ecosystem structure and functioning (Dunne et al., 2002a; Ings et al., 62 2008; Olivier and Planque, 2017) and determine how perturbations propagate and energy 63 flows from basal to top species (Rooney et al., 2006). Trophic interactions are considered to 64 be one of the main regulators of ecosystem dynamics (Link, 2002; Allesina and Pascual, 65 66 2008), and the food web structure can help evaluate ecosystem vulnerability. At a smaller scale, species are not connected randomly in a food web, but are generally found in highly 67 organised substructures (Dunne et al., 2002a). These configurations are tightly linked to a 68 69 food web's robustness to perturbations (Dunne and Williams, 2004). The role of species in

⁷¹ species and on their topological position (Dunne *et al.*, 2002a; Jordán *et al.*, 2006; Jordán,

maintaining ecosystem functioning depends, at least partly, on their direct links to the other

70

72 2009). For example, central and functionally unique species, which strongly affect food web

raginary structure, might propagate the ecological effects of perturbations through trophic cascades,

whereas species that are more peripheral may be less influential on the network characteristics
and dynamics. Identification of key players and understanding of the role of species, or
groups of species, is therefore of paramount importance for conservation measures (Jordán,
2009; Worm and Paine, 2016).

Here we use a topological network approach to assess the ecological role of marine
mammals in a highly resolved food web topology from the Barents Sea (Planque *et al.*, 2014).
Our objectives were to 1) describe the topological position of marine mammals through food
web-related properties, 2) to assess their topological similarities and 3) to characterize
differences both within and between phylogenetic groups from a food web perspective.

83

84 Material and methods:

85 *Study area*

86 The Barents Sea is a shallow shelf sea (400 m of maximum depth) that is part of the Arctic continental shelf. Its limits are defined by the shelf break bordering the Norwegian Sea 87 on the West, the archipelago of Novaya Zemlya in the East, the Arctic shelf edge in the North 88 and the Norwegian and Russian continental coastlines in the South (Oziel et al., 2017). It is a 89 transition zone from warm and saline Atlantic water to cold and fresh Arctic water. In the last 90 91 decades substantial oceanographic changes have occurred in this region with a dramatic increase of atmospheric and water temperatures and a higher inflow of Atlantic water 92 (Dalpadado et al., 2012, 2014; Eriksen et al., 2017). This in turns is causing changes in the 93 ecosystem by affecting the distributional range of species and their trophic links (Fossheim et 94 al., 2015; Kortsch et al., 2015; Frainer et al., 2017; Johannesen et al., 2017). The Barents Sea 95 is highly productive, supporting a large biomass from phytoplankton to marine mammals and 96 seabirds (Dalpadado et al., 2014) as well as an intense fishery activity taking place all year-97 round (ICES, 2014). The Barents Sea includes one of the world's largest fishery area targeting 98

99 marine mammals, fish, crustaceans and molluscs (Misund *et al.*, 2016). The most important

100 target species include northeast Atlantic cod (Gadus morhua), capelin (Mallotus villosus),

101 haddock (Melanogrammus aeglefinus) and Greenland halibut (Reinhardtius

102 *hippoglossoides*)(Gjøsæter, 2009).

103 *Food web data*

104 A food web consists of species and their trophic relationships (Odum, 1983). Network 105 theory provides a mathematical framework that allows to represent these systems as the nodes 106 and links of an ecological network (Pimm et al., 1991). To minimize bias due to uneven resolution in food web data (Dunne 2009), species can be grouped into trophospecies (TS), 107 108 i.e. species sharing prey and predators. We used a highly resolved Barents Sea food web topology compiled by Planque et al., (2014) updating the trophic links between marine 109 mammals and their prey (Tables S1, S2, S3). We also added boreal marine mammal species 110 111 with potential for poleward expansion, such as the grey seal (Halichoerus grypus), harbour seal (Phoca vitulina) and the blue whale (Balenoptera musculus), and Arctic species whose 112 numbers are currently increasing such as the bowhead whale (Balaena mysticetus) (Gilg and 113 Born, 2005; Wiig et al., 2010). The trophic links are binary (unweighted), only indicating 114 115 whether a feeding link between two species exists or not.

116 Binary food webs provide useful information on the pathways of energy flow, the network structure and the topological role of species. As binary food webs do not include the 117 relative importance of a prey item in a predator's diet, as is the case for weighted food webs, 118 they ignore a predators' preferences and foraging efficiencies for its various prey. A limitation 119 of ignoring prey importance is that excessive emphasis may be given to weak feeding links. 120 However, given the difficulty of acquiring quantitatively reliable diet data, a binary food web 121 approach allows to circumvent this problem by stating which species could be eaten by a 122 predator if available. The strength of the approach is that it delivers information on the 123

ecological role and food web position of species. It also provides insights on pathways of
energy flow and structural properties of ecological networks that are otherwise not possible to
obtain for comprehensive food webs. This approach also provides an overview of a species'
dietary plasticity, which is important to consider when changes in prey abundance and
distribution occur.

129 In total, the food web comprised 239 species or TS including detritus and members of the five ecological groups: plankton (52 including 43 zooplankton species and 9 phytoplanton 130 species), benthic invertebrates (81), fish (77), seabirds (9) and marine mammals (19) (Fig. 131 1a). Diet information for certain species was not available from the Barents Sea; in such cases 132 133 we included diet information from other ecosystems. We assumed that if a link was documented in an ecosystem other than the Barents Sea, and if the prey and predator are both 134 found in the Barents Sea food web, then the link is also likely to exist in the Barents Sea. 135 136 Food web metrics All numerical and statistical analyses were performed using the software R (R Core Team 137 2018). 138 The structure of food webs can be described using a series of metrics (Table 1) calculated on 139 the basis of the number of species, the number of trophic links and their distribution across the 140

141 network (Lau *et al.*, 2017). These indices are calculated at the network level. Here we

142 calculated 14 standard measures of food web structural properties (See Table 1 for the

143 definitions) : number of species, number of links, links density, connectance, average degree,

in-degree out-degree, level of omnivory, average shortest path, average trophic level,

proportion of predator, omnivore, cannibal and basal species (Pimm *et al.*, 1991; Christensen

146 and Pauly, 1992; Dunne *et al.*, 2002b; Williams *et al.*, 2002; David *et al.*, 2004; Dunne and

147 Williams, 2004; Bascompte *et al.*, 2005; Thompson *et al.*, 2007; Kones *et al.*, 2009).

To indirectly explore the robustness of the network to the removal of its most 148 149 connected species, we fitted the cumulative distribution of degrees with three simple models: power law, exponential and truncated distribution (de Santana et al. 2013). Networks that 150 151 follow a power law degree distribution are very vulnerable to the removal of the most connected nodes, whereas networks that follow an exponential degree distribution are less 152 vulnerable (Dunne et al., 2002a; Estrada, 2007; de Santana et al., 2013). This is because in the 153 first case, a small proportion of species form links with the majority of the other species in the 154 155 network, forming a structural bottleneck. Hence the disappearance of these very connected species would cause the collapse of the network through secondary extinctions (Estrada, 156 157 2007). In the second case no such species exist as the number of links are spread more evenly between all the species providing a greater network robustness to species' removal (Estrada, 158 2007). 159

160 Food webs tend to divide into groups of more densely connected species called modules (Clauset et al., 2004; Newman, 2006). Species belonging to the same module have 161 more trophic links with each other compared to the rest of the species and tend to have shorter 162 paths between them. We partitioned the species into food web modules using the walktrap 163 algorithm (Pons and Latapy, 2006), which relies on a random walk. The algorithm assumes 164 165 that species belonging to the same food web module will be connected by the shortest paths assuming a random walk (Pons and Latapy 2006) because they are more likely to have direct 166 links with each other than with other species in the food web. The algorithm returns module 167 affiliations for each species. We used the R package "igraph" for the above computations 168 (Csardi and Nepusz, 2006). 169

170

171 Species-specific centrality measures and topological role

The importance of a species within a network can be evaluated based on the centrality 172 173 of its position relative to other species (Wasserman and Faust, 1994). Central species tend to have a greater influence on the network structure than peripheral ones (Jordán et al., 2006; 174 175 Jordán, 2009; Lai et al., 2012). Each species can be characterized by a series of metrics (Table 1) assessing their centrality and multiple centrality measures are generally recommended 176 because single indices do not offer an exhaustive description of a species' topological position 177 178 and role (Lai *et al.*, 2012). These species-specific metrics can be either direct (taking into 179 account only the immediate neighbours or direct links) or indirect (taking into account further links in the network) (Table 1). 180

181 We first calculated four direct centrality measures: (i) the in-degree (number of prey), (ii) the out-degree (number of predators), (iii) the degree (the total number of prey and predators), 182 and (iv) the level of omnivory. Further, we calculated six indirect centrality measures: (i) 183 184 eigenvector centrality, which reflects the centrality of a species by taking into account the centrality of its neighbour essentially representing a weighted version of degree centrality 185 (Wasserman and Faust 1994 in Lai et al 2012); (ii) the betweenness centrality. which reflects 186 how often a species lies on the shortest path between a pair of species; (iii) information 187 centrality, which is similar to betweenness centrality but considers all paths between a pair of 188 189 species (Wasserman and Faust, 1994); (iv) closeness centrality, which measures how many steps away a species is from the others in the network. The greater the closeness centrality of 190 a species the quicker it will affect the other species through both direct and indirect effects. 191 192 We also used (v) Google's PageRank algorithm (Brin and Page, 1998) as a variant of the eigenvector centrality measure because it takes into account the direction of the feeding links 193 and therefore places more emphasis on the in-degree, i.e. number of prey (Allesina and 194 Pascual, 2009). In addition, the (vi) trophic level (TL) of each species was calculated based on 195 path lengths from the basal species to the species of interest, using either all the shortest paths 196

(SWTL, based on paths with minimum number of intermediate species), or all the longest
paths (LWTL, based on paths with maximum number of intermediate species), weighted by
the number of prey species (Thompson *et al.*, 2007). An averaged TL was also calculated for
each species based on the average shortest path, essentially representing the weighted average
of its food items. All above indices were calculated using the "CINNA" and "igraph"
package in R (Csardi and Nepusz, 2006; Ashtiani, 2019).

203 Whether species interact only within their modules or equally with species in other 204 modules will determine their role in the spreading of perturbations and in energy flow pathways. To assess this we used the method of functional cartography (Guimerà and Nunes 205 206 Amaral, 2005; Kortsch et al., 2015) which characterizes how each species is positioned in its own module and with respect to species in other modules. Each species was assigned a 207 208 module membership based on the walktrap algorithm as described above. The within and 209 between module linkage of a species was addressed using two metrics: the z-score or withinmodule degree and the participation coefficient score (PC) or among-module degree (table 1). 210 211 The z-score reflects how well a species is connected to species in its own module relative to the other species within its module, measured in terms of standard deviations from the mean. 212 In our case, this represents whether a species has more or less links within its module 213 214 compared to the module average. The 2.5 threshold proposed by Guimera and Nunes Amaral (2005) is used as reference to identify species with considerable higher within module linkage 215 than average. Accordingly, species with z > 2.5 are qualified as module hubs whereas species 216 with z <2.5 are non-hubs. Conversely, the PC score indicates how well a species is connected 217 to species belonging to other modules and its values vary continuously between 0 and 1. 218 219 Guimera and Nunez Amaral (2005) define a species that has at least 60% of its links within its module as peripheral, interacting preferentially with species within its module. This 220 corresponds to PC = 0.625. A species with all its links within its own module will have a PC 221

= 0 whereas for a species with all its links evenly distributed among modules PC will tend 222 223 towards 1. To determine each species' topological role, the z-PC space is divided into four regions by the threshold values of z=2.5 and PC = 0.625 (Guimerà and Nunes Amaral, 2005; 224 225 Olesen et al., 2007; Carstensen et al., 2012; Kougioumoutzis et al., 2014; Kortsch et al., 2015; Torre *et al.*, 2019). Species with z > 2.5 and PC < 0.625 are defined as **module hubs** 226 227 because they have few links outside of their own module but connect to most of the species 228 within their module. They are important within their module as they maintain its coherence. 229 Species with z < 2.5 and PC < 0.625 are defined as **network peripheral** because they have few links outside of their module and connect with few species within their module. These 230 231 species are often specialist species with the lowest number of prey. Species with z < 2.5 and PC > 0.625 are defined as **module connectors** as their links tend to be evenly distributed 232 among modules. These species are important to network coherence as they connect modules 233 234 together. Finally species with z > 2.5 and PC > 0.625 are defined as **network connectors** because they have links with most of the species within their module and the majority of their 235 236 links with other modules. Hence these species are important both for their own module but also for the entire network coherence. 237

We used a principal component analysis (PCA) to compare marine mammal species to other functional groups in terms of centrality measures and to assess how homogenous they are as a group. Before analysis, each centrality measure was centred and standardized to limit the effect of differences in variance among variables on the PCA outcome.

*Topological redundancy of marine mammals; intra- and inter- functional group comparison*Quantifying structural redundancy in communities is not a straightforward task, but network
analysis provides a synthetic framework for assessing similarities in direct and indirect
trophic interactions (Clarke and Warwick, 1998; Walker *et al.*, 1999; Jordán, 2009). We
consider several metrics encompassing different aspects of similarity at the local scale (direct

neighbours) and at the network scale (considering the network positions of each species). We 247 248 chose four indices of similarity. 1) The trophic overlap quantifies the percentage of diet overlap between two species based on the presence of an item in the diet of a consumer. This 249 250 measure is not symmetrical as two species usually have different diet breadth and takes into account only a part of a species' direct neighbours (here the prey species). 2) The Jaccard 251 252 index is a measure of structural equivalence and is defined as the ratio of shared prey and 253 predators over the total number of prey and predators for both species (Lai *et al.*, 2012; 254 Olivier and Planque, 2017). This index considers all the direct neighbours (prey and predators). The index was calculated using a custom written code in R. 3) The regular 255 256 equivalence index measures the similarity between two species based not only on their direct links (prey and predators) but also considering their position within the food web (Luczovich 257 et al., 2003). Therefore this index allows to partition species into groups that play the same 258 259 structural roles even if they do not share the same prey or predators. The index of regular equivalence was calculated with the CATREGE algorithm (Borgatti and Everett, 1993) using 260 261 the sna R package (Butts, 2008). 4) Finally we used the Euclidian distance between pairs of marine mammals species calculated on the basis of the 14 metrics described in the previous 262 paragraph. We assume that the greater the distance between two (or more) species, the more 263 264 dissimilar they are in terms of functional characteristic (Walker et al., 1999). The trophic overlap and Jaccard indices are linked to the concept of dietary niche overlap and competition 265 (Pianka, 1974) whereas the concepts of regular equivalence and network centrality are linked 266 267 to the trophic role of two species and their potential functional redundancy regardless of their diet overlap (Luczovich et al., 2003). Obviously two species with complete niche overlap and 268 the same set of predators will also have the same functional role in the food web; however 269 two species with very different sets of prey and predators can have the same topological role 270 (Olivier and Planque, 2017). 271

For each index of similarity, we performed a hierarchical clustering, computing pvalues for each cluster via multiscale bootstrap resampling. High p-values (>0.95) indicate that clusters of species are strongly supported by the data (Shimodaira, 2004). The clustering

was performed using the pvclust package in R (Suzuki and Shimodaira, 2006).

