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Background: The gut microbiota plays important roles in modulating host metabolism. Previous studies have
demonstrated differences in the gutmicrobiome of T2D and prediabetic individuals compared to healthy individ-
uals, with distinct disease-relatedmicrobial profiles being reported in groups of different age and ethnicity. How-
ever, confounding factors such as anti-diabetic medication hamper identification of the gut microbial changes in
disease development.
Method:Weused a combination of in-depthmetagenomics andmetaproteomics analyses of faecal samples from
treatment-naïve type 2 diabetic (TN-T2D, n = 77), pre-diabetic (Pre-DM, n= 80), and normal glucose tolerant
(NGT, n=97) individuals to investigate compositional and functional changes of the gutmicrobiota and the fae-
cal content of microbial and host proteins in Pre-DM and treatment-naïve T2D individuals to elucidate possible
host-microbial interplays characterizing different disease stages.
Findings:We observed distinct differences characterizing the gut microbiota of these three groups and validated
several key features in an independent TN-T2D cohort. We also demonstrated that the content of several human
antimicrobial peptides and pancreatic enzymes differed in faecal samples between three groups.
Interpretation: Our findings suggest a complex, disease stage-dependent interplay between the gut microbiota
and the host and point to the value ofmetaproteomics to gain further insight into interplays between the gutmi-
crobiota and the host.
Fund: The study was supported by the National Natural Science Foundation of China (No. 31601073), the Na-
tional Key Research and Development Program of China (No. 2017YFC0909703) and the Shenzhen Municipal
Government of China (No. JCYJ20170817145809215). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.
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1. Introduction

Type 2 diabetes mellitus (T2D) is a chronic heterogeneous disorder
associated with hyperglycaemia and low grade inflammation [1,2].
The prevalence has increased dramatically in Westernized countries,
and also in China, where 11.6% and 36% of Chinese adults suffer from di-
abetes and prediabetes (Pre-DM), respectively [3]. Due to complications
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Research in context

Evidence before this study

An altered human gut microbiota has been strongly linked to met-
abolic disorders, such as obesity and T2D. However, reported
T2D-related microbial features are inconsistent between studies,
potentially confounded by age, ethnicity, geography and anti-dia-
betic medication.

Added value of this study

We report distinct differences characterizing the gut microbiota of
NGT, Pre-DM, and TN-T2D. Importantly, we reveal a substantial
number of Pre-DM associated microbial and human protein fea-
tures at both the metagenomics and (or) metaproteomics level
and validated several key microbial features in an independent
TN-T2D cohort.

Implications of all the available evidence

Our findings suggest that highly complex changes of the intestinal
ecosystemmay characterize different T2D developmental stages.
Longitudinal studies with multi-omics data including information
on the gut microbiota, clinical parameters, and dietary information
of prediabetic individuals are needed to further our knowledge on
diseasemechanismsand provide feasible approaches for precision
treatment.
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and comorbidities related to the development of T2D, comprehensive
characterization of phenotypic, metabolic and molecular changes of
the host and the gut microbiota in Pre-DM and T2D compared to NGT
is needed to enable early identification of prediabetic individuals at
high risk of T2D development.

Cross-sectional metagenomic studies have linked alterations in the
gut microbiome to T2D and prediabetes [4–7]. However, a few recent
intervention studies have reported profound impact of antidiabetic
drugs on the human gut microbiome, such as metformin, acarbose
and glucagon-like peptide-1 (GLP-1) based therapies [8–13], emphasiz-
ing the importance of controlling for medication in studies on associa-
tion between the microbiota and T2D. Moreover, distinct disease-
relatedmicrobial profiles have been reported in different age and ethnic
groups [4–7], making it difficult to identify the microbes possibly in-
volved in disease development. Thus, detailed information on the gut
microbial species associated with T2D onset and progression is still lim-
ited. Whereas information from metagenomics is limited to identifica-
tion of the presence of genes, taxa, and their inferred functional
capacity, introduction of additional omics approaches including meta-
bolomics, metatranscriptomics, and metaproteomics has increased our
knowledge of microbial activity in health and disease [14–17]. For in-
stance, recent metatranscriptomics studies on inflammatory bowel dis-
ease and cirrhosis cohorts have revealed considerable discrepancies
between data obtained from metagenomics vs metatranscriptomics
analyses [17,18]. As metaproteomics enables identification of microbial
and human proteins simultaneously in faecal samples [14,19,20], such
an approach offers a potential for deciphering both active microbial
functions and host-microbiota interactions.

In the present study, we examined 254 stool samples collected
from a Chinese cohort combining shotgun metagenomics and
metaproteomics analyses. We characterized substantial differences be-
tween NGT, Pre-DM and TN-T2D individuals. Of note, consistent aberra-
tions in Pre-DM and TN-T2D individuals included lower abundances of
Clostridiales species and higher abundances of Megasphaera elsdenii
compared to NGT individuals. Several robust microbial compositional
changes were detected at both the DNA and protein levels, such as an
enrichment of E. coli in Pre-DM individuals and an increased abundance
of Bacteroides spp. in TN-T2D patients. Several Pre-DM-specific features
were furthermore uncovered, including a reduced functional potential
for processes involved in energy metabolism and bacterial growth.
Thus, our findings revealed distinct characteristics of the intestinal eco-
system in the Pre-DM stage. Of note, proteomics analyses revealed that
the levels of several antimicrobial peptides (AMPs) and pancreatic en-
zymes appeared to be lower in faecal samples of the TN-T2D individuals
than in the other two groups. These findings suggest that potential spe-
cific differences in the host response among groupsmight influence the
composition of the gutmicrobiota, or vice versa. In conclusion, our study
provides a basis for further analyses integrating faecal metagenomics
and metaproteomics which may lead to a better understanding of
mechanisms underlying the development of Pre-DM and T2D.