276 **Results**

277

275

Structural properties of the food web

278 The 239 trophospecies included in the food web were connected through 2464 links yielding a link density of 10.3 links per species. The average number of links was 20.4 per 279 species with an equal average number of prey or predators (10.2 \pm 12.6 and 10.2 \pm 14.3 280 281 respectively). At the network scale, 4% of all the potential links (if all species in the food web were linked) were realized (connectance = 4%), and 97% of the species had at least one prey. 282 Basal species consisted mainly of primary producers and detritivores (3% of the species, 283 284 n=7). Conversely, 93% of the species had at least one predator while 7% did not have any. Fifty-two percent of the species were omnivores, i.e. they were feeding across several TL and 285 11% were cannibals. The shortest path length between the consumers and each of the seven 286 basal species was on average 2.3 whereas average TL was 3.08. The cumulative degree 287 distribution was best fitted by an exponential distribution (AIC $_{exp} = -650$; AIC $_{power} = -160$; 288

AIC truncated = 22) (Fig. 2).

290 Marine mammals in the food web

As a group, marine mammals consume 134 available TS of the Barents Sea food web, which represents 56% of the available species. Prey of marine mammals belong to 60 different families, including zooplankton, benthos, fish and other marine mammals. This group has the highest number of prey items per species than any other ecological group (mean_{mammals}= 27.5, \pm 16; mean_{plankton}= 4.9 \pm 4.9; mean_{benthos} = 4.5 \pm 8.0; mean_{fish}= 15.5 \pm 18.1; mean_{birds}= 13.1 \pm 10.8 prey / predator). Metrics calculated for each species of marine

mammals are presented in table 2. The number of marine mammals' prey ranges from four, 297 298 for the sperm whale (*Physeter microcephalus*), to 52 for the harbour porpoise (*Phocoena* phocoena) and differs between phylogenetic groups (Fig. 2, table2). Odontocetes (toothed 299 300 whales) show a particular large spread in number of prey items and include species with the lowest and highest number of in-degrees. Mysticetes (baleen whales) and pinnipeds (seals) 301 302 have both a greater total number of links compared to odontocetes and pinnipeds are more 303 homogenous as a group (Fig. 2, table 2). It is also worth noting that the polar bear (Ursus 304 *maritimus*) is among the species with the lowest total number of trophic links (prey + predators) with only 8 direct links. 305

306 The PCA based on the food web characteristics of each species shows that most of the marine mammals share similar characteristics compared to other functional groups (Fig. 3a). 307 308 The first axis of the PCA indicates that marine mammals are generally associated with longer 309 paths, high TLs between 3.5 and 5.2, large number of prey, small number of predators (range 0-4) and are connected to the maximum number of basal species (n=7). They score low on the 310 311 second axis that mostly characterizes species by their measures of centrality in the food web. However, marine mammals are connected to the most central species in the network as shown 312 by their globally high eigenvector centrality scores and page rank scores. As a group, marine 313 314 mammals have food web characteristics based on centrality measures similar to those of seabirds and some predator fish and opposite to plankton and benthic invertebrates (Fig. 3a). 315 This is confirmed by the position of the centroids for each group, showing a proximity 316 317 between fish, marine mammals and seabirds, while plankton and benthic invertebrates tend to be more similar to each other and located away from the other groups (Fig. 3a). 318

Although marine mammals as a group show some commonalities, some differences between phylogenetic groups and species are apparent (Table 2, Fig. 3b). Pinnipeds are the most homogenous group associated with the highest level of omnivory and large number of

prey which are well connected to the rest of the network as shown by the high average eigen 322 323 vector values. We note the exception of the walrus (Odobenus rosmarus) that has the highest level of omnivory (0.81) of all marine mammals and the lowest number of prey (n=19) of the 324 325 pinnipeds (range 19-49). Mysticetes, on the other hand are generally less central than the pinnipeds although there is a certain variability in the group. For example, two species, the 326 327 blue whale and the bowhead whale are specialists with a low TL (range 3.5-3.8) feeding 328 mostly on peripheral planktonic prey (Fig. 1b). The three other baleen whales species feeding 329 on a wider diversity of prey at a higher TL (range 3.8-4.5) are more omnivorous. Odontocetes are the most heterogeneous group including species with few prey and low centrality 330 measures such as the sperm whale, and more central species such as the harbour porpoise, 331 which has centrality measures similar to those of pinnipeds. Species with the highest TL are 332 the polar bear and the killer whale (TL= 5.2) (Orcinus orca) feeding also on other species of 333 334 marine mammals, whereas the species with the lowest TL (TL=3.5) is the bowhead whale feeding mostly on zooplankton. 335

336

Marine mammal module affiliation

The walktrap algorithm split the food web into four distinct modules containing 55, 337 49, 42 and 93 species (Fig. 1a). Module A was dominated by plankton, modules B and C by 338 339 benthos and module D had a majority of fish (Fig. 1a, Fig. 4). The clustering coefficient measuring the probability that two nodes adjacent to a third are also linked was on average 340 0.21 in the food web.. Marine mammals were segregated in two distinct modules, A and D, 341 342 which comprise 5 and 14 marine mammal species, respectively (Fig. 1, 4). Mysticetes segregate in module A dominated by plankton whereas pinnipeds and odontocetes are found 343 344 in module D dominated by fish (Fig. 4). Two species do not follow this pattern; the whitebeaked dolphin (Lagenorhynchus albirostris) grouped with the baleen whales (module A) and 345 the minke whale (Balaenoptera acutorostrata) grouped with the pinnipeds and the rest of the 346

odontocetes (module D This patterns might be due to the fact that white-beaked dolphins
share 73 % of their prey item with marine mammals from module A and minke whales
share92% of their prey items with marine mammals from module D.

Marine mammals tend to interact more with species within their modules than in other

modules. This is especially true for baleen whales in module A that have 86% of their links 351 352 within that module (Fig. 4). This is also the case, although to a lesser extent for marine 353 mammal species in module D with 60% of their links within module D (Fig. 4). The above 354 finding agrees with the functional cartography analysis (Fig. 5). The majority of marine mammal species are considered as network peripherals interacting mainly with species within 355 356 their own modules, although there is a wide spread especially in their among-module connectivity (PC) scores. Some species, such as the blue whale, interact mainly with species 357 within their own module, while others, like the harbour porpoise, interact more with species 358 359 outside of their module. One species acts as module connector: the grey seal (Halichoerus grypus). It is worth noting that the walrus (Odobenus rosmarus) and the bearded seal 360 (Erignathus barbatus) metrics are close to those of module connectors. 361

362 *Diet overlap and topological redundancy*

350

The dietary niche overlap is the highest among baleen whales (mysticetes) followed by 363 364 seals while the lowest overlap occurs within the odontocetes (Fig. 6a, S1a, Table 3). The same observation is true by considering the Jaccard index, which takes into account only the shared 365 prey and predators for every pair of marine mammal (Fig. 6b, S1b, Table 3). The dietary 366 367 niche of the fin, bowhead and blue whales are entirely included within the humpback's niche (mysticetes) whereas minke whale's diet overlaps the least with other species in its 368 phylogenetic group. Conversely, the blue whale has the largest overlap with the other 369 370 mysticetes (Fig. 6b, S1b, Table 3).

The diet of pinnipeds is included within the diet of several odontocetes with the exception of the killer whale which consumes pinnipeds. Based on the clustering analysis, some species were consistently grouped together both considering the percentage of diet overlap and the Jaccard index: ringed, harp and hooded seal; white beaked dolphin and beluga whale; and the remaining baleen whales with the exception of the minke whale (Fig. S1a,b and Table 3).

There is a great variability in the regular equivalence and centrality distances both within and across phylogenetic groups (Fig. 6 c, d, Fig. S1c, d, Table 3). The greatest topological similarity occurred between pinniped species but some individual species such as the minke whale also shows great similarities with the seals. Based on these two metrics, species cluster in two main groups: one including the seals, harbour porpoise and the minke whale and the other including the remaining species. The composition of these two groups is relatively similar between the two methods (Fig. S1 c, d, Table 3).

384

385 **Discussion**

Marine mammals are often simply characterized as being top predators, but our results 386 show that these species occupy diverse positions within the food web, and play different 387 ecological roles. Marine mammals range from network peripherals, feeding mainly at one TL 388 within one module and on a few prey items to module connectors, with many prey items 389 belonging to several TLs and modules. Overall, marine mammals occupy high trophic 390 391 positions, associated with the longest trophic chains, have few predators and the highest average number of prey per species compared the other ecological groups. As a group, they 392 have direct trophic links to over half of the available species in our Barents Sea food web. 393 Hence, they may contribute to the stability of the food web, which is enhanced when species 394 at high TLs feed on multiple prey species (Gross et al., 2009). This aspect is consistent with 395

top predators connecting otherwise separate energy channels (Neutel et al., 2007). Indeed, 396 397 each marine mammal species is indirectly linked to six or seven of the seven basal species found in the food web. By connecting separate energy channels (for example phytoplankton 398 399 and detritivore-driven channels), marine mammals may enhance the robustness of the food web to bottom-up perturbations (Neutel et al., 2007; Gross et al., 2009) by allowing the 400 401 rewiring of energy paths if one chain was to disappear. This would ultimately allow the 402 persistence of upper trophic levels, although some intermediate levels may disappear 403 (Staniczenko et al., 2010). Overall, marine mammals are split between specialist species with few prey items and generalist species with many prey items, and varying levels of omnivory. 404 405 Species with both high level of omnivory and large number of prey are mostly Atlantic species associated with warmer waters masses and independent of sea ice. These species have 406 407 the potential to invade Arctic regions undergoing rapid climate-driven change, where they 408 may have a competitive advantage over Arctic top predators which suffer from loss of sea ice and an increased importance of novel, boreal prey species (Fossheim et al., 2015). The 409 410 structure of Arctic food webs might thus be modified becoming less modular and robust (Kortsch et al., 2015, 2018) and the invasion of boreal species may trigger extinction cascades 411 (Romanuk et al., 2017). 412

413 Marine mammals are not among the most central species in the food web, but they feed on some of the most central species in the network (for example Atlantic cod Gadus morhua, and 414 calanoid copepods). Thus, changes in marine mammal distribution or abundance may 415 416 indirectly affect many species in the ecological network through top-down processes. For 417 example, loss or increase of top predators can result in trophic cascades (Frank et al., 2005; 418 Heithaus et al., 2008), which will be particularly pronounced when those predators are generalists with many prey on a single TL. The minke whale and the harbour, harp and 419 hooded seals, target collectively over 50 different prey items mainly within the same TL, with 420

the potential to deplete that TL. Although depleting the whole range of these prey species is
unlikely, feeding on a single TL could decrease the overall predation pressure on TLs below.
The prey of minke whale, harbour, harp and hooded seals are mainly fish, and include
important commercial species such as Atlantic cod, herring (*Clupea harengus*), capelin
(*Mallotus villosus*) and Atlantic mackerel (*Scomber scombrus*) (Tjelmeland and Bogstad,
1998).

427 Fisheries could enhance the risk for trophic cascades by targeting the same fish species as the above-mentioned marine mammal species. Intense fishing has been shown to cause the 428 collapse of fish stocks and to have synergistic effects with natural predation by grey seals off 429 430 Newfoundland and in the Baltic (Eero et al., 2011; Hammerschlag et al., 2019). In the case of Newfoundland, the collapse of the demersal fish community led to drastic ecosystem changes. 431 432 The collapse of cod, haddock and hake amongst others led to trophic cascades that caused 433 new fishery regime targeting benthic macroinvertebrates (Frank et al., 2005). In this context, grey seals benefitted from the cod collapse because it released small pelagic fish stocks and 434 435 benthic invertebrates from the cod's predation and decreased the overall competition. The ability of the grey seal as a generalist predator to switch prey was subsequently linked to an 436 increase of its population (Frank et al., 2005). 437

Trophic cascades can also happen when "super predators", here marine mammals feeding 438 on other marine mammals, switch prey. In the Barents Sea, the polar bear, the walrus and the 439 killer whale feed partly on other marine mammals. They are known to switch prey by either 440 441 targeting other marine mammals or by targeting other species at a lower TL; this may change 442 the predation pressure on TLs below and thus initiate trophic cascades (Estes et al., 2009). This has been illustrated in the Aleutian Islands, when killer whales consumed sea otters 443 instead of pinnipeds releasing predation pressure on sea urchins and causing the depletion of 444 the kelp forest due to over grazing by the sea urchins (Springer et al., 2003; Estes et al., 2009; 445

Ripple et al., 2016; Hammerschlag et al., 2019). Information on killer whales in the Barents 446 447 Sea in sparse but recent tracking data suggest that they occupy the region all year-round (Dietz R. pers. comm.) although their numbers are likely low. Their lack of sea ice 448 449 dependency likely gives them a competitive advantage over polar bears and walruses; thus killer whales are likely to become a major predator in the Artic. This is already the case in the 450 451 Canadian Arctic where they prey on bowhead whales, beluga whales, narwhals and seals 452 (Ferguson *et al.*, 2012; Higdon *et al.*, 2012). They have the potential to alter Arctic food web and have been linked to decline in certain marine mammal populations (Wade et al., 2007). 453 Trophic cascades can also be mediated through risk effect by inducing changes in prey-454 455 predator dynamics through behavioural switches. In the Northwest Atlantic, harbour seals 456 underutilise the deep-dwelling pollock (Pollachius pollachius) population in order to avoid predation by the Pacific sleeper shark (Somniosus pacificus) and prey preferentially on surface 457 herring. When the sharks were removed due to intensive by catch, seals started preying more 458 intensely on Pollock releasing herring from predation and initiating trophic cascades (Frid et 459 al., 2007b). The Barents Sea equivalent of the sleeper shark, the Greenland shark (Somniosus 460 microcephalus) has also been suggested as a potential important predator for the Svalbard 461 harbour seal population (Leclerc et al., 2012). However, the ecological role of this shark 462 463 species remain unclear due to the lack of basic biological knowledge. For example it is 464 unclear whether this species only scavenges or actively hunt seals in this region. Marine mammals are a phylogenetically diverse group and our results show differences in 465 466 network positioning both within and between phylogenetic groups. Pinnipeds include the most generalist species feeding on many central species, but there are large interspecific 467 differences within this group. The bearded seal feeds on many fish and benthic invertebrates 468 from a variety of TLs which results in a high level of omnivory. The walrus on the other hand 469 470 relies on a smaller number of prey species, but shows the highest level of omnivory in the

marine mammal group, consuming benthic invertebrates, fish and marine mammals. By 471 472 feeding on invertebrates buried in the sea floor, these two Arctic species may also contribute to the abiotic environment through oxygenation of the sediment. This highlights their 473 importance in the ecosystem not only through their direct trophic links but as ecosystem 474 engineers (Hacquebord, 2001; Roman et al., 2014). The five remaining species of pinnipeds 475 476 are very similar topologically, although their food items may differ. It is interesting to note 477 that this group is composed of both ice-associated species (ringed, harp and hooded seals) and boreal species (harbour and grey seals) with very different habitat requirements. Mysticetes 478 and Odontocetes are heterogeneous groups with both specialist species feeding on a low 479 480 number of similar prey items, such as the blue and sperm whales, and generalist species feeding on many prey items, such as the harbour porpoise. Odontocetes have generally a low 481 level of omnivory, with the exception of the harbour porpoise whereas Mysticetes such as the 482 483 fin and humpback whales show a level of omnivory close to some pinnipeds.