2. Materials and methods

2.1. Suzhou T2D study population

The study was approved by the Institutional Review Board of BGI-
Shenzhen and the ethical review committee of Suzhou Centre for Dis-
ease Control and Prevention (CDC). The study population recruited
from community residents from Suzhou, comprised 97 Chinese adults
with normal glucose tolerance (NGT), 80 prediabetes patients (Pre-
DM) and 77 newly diagnosed, treatment naïve type 2 diabetes patients
(TN-T2D). All TN-T2D patients and Pre-DM individuals were screened
and newly diagnosed according to the 2011 WHO criteria by a well-
trained staff at the Suzhou CDC, as described in detail in a recent pub-
lished lipidomic study based on this cohort [21]. All enrolled 254 indi-
viduals reported no anti-diabetic treatments; thus, none have had
taken insulin, or any oral or injectable anti-diabetic medication. How-
ever, considering the high prevalence of metabolic adverse conditions
in the Suzhou cohort, patients who had been diagnosed with hyperten-
sion, dyslipidaemia, or prescribedwith drugs for treating these diseases
were included. Stool samples for metagenomics were self-collected in
2 ml faecal containers and immediately stored at −80 °C and
transported to the laboratory on dry ice. DNA was extracted as previ-
ously described [4]. A summary of sample information is presented in
Table S1. In addition, shotgun metagenomic datasets of stools from 94
TN-T2D patients from Shanghai, a city near to Suzhou, receiving no
anti-diabetic medication [9] were included for validation purposes.

2.2. Method for metagenomics

2.2.1. Generation of a BGISEQ-500-based faecal metagenome data set
In this study, we performed DNA library construction and the com-

binatorial probe-anchor synthesis (cPAS)-based BGISEQ-500 sequenc-
ing for metagenomics (single-end; read length of 100 bp) and applied
the same quality control workflow to filter the low-quality reads in ac-
cordance with the recently published metagenomic study using this
new platform [22]. The remaining high-quality reads were then aligned
to hg19 to remove human reads [23]. Metagenomic data statistics is
provided in Table S2.

2.2.2. Profiling of metagenomic samples and biodiversity analysis
High-quality non-human reads were aligned to the 9.9M integrated

gene catalogue (IGC) by SOAP2 using the criterion of identity ≥90% [23].
Sequence-based gene abundance profilingwas performed as previously
described [23]. The relative abundances of phyla, genera, species and
KOswere calculated by the sumof the relative abundance of their anno-
tated genes. The alpha diversity (within-sample diversity) was quanti-
fied by the Shannon index using the relative abundance profiles at
gene, genus and KO levels as described [23]. The beta diversity
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(between-sample diversity) was calculated using Bray-Curtis dissimi-
larity (R version 3.3.2, vegan package 2.4–4).

2.2.3. Metagenome-wide association analysis (MWAS)
MWAS was performed on the Suzhou T2D cohort as previously de-

scribed [4]. Using non-parametric Kruskal-Wallis test (R version 3.3.2
stats package), we identified 266,015 genes showing significantly dif-
ferent abundances between the NGT, Pre-DM and TN-T2D groups (P b

.05). After clustering, a total of 126 MLGs (≥100 genes) were generated
from these genes. The relative abundance of each MLG was summed
using the relative abundance values of all genes from this MLG. The tax-
onomic annotation of eachMLGwas determined if N50% of genes in this
MLG could be assigned to a certain taxon according to their IGC annota-
tion. The genes of 85 unclassified MLGs were further annotated using a
reference sequence database including 1520 high-quality genomes ob-
tained from bacteria isolated from healthy Chinese individuals [24],
which resulted in the taxonomic annotations of 11 additional MLGs
(See detailed information in Table S5).

2.3. Method for metaproteomics

2.3.1. Sample preparation and LC-MS/MS analysis
Faecal samples from 84 individuals from NGT, Pre-DM, and TN-T2D

individuals were used for metaproteome analysis using isobaric tags for
relative and absolute quantitation (iTRAQ)–coupled-liquid chromatog-
raphy tandem mass spectrometry (LC-MS/MS) (Fig. S1). Each group
consisted of 28 randomly selected individual samples with matched
age, sex and BMI by propensity scorematching (R version 3.3.2,MatchIt
package 2.4–21) [25] (Table S3). Faecal samples were processed using
the filter-aided sample preparation (FASP) protocol [26]. Briefly,
100 mg frozen faeces from each individual were suspended in 500 μl
lysis buffer (4% SDS, 100 mM dithiothreitol, 100 mM Tris-HCL (pH =
7.8)with freshly addedprotease inhibitors (cOmplete™, EDTA-free Pro-
tease Inhibitor Cocktail, RocheApplied Science). The sampleswere incu-
bated for 5 min at 100 °C, followed by sonication to decrease the
viscosity. The protein supernatants were collected after centrifugation
at 30,000g at 4 °C for 30 min and then quantified using a 2D-quant kit
(Sigma). For each diagnostic group, protein extracts in equal amounts
from four individuals were pooled, and the selected 28 samples were
thus aliquoted into 7 mixtures. A reference sample was created by
pooling equal amounts of protein from each of 84 individual sample
and 28 samples from self-reported T2D patients. Each mixture contain-
ing 100 μg proteins was loaded onto a 10 kDa cut-off spin column
(Vivacon 500, Sartorius AG, Goettingen, Germany). The lysate was ad-
justed to 8 M urea by centrifugation to remove SDS and low-
molecular-weight material. After reduction by dithiothreitol (DTT)
and alkylation by iodoacetamide (IAM), 8M ureawas added and centri-
fuged to remove any remaining reagent such as IAM. The urea buffer
was then replaced with 0.5 M triethylammonium bicarbonate (TEAB),
and the sample was washed with 0.5 M TEAB 5 times. Trypsin
(Promega, Madison, WI, USA) was added to digest the protein at a pro-
tein: trypsin ratio of 50:1, and the mixtures were incubated for 18 h at
37 °C. The resulting peptides were eluted twice with 100 μl 0.5 M
TEAB by centrifugation at 12,000 g for 30 min and vacuum dried. The
peptide mixture samples were then dissolved in 0.5 M TEAB and la-
belled with 8-plex iTRAQ reagents according to themanufacturer's pro-
tocol (AB Sciex, USA). For each diagnostic group, 7 mixtures were
labelled with tags from I113 to I119. To perform the iTRAQ quantitation
throughout the whole experiment, we labelled the reference sample by
tag 121 in each iTRAQ run. Thus, three independent 8-plex iTRAQ runs
were conducted. Subsequently, labelled peptides were separated on a
LC-20AB HPLC system (Shimadzu, Kyoto, Japan) with an Ultremex
SCX column (Phenomenon, Torrance, CA) and collected into 20 frac-
tions. Each fraction was analysed via a NanoLC system coupled with a
Q Exactive mass spectrometry (Thermo Fisher Scientific, San Jose, CA)
as described previously [27].
2.3.2. Database searching and protein identification
For protein database searching, we usedMascot (Version 2.3) [28] as

the search engine with the following parameters: trypsin was used as
default enzyme and up to two missed cleavages were allowed.
Carbamidomethyl (C), iTRAQ8plex (N-term) and iTRAQ8plex (K) were
chosen as fixed modifications, and Oxidation (M) was chosen as vari-
able modification. The peptide mass tolerance was set to 10 ppm and
the fragment mass tolerance to 0.03 Da.

A two-step search method was applied. The MS/MS spectra were
first searched against a collection of three protein sequence databases,
including Homo sapiens sequences retrieved from SwissProt (release
2014_11), and human gut microbial protein sequences of IGC genes
mapped by sequencing reads from our 254 metagenomic samples. The
detailed searchparameters are presented in Table S4. TheMascot search
yielded a set of scored peptide-spectrum matches (PSMs) and the pro-
teinswere inferred from the PSMs. Subsequently, a target-decoy protein
databasewas created containing the above-mentioned proteins and the
reversed sequences from these proteins. A second round search based
on the target-decoy database was performed to control for false posi-
tives as described elsewhere [29]. The PSMs were re-scored by Mascot
Percolator [30] integrated into IQuant [31], and filtered at false discov-
ery rate (FDR) ≤ 0.01. To improve the confidence in identification, pep-
tides supported by ≥2 spectra were retained and protein identifications
were thus inferred.

2.3.3. Meta-protein generation
Due to the shared similarity of metagenomic protein reference se-

quences, a microbial peptide hit is typically returned from several pro-
teins within and between species. To avoid inflating numbers and
alleviate taxonomic ambiguities of identifiedmicrobial proteins, several
processeswere performed to reduce data redundancy.We first grouped
themicrobial proteinswith at least one shared peptide to generate pro-
tein clusters (Fig. S2). Each cluster was then processed according to the
maximum parsimony principle. The minimum protein sets containing
all peptides of each cluster were selected and defined as the meta-
protein representing the cluster (Fig. S2). Individual proteins which
only contained unique peptides were also assigned as a meta-protein.
All redundant non-meta-protein sequenceswere thus omitted in subse-
quent analyses.

2.3.4. Protein quantification
Protein quantificationwas performed by IQuant [31] in the following

three steps.
We first normalized the intensities of iTRAQ reporter ions for all

spectra across the eight iTRAQ-labelled samples (I113…I119, I121)
using the formula (1) as follows:

si−k ¼
Si−k

median S1−k : Sn−kð Þ ;where k ¼ I113…I119; I121 ð1Þ

where si−k is the normalized relative intensity of spectrum i in the
label k.

The reporter ion ratios were then determined using the formula (2):

ri−k ¼
si−k

si−121
;where k ¼ I113…I119 ð2Þ

where ri−k is the ratio of relative intensity of spectrum i in the label k,
with Si−121, the relative intensity of the global QC labelled with 121
tags as denominators.

For protein quantification, only unique peptides were taken into
consideration. The relative protein ratio was calculated using the
mean relative intensity ratio of all unique peptide spectra in each pro-
tein using the formula (3):

pk ¼ mean r1−k : rp−k
� �

;where k ¼ I113…I119 ð3Þ
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where pk is the protein ratio in label K and acts as an indication of the
relative proportions of that protein between the differently labelled
samples.

2.3.5. Protein annotation
For microbial meta-proteins, taxonomic and functional annotations

of identified proteins were derived from the putative protein-coding
IGC genes. As a result, we linked 64.15% (8777 of 11,980) of the meta-
proteins with annotation at the phylum or lower taxonomical levels
and 80.27% (10,983 of 11,980) with KEGG Ontology (KO) annotation.
For human proteins, functional annotations were obtained from
UniProtKB/Swiss-Prot (release 2014_11).

2.4. Statistical analyses of metagenomes and metaproteomes

2.4.1. MLG-based random forest classification
Relative abundance data of all MLGs were subjected to random for-

est (RF) analysis to perform five-fold cross validation (R 3.3.2, caret
package 6.0-77) [32]. The combinations of optimal MLGs markers
maximising the discrimination accuracy between each two groups
were thus determined by RF using an embedded feature selection strat-
egy as previously reported [33]. The importance values of model-
selected MLGs were calculated using “mean decrease in accuracy”
strategy.

2.4.2. Spearman's rank coefficient correlation
Spearman's rank coefficient correlation (SCC) analysis was used for

correlations between number of meta-proteins and metagenomic
abundances at the genus level, and between the levels of proteins. The
significance cut-off for SCC was set at an FDR adjusted P b .05.

2.4.3. Enrichment analysis of KEGG modules
Differentially enriched KEGG modules were identified according to

reporter Z-scores [34]. Z-score for each KO was first calculated from
Benjamín-Hochberg (BH)-adjusted P values from Wilcoxon rank-sum
tests of comparisons between each two groups. The aggregated
Z-score for each module was calculated using Z-scores of all individual
KOs belonging to the corresponding module. A module was considered
significant at a |reporter Z-score | ≥ 1.96.

2.4.4. Other statistical analyses
Kruskal–Wallis (KW) test was conducted to detect the differences in

continuous phenotypic factors, microbial diversity, richness and MLG
relative abundances between multi-groups. Dunn's post hoc tests
followed KW test to explore the phenotypic differences among three
pairwise comparisons (R version 3.3.2, PMCMR package 4.1). For MLG
relative abundances, the Dunn's post hoc p-values were adjusted using
the Benjamini-Hochberg (BH) method across all 126 identified MLGs
for comparisons between each two groups from the Suzhou cohort.
The significance cut-off was set as a BH-adjusted Dunn's P value b.05.