Marine mammals belong to two of the four modules identified in the Barents Sea food 484 web network and find the majority of their prey items within their own module. Therefore, as 485 a group, marine mammals contribute to the modularity of the food web, but there are large 486 interspecific differences. The first module contains most of the planktivorous baleen whales 487 488 that find over 80% of their prey species in their own module. An extreme case is the one of the blue whale that feeds only on species within its own module. Therefore, changes affecting 489 large baleen whales abundance, or their foraging strategies will mainly affect species in their 490 491 own module in a top-down perspective. In addition, baleen whales only utilise a fraction of 492 the available prey in their module and may thereby contribute to the stability of the Barents Sea food web by restricting the propagation of top-down perturbations within a part of their 493 own module (Stouffer and Bascompte, 2011). 494

Marine mammals in the second module (all the pinnipeds, most of the odontocetes and 495 496 the minke whale), have more than a third of their prey in the three other modules, which suggests that their contribution to modularity is not as high as that of marine mammals in the 497 first module. Perturbations linked to these marine mammal species may therefore propagate to 498 other modules of the food web, in addition to their own in which the full range of available 499 500 species is exploited. The grey seal being the only module connector among marine mammals 501 may be especially important in spreading the effects of perturbations across the food web. 502 Although grey seals are not presently abundant in the Barents Sea and are currently restricted to the southern part, they may expand northwards due to climate-warming (Fossheim et al. 503 504 2015). Indeed, the population of grey seals on the Norwegian coast and the Kola Peninsula in Russia has been increasing for the past 30 years which may trigger an expansion of their 505 distributional range. Anecdotic records of grey seals in Greenland have been reported where 506 507 individuals have been observed North up to Disko Bay and suggest that grey seals are occasional visitors to Greenlandic waters (Rosing-Asvid et al., 2010). Harbour and grey seals 508 509 often haul out in similar areas and there is a permanent harbour seals population on the West coast of Svalbard (Lydersen and Kovacs, 2005; Blanchet et al., 2014). It is therefore not 510 unlikely that grey seals could also colonize the archipelago especially with the current 511 512 warming and decrease of sea ice in the region. This species could contribute to the borealization of the Arctic region of the Barents Sea in a manner similar to what is already 513 observed in fish communities. Such module connecting generalist species may decrease the 514 515 modularity of the Arctic food web, as has been shown for Atlantic cod and haddock (Kortsch et al., 2015). 516

517 Due to similarities in direct trophic links and the degree of centrality of prey species, some 518 marine mammals consistently grouped together and also showed similarities with seabirds and 519 some predatory fish, indicating some potential redundancy across different functional groups.

Although topological redundancy does not necessarily imply functional redundancy
(Chalcraft and Resetarits, 2003), high topological redundancy is linked to higher robustness of
a system (Walker *et al.*, 1999), as the loss of some species might be compensated by the
presence of others (Staniczenko *et al.*, 2010; Lai *et al.*, 2012). Indeed, simulations have shown
that food webs are more robust when they have a high number of "overlap species" that can
compensate species loss by rewiring thus avoiding secondary extinctions (Staniczenko *et al.*, 2010).

Similarities in topological position does not automatically imply dietary overlap. The 527 degree of diet overlap between marine mammals species is extremely varied ranging from no 528 529 overlap at all (polar bear and blue whale) to very high overlap (humpback and fin whales). Several mechanisms might decrease the competitive pressure, for example, the dietary niche 530 breadth and the habitat selectivity of each species. Fin, minke and humpback whales have 531 532 broader dietary niches than the blue and bowhead whales, which would allow the former species to shift to other prey items. Bowhead whales overlap most in diet with fin whales but 533 534 choose waters with high sea ice concentration that are avoided by other whales (Wiig et al., 2010; Reeves et al., 2014), thus decreasing the competitive pressure. Additional prey 535 selection mechanisms may also decrease the competitive pressure by each species targeting 536 537 different sizes of the same prey species as it is the case for some pinnipeds (Wathne *et al.*, 2000; Preez et al., 2017). Potential for dietary competition is high within the pinnipeds with 538 the exception of the walrus. The ringed, harp and hooded seals are very similar topologically 539 540 (Wathne et al., 2000) and all of them also share a strong affiliation with sea ice. However, 541 harp and hooded seal use areas beyond the borders of the Barents Sea, which offers larger foraging areas whereas the ringed seal largely stays within its boundaries and forages in ice-542 associated areas (Hamilton et al., 2015; Vacquie-Garcia et al., 2017; Blanchet et al., 2018). 543 Competitive pressure can also decrease if one of the species is able to undertake niche shift 544

due to behavioural plasticity. This has recently been shown for beluga whales and ringed seals 545 546 in the Svalbard archipelago. These species have high dietary and spatial overlap. However, beluga whales do not use glacier fronts as heavily as in the past and their behaviour is 547 548 consistent with foraging on Atlantic fish species that are new in the region (Hamilton et al., 2019). Two of the three "super predators", the polar bear and the killer whale have a high 549 550 dietary overlap with the diet of the polar bear being completely included within the killer 551 whale's. However, they have very different habitat use strategies, the polar bear using solid 552 land or ice platforms for foraging while the killer whale forages mainly at sea. There is a potential for competition at the marginal ice zone where both species might co-occur, but 553 554 polar bear has access to other terrestrial food sources that are not included in our analyses (Iversen et al., 2013). 555

For the purpose of this study, we have considered that all the species present in the 556 557 Barents Sea occupy this environment homogenously. Yet, some species have strict habitat preferences and some of these potentially redundant species may not co-occur spatially. For 558 559 example, the sperm whale and the narwhal have very similar topological positions and occupy the same module, although their diet does not overlap. They are, however, unlikely to interact 560 because they occupy different regions of the Barents Sea, the narwhal being a strictly Arctic 561 562 species whereas the sperm whale is found in the southern part of the Barents Sea and along the shelf edge (Christensen et al., 1992). A similar relation is observed between the white-563 beaked dolphin a pelagic species, and the beluga, a coastal/ice-associated species. These 564 565 species may thus perform the same role in the ecosystem but in different regions of the 566 Barents Sea, and may therefore not be topologically redundant at the regional level. This 567 shows that the spatial distribution of each species must be considered when exploring potential functional or network redundancy and competition. This is especially true 568 considering the rapid and extensive environmental changes currently occurring in the Barents 569

570	Sea (Kovacs et al., 2011) which might bring previously spatially separated species closer
571	together and modify the structure of regional food webs as has been shown for fish
572	communities (Kortsch et al., 2015, 2018; Frainer et al., 2017)
573	Conclusions:
574	In the Barents Sea, marine mammals contribute to the modularity of the food web,
575	connect several energy channels, and have direct links to the most central species.
576	Interspecific differences in the food web-related properties of marine mammals suggest a
577	diversity of contributions to the structure of the food web and its robustness to perturbations.
578	Topological similarities suggesting redundancy are apparent between and within some
579	phylogenetic groups. However, the importance of redundancy likely depends on whether
580	these similar species actually overlap spatially or are segregated between Arctic and Atlantic
581	domains. Climate-induced changes in species distributions currently observed in the Barents
582	Sea are likely to affect the structure of regional food webs as species assemblages change.
583	Acknowledgements
584	MAB is supported by the European Union project ClimeFish (http://climefish.eu/) under the
585	Horizon 2020 research and innovation programme (Grant agreement No. 677039).
586	References:

- Allesina, S., and Pascual, M. 2008. Network structure, predator–prey modules, and stability in
 large food webs. Theoretical Ecology, 1: 55–64.
- 589 Allesina, S., and Pascual, M. 2009. Googling Food Webs: Can an Eigenvector Measure
- Species' Importance for Coextinctions? PLOS Computational Biology, 5: 1–6. Public
 Library of Science.
- 592 Ashtiani, M. 2019. CINNA: Deciphering Central Informative Nodes in Network Analysis.
- 593 Bascompte, J., Melián, C. J., and Sala, E. 2005. Interaction strength combinations and the
- 594 overfishing of a marine food web. Proceedings of the National Academy of Sciences of

- the United States of America, 102: 5443 LP-5447.
- Baum, J. K., and Worm, B. 2009. Cascading top-down effects of changing oceanic predator
 abundances. Journal of Animal Ecology, 78: 699–714. Wiley/Blackwell (10.1111).
- 598 Blanchet, M.-A., Lydersen, C., Ims, R. A., Lowther, A. D., and Kovacs, K. M. 2014. Harbour
- seal Phoca vitulina movement patterns in the high-arctic archipelago of Svalbard,
- 600 Norway. Aquatic Biology, 21.
- Blanchet, M., Acquarone, M., Biuw, M., Larsen, R., Nordøy, E. S., and Folkow, L. P. 2018. A
 Life After Research ? First Release of Harp Seals (Pagophilus groenlandicus) After
- Temporary Captivity for Scientific Purposes, 44: 343–356.
- Bluhm, B. A., and Gradinger, R. 2008. Regional variability in food availability for Arctic
 marine mammals. Ecological Applications, 18: S77–S96. Wiley-Blackwell.
- Bogstad, B., Gjøsæter, H., Haug, T., and Lindstrøm, U. 2015. A review of the battle for food
 in the Barents Sea: cod vs. marine mammals .
- Borgatti, S. P., and Everett, M. G. 1993. Two algorithms for computing regular equivalence.
 Social Networks, 15: 361–376.
- Bowen, W. D. 1997. Role of marine mammals in aquatic ecosystems. Marine Ecology
 Progress Series, 158: 267–274.
- Brin, S., and Page, L. 1998. The anatomy of a large-scale hypertextual Web search engine.
 Computer Networks and ISDN Systems, 30: 107–117.
- Bundy, A., and Fanning, L. P. 2005. Can Atlantic cod (Gadus morhua) recover? Exploring
- trophic explanations for the non-recovery of the cod stock on the eastern Scotian Shelf,
- 616 Canada. Canadian Journal of Fisheries and Aquatic Sciences, 62: 1474–1489. NRC
- 617 Research Press.
- Butts, C. T. 2008. network: A Package for Managing Relational Data in R. Journal of
- 619 Statistical Software; Vol 1, Issue 2 (2008).

- 620 Carstensen, D. W., Dalsgaard, B., Svenning, J.-C., Rahbek, C., Fjeldså, J., Sutherland, W. J.,
- and Olesen, J. M. 2012. Biogeographical modules and island roles: a comparison of

622 Wallacea and the West Indies. Journal of Biogeography, 39: 739–749.

- 623 https://doi.org/10.1111/j.1365-2699.2011.02628.x.
- 624 Chalcraft, D. R., and Resetarits, W. J. 2003. Predator identity and ecological impacts:
- functional redundancy or functional diversity? Ecology, 84: 2407–2418. Wiley-Blackwell.
- 627 Christensen, I., Haug, T., and Øien, N. 1992. A review of feeding and reproduction in large
- baleen whales (Mysticeti) and sperm whales Physeter macrocephalus in Norwegian and

adjacent waters. ICES Journal of Marine Science, 49: 341–355.

- 630 Christensen, V., and Pauly, D. 1992. ECOPATH II a software for balancing steady-state
- ecosystem models and calculating network characteristics. Ecological Modelling, 61:
 169–185.
- Clarke, K. R., and Warwick, R. M. 1998. Quantifying structural redundancy in ecological
 communities. Oecologia, 113: 278–289.
- 635 Clauset, A., Newman, M. E. J., and Moore, C. 2004. Finding community structure in very
- large networks. Physical Review E, 70: 66111. American Physical Society.
- 637 https://link.aps.org/doi/10.1103/PhysRevE.70.066111.
- Csardi, G., and Nepusz, T. 2006. The igraph software package for complex network research.
 InterJournal, Complex Systems: 1965. http://igraph.org.
- 640 Dalpadado, P., Ingvaldsen, R. B., Stige, L. C., Bogstad, B., Knutsen, T., Ottersen, G., and
- Ellertsen, B. 2012. Climate effects on Barents Sea ecosystem dynamics. ICES Journal of
- 642 Marine Science, 69: 1303–1316.
- 643 Dalpadado, P., Arrigo, K. R., Hjøllo, S. S., Rey, F., Ingvaldsen, R. B., Sperfeld, E., Van
- 644 Dijken, G. L., *et al.* 2014. Productivity in the Barents Sea Response to recent climate

645 variability. PLoS ONE, 9.

- David, C., M., de R. A., and Lennart, P. 2004. Population dynamic theory of size-dependent
- 647 cannibalism. Proceedings of the Royal Society of London. Series B: Biological Sciences,

648 271: 333–340. Royal Society.

- de Santana, C., Rozenfeld, A., and Marquet, P. 2013. Topological properties of polar food
- webs. Marine Ecology Progress Series, 474: 15–26. https://www.int-

es.com/abstracts/meps/v474/p15-26/.