Wilcoxon rank-sum test was then performed on relative abundance
of 126 MLGs between published TN-T2D patients from Shanghai [9]
and NGT or Pre-DM from the Suzhou cohort for validation purposes.
The significance cut-off was set as a BH-adjusted P value b.05. Detailed
information on enrichment of MLGs between groups is provided in
Table S5.

Wilcoxon rank-sum test was performed to detect differences in pro-
tein levels between each two groups. Due to a large number of identified
proteins in this study, no statistically significant differences in protein
intensities between groups could be reached with a significance cut-
off of a BH-adjusted P value b.05 after P value adjustment across all pro-
teins. Thus, a P value b.05, and a fold change of protein levels N1.2 or b
0.8 in protein intensities between two groups were used to report pro-
teins with higher or lower trends.

Chi-square test was conducted to detect the distribution of differ-
ences in discrete phenotypic factors, such as sex and treatment
distribution between groups, and to identify differences in taxonomic
and functional assignments betweenmetagenomic and metaproteomic
datasets. The significant cut-off was set as a P value b.05.

2.5. Data availability

Metagenomic sequencing data for 254 faecal samples can be
accessed from China Nucleotide Sequence Archive (CNSA) with the
dataset identifier CNP0000175. Themass spectrometrymetaproteomics
data have been deposited to the ProteomeXchange Consortium via the
PRIDE partner repository with the dataset identifier PXD013452 and
https://doi.org/10.6019/PXD013452.

3. Results

3.1. Experimental design

The cohort consisted of 77 TN-T2D patients, 80 Pre-DM individuals
and 97 NGT individuals from Suzhou, China (Methods, Table S1). The
three groups were matched regarding body mass index (BMI) and sex
(P N .05), but individuals with TN-T2D (mean age 66 +/− 8 years)
were on average 5 years older than individuals in the two other groups
(Table S1). Shotgun metagenomics was performed on faecal samples
from all participants, whereasmetaproteomics profilingwas performed
on a subgroup of 84 participants, including 28 age-, sex-, and BMI-
matched individuals from each group (Fig. 1).

3.2. Distinct metagenomics profiles in Chinese prediabetic and type
2 diabetic individuals

Shotgun metagenomic sequencing of the 254 stool DNA samples
was performed using the BGISEQ-500 platform and raw reads were fil-
tered and aligned to the integrated gene catalogue (IGC) of the human
gut microbiome to generate gene, taxonomic and functional profiles as
previously described (Methods, Table S2). In line with previous studies
[4–6], no significant differences in microbial gene-based richness,
alpha-diversity, and beta-diversity were found between the NGT,
Pre-DM, and TN-T2D individuals (Fig. S3, Kruskal-Wallis (KW) test,
P N .05). Using ametagenome-wide association approach [4], we identi-
fied 266,015 T2D-associated genes (KW test, P b .05) and clustered
these genes into 126 metagenomic linkage groups (MLGs, ≥ 100
genes, Table S5).

We further applied the KW test to detect statistically significant dif-
ferences in the relative abundances of MLGs between individuals with
NGT, Pre-DM, and TN-T2D. Compared to NGT individuals, the abun-
dances of MLGs from the Clostridia class, such as Dialister invisus
(MLG-3376) and Roseburia hominis (MLG-14865 and MLG-14920)
were significantly lower in individuals with Pre-DM or TN-T2D
(Fig. 2A, Table S5, Dunn's test, adjusted P b .05), which is in agreement
with previous findings in a Danish T2D cohort [6]. In addition, we
found that the abundance of the butyrate-producing Faecalibacterium
prausnitzii (MLG-4560) was lower in Pre-DM compared to both NGT
and TN-T2D individuals (Fig. 2A, adjusted P b .05). By contrast,MLGs an-
notated to Escherichia coli (MLG-7919 and MLG-7840), Streptococcus
salivarius (MLG-6991), and Eggerthella sp. (MLG-351) were highly
enriched in Pre-DM compared to NGT individuals (Fig. 2A, adjusted
P b .05). An increased abundance of Streptococcus operational taxo-
nomic units (OTUs) was also recently reported in a Danish prediabetic
cohort [7]. Additionally, Pre-DM individuals also exhibited a significant
enrichment in E. coli abundance compared to TN-T2D individuals
(Fig. 2A, adjusted P b .05). Moreover, we detected significantly lower
abundances of Akkermansia muciniphila (MLG-2159) and Clostridium
bartlettii (MLG-7540) and higher abundances of Bacteroides caccae
(MLG-10234 and MLG-10325), Bacteroides finegoldii (MLG-10154 and
MLG-10159), and Collinsella intestinalis (MLG-10084) in TN-T2D
patients compared with NGT and Pre-DM individuals (Fig. 2A, adjusted

https://doi.org/10.6019/PXD013452


Fig. 1. Experimental overview. 254 participants were recruited from the Suzhou cohort and diagnosed as treatment naive T2D patients (TN-T2D, n = 77, red), prediabetic individuals
(Pre-DM, n = 80, blue) or individuals with normal glucose tolerance (NGT, n = 97, green). Each participant provided two stool samples. One set of stool samples was used for
metagenomic shotgun sequencing, followed by IGC-based taxonomic and functional analyses. The other set of stool samples, comprising a total of 84 samples with 28 age-, BMI- and
sex-matched participants from each group, was selected for metaproteomic analyses using isobaric tags for relative and absolute quantitation (iTRAQ)–coupled-liquid chromatography
tandem mass spectrometry (iTRAQ-LC-MS/MS) to provide information on the microbial and host proteins present in stool samples. A total of 11, 980 meta-proteins and 425 human
proteins were identified in this study. Microbial gene and protein profiling were used to determine alterations in the abundance of microbial taxa and functions, and human protein
profiling was used to identify alterations in the abundance of human proteins in faecal samples from NGT, Pre-DM and TN-T2D individuals. Colour and shapes indicate gut microbial
taxa, functional pathway/modules and identified fecal microbial and human proteins enriched in NGT (green), Pre-DM (blue) and TN-T2D (red). Yellow lines indicate metagenomic
analyses; grey lines indicate metaproteomic analyses.
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P b .05). Finally, the abundance of Megasphaera elsdenii (MLG-1568)
was significantly higher in both TN-T2D and Pre-DM individuals than
in NGT individuals (Fig. 2A, adjusted P b .05), in line with the positive
correlation between the relative abundance of the genus Megasphaera
and T2D recently reported in a large cohort with about 7000 individuals
from South China [35]. Several key findings were further validated in
faecal samples of 94 treatment naïve T2D patients in Shanghai [9],
such as a lower abundance of A. muciniphila and C. bartlettii compared
to NGT and Pre-DM individuals, and a lower abundance of E.coli com-
pared to Pre-DM individuals in this study (Fig. 2A, Table S5, Wilcoxon
rank-sum test, adjusted P b .05). A summary of gut microbial taxa re-
ported in previously published cross-sectional T2D or prediabetes stud-
ies is presented in Table S6.