- Dunne, J., Williams, R., and Martinez, N. 2002a. Network structure and biodiversity loss in
- food webs: robustness increases with connectance. Ecology Letters, 5: 558–567.
- 654 https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1461-0248.2002.00354.x.
- Dunne, J. A., Williams, R. J., and Martinez, N. D. 2002b. Food-web structure and network
- theory: The role of connectance and size. Proceedings of the National Academy ofSciences, 99: 12917 LP-12922.
- Dunne, J. A., and Williams, R. J. 2004. Network structure and robustness of marine food
 webs . Marine Ecology Progress Series, 273: 291–302.
- 660 Dunne, J. A. 2009. Food webs. *In* Complex networks and graph theory section of the
- 661 encyclopedia of complexity and systems science, pp. 3661–3682. Ed. by R. A. Meyers.
 662 Springer.
- 663 Durant, J. M., Skern-Mauritzen, M., Krasnov, Y. V., Nikolaeva, N. G., Lindstrøm, U., and
- 664 Dolgov, A. 2014. Temporal dynamics of top predators interactions in the barents sea.
 665 PLoS ONE, 9.
- 666 Eero, M., MacKenzie, B. R., Köster, F. W., and Gislason, H. 2011. Multi-decadal responses
- of a cod (Gadus morhua) population to human-induced trophic changes, fishing, and
 climate. Ecological Applications, 21: 214–226. John Wiley & Sons, Ltd.
- 669 Eriksen, E., Skjoldal, H. R., Gjøsæter, H., and Primicerio, R. 2017. Spatial and temporal

- changes in the Barents Sea pelagic compartment during the recent warming. Progress inOceanography, 151: 206–226.
- Estes, J. A., Doak, D. F., Springer, A. M., and Williams, T. M. 2009. Causes and
- 673 consequences of marine mammal population declines in southwest Alaska: a food-web
- 674 perspective. Philosophical Transactions of the Royal Society B: Biological Sciences,
- **675 364**: 1647–1658.
- Estrada, E. 2007. Food webs robustness to biodiversity loss: The roles of connectance,
- expansibility and degree distribution. Journal of Theoretical Biology, 244: 296–307.
- Ferguson, S. H., Higdon, J. W., and Chmelnitsky, E. W. 2012. The Rise of Killer Whales as a
- Major Arctic Predator. *In* A Little Less Arctic. Ed. by S. H. Ferguson, L. L. Loseto, andM. L. Mallory.
- 681 Fossheim, M., Primicerio, R., Johannesen, E., Ingvaldsen, R. B., Aschan, M. M., and Dolgov,
- A. V. 2015. Recent warming leads to a rapid borealization of fish communities in the
 Arctic. Nature Climate Change, 5: 673. Nature Publishing Group.
- 684 Frainer, A., Primicerio, R., Kortsch, S., Aune, M., Dolgov, A. V, Fossheim, M., and Aschan,
- 685 M. M. 2017. Climate-driven changes in functional biogeography of Arctic marine fish
- 686 communities. Proceedings of the National Academy of Sciences, 114: 12202 LP-12207.
- Frank, K. T., Petrie, B., Choi, J. S., and Leggett, W. C. 2005. Trophic Cascades in a Formerly
 Cod-Dominated Ecosystem. Science, 308: 1621 LP-1623.
- Frid, A., G. Baker, G., and M. Dill, L. 2007a. Do shark declines create fear-released systems?
 Oikos, 117: 191–201.
- Frid, A., Dill, L. M., Thorne, R. E., and Blundell, G. M. 2007b. Inferring prey perception of
 relative danger in large-scale marine systems. Evolutionary Ecology Research, 9: 635–
 649.
- 694 Gilg, O., and W. Born, E. 2005. Recent sightings of the bowhead whale (Balaena mysticetus)

- in Northeast Greenland and the Greenland Sea. Polar Biology, 28: 796–801.
- Gjøsæter, H. 2009. Commercial fisheries (fish, seafood and marine mammals). *In* Ecosystem
 Barents Sea, Tapir Pres, p. 587.
- Gross, T., Rudolf, L., Levin, S. A., and Dieckmann, U. 2009. Generalized Models Reveal
 Stabilizing Factors in Food Webs. Science, 325: 747 LP-750.
- Guimerà, R., and Nunes Amaral, L. A. 2005. Functional cartography of complex metabolic
 networks. Nature, 433: 895. Macmillian Magazines Ltd.
- Hacquebord, L. 2001. Three Centuries of Whaling and Walrus Hunting in Svalbard and its
- TO3 Impact on the Arctic Ecosystem. Environment and History, 7: 169–185.
- Hamilton, C. D., Lydersen, C., Ims, R. A., and Kovacs, K. M. 2015. Predictions replaced by
- facts: a keystone species #039; behavioural responses to declining arctic sea-ice.
- Biology Letters, 11.
- Hamilton, C. D., Vacquié-Garcia, J., Kovacs, K. M., Ims, R. A., Kohler, J., and Lydersen, C.
- 2019. Contrasting changes in space use induced by climate change in two Arctic marine
 mammal species. Biology Letters, 15: 20180834. Royal Society.
- Hammerschlag, N., Schmitz, O. J., Flecker, A. S., Lafferty, K. D., Sih, A., Atwood, T. B.,
- Gallagher, A. J., *et al.* 2019. Ecosystem Function and Services of Aquatic Predators in
- the Anthropocene. Trends in Ecology & Evolution, 34: 369–383.
- Haug, T., Falk-Petersen, S., Greenacre, M., Hop, H., Lindstrøm, U., Meier, S., Nilssen, K. T.,
- *et al.* 2017. Trophic level and fatty acids in harp seals compared with common minke
- whales in the Barents Sea. Marine Biology Research, 1000: 1–14.
- 716 Heithaus, M. R., Frid, A., Wirsing, A. J., and Worm, B. 2008. Predicting ecological
- consequences of marine top predator declines. Trends in Ecology & Evolution, 23: 202–
 210.
- 719 Heymans, J. J., Coll, M., Libralato, S., Morissette, L., and Christensen, V. 2014. Global

- Patterns in Ecological Indicators of Marine Food Webs: A Modelling Approach. PLOS
 ONE, 9: e95845. Public Library of Science.
- Higdon, J. W., Hauser, D. D. W., and Ferguson, S. H. 2012. Killer whales (Orcinus orca) in
- the Canadian Arctic: Distribution, prey items, group sizes, and seasonality. Marine
- 724 Mammal Science, 28: E93–E109. http://doi.wiley.com/10.1111/j.1748-
- 725 7692.2011.00489.x (Accessed 14 December 2017).
- ICES. 2014. Report of the ICES Advisory Committee 2014. Book 3: The Barents Sea and theNorwegian Sea. 90 pp.
- Ings, T. C., Montoya, J., Bascompte, J., Blüthgen, N., Brown, L., Dormann, C., Edwards, F.,
- *et al.* 2008. Review: Ecological networks beyond food webs. Journal of Animal
- 730 Ecology, 78: 253–269. Wiley/Blackwell (10.1111). https://doi.org/10.1111/j.1365-
- 731 2656.2008.01460.x.
- 732 Iversen, M., Aars, J., Haug, T., Alsos, I. G., Lydersen, C., Bachmann, L., and Kovacs, K. M.
- 2013. The diet of polar bears (Ursus maritimus) from Svalbard, Norway, inferred from
 scat analysis. Polar Biology, 36: 561–571.
- Johannesen, E., Jørgensen, L. L., Fossheim, M., Primicerio, R., Greenacre, M., Ljubin, P. A.,
- 736 Dolgov, A. V, *et al.* 2017. Large-scale patterns in community structure of benthos and
- fish in the Barents Sea. Polar Biology, 40: 237–246.
- Jordán, F., Liu, W., and Davis, A. J. 2006. Topological keystone species: measures of
- positional importance in food webs. Oikos, 112: 535–546. Wiley/Blackwell (10.1111).
- 740 https://doi.org/10.1111/j.0030-1299.2006.13724.x.
- Jordán, F. 2009. Keystone species and food webs. Philosophical Transactions of the Royal
 Society B: Biological Sciences, 364: 1733 LP-1741.
- Kones, J. K., Soetaert, K., van Oevelen, D., and Owino, J. O. 2009. Are network indices
- robust indicators of food web functioning? A Monte Carlo approach. Ecological

745 Modelling, 220: 370–382. Elsevier.

- 746 https://www.sciencedirect.com/science/article/pii/S0304380008005024 (Accessed 20
 747 June 2018).
- 748 Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V, and Aschan, M. 2015. Climate
- change alters the structure of arctic marine food webs due to poleward shifts of borealgeneralists. Proceedings of the Royal Society B: Biological Sciences, 282.
- Kortsch, S., Primicerio, R., Aschan, M., Lind, S., Dolgov, A. V, and Planque, B. 2018. Foodweb structure varies along environmental gradients in a high-latitude marine ecosystem.
- Ecography, 0. Wiley/Blackwell (10.1111).
- Kougioumoutzis, K., Simaiakis, S. M., and Tiniakou, A. 2014. Network biogeographical
- analysis of the central Aegean archipelago. Journal of Biogeography, 41: 1848–1858.
 https://doi.org/10.1111/jbi.12342.
- Kovacs, K. M., Lydersen, C., Overland, J. E., and Moore, S. E. 2011. Impacts of changing
 sea-ice conditions on Arctic marine mammals. Marine Biodiversity, 41: 181–194.
- Lai, S.-M., Liu, W.-C., and Jordan, F. 2012. On the centrality and uniqueness of species from
- the network perspective. Biology Letters, 8: 570–573.
- 761 http://rsbl.royalsocietypublishing.org/cgi/doi/10.1098/rsbl.2011.1167.
- Laidre, K. L., and Regehr, E. V. 2017. C H A P T E R 21 Arctic marine mammals and sea ice:
 516–533.
- Lau, M. K., Borrett, S. R., Baiser, B., Gotelli, N. J., and Ellison, A. M. 2017. Ecological
- network metrics: opportunities for synthesis. Ecosphere, 8: e01900. Wiley-Blackwell.
- 766 Leclerc, L.-M. E., Lydersen, C., Haug, T., Bachmann, L., Fisk, A. T., and Kovacs, K. M.
- 7672012. A missing piece in the Arctic food web puzzle? Stomach contents of Greenland
- sharks sampled in Svalbard, Norway. Polar Biology, 35: 1197–1208.
- 769 Lindstrøm, U., Smout, S., Howell, D., and Bogstad, B. 2009. Modelling multi-species

- interactions in the Barents Sea ecosystem with special emphasis on minke whales and 770
- 771 their interactions with cod, herring and capelin. Deep Sea Research Part II: Topical Studies in Oceanography, 56: 2068–2079. 772
- 773 Link, J. 2002. Does food web theory work for marine ecosystems? Marine Ecology Progress Series, 230: 1–9. 774
- Luczovich, J. L., Borgatti, S. P., Johnson, J. C., and Everett, M. G. 2003. Defining and 775
- 776 Measuring Trophic Role Similarity in Food Webs Using Regular Equivalence. Journal of 777 Theoretical Biology, 220: 303–321.
- Lydersen, C., and Kovacs, K. M. 2005. Growth and population parameters of the world's 778
- 779 northernmost harbour seals Phoca vitulina residing in Svalbard, Norway. Polar Biology,
- 28: 156–163. https://doi.org/10.1007/s00300-004-0656-7. 780
- Mackinson, S., Blanchard, J. L., Pinnegar, J. K., and Scott, R. 2006. Consequences of 781 782
- alternative functional response formulations in models exploring whale-fishery
- interactions. Marine Mammal Science, 19: 661–681. Wiley/Blackwell (10.1111). 783
- 784 Misund, O. A., Heggland, K., Skogseth, R., Falck, E., Gjøsæter, H., Sundet, J., Watne, J., et
- al. 2016. Norwegian fisheries in the Svalbard zone since 1980. Regulations, profitability 785 786 and warming waters affect landings. Polar Science, 10: 312–322.
- 787 Moore, S. E. 2008. Marine Mammals as Ecosystem Sentinels. Journal of Mammalogy, 89: 534-540. 788
- Morissette, L., Christensen, V., and Pauly, D. 2012. Marine Mammal Impacts in Exploited 789
- Ecosystems: Would Large Scale Culling Benefit Fisheries? PLOS ONE, 7: e43966. 790 791 Public Library of Science.
- Neutel, A.-M., Heesterbeek, J. A. P., van de Koppel, J., Hoenderboom, G., Vos, A., 792
- Kaldeway, C., Berendse, F., et al. 2007. Reconciling complexity with stability in 793
- naturally assembling food webs. Nature, 449: 599. Nature Publishing Group. 794

Newman, M. E. J. 2006. Modularity and community structure in networks. Proceedings of the 795 796 National Academy of Sciences, 103: 8577 LP-8582.

http://www.pnas.org/content/103/23/8577.abstract. 797

- 798 Odum, H. T. 1983. Systems ecology; An introduction. John Wiley and Sons, New York, NY, United States. 799
- Olesen, J. M., Bascompte, J., Dupont, Y. L., and Jordano, P. 2007. The modularity of 800
- 801 pollination networks. Proceedings of the National Academy of Sciences, 104: 19891-802 19896.
- Olivier, P., and Planque, B. 2017. Complexity and structural properties of food webs in the 803 804 Barents Sea. Oikos, 126: 1339–1346. Wiley/Blackwell (10.1111).
- Oziel, L., Neukermans, G., Ardyna, M., Lancelot, C., Tison, J.-L., Wassmann, P., Sirven, J., 805
- 806 et al. 2017. Role for Atlantic inflows and sea ice loss on shifting phytoplankton blooms
- 807 in the Barents Sea. Journal of Geophysical Research: Oceans, 122: 5121–5139. John Wiley & Sons, Ltd. 808
- 809 Pianka, E. R. 1974. Niche Overlap and Diffuse Competition. Proceedings of the National Academy of Sciences, 71: 2141 LP-2145. 810
- Pimm, S. L., Lawton, J. H., and Cohen, J. E. 1991. Food web patterns and their consequences. 811 Nature, 350: 669. Nature Publishing Group. http://dx.doi.org/10.1038/350669a0.
- Planque, B., Primicerio, R., Michalsen, K., Aschan, M., Certain, G., Dalpadado, P., 813
- Gjøsæater, H., et al. 2014. Who eats whom in the Barents Sea: a food web topology from 814
- plankton to whales. Ecology, 95: 1430. Wiley-Blackwell. 815

- 816 Pons, P., and Latapy, M. 2006. Computing communities in large networks using random
- walks. Journal of Graph Algorithms and Applications, 10: 191–218. 817
- Preez, B., Purdon, J., Trethowan, P., Macdonald, D. W., and Loveridge, A. J. 2017. Dietary 818
- niche differentiation facilitates coexistence of two large carnivores. Journal of Zoology, 819

- 820 302: 149–156. Wiley/Blackwell (10.1111).
- 821 Reeves, R. R., Ewins, P. J., Agbayani, S., Heide-Jørgensen, M. P., Kovacs, K. M., Lydersen,
- 822 C., Suydam, R., *et al.* 2014. Distribution of endemic cetaceans in relation to hydrocarbon
- development and commercial shipping in a warming Arctic. Marine Policy, 44: 375–389.
- Ripple, W. J., Estes, J. A., Schmitz, O. J., Constant, V., Kaylor, M. J., Lenz, A., Motley, J. L.,
- *et al.* 2016. What is a Trophic Cascade? Trends in Ecology & Evolution, 31: 842–849.
- 826 Roman, J., Estes, J. A., Morissette, L., Smith, C., Costa, D., McCarthy, J., Nation, J. B., et al.

827 2014. Whales as marine ecosystem engineers. Frontiers in Ecology and the Environment,

- 828 12: 377–385. Wiley-Blackwell.
- 829 Romanuk, T. N., Zhou, Y., Valdovinos, F. S., and Martinez, N. D. 2017. Chapter Five -
- 830 Robustness Trade-Offs in Model Food Webs: Invasion Probability Decreases While
- 831 Invasion Consequences Increase With Connectance. In Networks of Invasion: A
- 832 Synthesis of Concepts, pp. 263–291. Ed. by D. A. Bohan, A. J. Dumbrell, and F. B. T.-
- A. in E. R. Massol. Academic Press.
- Rooney, N., McCann, K., Gellner, G., and Moore, J. C. 2006. Structural asymmetry and the
 stability of diverse food webs. Nature, 442: 265. Nature Publishing Group.
- Rosing-Asvid, A., Teilmann, J., Dietz, R., and Olsen, M. 2010. First Confirmed Record of
 Grey Seals in Greenland. Arctic, 63.
- Shimodaira, H. 2004. Approximately unbiased tests of regions using multistep-multiscale
 bootstrap resampling. Ann. Statist., 32: 2616–2641. The Institute of Mathematical
- 840 Statistics.
- 841 Skern-Mauritzen, M., Johannesen, E., Bjørge, A., and Øien, N. 2011. Baleen whale
- distributions and prey associations in the Barents Sea. Marine Ecology Progress Series,
 426: 289–301.
- 844 Spitz, J., Rousseau, Y., and Ridoux, V. 2006. Diet overlap between harbour porpoise and

- bottlenose dolphin: An argument in favour of interference competition for food?
- Estuarine, Coastal and Shelf Science, 70: 259–270.
- 847 Springer, A. M., Estes, J. A., van Vliet, G. B., Williams, T. M., Doak, D. F., Danner, E. M.,
- Forney, K. A., *et al.* 2003. Sequential megafaunal collapse in the North Pacific Ocean:
- An ongoing legacy of industrial whaling? Proceedings of the National Academy of
- 850 Sciences, 100: 12223 LP-12228.
- Staniczenko, P. P. A., Lewis, O. T., Jones, N. S., and Reed-Tsochas, F. 2010. Structural
 dynamics and robustness of food webs. Ecology Letters, 13: 891–899. John Wiley &
 Sons, Ltd (10.1111).
- 854 Stouffer, D. B., and Bascompte, J. 2011. Compartmentalization increases food-web
- persistence. Proceedings of the National Academy of Sciences, 108: 3648 LP-3652.
- Suzuki, R., and Shimodaira, H. 2006. Pvclust: an R package for assessing the uncertainty in
 hierarchical clustering. Bioinformatics, 22: 1540–1542.
- Thompson, R. M., Hemberg, M., Starzomski, B. M., and Shurin, J. B. 2007. Trophic levels
 and trophic tangles: the prevalence of omnivory in real food webs. Ecology, 88: 612–
 617.
- Tjelmeland, S., and Bogstad, B. 1998. MULTSPEC a review of a multispecies modelling
 project for the Barents Sea. Fisheries Research, 37: 127–142.
- 863 Torre, G., Fernández-Lugo, S., Guarino, R., and Fernández-Palacios, J. M. 2019. Network
- analysis by simulated annealing of taxa and islands of Macaronesia (North Atlantic

865 Ocean). Ecography, 42: 768–779. https://doi.org/10.1111/ecog.03909.

- Trites, A. W., Miller, A. J., Maschner, H. D. G., Alexander, M. A., Bograd, S. J., Calder, J.
- A., Capodonti, A., *et al.* 2006. Bottom-up forcing and the decline of Steller sea lions
- 868 (Eumetopias jubatus) in Alaska: assessing the ocean climate hypothesis. Fisheries
- 869 Oceanography, 16: 46–67. John Wiley & Sons, Ltd.

870	Vacquie-Garcia, J., Lydersen, C., Biuw, M., Haug, T., Fedak, M. A., and Kovacs, K. M. 2017.
871	Hooded seal Cystophora cristata foraging areas in the Northeast Atlantic Ocean-
872	Investigated using three complementary methods. PLOS ONE, 12: e0187889. Public
873	Library of Science. http://dx.plos.org/10.1371/journal.pone.0187889 (Accessed 15
874	December 2017).
875	Wade, P. R., Burkanov, V. N., Dahlheim, M. E., Friday, N. A., Fritz, L. W., Loughlin, T. R.,
876	Mizroch, S. A., et al. 2007. Killer whales and marine mammal trends in the North Pacific
877	- a re-examination of the evidence for sequential megafauna collapse and the prey-
878	switching hypothesis. Marine Mammal Science, 23: 766–802.
879	Walker, B., Kinzig, A., and Langridge, J. 1999. Original Articles: Plant Attribute Diversity,
880	Resilience, and Ecosystem Function: The Nature and Significance of Dominant and
881	Minor Species. Ecosystems, 2: 95–113.
882	Wasserman, S., and Faust, K. 1994. Social Network Analysis: Methods and applications. 663
883	pp.
884	Wathne, J. A., Haug, T., and Lydersen, C. 2000. Prey preference and niche overlap of ringed
885	seals Phoca hispida and harp seals P. groenlandica in the Barents Sea. Marine Ecology
886	Progress Series, 194: 233–239. Inter-Research Science Center.
887	http://www.jstor.org/stable/24855667.
888	Wiig, Ø., Bachmann, L., Øien, N., Kovacs, K. M., and Lydersen, C. 2010. Observations of
889	bowhead whales (Balaena mysticetus) in the Svalbard area 19402009. Polar Biology,
890	33: 979–984.
891	Williams, R. J., Berlow, E. L., Dunne, J. A., Barabási, AL., and Martinez, N. D. 2002. Two
892	degrees of separation in complex food webs. Proceedings of the National Academy of
893	Sciences, 99: 12913 LP-12916.

894 Worm, B., and Paine, R. T. 2016. Humans as a Hyperkeystone Species. Trends in Ecology &

Evolution, 31: 600–607.

Figure 1: (a) Food web of the Barents Sea. Circles represent single species or trophospecies 896 coloured by their ecological group (plankton, benthic invertebrates, fish, seabirds or marine 897 898 mammals) and the circle size is proportional to the number of direct predator and prey links. The grev circle represent detritus. Each line represents a feeding link between two species. 899 Species are plotted according to their trophic positioning (y axis) and their module affiliation 900 (x axis). (b-c) The coloured barplots represent the number of prey items consumed by marine 901 mammals in module A and D per ecological group. The overlaid black barplots represent the 902 number of preys consumed by these marine mammal species within the module they belong 903 to. The list of marine mammals present in modules A and D is shown in the two side inserts. 904 905

906

Figure 2: Observed and fitted values of cumulative distribution function of degree (in-degree
 + out-degree) for each species in the Barents Sea food web. The cumulative distribution

909 function represents the probability of a species having at least a number of degree = x

910 (ranging from 1 to 142). The red curve shows the predictions for the best-fitted model

911 (exponential). Each coloured dot represents a species colour-coded by its ecological groups

912 (plankton, benthic invertebrates, fish, birds, mammals). In addition, marine mammals' species

are plotted by phylogenetic groups (mysticetes= \blacksquare , pinnipeds= \blacktriangle , odontocetes= \diamondsuit ,

914 Ursidae= $\mathbf{\nabla}$) below the red curve. Therefore each marine mammal's species is represented by

one black symbol and by one red dot. Note that all the data points are jittered horizontally to

916 improve readability and that the true degree values are located on the red curve.

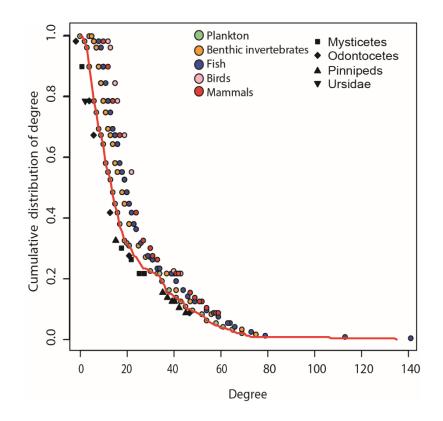
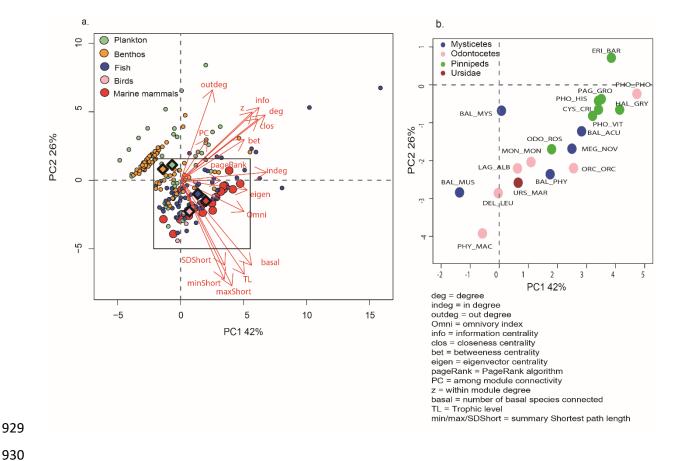


Figure 3: a) Principal component analysis (PCA) of the species or trophospecies present in
the Barents Sea food web and characterized by 15 centrality measures. The five ecological

groups (plankton, benthic invertebrates, fish, birds and marine mammals) are colour-coded.


923 The 19 marine mammal species are plotted in larger red circles. The diamonds (♦) represent

924 the centroid for each ecological group. b) Separate representation of the PCA space focusing

925 on marine mammal species (located inside the black rectangle in a)). Each species is colour

926 coded according to their phylogenetic group (mysticetes=blue, pinnipeds=green,

odontocetes=pink, Ursidae=brown). For the abbreviation of the species' names, see table S1.

931

Figure 4: Module affiliation of marine mammal prey species included in modules A and D. 932 Barplots representing the number of feeding links between marine mammals in module A 933 (n=5) and the species in modules A, B, C and D (a) through d)). The black barplots represent 934 the number of preys consumed by marine mammals inside a module while the coloured 935 barplots represent the composition of the modules essentially showing the proportion of a 936 group consumed by marine mammals within each module. The proportion of realized links 937 between marine mammals and their prey from one module to another is shown on the right 938 side of each individual plot. For example marine mammals in module A have 84% of their 939 feeding links with species present in module A. e) through h) show the same representation 940 for marine mammals present in module D (n=14). Marine mammals present in modules A and 941 D are listed in the two side inserts. Abbreviations for each marine mammal species is 942

available in table S1. 943

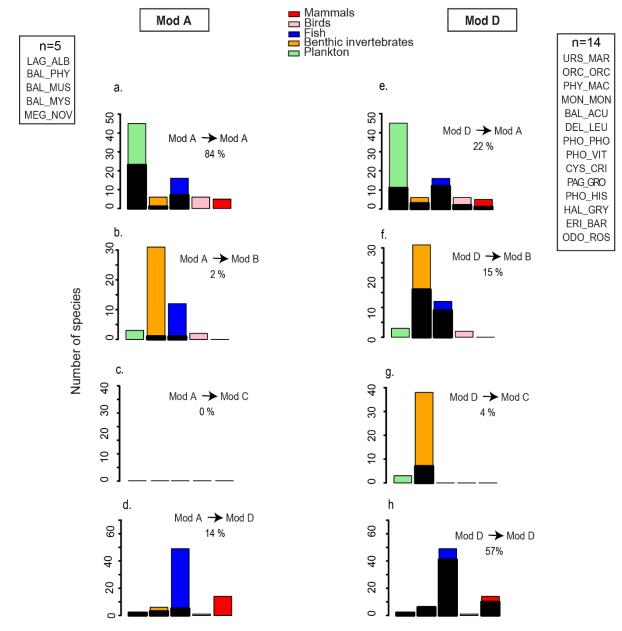
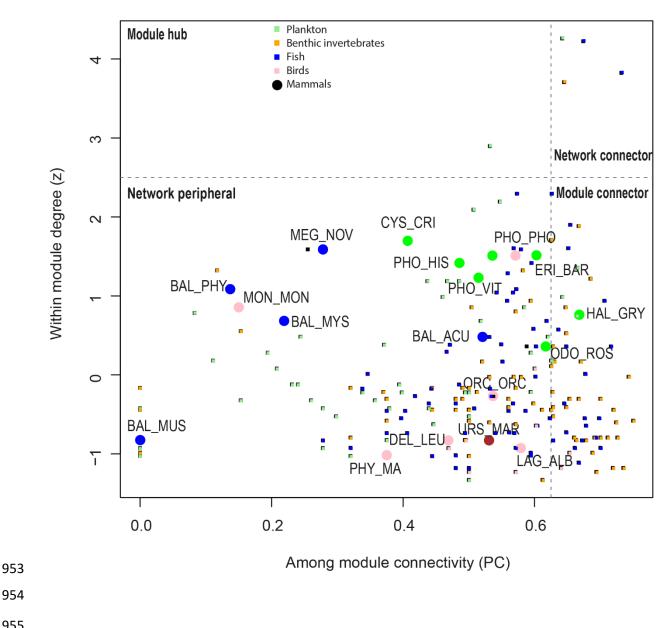



Figure 5: Topological role of marine mammal with respect to modularity. The x axis 945 represents the among module connectivity (PC) and the y-axis represents the within module 946 degree (z). The PC - z space is split in four different regions yielding four functionalities in 947 the network: peripheral, module hub, network connector and module connector. Each species 948 is represented by a square colour-coded by ecological group (green=plankton, orange=benthic 949 invertebrate, blue=fish, pink=birds). Each species of marine mammals is represented by a 950 circle colour-coded by their phylogenetic group (mysticetes = blue, pinnipeds = green, 951 952 odontocetes =p ink, Ursidae = brown).