To assess the discriminative power of MLGs in T2D and identify key
MLGs differentiating individualswith respect to different disease stages,
we applied a feature selection approach and constructed RandomForest
(RF) classification models comparing the groups (Methods). Remark-
ably, the RFmodels provided high performances regarding classification
of samples from the two different disease stages, with area under the
ROC curve (AUC) values from 0.90 to 0.94 (Fig. 2B). Apart from taxo-
nomically unclassified MLGs, the most discriminatory MLG for separat-
ing TN-T2D and NGT was A. muciniphila. Moreover, MLGs annotated to
F. prausnitzii and E. coli both showed to be important in separating
Pre-DM samples from TN-T2D and NGT samples (Fig. 2C), indicating
the unique microbial DNA signatures of lower abundance of
F. prausnitzii and higher abundance of E. coli in Pre-DM individuals.
We also validated the predictive power of the RF models between TN-
T2D and the other two groups, which showed an accuracy of 76. 6%
(72 of 94 patients) for disease prediction in a previously described TN-
T2D cohort from Shanghai (Table S7) [9].
We next performed KEGG enrichment analyses to examine possible
differential patterns of microbial functional potentials in NGT, Pre-DM
and TN-T2D individuals (Table S8). Interestingly, we observed a
significant enrichment in modules comprising several sugar phospho-
transferase systems (PTS), ATP-binding cassette transporters (ABC
transporters) of amino acids, and bacterial secretion systems in the
gut microbiota of Pre-DM compared to NGT individuals (reporter
score ≥ 1.96, Fig. 2D). Likewise, in line with previous findings in several
Chinese cohorts withmetabolic diseases, such as atherosclerotic cardio-
vascular disease (ACVD), obesity and T2D [36], a similar enrichment
was found in TN-T2D patients compared with NGT individuals
(Fig. 2D). The abundances of the transport system for microcin C, a
peptide-nucleotide antibiotic produced by Enterobacteria [37], and the
transport system for autoinducer-2 (AI-2), a quorum sensing signalling
molecule reported in Proteobacteria [38], were also significant higher in
Pre-DM than inNGT individuals (Fig. 2D). Except for enrichment of type
II-IV secretion and AI-2 transport systems in Pre-DM vs TN-T2D, we
found noother KEGGmodules for PTS andABC transporters to differ sig-
nificantly in abundance between Pre-DM and TN-T2D individuals
(Fig. 2D). However, Pre-DM individuals displayed a significant reduc-
tionwith respect to several energy and nucleotidemetabolismmodules
compared to both NGT and TN-T2D individuals, including modules of
V-type ATPase, pyruvate: ferredoxin oxidoreductase, and bacterial
ribosomal proteins (Fig. 2D). We next performed a second-round
KEGG enrichment analysis by excluding all E. coli genes. Interestingly,
abundances of several of the abovementioned Pre-DM enriched
modules of ABC transporters, microcin C and AI-2 transporters in this
analysis showed no significant differences between Pre-DM and NGT
individuals, suggesting that E. coli may be an important contributor
to the observed differences in the functional potential of Pre-DM



Fig. 2. Determination of alterations in the abundance of MLGs and functional modules. (A) Heatmap of statistically significant annotated MLGs discriminating between TN-T2D, Pre-DM
and NGT based on Z-scores. Red, MLGs enriched in high glucose groups, blue, MLGs enriched in low glucose groups. *, indicatesMLGs significantly differed between any two groups in the
Suzhou cohort; Dunn's test, adjusted P b .05. #, indicates significant MLGs replicated in the treatment naïve T2D patients from Shanghai compared with Pre-DM and NGT in the Suzhou
cohort;Wilcoxon rank-sumtest, adjusted P b .05 (See Table S5 for full list). (B) Performance of cross-validated random forest (RF) classificationmodels using relative abundance profiles of
gut microbial MLGs, assessed by the area under the ROC curve (AUC), 95% confidence intervals (CI). Orange, AUC for the RF model classifying NGT (n= 97) and Pre-DM (n=80). Grey,
AUC for the RFmodel classifying NGT (n=97) and TN-T2D (n=77). Blue, AUC for the RFmodel classifying Pre-DM (n=80) and TN-T2D (n=77). The best cut-off points aremarked on
the ROC curves. (C) Bar plot showing the 10most discriminatingMLGs in the RF models for distinguishing between NGT, Pre-DM and TN-T2D. The bar lengths indicate the importance of
the selected MLGs, and colours represent enrichment in NGT (green), Pre-DM (blue) and TN-T2D (red). (D) Differential enrichment of KEGG modules comparing TN-T2D, Pre-DM and
NGT. Dashed lines indicate a reporter score of 1.96, corresponding to 95% confidence in a normal distribution. Colour bars show reporter score values of modules enriched in NGT
(green), Pre-DM (blue) and TN-T2D (red).
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compared to NGT individuals (Fig. S4). Taken together, these results in-
dicate the possible involvement of substantial compositional and func-
tional disease-related gut microbial changes in the pre-diabetic stage.

3.3. Gut metaproteomics simultaneously identifies faecal levels of microbial
and human proteins

To gain further insights into functional changes in the gutmicrobiota
associated with T2D, we conducted metaproteomic analyses using
iTRAQ (isobaric peptide tags for relative and absolute quantification)
and LC-MS/MS-based protocols on 84 samples, with 28 samples derived
from each of the three diagnostic groups (Methods, Fig. S1). Using the
strict parameters of 2 peptide-spectrum matches (PSMs) per protein,
b 10 ppm mass error and 1% PSM-level FDR (Methods), we identified
a total of 145,014 high quality PSMs corresponding to 15,670 proteins,
including 15,245 (97.29%) microbial proteins and 425 (2.71%) human
proteins (Table S9). As reported [14,19,20], one microbial peptide
often exhibits matches to multiple proteins with high sequence
similarity, resulting in difficulties in identifying the microbial origin of
individual peptides. To alleviate ambiguities, we applied a maximum
parsimony principle reported in recent studies [14] [39] and generated
11,980 non-redundant meta-proteins (78.58% of microbial proteins)
containing at least one uniquemicrobial peptide. The relative intensities
of these unique peptides were further used formeta-protein quantifica-
tion (Methods, Table S9). The number of identified meta-proteins
ranged between 5067 in the Pre-DM samples to 8134 in the TN-T2D
samples (Table S9). Venn diagrams showed that only 2782 meta-
proteins (34.2%–54.9% of the total number of meta-proteins per
group) were shared among the three groups (Fig. S5A), indicating dif-
ferential microbial expression patterns at the protein level among the
groups. Taxonomic annotations indicated a higher percentage of unique
Proteobacteria meta-proteins in Pre-DM individuals, compared to the
other groups (Chi-square test, P b .05, Fig. S5B), whereas no difference
in the distributions of the uniquely detected meta-proteins associated
with a wide range of functions was found between the three groups
(Fig. S5C).
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3.4. Concordance and discordance of microbiota features between
metagenomes and metaproteomes

Based on annotated microbial features, we next investigated the
consistency as well as the divergence of microbial composition and
function at the DNA and protein level. At the phylum level, N90%
genes and meta-proteins were consistently assigned to three major
Fig. 3. Concordance and discordance of gut microbiome features inmetagenomes and metapro
circle, metaproteomes. (B) Spearman's rank correlation between themedian relative abundance
identified meta-proteins assigned to the same genus. (C) Functional distribution at KEGG level
meta-proteins at taxonomic (D) and functional levels (E) comparing NGT, Pre-DM and TN-T2
towards higher levels in NGT (green), Pre-DM (blue) and TN-T2D (red), defined as P b .05 (Wil
phyla, namely Firmicutes, Bacteroidetes and Proteobacteria (Fig. 3A).
Despite the overall consistency,we found a significantly higher percent-
age of the annotated proteins to be assigned to Bacteroidetes (41%)
compared to the percentage of genes annotated to Bacteroidetes
(25%) (Chi-square test, P b .05, Fig. 3A), suggesting that Bacteroidetes
might display an overall higher protein production than the other
phyla across the 84 samples. At the genus level, the composition of the
teomes. (A) Taxonomic distribution at the phylum level. Inner circle, metagenomes; Outer
s of genera inmetagenomes of 84 samples selected formetaproteomics and the number of
2. Inner circle, metagenomes; Outer circle, metaproteomes. (D–E) Enrichment analysis of
D individuals. Colour bars represent the number of meta-proteins that exhibited trends
coxon rank-sum test) with a fold change ofmean intensities N1.2 in pairwise comparisons.
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metaproteomeswas biased towards a limitednumber of genera. Among
212 common metagenomically-identified genera detected in at least
10% of the 84 samples, only 81 genera (38.21%) could be detected
based on metaproteomics (Table S10). Spearman's rank correlation
analysis was subsequently performed to determine the relationship be-
tween the number of meta-proteins and the abundances at the genus
level based on metagenomics. The more abundant a given genus was
based on metagenomics analysis, the more of the identified meta-
proteinswere assigned to this genus (Spearman's correlation coefficient
(SCC) = 0.726, P = 5.21E-08, Fig. 3B, Table S9), with Bacteroides (n =
1664), Prevotella (n=818) and Faecalibacterium (n=719) harbouring
most assigned meta-proteins. For a few genera, such as Anaerotruncus
(n = 9), Paraprevotella (n = 9) and Enterococcus (n = 7), we were
only able to identify b10 meta-proteins although their median
metagenomic abundances were greater than 1E-04 (Table S10).

Comparing KEGG functional categories based on metagenomics and
metaproteomics data, we observed large differences in the relative con-
tribution of individual categories between the two datasets (Chi-square
test, P b .05, Fig. 3C), in accordance with several previous studies
[14,19,20]. For instance, as determined by metaproteomics, 24% and
18% of the proteins were assigned to carbohydrate metabolism and
translation categories, whereas the corresponding metagenomic per-
centages of the two categories were only 11% and 4%, respectively
(Fig. 3C). We found that 1508 meta-proteins, accounting for 12.59% of
all identified meta-proteins, could be assigned to 10 KEGG orthologues
(KO). The top KOs harboured 360 proteins annotated as Ca-activated
chloride channel homologues (K07114), whereas the remaining KOs
comprised proteins representing abundant house-keeping proteins
such as elongation factors, large subunit ribosomal proteins (K02355,
K02358 and K02395), chaperones (K04077 and K04043), and glyceral-
dehyde 3-phosphate dehydrogenase (K00134) as well as flagellin pro-
teins (K02406) (Table S11, Fig. S6).

Aiming to link the microbial protein patterns to metagenomic mi-
crobial abundances, we next conducted a fold-change analysis of
meta-proteins. In agreement with our metagenomic findings (Fig. 2A),
Proteobacteria meta-proteins (mainly from Escherichia, Citrobacter and
Enterobacter) exhibited a trend towards an increase in the Pre-DM
group, whereas Bacteroides meta-proteins tended to be enriched in
TN-T2D individuals (Fig. 3D, Table S12, P b .05 and fold change (FC) of
protein intensities N1.2). The levels of several Prevotella meta-proteins
tended to be higher in Pre-DM individuals (Fig. 3D, P b .05 and FC
N 1.2), although no Prevotella annotated metagenomic MLGs exhibited
significantly higher abundance. At the functional level, we observed
that the level of meta-proteins involved in carbohydrate metabolism
tended to be lower in NGT compared to Pre-DMand TN-T2D individuals
(Fig. 3E, Table S11).