956 Fig 6: Results of hierarchical clustering of marine mammals species with uncertainty analysis (p-values in red) obtained via multiscale bootstrap resampling for four similarity measures a) 957 diet overlap, b) Jaccard index, c) regular equivalence and d) on the Euclidian distance of the 958 centrality measures. Clusters with a p-value greater than 95% are strongly supported by the 959 data and highlighted by the red rectangles. The species' name abbreviations are color-coded 960 by phylogenetic group (blue= mysticetes, green = pinnipeds, pink=odontocetes, brown= 961 962 Ursidae).

a. Diet overlap

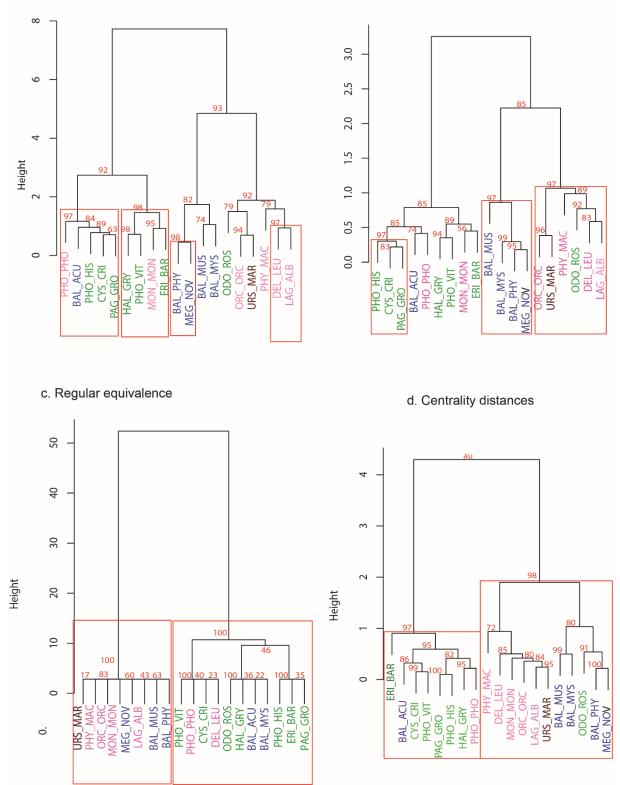


Figure S1: Functional similarity between each pairs of marine mammals based on four
similarity measures presented as heatmaps. The first two maps focus local view considering
only the direct links while the two last ones take into account the entire network. a) diet
overlap between each pairs of marine mammals. The overlap is expressed as a percentage of
the diet of species in the column included within the diet of the species in the row. The
warmer the colour, the greater the overlap. Note that the matrix is not symmetrical and that

- 970 the diagonal represents the overlap of the diet of between a species and itself and is therefore
- 971 100% . b) Jaccard index defined as the ratio of shared prey and predators over the total of
- preys and predators of the two species. The warmer the colour, the greater the overlap. Note
- that the matrix is symmetrical and that the maximum of the index is 0.5 representing the
- 974 overlap between a species and itself. c) Regular equivalence representing the similarity
- between pairs of species based on their position inside the food web based on their preys and
- 976 predators. Note that the matrix is symmetrical and that the maximum of the index is 5
- 977 representing the regular equivalence between a species and itself. d) Euclidian distances of
- network-related centrality metrics between pairs of species. Note that the matrix is
- 979 symmetrical. The species' name abbreviations are color-coded by phylogenetic groups (blue=
- 980 mysticetes, green = pinnipeds, pink=odontocetes, brown= Ursidae).

a. Diet overlap

b. Jaccard Index

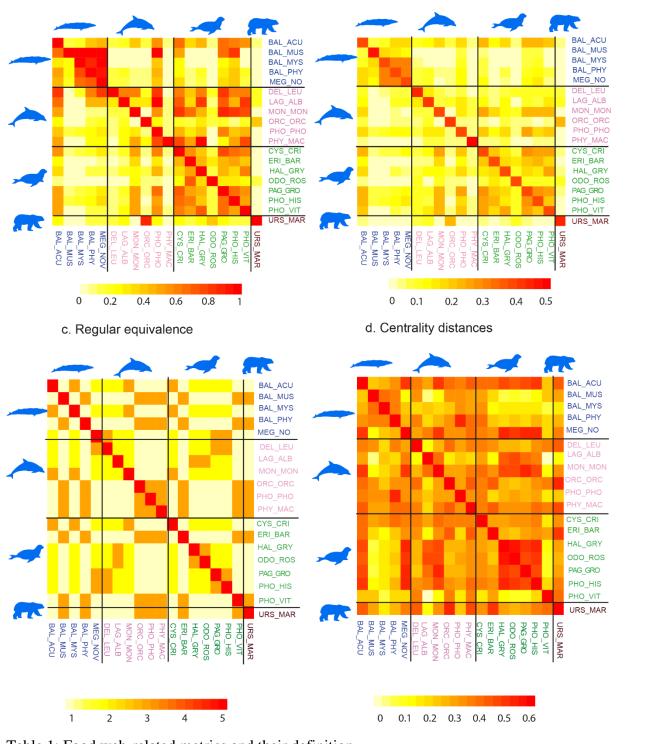


Table 1: Food web-related metrics and their definition.

	Metric	Definition	Reference
Node			
Definitions	Basal species	Species with no prey	Pimm et al., 1991
	Omnivore species	Species feeding at more than one trophic level	Pimm et al., 1991
	Predator species	Species with at least one prey species	Pimm et al., 1991

	Prey species	Species with at least one predator species	Pimm et al., 1991
	Intermediate species	Species with at least one prey and one predator species	Pimm et al., 1991
	Cannibal species	Species feeding on themselves	Pimm et al., 1991; Claessen et al., 200
Centrality measures			
	In-degree	Number of prey species	Wasserman and Fau Dunne et al. 2002
	Out-degree	Number of predator species	Wasserman and Fau al. 2002
	Degree	Number of prey and predator species	Wasserman and Fau
	Shortest path length	Shortest path length between each species and a basal species	Thompson et al., 200
	Longest path length	Longest path length between each species and a basal species	Thompson et al., 200
	Trophic level based on the shortest paths (SWTL)	Average shortest path lengths weighted by the number of prey species	Williams and Martine
	Trophic level based on the longest paths (LWTL)	Average longest path lengths weighted by the number of prey species	Williams and Martine
	Level of omnivory	Standard deviation of the short weighted trophic levels of each species' prey species	Bascompte et al. 200 al. 2009
	Eigen vector centrality	Degree weighted by the centrality of each of its prey species	Wasserman and Fau
	Betweenness centrality	Number of time a species lies on the shortest path between a pair of species	Wasserman and Fau
	Information centrality	Number of time a species lies on the all the paths between a pair of species	Wasserman and Fau
	Closeness centrality	Average number of steps away from the other species	Wasserman and Fau
	Google's PageRank	Eigen vector measure calculated using a modified version of the Google'PageRank algorithm	Brine and Page 1998 and Pascual 2009
	Among module connectivity (PC)	Number of links between a species and species in other modules normalized by its degree	Guimear and Nunez 2005; Kortsch et al. 2
	Standardized within module connectivity (z)	The number of links between a species and other species in its module standardized by the average and standard deviation of the number of links in its module	Guimear and Nunez 2005; Kortsch et al. :
Network metrics	Number of species	Total number of species or trophospecies in the food web	Dunne et al. 2002
	Number of links	Total number of trophic relationships represented in the food web	Dunne et al. 2002
	Link density	Mean number of trophic relationships per species	Dunne et al. 2002

Connectance	Proportion of direct realized links out of the number of possible links	Dunne et al. 2002
Average degree	Average number of trophic relationships per species	Dunne et al. 2002
Average in-degree	Average number of prey links per species	Dunne et al. 2002
Average out-degree	Average number of predation links per species	Dunne et al. 2002
Level of omnivory	Average omnivory level of the species in the food web	Bascompte et al. 200 al. 2009
Average shortest path length	Average shortest food chain connecting each pair of species in the food web	Thompson et al. 200
Average trophic level	Average of all the shortest paths from basal species to each species	Thompson et al. 200
Proportion of predators	Proportion of species with at least one prey species	Dunne et al. 2009
Proportion of omnivores	Proportion of species feeding at more than one trophic level	Petchey et al. 2008
Proportion of cannibals	Proportion of species feeding on themselves	Petchey et al. 2008
Proportion of basal species	Proportion of species with no prey species	Petchey et al. 2008

Table 2: Food web – related metrics calculated for the 19 species of marine mammals present

985 in the Barents Sea food web.

		in-	out-	-	_			
Group	Abbreviation	degree	degree	degree	eigen	between	closeness	information
Mysticetes	BAL_MUS	6	0	6	0,000	0,000	0,384	-0,002
Mysticetes	BAL_MYS	23	1	24	0,000	6,912	0,437	0,000
Mysticetes	BAL_PHY	27	0	27	0,090	0,000	0,446	0,000
Mysticetes	MEG_NOV	36	0	36	0,073	0,000	0,473	0,001
Mysticetes	BAL_ACU	34	1	35	0,360	6,330	0,510	0,001
Mean		25,2	0,4	25,6	0,105	2,648	0,450	0,000
Median		27	0	27	0,073	0,000	0,446	0,000
Odontocetes	PHY_MAC	4	0	4	0,060	0,000	0,375	-0,002
Odontocetes	DEL_LEU	5	3	8	0,021	2,164	0,433	-0,001
Odontocetes	MON_MON	25	0	25	0,106	0,000	0,437	0,000
Odontocetes	LAG_ALB	11	0	11	0,242	0,000	0,463	0,000
Odontocetes	ORC_ORC	18	0	18	0,663	0,000	0,466	0,000
Odontocetes	PHO_PHO	51	2	53	0,527	22,010	0,538	0,002
Mean		19	0,8	19,8	0,270	4,029	0,452	0,000
Median		14,5	0,0	14,5	0,174	0,000	0,450	0,000
Pinnipeds	ODO_ROS	19	2	21	0,098	16,768	0,453	0,000
Pinnipeds	PHO_HIS	41	4	45	0,224	73,848	0,516	0,002
Pinnipeds	CYS_CRI	41	2	43	0,329	13,425	0,517	0,001
Pinnipeds	PHO_VIT	38	3	41	0,270	39,018	0,517	0,001
Pinnipeds	PAG_GRO	44	4	48	0,257	74,758	0,517	0,001
Pinnipeds	HAL_GRY	45	1	46	0,381	21,613	0,525	0,002
Pinnipeds	ERI_BAR	49	3	52	0,172	76,061	0,531	0,003

Mean Median		39,6 41.0	2,7 3.0	42,3 45.0	0,247 0,257	45,070 39,018	0,511 0.517	0,002 0,001
Mculali		4 1,0	3,0	4 5,0	0,237	39,010	0,517	0,001
Ursidae	URS_MAR	8	0	8	0,292	0,000	0,442	-0,001

Table 3: Summary of the results of the hierarchical clustering on four similarity measures. 987

The cells colours indicate which species are grouped together each of the similarity measures. 988

The shaded cells indicate species that were not assigned a group based on the clustering 989 method.

990

ABBREVIATION	Diet overlap	Jaccard index	Regular equivalence	Centrality distances
ODO_ROS				
CYS_CRI				
ERI_BAR				
PAG_GRO				
PHO_HIS				
HAL_GRY				
PHO_VIT				
URS_MAR				
BAL_ACU				
BAL_PHY				
MEG_NOV				
BAL_MUS				
BAL_MYS				
DEL_LEU				
LAG_ALB				
ORC_ORC				
MON_MON				
PHO_PHO				
PHY_MAC				

991

992 Table S1: Abbreviations and taxonomy of the 19 species of marine mammals included in the Barents

993 Sea food web

Species	Latin name	Abbreviation	Order	Family
Walrus	Odobenus rosmarus	ODO_ROS	Carnivora	Odobenidae
Hooded seal	Cystophora cristata	CYS_CRI	Carnivora	Phocidae
Bearded seal	Erignathus barbatus	ERI_BAR	Carnivora	Phocidae
Harp seal	Pagophilus groenlandicus	PAG_GRO	Carnivora	Phocidae
Ringed seal	Phoca hispida	PHO_HIS	Carnivora	Phocidae
Grey seal	Halichoerus grypus	HAL_GRY	Carnivora	Phocidae
Harbour seal	Phoca vitulina	PHO_VIT	Carnivora	Phocidae
Polar bear	Ursus maritimus	URS_MAR	Carnivora	Ursidae
Minke whale	Balaenoptera acutorostrata	BAL_ACU	Cetacea	Balaenopterida
Fin whale	Balaenoptera physalus	BAL_PHY	Cetacea	Balaenopterida

Humpback whale	Megaptera novaeangliae	MEG_NOV	Cetacea	Balaenopterida
Blue whale	Balenoptera musculus	BAL_MUS	Cetacea	Balaenopterida
Bowhead whale	Balaena mysticetus	BAL_MYS	Cetacea	Balaenopterida
beluga	Delphinapterus leucas	DEL_LEU	Cetacea	Delphinidae
White beaked dolphin	Lagenorhynchus albirostris	LAG_ALB	Cetacea	Delphinidae
Killer whale	Orcinus orca	ORC_ORC	Cetacea	Delphinidae
Narwhal	Monodon monoceros	MON_MON	Cetacea	Monodontidae
Harbour porpoise	Phocoena phocoena	PHO_PHO	Cetacea	Phocoenidae
Sperm whale	Physeter macrocephalus	PHY_MAC	Cetacea	Physeteridae

- **Table S2:** Abbreviations and corresponding species latin names of the 239 species included in
- the Barents Sea food web. The group correspond to the ecological group (plankton, benthic
- 997 invertebrate, fish, sea bird, marine mammal).

TROPHOSPECIES	ABBREVIATION	GROUP
AUTOTHROPH_FLAGELLAT	AUT_FLA	1_Plankton
SAGITTA_SPP	SAG_SPP	1_Plankton
EUPHYSA_FLAMMEA	EUP_FLAM	1_Plankton
SARSIA_SPP	SAR_SPP	1_Plankton
DIMOPHYES_ARCTICA	DIM_ARC	1_Plankton
AGLANTHA_DIGITALE	AGL_DIG	1_Plankton
EUKROHNIA_HAMATA	EUK_HAM	1_Plankton
CYANEA_CAPILLATA	CYA_CAP	1_Plankton
AURELIA_AURITA	AUR_AUR	1_Plankton
ACARTIA_SPP	ACA_SPP	1_Plankton
CALANUS_FINMARCHICUS	CAL_FIN	1_Plankton
CALANUS_GLACIALIS	CAL_GLA	1_Plankton
CALANUS_HYPERBOREUS	CAL_HYP	1_Plankton
MICROCALANUS_SPP	MIC_SPP	1_Plankton
PSEUDOCALANUS_SPP	PSE_SPP	1_Plankton
PAREUCHAETA_GLACIALIS	PAR_GLA	1_Plankton
PAREUCHAETA_NORVEGICA	PAR_NOR	1_Plankton
PAREUCHAETA_SPP	PAR_SPP	1_Plankton
METRIDIA_LONGA	MET_LON	1_Plankton
METRIDIA_LUCENS	MET_LUC	1_Plankton
OITHONA_SIMILIS	OIT_SPI	1_Plankton
OITHONA_SPINIROSTRIS/ATLANTICA	OIT_SIM	1_Plankton
ONCAEA_BOREALIS	ONC_BOR	1_Plankton
APHERUSA_GLACIALIS	APH_GLA	1_Plankton
GAMMARUS_WILKITZKII	GAM_WIL	1_Plankton
ONISIMUS_GLACIALIS	ONI_GLA	1_Plankton
ONISIMUS_NANSENI	ONI_NAN	1_Plankton
THEMISTO_ABYSSORUM	THE_ABY	1_Plankton
THEMISTO_LIBELLULA	THE_LIB	1_Plankton