3.5. Functional characteristics of excreted human proteins in faeces of T2D
individuals

Among the 425 detected human proteins, we identified 218 human
proteins thatwere shared among the NGT, Pre-DM, and TN-T2D groups,
accounting for 59.6% to 85.2% of the identified human proteins in each
group (Fig. S7A).Wenext annotated the humanproteinswith GeneOn-
tology (GO) terms to obtain insight into the functional characteristics of
the human proteins excreted in faeces (Table S13). Among the identi-
fied proteins, 181 (42.59%) had previously been identified in faecal sam-
ples bymetaproteomics, indicative of their general presence (Table S14)
[14,19,20]. These included several intestinal mucin proteins, such as
MUC-1, MUC-2, MUC-4, MUC5B, MUC12, and MUC-13 as well as mem-
bers of annexins (ANXA1-ANXA7, a family of calcium-binding proteins)
(Table S14). We identified 233 of the faecal human proteins to have
tissue-specific annotation, amongwhich 151proteins (64.81%)were re-
ported to exhibit high expression in the digestive system, and the re-
maining proteins were annotated to be highly expressed in blood or
other tissues such as epidermis (Table S13). Of interest, 18 of the
human proteins were annotated as AMPs [40] (Table S13). Several
human proteins involved in glucose metabolism, including the sodium/
glucose cotransporter 1, were detected in faecal samples of TN-T2D pa-
tients only (Fig. S7B). Inhibitors of this protein have been proposed for
antidiabetic treatment. Additionally, the TMAO-producing enzyme,
dimethylaniline monooxygenase [N-oxide-forming] 3 (FMO3) was also
identified exclusively in the TN-T2D group (Table S13). On the other
hand,we found that rasGTPase-activating-like protein (IQGAP1) andun-
conventional myosin-Ic (MYO1C) were uniquely identified in the NGT
group (Fig. S7B). Loss of IQGAP1 andMYO1C has been related to impair-
ment of insulin signalling [41–43], but whether their presence in faeces
has functional implications remains to be established.

Forty-nine of the human proteins present in faeces were found to
show trends towards higher or lower intensities between at least two
of the groups (Fig. 4A, Table S15). For instance, we observed a trend to-
wards higher levels of four AMPs, including defensin-5, neutrophil
defensin-1, lysozyme c, as well as secreted phospholipase A2, all with
important roles in the defence against bacteria [44–46], in faecal sam-
ples from NGT individuals than in samples from TN-T2D individuals
(Fig. 4A, P b .05 and FC N 1.2). Interestingly, the level of the antimicrobial
cathepsin G, reported to inhibit the growth of several organisms from
the Proteobacteria phylum [47], tended to be higher in samples from
Pre-DM than NGT and TN-T2D (P b .05 and FC N 1.2), and this was
coupled to lower levels of alpha-1-antichymotrypsin and alpha-1-
antitrypsin, both known inhibitors of cathepsin G [48] (Fig. 4A, P b .05
and FC b 0.8), suggesting that Pre-DM individuals may have initiated
strategies to activate a defence system against the enhanced relative
abundances of E. coli. Individuals with Pre-DMalso exhibited a trend to-
wards lower galectin-3 levels, a lectin with beta-galactoside-binding
ability. Galectin-3 has been reported to bind lipopolysaccharides (LPS)
from E. coli and play a role as a negative regulator of LPS-mediated in-
flammation [49]. In addition, galectin-3 was also reported to improve
epithelial intercellular contact via desmoglein-2 stabilization [50]. We
also found that several proteolytic enzymes tended to occur in lower
levels in faeces from TN-T2D individuals. Thus, we found a trend to-
wards lower levels of proteases (trypsin and chymotrypsin and their
precursors) and lipases. By contract, we observed a trend towards
higher amylase (AMY1) levels in TN-T2D (Fig. 4A). It is interesting to
note that the level of dipeptidyl peptidase 4 (DDP4), known to inhibit
insulin secretion via its action on GLP-1, tended to be lower in individ-
uals with Pre-DM than in TN-T2D individuals. A network analysis re-
vealed associations between 20 human proteins showing different
trends in relation to enrichment in two-pairwise comparisons between
NGT, Pre-DM and TN-T2D individuals (Fig. 4B). For instance, we identi-
fied a negative correlation between the defensin-5 and TN-T2D-
enriched peptidyl-prolyl cis-trans isomerase B (PPIB) (Fig. 4B,
Spearman's correlation, adjusted P b .05), the latter previously reported
to be associated with islet dysfunction [51].

Aiming to investigate possible host-microbial protein interactions in
the human gut, we next investigate the possible correlation between
the discriminatory bacterial and human proteins. Interestingly, we
found significantly negative correlations between several Pre-DM-
enriched E. coli proteins andhuman proteins involved in innate immune
responses (HV304, HV305) and adhesion (CEAM6, CEAM7), whereas
positive correlations were found between E. coli proteins and cathepsin
G, cytochrome c (CYC) and trypsin−1 (TRY1) (Fig. 4C, adjusted P b .05).
Conversely, NGT-enriched proteins from F. prausnitzii showed positive
correlations with several NGT-enriched digestive enzymes from the
exocrine pancreas, such as chymotrypsin-like elastase family member
3A (CEL3A), chymotrypsinogen B2 (CTRB2) and carboxypeptidases
(CBPA1 and CBPB1).