MEGANYCTIPHANES_NORVEGICA	MEG_NOR	1_Plankton
NEMATOSCELIS MEGALOPS	NEM_MEG	1 Plankton
THYSANOESSA INERMIS	THY_INE	1 Plankton
THYSANOESSA LONGICAUDATA	THY LON	1 Plankton
—	THY_RAS	1 Plankton
THYSANOESSA_RASCHII BEROè SP	BER SP	1 Plankton
	_	
MERTENSIA_OVUM	MER_OVU	1_Plankton
BOLINOPSIS_INFUNDIBULUM	BOL_INF	1_Plankton
DETRITUS	DET_IND	1_Plankton
HETEROTROPH_FLAGELLAT	HET_FLA	1_Plankton
ICE_ALGAE	ICE_ALG	1_Plankton
MACROALGAE	MAC_IND	1_Plankton
DIATOM	DIATOM	1_Plankton
PROTOZOOPLANKTON	PROZOO	1_Plankton
MIXOTROPH_FLAGELLATES	MIX_FLA	1_Plankton
CLIONE_LIMACINA	CLI_LIM	1_Plankton
LIMACINA_HELICINA	LIM_HEL	1_Plankton
LIMACINA_RETROVERSA	LIM_RET	1_Plankton
PHYTOPLANKTON_INDET	PHY_IND	1_Plankton
BACTERIA_INDET	BAC_IND	1_Plankton
FRITILLARIA_BOREALIS	FRI_BOR	1_Plankton
OIKOPLEURA_DIOICA	OIK_DIO	1_Plankton
OIKOPLEURA_SPP	OIK_SPP	1_Plankton
OIKOPLEURA_VANHOEFFENI	OIK_VAN	1_Plankton
PARAMPHINOME_JEFFREYSII	PAR_JEF	2_Benthos
SPIRORBIDAE_INDET	SPI_IND	2_Benthos
LUMBRINERIS_SP	LUM_SP	2_Benthos
HETEROMASTUS_FILIFORMIS	HET_FIL	2_Benthos
EUCLYMENINAE_INDET	EUC_IND	2_Benthos
LUMBRICLYMENE_MINOR	LUM_MIN	2_Benthos
MALDANE_SARSI	MAL_SAR	2_Benthos
POLYCHAETA	POL_IND	2_Benthos
SCALIBREGMA_INFLATUM	SCA_INF	2_Benthos
POLYNOIDAE_INDET	POLY_IND	2_Benthos
AGLAOPHAMUS_MALMGRENI	AGL_MAL	2_Benthos
GALATHOWENIA_SP	GAL_SP	2_Benthos
MYRIOCHELE_HERRI	MYR_HEE	2_Benthos
CHONE_SP	CHO_SP	2 Benthos
SPIOCHAETOPTERUS_TYPICUS	SPI_TYP	2_Benthos
PRIONOSPIO CIRRIFERA	PRI CIR	2 Benthos
SPIOPHANES_KROEYERI	SPI_KRO	2_Benthos
APHELOCHAETA MARIONI	APH MAR	2_Benthos
CHAETOZONE SP	CHA_SP	2 Benthos
CIRRATULIDAE_INDET	CIR_IND	2_Benthos
TEREBELLIDES_STROEMI	TER_STRO	2_Benthos

PYCNOGONIDA G SP	PYC_G_SP	2_Benthos
ELECTRA_ARCTICA	ELE_ARC	2 Benthos
BRYOZOA_INDET	BRY_IND	2 Benthos
ASCIDIACEA_G_SP	ASC_G_SP	2 Benthos
ACTINIARIA_G_SP	ACT_G_SP	2_Benthos
NEPHTHEIDAE_SP	NEP_SP	2 Benthos
HYDROZOA INDET	HYD_IND	2 Benthos
PARALITHODES_CAMTSCHATICUS	PAR CAM	2 Benthos
RHACHOTROPIS SP	RHA_SP	2 Benthos
ARRHIS_PHYLLONYX	ARR_PHY	2_Benthos
GAMMARIDAE_INDET	GAM_IND	2 Benthos
PONTOPHILUS_NORVEGICUS	PON_NOR	2 Benthos
SABINEA_SP	SAB_SP	2 Benthos
SCLEROCRANGON SP	SCL_SP	2 Benthos
CHIONOECETES OPILIO	CHI_OPI	2 Benthos
HYAS_SP	HYA SP	2 Benthos
PAGURUS_SP	PAG SP	2 Benthos
PANDALUS_BOREALIS	PAN BOR	2 Benthos
NYCTIPHANES_COUCHII	NYC_COU	2 Benthos
ASELLOTA INDET	ASE IND	2 Benthos
ERYTHROPS_SP	ERY_SP	2 Benthos
BALANUS_SP	BAL_SP	2 Benthos
OSTRACODA_INDET	OST_IND	2 Benthos
ASTERIAS_RUBENS	AST_RUB	2 Benthos
URASTERIAS LINCKII	URA_LIN	2_Benthos
PONTASTER_TENUISPINUS	PON TEN	2 Benthos
CTENODISCUS_CRISPATUS	CTE CRI	2 Benthos
CROSSASTER_PAPPOSUS	CRO_PAP	2_Benthos
HELIOMETRA_GLACIALIS	HEL_GLA	2_Benthos
STRONGYLOCENTROTUS SP	STRO_SP	2 Benthos
STICHOPUS_TREMULUS	STI_TRE	2_Benthos
CUCUMARIA_FRONDOSA	CUC_FRO	2 Benthos
MOLPADIA BOREALIS	MOL BOR	2 Benthos
GORGONOCEPHALUS_SP	GOR_SP	2_Benthos
OPHIACANTHA_BIDENTATA	OPH BID	2_Benthos
OPHIOPHOLIS_ACULEATA	OPH ACU	2 Benthos
OPHIOSCOLEX GLACIALIS	OPH GLA	2_Benthos
OPHIOCTEN SERICEUM	OPH SER	2 Benthos
OPHIOPLEURA_BOREALIS	OPH BOR	2_Benthos
OPHIURA_SP	OPH SP	2 Benthos
FORAMINIFERA	FOR IND	2_Benthos
BATHYARCA_GLACIALIS	BAT_GLA	2_Benthos
ASTARTE SP	AST_SP	2 Benthos
MENDICULA FERRUGINOSA	MEN FER	2_Benthos
THYASIRA_GOULDI	THY_GOU	2_Benthos
		0

HIATELLA_ARCTICA	HIA_ARC	2_Benthos
MYA TRUNCATA	MYA TRU	2_Benthos
YOLDIELLA_SOLIDULA	YOL_SOL	2 Benthos
CHLAMYS_ISLANDICA	CHL ISL	2_Denthos
SIMILIPECTEN_GREENLANDICUS	SIM_GRE	2 Benthos
MACOMA_SP	MAC_SP	2 Benthos
GONATUS_FABRICII	GON_FAB	2 Benthos
ROSSIA SP	ROS SP	2_Benthos
BUCCINUM_SP	BUC_SP	2_Benthos
COLUS_SP	COL_SP	2_Benthos
BENTHOS_LARVAE	BEN_LAR	2 Benthos
GEODIA SP	GEO_SP	2 Benthos
PORIFERA G SP	POR G SP	2_Benthos
PHASCOLION_STROMBUS	PHA STR	2 Benthos
CIONA INTESTINALIS	CIO_INT	2 Benthos
FISH LARVAE	FI_LA	3 Fish
ARCTOZENUS_RISSO	ARC RIS	3 Fish
CLUPEA HARENGUS	CLU HAR	3 Fish
ARCTOGADUS GLACIALIS	ARC GLA	3 Fish
BOREOGADUS SAIDA	BOR_SAI	3_Fish
GADICULUS_ARGENTEUS	GAD ARG	3 Fish
GADUS_MORHUA	GAD_MOR	3 Fish
MELANOGRAMMUS_AEGLEFINUS	MEL_AEG	3_Fish
MERLANGIUS_MERLANGUS	MER_MER	3 Fish
 MICROMESISTIUS POUTASSOU	MIC_POU	 3_Fish
POLLACHIUS POLLACHIUS	POL_POL	3 Fish
POLLACHIUS_VIRENS	POL VIR	3_Fish
TRISOPTERUS_ESMARKII	TRI ESM	 3_Fish
BROSME_BROSME	BRO_BRO	3_Fish
ENCHELYOPUS_CIMBRIUS	ENC_CIM	3_Fish
GAIDROPSARUS_ARGENTATUS	GAI_ARG	3_Fish
MOLVA_MOLVA	MOL_MOL	3_Fish
MACROURUS_BERGLAX	MAC_BER	3_Fish
GASTEROSTEUS_ACULEATUS	GAS_ACU	3_Fish
BENTHOSEMA_GLACIALE	BEN_GLA	3_Fish
ARGENTINA_SP	ARG_SP	3_Fish
MALLOTUS_VILLOSUS	MAL_VIL	3_Fish
AMMODYTES_SPP	AMM_SPP	3_Fish
ANARHICHAS_DENTICULATUS	ANA_DEN	3_Fish
ANARHICHAS_LUPUS	ANA_LUP	3_Fish
ANARHICHAS_MINOR	ANA_MIN	3_Fish
SCOMBER_SCOMBRUS	SCO_SCO	3_Fish
ANISARCHUS_MEDIUS	ANI_MED	3_Fish
LEPTOCLINUS_MACULATUS	LEP_MAC	3_Fish
LUMPENUS_FABRICII	LUM_FAB	3_Fish

LUMPENUS LAMPRETAEFORMIS	LUM_LAM	3 Fish
GYMNELUS SPP	GYM SPP	3 Fish
LYCENCHELYS_KOLTHOFFI	LYC_KOL	3 Fish
LYCODES ESMARKII	LYC_ESM	3_Fish
LYCODES_EUDIPLEUROSTICTUS	LYC_EUD	3_Fish
———————		
LYCODES_GRACILIS	LYC_GRA	3_Fish
LYCODES_PALLIDUS	LYC_PAL	3_Fish
LYCODES_RETICULATUS	LYC_RET	3_Fish
LYCODES_ROSSI	LYC_ROS	3_Fish
LYCODES_SEMINUDUS	LYC_SEM	3_Fish
GLYPTOCEPHALUS_CYNOGLOSSUS	GLY_CYN	3_Fish
HIPPOGLOSSUS_HIPPOGLOSSUS	HIP_HIP	3_Fish
HIPPOGLOSSOIDES_PLATESSOIDES	HIP_PLA	3_Fish
LIMANDA_LIMANDA	LIM_LIM	3_Fish
MICROSTOMUS_KITT	MIC_KIT	3_Fish
PLEURONECTES_PLATESSA	PLE_PLA	3_Fish
REINHARDTIUS_HIPPOGLOSSOIDES	REI_HIP	3_Fish
AGONUS_CATAPHRACTUS	AGO_CAT	3_Fish
LEPTAGONUS_DECAGONUS	LEP_DEC	3_Fish
ULCINA_OLRIKII	ULC_OLR	3_Fish
ARTEDIELLUS_ATLANTICUS	ART_ATL	3_Fish
GYMNOCANTHUS_TRICUSPIS	GYM_TRI	3_Fish
ICELUS_SPP	ICE_SPP	3_Fish
MYOXOCEPHALUS_SCORPIUS	MYO_SCO	3_Fish
TRIGLOPS_MURRAYI	TRI_MUR	3_Fish
TRIGLOPS_NYBELINI	TRI_NYB	3_Fish
TRIGLOPS_PINGELII	TRI_PIN	3_Fish
CAREPROCTUS_SP	CAR_SPP	3_Fish
CYCLOPTERUS_LUMPUS	CYC_LUM	3_Fish
EUMICROTREMUS_SPINOSUS	EUM_SPI	3_Fish
LIPARIS FABRICII	LIP_FAB	3_Fish
 LIPARIS_GIBBUS	LIP_GIB	 3_Fish
LIPARIS MONTAGUI	LIP MON	3 Fish
PARALIPARIS BATHYBIUS	PAR BAT	3 Fish
COTTUNCULUS_MICROPS	COT_MIC	3_Fish
SEBASTES MARINUS	SEB MAR	3 Fish
SEBASTES MENTELLA	SEB_MEN	3 Fish
SEBASTES_SPP	SEB_SPP	3_Fish
SEBASTES_SIT	SEB_SIT	3_Fish
MAUROLICUS_MUELLERI	MAU MUE	3 Fish
BATHYRAJA_SPINICAUDA	BAT_SPI	3 Fish
AMBLYRAJA_HYPERBOREA	AMB_HYP	3_Fish
AMBLYRAJA RADIATA	AMB_IIII AMB_RAD	3 Fish
RAJELLA_FYLLAE	RAJ_FYL	3_Fish
SOMNIOSUS MICROCEPHALUS	SOM MIC	3_Fish
SOMINIOSOS-MICKOCEPHALOS	SOM MIC	J_F18f1

		2 1 1
ETMOPTERUS_SPINAX	ETM_SPI	3_Fish
SQUALUS_ACANTHIAS	SQU_ACA	3_Fish
ALLE_ALLE	ALL_ALL	4_Birds
FRATERCULA_ARCTICA	FRA_ARC	4_Birds
URIA_AALGE	URI_AAL	4_Birds
URIA_LOMVIA	URI_LOM	4_Birds
LARUS_ARGENTATUS	LAR_ARG	4_Birds
LARUS_HYPERBOREUS	LAR_HYP	4_Birds
LARUS_MARINUS	LAR_MAR	4_Birds
RISSA_TRIDACTYLA	RIS_TRI	4_Birds
FULMARUS_GLACIALIS	FUL_GLA	4_Birds
ODOBENUS_ROSMARUS	ODO_ROS	5_Mammals
CYSTOPHORA_CRISTATA	CYS_CRI	5_Mammals
ERIGNATHUS_BARBATUS	ERI_BAR	5_Mammals
PAGOPHILUS_GROENLANDICUS	PAG_GRO	5_Mammals
PHOCA_HISPIDA	PHO_HIS	5_Mammals
HALICHOERUS_GRYPUS	HAL_GRY	5_Mammals
PHOCA_VITULINA	PHO_VIT	5_Mammals
URSUS_MARITIMUS	URS_MAR	5_Mammals
BALAENOPTERA_ACUTOROSTRATA	BAL_ACU	5_Mammals
BALAENOPTERA_PHYSALUS	BAL_PHY	5_Mammals
MEGAPTERA_NOVAEANGLIAE	MEG_NOV	5_Mammals
BALENOPTERA_MUSCULUS	BAL_MUS	5_Mammals
BALAENA_MYSTICETUS	BAL_MYS	5_Mammals
DELPHINAPTERUS_LEUCAS	DEL_LEU	5_Mammals
LAGENORHYNCHUS_ALBIROSTRIS	LAG_ALB	5_Mammals
ORCINUS_ORCA	ORC_ORC	5_Mammals
MONODON_MONOCEROS	MON_MON	5_Mammals
PHOCOENA_PHOCOENA	PHO_PHO	5_Mammals
PHYSETER_MACROCEPHALUS	PHY_MAC	5_Mammals

Table S3: Marine mammals prey links as used in the food web; one indicates a trophic link
between a consumer (column) and a prey (row). A zero indicates no trophic link. In the
columns, the marine mammal species' name abbreviations are color-coded by phylogenetic

1002 group (green = pinnipeds, brown= Ursidae, blue= mysticetes, pink=odontocetes).

	BA	BA	BA	BA	С	DE	E	HA	LA	Μ	Μ	0	OR	PA	Р	PH	Р	PH	UR
	L_	\mathbf{L}_{-}	\mathbf{L}_{-}	\mathbf{L}_{-}	YS	L_	RI	\mathbf{L}_{-}	G_	EG	ON	D	C _	G _	н	O _	H	Y_	S_
	AC	Μ	Μ	PH	_C	LE	_B	GR	AL	_N	_M	0_	OR	GR	O _	PH	O _	Μ	Μ
	U	US	YS	Y	RI	U	Α	Y	В	OV	ON	R	С	0	HI	0	VI	AC	AR
							R					OS			S		Т		
AC	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
A_{-}																			
SP																			
P																			
AC	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
T_{-}																			
<i>G</i> _																			
SP																			
AG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
L_{-}																			

	BA L_ AC U	BA L_ M US	BA L_ M YS	BA L_ PH Y	C YS _C RI	DE L_ LE U	E RI _B A R	HA L_ GR Y	LA G_ AL B	M EG _N OV	M ON _M ON	O D O_ R OS	OR C_ OR C	PA G_ GR O	P H O_ HI S	PH O_ PH O	P H O_ VI T	PH Y_ M AC	UR S_ M AR
DI G												0.0			2		-		
AG L_ MA L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AG O_ CA T	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
AL L_ AL L	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
AM B_ HY P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM B_ RA D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM M_ SP P	1	0	0	1	1	0	0	1	1	1	0	0	0	1	1	1	1	0	0
AN A_ DE N	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AN A_ LU P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
AN A_ MI N	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AN I_ ME D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
AP H_ GL A	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
AP H_ MA R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AR C_ GL A	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	0
AR C_ RIS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AR G_ SP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
AR R_ PH Y	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0
AR T_ AT L	1	0	0	0	1	0	1	1	0	0	1	0	0	1	1	0	1	0	0

	BA L_ AC U	BA L_ M US	BA L_ M YS	BA L_ PH Y	C YS _C RI	DE L_ LE U	E RI _B A R	HA L_ GR Y	LA G_ AL B	M EG _N OV	M ON _M ON	O D O_ R OS	OR C_ OR C	PA G_ GR O	P H O_ HI S	PH O_ PH O	P H O_ VI T	PH Y_ M AC	UR S_ M AR
AS C_ G_ SP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AS E_I ND	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AS T_ RU B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AS T_ SP	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	0
AU R_ AU R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AU T_ FL A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BA C_I ND	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BA L_ AC U	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
BA L_ MU S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BA L_ MY S	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
BA L_ PH Y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BA L_ SP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BA T_ GL A	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
BA T_ SPI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BE N_ GL A	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0
BE N_ LA R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BE R_ SP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BO L_I NF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BO R_ SAI	1	0	0	0	1	1	1	0	1	1	1	1	0	1	1	1	0	0	0

	BA L_ AC U	BA L_ M US	BA L_ M YS	BA L_ PH Y	C YS _C RI	DE L_ LE U	E RI _B A R	HA L_ GR Y	LA G_ AL B	M EG _N OV	M ON _M ON	0 D O_ R OS	OR C_ OR C	PA G_ GR O	P H O_ HI S	PH O_ PH O	P H O_ VI T	PH Y_ M AC	UR S_ M AR
BR O_ BR O	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0
BR Y_I ND	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BU C_ SP	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
CA L_ FI N	1	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
CA L_ GL A	1	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
CA L_ HY P	1	0	1	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
CA R_ SP P	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
CH A_ SP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CH I_O PI	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	1	0	0
CH L_I SL	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0
CH O_ SP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CI O_I NT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CI R_I ND	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CL I_L IM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CL U_ HA R	1	0	0	1	1	1	0	1	1	1	0	0	1	1	0	1	1	0	1
CO L_ SP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CO T_ MI C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CR O_ PA P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CT E_ CR I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CU C_	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0

	BA L_ AC U	BA L_ M US	BA L_ M YS	BA L_ PH Y	C YS _C RI	DE L_ LE U	E RI _B A R	HA L_ GR Y	LA G_ AL B	M EG _N OV	M ON _M ON	0 D O_ R OS	OR C_ OR C	PA G_ GR O	P H O_ HI S	PH O_ PH O	P H O_ VI T	PH Y_ M AC	UR S_ M AR
FR O															~				
CY A_ CA P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CY C_ LU M	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0	1	0	1	0
CY S_ CR I	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
DE L_ LE U	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
DE T_I ND	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DI AT OM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DI M_ AR C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EL E_ AR C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EN C_ CI M	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0
ER I_B AR	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
ER Y_ SP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ET M_ SPI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EU C_I ND	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EU K_ HA M	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EU M_ SPI	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
EU P_ FL AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FI_ LA	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	0	0	0	0
FO R_I ND	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FR A_ AR C	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0

	BA L_ AC U	BA L_ M US	BA L_ M YS	BA L_ PH Y	C YS _C RI	DE L_ LE U	E RI _B A R	HA L_ GR Y	LA G_ AL B	M EG _N OV	M ON _M ON	O D O_ R OS	OR C_ OR C	PA G_ GR O	P H O_ HI S	PH O_ PH O	P H O_ VI T	PH Y_ M AC	UR S_ M AR
FR I_B OR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FU L_ GL A	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
$ \begin{array}{c} $	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	0	0
GA D_ MO R	1	0	0	0	1	0	1	1	1	0	0	0	1	1	1	1	0	0	1
GA I_A RG	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0
GA L_ SP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GA M_ IN D	0	0	1	0	1	0	0	0	0	1	0	0	0	1	1	1	0	0	0
GA M_ WI L	0	0	1	0	1	0	1	0	0	1	0	0	0	1	1	1	0	0	0
GA S_ AC U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GE O_ SP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GL Y_ CY N	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	1	0	0
GO N_ FA B	0	0	0	1	1	0	1	1	1	0	1	0	0	1	1	1	1	1	0
GO R_ SP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GY M_ SP P	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
GY M_ TR I	1	0	0	0	1	0	1	1	0	0	1	0	0	1	1	0	1	0	0
HA L_ GR Y	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
HE L_ GL A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HE T_ FI L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\frac{L}{HE}$ T_{-}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	BA L_ AC U	BA L_ M US	BA L_ M YS	BA L_ PH Y	C YS _C RI	DE L_ LE U	E RI _B A R	HA L_ GR Y	LA G_ AL B	M EG _N OV	M ON _M ON	0 D O_ R OS	OR C_ OR C	PA G_ GR O	P H O_ HI S	PH O_ PH O	P H O_ VI T	PH Y_ M AC	UR S_ M AR
FL A							I					00			2		-		
HI A_ AR C	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
HI P_ HI P	0	0	0	0	0	0	1	1	0	0	0	0	1	1	0	0	0	0	0
HI P_ PL A	0	0	0	0	1	0	1	1	1	0	0	0	0	1	0	1	1	0	0
HY A_ SP	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	1	0	0
HY D_I ND	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IC E_ AL G	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IC E_ SP P	1	0	0	0	1	0	1	1	0	0	1	0	0	1	1	0	1	0	0
LA G_ AL B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LA R_ AR G	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LA R_ HY P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LA R_ MA R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LE P_ DE C	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
LE P_ MA C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
LI M_ HE L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LI M_ LI M	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0
LI M_ RE T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LIP _F AB	0	0	0	0	1	0	1	0	0	0	1	1	0	1	1	0	0	0	0

	BA L_ AC U	BA L_ M US	BA L_ M YS	BA L_ PH Y	C YS _C RI	DE L_ LE U	E RI _B A	HA L_ GR Y	LA G_ AL B	M EG _N OV	M ON _M ON	0 D O_ R	OR C_ OR C	PA G_ GR O	P H O_ HI	PH O_ PH O	P H O_ VI	PH Y_ M AC	UR S_ M AR
LIP _GI	0	0	0	0	1	0	R 1	0	0	0	1	OS 1	0	1	<u>s</u> 1	0	<u>т</u> 0	0	0
B LIP _M ON	0	0	0	0	1	0	1	0	0	0	1	1	0	1	1	1	0	0	0
LU M_ FA	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0
B LU M_ LA M	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	1	0	0	0
LU M_ MI N	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LU M_ SP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LY C_ ES M	1	0	0	0	1	0	0	0	0	0	1	0	0	1	1	1	1	0	0
LY C_ EU D	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	1	1	0	0
LY C_ GR A	0	0	0	0	1	0	1	0	0	0	1	0	0	1	1	1	1	0	0
LY C_ KO L	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0
LY C_ PA L	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	1	1	0	0
LY C_ RE T	1	0	0	0	1	0	1	0	0	0	1	0	0	1	1	1	1	0	0
LY C_ RO S	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	1	1	0	0
LY C_ SE M	1	0	0	0	1	0	1	0	0	0	1	0	0	1	1	1	1	0	0
MA C_ BE R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MA C_I ND	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MA C_ SP	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0
MA L_ SA R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MA L_	1	0	0	1	1	1	0	1	1	1	1	0	0	1	1	1	1	0	0

	BA L_ AC U	BA L_ M US	BA L_ M YS	BA L_ PH Y	C YS _C RI	DE L_ LE U	E RI _B A R	HA L_ GR Y	LA G_ AL B	M EG _N OV	M ON _M ON	0 D O_ R OS	OR C_ OR C	PA G_ GR O	P H O_ HI S	PH O_ PH O	P H O_ VI T	PH Y_ M AC	UR S_ M AR
VI L															~				
MA U_ MU E	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
ME G_ NO R	1	1	1	1	0	0	0	0	0	1	0	0	0	1	1	1	0	0	0
ME G_ NO V	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
V ME L_ AE G	1	0	0	0	1	0	0	1	1	0	0	0	0	0	0	1	1	0	0
ME N_ FE R	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
ME R_ ME R	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0
ME R_ OV U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<i>ME</i> <i>T</i> _ <i>LO</i> <i>N</i>	0	0	1	1	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0
ME T_ LU C	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
MI C_ KI T	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0
MI C_ PO U	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
MI C_ SP P	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
MI X_ FL A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MO L_ BO R	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
MO L_ MO L	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0
MO N_ MO N	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$ \begin{array}{c} MY \\ A_{-} \\ TR \\ U U $	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0

	BA L_ AC U	BA L_ M US	BA L_ M YS	BA L_ PH Y	C YS _C RI	DE L_ LE U	E RI _B A R	HA L_ GR Y	LA G_ AL B	M EG _N OV	M ON _M ON	0 D O_ R OS	OR C_ OR C	PA G_ GR O	P H O_ HI S	PH O_ PH O	P H O_ VI T	PH Y_ M AC	UR S_ M AR
MY 0_ SC 0	1	0	0	0	1	0	1	1	0	0	1	1	0	1	1	0	1	0	0
MY R_ HE E	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NE M_ ME G	0	1	1	1	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0
NE P_ SP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NY C_ CO U	0	1	1	1	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0
OD O_ RO S	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
OI K_ DI O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OI K_ SP P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OI K_ VA N	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OI T_ SI M	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
OI T_ SPI	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
ON C_ BO R	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
ON I_G LA	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0
ON I_N AN	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0P H_ AC U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OP H_ BI D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OP H_ BO R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OP H_ GL A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	BA L_ AC U	BA L_ M US	BA L_ M YS	BA L_ PH Y	C YS _C RI	DE L_ LE U	E RI _B A R	HA L_ GR Y	LA G_ AL B	M EG _N OV	M ON _M ON	0 D O_ R OS	OR C_ OR C	PA G_ GR O	P H O_ HI S	PH O_ PH O	P H O_ VI T	PH Y_ M AC	UR S_ M AR
OP H_ SE R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OP H_ SP	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
OR C_ OR C	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
OS T_I ND	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PA G_ GR O	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1
PA G_ SP	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	1	0	0
PA N_ BO R	0	0	0	0	0	1	1	1	0	0	1	0	0	1	1	1	1	0	0
PA R_ BA T	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
PA R_ CA M	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
PA R_ GL A	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
PA R_ JE F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PA R_ NO R	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
PA R_ SP P	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
PH A_ ST R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PH O_ HI S	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1
В РН 0_ РН 0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
РН 0_ VI T	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
PH Y_I ND	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	BA L_ AC U	BA L_ M US	BA L_ M YS	BA L_ PH Y	C YS _C RI	DE L_ LE U	E RI _B A R	HA L_ GR Y	LA G_ AL B	M EG _N OV	M ON _M ON	0 D O_ R OS	OR C_ OR C	PA G_ GR O	P H O_ HI S	PH O_ PH O	P H O_ VI T	PH Y_ M AC	UR S_ M AR
PH Y_ MA C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PL E_ PL A	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	1	0	0
PO L_I ND	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
PO L_ PO L	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0
PO L_ VI R	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	1	1	1	0
PO LY _IN D	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
PO N_ NO R	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0
PO N_ TE N	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PO R_ G_ SP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PR I_C IR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PR OZ OO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PS E_ SP P	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
PY C_ G_ SP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RA J_ FY L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RE I_ HI P	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	1	0	0	0
RH A_ SP	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
RIS _T RI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RO S_S P	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	1	0	0
SA B_ SP	0	0	0	0	0	0	1	1	0	0	0	0	0	1	1	0	1	0	0

	BA L_ AC U	BA L_ M US	BA L_ M YS	BA L_ PH Y	C YS _C RI	DE L_ LE U	E RI _B A R	HA L_ GR Y	LA G_ AL B	M EG _N OV	M ON _M ON	0 D O_ R OS	OR C_ OR C	PA G_ GR O	P H O_ HI S	PH O_ PH O	P H O_ VI T	PH Y_ M AC	UR S_ M AR
SA G_ SP P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SA R_ SP P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SC A_I NF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SC L_ SP	0	0	0	0	0	0	1	1	0	0	0	1	0	1	1	0	1	0	0
SC 0_ SC 0	1	0	0	1	0	0	0	1	1	1	0	0	1	0	0	1	1	0	0
SE B_ MA R	0	0	0	0	1	0	0	0	0	0	1	0	0	0	1	1	1	0	0
SE B_ ME N	1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	1	0	0
SE B_ SP P	1	0	0	0	0	0	0	1	0	0	1	0	0	0	1	0	1	1	0
SE B_ VI V	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SI M_ GR E	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
SO M_ MI C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SPI _IN D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SPI _K RO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SPI _T YP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SQ U_ AC A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STI _T RE	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
ST RO _S P	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
TE R_ ST RO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TH E_	1	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	0

	BA L_ AC U	BA L_ M US	BA L_ M YS	BA L_ PH Y	C YS _C RI	DE L_ LE U	E RI _B A R	HA L_ GR Y	LA G_ AL B	M EG _N OV	M ON _M ON	O D O_ R OS	OR C_ OR C	PA G_ GR O	P H O_ HI S	PH O_ PH O	P H O_ VI T	PH Y_ M AC	UR S_ M AR
AB Y																			
TH E_ LI B	1	0	0	0	1	0	0	0	0	1	0	0	0	1	1	0	0	0	0
TH Y_ GO U	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
TH Y_I NE	1	1	1	1	1	0	0	0	0	1	0	0	0	1	1	1	0	0	0
TH Y_ LO N	1	1	1	1	1	0	0	0	0	1	0	0	0	1	1	1	0	0	0
TH Y_ RA S	1	1	1	1	1	0	0	0	0	1	0	0	0	1	0	1	0	0	0
TR I_E SM	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	1	1	0	0
TR I_ MU R	1	0	0	0	1	0	1	1	0	0	1	0	0	1	1	0	1	0	0
TR I_N YB	1	0	0	0	1	0	1	1	0	0	1	0	0	1	1	0	1	0	0
TR I_P IN	1	0	0	0	1	0	1	1	0	0	1	0	0	1	1	0	1	0	0
UL C_ OL R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UR A_ LI N	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UR I_A AL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UR I_L OM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UR S_ MA R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
YO L_ SO L	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0