4. Discussion

Our comparative study using metagenomics and metaproteomics
in normal glucose tolerant, pre-diabetics and treatment naïve T2D



Fig. 4.Characterization of humanproteins in faecal samples fromChineseNGT, Pre-DM, andTN-T2D individuals. (A)Heatmap showing levels of 49humanproteins as fold change between
each two groups. Only proteins exhibiting trends towards different levels in at least one pairwise comparison are shown. *, P b .05 and fold change of protein levels N1.2 or b 0.8.
(B) Protein-protein interaction network based on 20 human proteins exhibiting trends towards different levels in at least two pair-wise comparisons. The group signatures indicate
human proteins with trends towards higher or lower levels in this group compared to others. Orange indicates higher protein levels and blue indicates lower protein levels.
(C) Protein-protein interactions based on selected meta-proteins and human proteins with trends towards different levels between the three groups. Only meta-proteins annotated to
the corresponding taxon of the MLGs were selected for the analysis. The circles indicate human proteins and diamonds indicate meta-proteins. Detailed information on the numbered
meta-proteins is presented in Table S12. Colours represent protein of a trend towards a higher level in NGT (green), Pre-DM (blue) and TN-T2D (red). Pink line indicates positive
correlation and grey line indicates negative correlation (Spearman's rank correlations, adjusted P b .05).
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individuals provided novel information with regard to disease-stage
specifications at the gut bacterial and host level. Previous studies have
reported varied signatures in host metabolic stress, immune responses
and gut microbiome in prediabetic individuals [52,53]. A substantial
number of Pre-DM associated features were revealed at both the
metagenomics and metaproteomics level in this study. We observed
several consistent signatures in Pre-DM and NGT as compared to TN-
T2D, such as a higher abundance of Akkermansia muciniphila and a
lower abundance of Bacteroides spp. The former is a well-known
mucin degrading bacteriumwhichmay alleviate symptoms of the met-
abolic syndrome in both mice and humans [54,55]. On the other hand,
the relative abundance of several butyrate producing Firmicutes species
was lower in Pre-DM and TN-T2D compared to NGT. These findings are
in linewith a gradual disease development through prediabetes to overt
T2D.

Of specific note, we also found a higher abundance of Enterobacteri-
aceae species (dominated by E. coli) and a lower levels of host proteins
which potentially are involved in Proteobacteria-specific responses in
Pre-DM, such as galectin-3 and proteinswithin the immunoglobulin su-
perfamily. An increased abundance of gut Enterobacteriaceae has been
widely reported in patients with metabolic diseases such as obesity
[56] and atherosclerotic cardiovascular disease [57], and in patients
with inflammatory bowel diseases [58]. Hexa-acylated LPS and other
Enterobacteriaceae-derived molecules, such as extracellular adhesions
and flagellins, can trigger proinflammatory pathways via both innate
and adaptive immune responses [59]. These unique Pre-DM associated
traits might link potential gut microbial cues to an increase in low-
grade systemic inflammation.

Only a modest number of relatively highly abundant faecal proteins
were identified in the current study. This reflects the current methodo-
logical challenges inmicrobial protein extraction, identification, and an-
notation as reported previously [60,61], as well as the detection
limitations of MS-based proteomics [62]. For instance, we identified
b50 proteins from each of several taxa with median abundances in the
0.1% ranges based on metagenomics data (such as NGT-enriched
Dialister, Butyrivibrio and Haemophilus). Nevertheless, metaproteomics
provides a valuable addition to not only estimating expression ofmicro-
bial proteins, but also to delineate host-microbial protein interactions in
different disease stages. In this regard, we identified trends towards
higher levels of several host-derivedAMPs inNGT individuals compared
to TN-T2D and Pre-DM individuals, suggesting a possible stronger host
defence against invading (disease-related)microbes in NGT individuals.
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By contrast, significant negative associations were found between Pre-
DM-enriched E. coli proteins and several human proteins, including
AMPs, adhesion molecules and galectin-3, all involved in intestinal bar-
rier function. It is also worth to note the changes in the levels and types
of digestive enzymes identified in the faecal samples, where TN-T2D
showed enhanced alpha-amylase (AMY1) levels, as compared to
pancreatic-derived lipases and proteases. However, the level of pancre-
atic alpha-amylase (AMYP) was lower in Pre-DM compared to the two
other groups. A metaproteomics study has reported lower faecal AMYP
levels in type 1 diabetes (T1D) patients compared to their healthy rela-
tives [14], whereas no difference in levels of AMY1 was reported be-
tween T1D and controls, suggesting different amylase responses might
be present in Pre-DM, TN-T2D and T1D patients. Differences in the
levels of secreted digestive enzymes from the exocrine pancreas in
NGT, Pre-DMand T2Dhave to our notice not been addressed previously,
although it may be of major importance in relation to the metabolic
state in T2D.

Although patients receiving antidiabetic therapy were excluded in
this study, there were still 71 individuals who reported the use of
other drugs for treating hypertension or dyslipidaemia, and 49 of
them reported the use of calcium channel blockers (CCBs), the most
often prescribed antihypertension drug. In addition, the Pre-DM and
TN-T2D group had a higher prevalence of comorbidity of metabolic dis-
orders, and thus, the proportion of treated individuals was higher in the
Pre-DM and TN-T2D group than in the NGT group. In a pioneer study
N1000 drugs were screened against 40 representative gut bacterial
strains using an in vitro culture system [63]. The drugs included CCBs,
angiotensin II receptor blockers (ARBs), beta blocks and statins.
Among them, felodipine (CCB) was shown to inhibit the growth of 17
strains [63], including B. caccaewhich was enriched in the TN-T2D pa-
tients in our study. On the other hand, other antihypertensive and
antilipidemic drugs have been reported to have much less impact on
the 40 gut bacteria (0–5 strains). In addition, our group has recently
evaluated the effects of 10 common drugs on the human gutmicrobiota
in a large-scale Chinese cohort (n = 2, 338) and revealed that metfor-
min and acarbose, but not antihypertensive (CCBs, ARBs and diuretics)
or antilipidemic medication (statins) exhibited significant standalone
impacts on the entire gut microbial community [64]. Although, we
have validated several disease related gut microbial alterations in an in-
dependent TN-T2D cohort, further studies are still needed to distinguish
reproducible disease omics patterns and the observational microbial
differences which might be caused by possible confounding variables
such as drugs, age, diet and heathy conditions.

Still, together our findings suggest that unique and nonlinear
changes of the intestinal ecosystem might exist in Pre-DM individuals
before transition to T2D. Further large-scale, longitudinal follow-up
studies are needed to delineate how microbial functions changes from
prediabetes to diabetes and to address the nature of interactions be-
tween the gutmicrobiota and the host in the transitional phases leading
to overt T2D.
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