Effects of exercise and dietary protein sources on adiposity and insulin sensitivity in obese mice☆,☆☆

Even Fjære, Lene Secher Myrmel, Ditte Olsen Lützhøft, Hanne Andersen, Jacob Bak Holm, Pia Kiilerich, Bjørn Liaset, Karsten Kristiansen, Lise Madsen

Institute of Marine Research, Bergen, Norway
Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark

Received 7 August 2018; received in revised form 6 December 2018; accepted 12 January 2019

Abstract

Low-fat diets and exercise are generally assumed to ameliorate obesity-related metabolic dysfunctions, but the importance of exercise vs. dietary changes is debated. Male C57BL/6J mice were fed a high-fat/high-sucrose (HF/HS) diet to induce obesity and then either maintained on the HF/HS or shifted to low-fat (LF) diets containing either salmon or entrecote. For each diet, half of the animals exercised voluntarily for 8 weeks. We determined body composition, glucose tolerance, insulin sensitivity and hepatic triacylglycerol levels. The microbiota composition in cecal and fecal samples was analyzed using 16S ribosomal RNA gene amplicon sequencing. Voluntary exercise improved insulin sensitivity but did not improve glucose tolerance. Voluntary exercise did not reduce adiposity in mice maintained on an HF/HS diet but enhanced LF-induced reduction in adiposity. Hepatic triacylglycerol levels were reduced by voluntary exercise in LF- but not HF/HS-fed mice. Voluntary exercise induced shifts in the cecal and fecal microbiota composition and functional potential in mice fed LF or HF/HS diets. Whereas voluntary exercise improved insulin sensitivity, a switch to an LF diet was the most important factor related to body weight and fat mass reduction.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Mice; Obesity; Exercise; Low-fat diet; Dietary protein source; Gut microbiota

1. Introduction

Nonpharmacological interventions to reduce body weight and improve metabolic dysfunction have been conducted extensively in mice using low-fat (LF) diets [1], calorie restriction [2] and exercise [3,4]. However, the importance of exercise as a remedy to ameliorate obesity related metabolic dysfunctions vs. dietary changes is debated. Changes of macronutrient composition, % energy from fat, carbohydrates and protein in the diet have been demonstrated to profoundly affect the development of obesity and insulin resistance in several studies. In rodents, the amount of dietary fat content rather than the obese state appears to be a key determinant for dysregulated glucose homeostasis [5–7]. However, increasing the protein:carbohydrate ratio in high-fat diets prevents development of high-fat-diet-induced obesity and insulin resistance [8–14]. Moreover, a number of studies have demonstrated that the protein source modulates the potential of high-protein diets to attenuate obesity development [15] and the obesogenic potential of Western diets [16–19]. However, it is still unclear to what extent the (anti)obesogenic potential of different protein sources relates to differences in the amino acid composition or if other factors are of importance, as protein sources also differ with respect to the type of endogenous fat, micronutrients and undesirables, such as pollutants and medical residues [20]. The composition of the gut microbiota has been established as a potential therapeutic target for treatment of obesity and other metabolic disorders [21–25]. Voluntary exercise has been demonstrated to induce a shift in the composition of the gut microbiota and to prevent high-fat (HF) diet-induced weight gain and glucose intolerance in casein-based diets [26]. The protein source can modulate the composition of the gut microbiota [20]; however, to what extent intake of LF diets containing different protein sources with different amino acid and fatty acid composition combined with voluntary exercise affects the composition of the gut microbiota in the obese state has not been addressed.

Funding: This work was supported by The Norwegian Seafood Research Fund (FINS900842).

Declarations of interest: none.

Corresponding author at: Institute of Marine Research (IMR), Nordnes gaten 50, 5005 Bergen. Tel.: +47 55 23 85 00.
E-mail address: efj@hi.no (E. Fjære).

Present address: Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.

Present address: Danish Center for Neonatal Screening, Department for Congenital Diseases, Statens Serum Institut, Denmark.

https://doi.org/10.1016/j.jnutbio.2019.01.003
0955-2863/© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Thus, the aim of the present study was to evaluate how voluntary exercise and LF diets based on different protein sources affected weight loss and metabolic parameters in obese C57BL/6j mice at thermoneutral condition. Further, we aimed to investigate how diets and exercise modulated the composition and functional potential of the gut microbiota. Obesity was induced by high-fat-high-sucrose (HF/HS) feeding followed by a shift to LF diets containing salmon or entrecote with or without possibilities for voluntary exercise. The experimental LF diets were supplemented with an equal amount of casein and balanced with fat to reach isocaloric levels, but the diets differed in amino acid and fatty acid composition. LF diets containing entrecote or salmon induced the same loss in body and fat mass. However, the LF diet containing salmon had a more pronounced effect on hepatic triacylglycerol (TAG) levels and insulin sensitivity compared to mice given an LF diet containing entrecote. Both LF diets and exercise modulated the composition and functional potential of the gut microbiota in a complex manner.

2. Materials and methods

2.1. Diets

A regular casein-based LF diet (SR8672-E050) from Ssniff Spezialdiäten GmbH (Soest, Germany) was used for 1-week acclimatization. We prepared three experimental diets based on the macro- and micronutrient composition of LF and HF/HS diets for rodents produced by Ssniff (SR8672-E050 and SR8672-E056). The protein sources were selected to represent three different types of protein; entrecote as a representative of red meat, salmon as a representative of fatty fish and casein as a representative of dairy protein. Endogenous fat from the protein sources were quantified, but not extracted, in order to avoid chemical modification of the added entrecote or salmon filet. Due to the high fat content of salmon and entrecote, the LF diets were prepared by 50% casein and 50% protein from either salmon (Marine Harvest, Bergen, Norway) or entrecote (H. Kraskad BEF AS, Bergen, Norway). The experimental HF/HS diet was prepared using one-third casein, one-third protein from salmon and one-third protein from entrecote. Both salmon and entrecote were added to the experimental diets after heat treatment (core temperature of 75°C), freeze-drying (to 95%–97% dry matter) and homogenization. Endogenous fat and nitrogen contents in both the salmon and entrecote filet were quantified, and corn oil was added to the experimental LF diet containing entrecote to achieve isocaloric experimental diets with the same level of fat. The compositions of the experimental diets and energy content are shown in Table 1. Amino acid composition (Supplementary Table 1) and fatty acid composition (Supplementary Table 2) in the diets were determined as described previously [16].

2.2. Ethical statements and animal housing

The animal experiment was performed in accordance with the approval given by the Norwegian Animal Research Authority (FOTS id.nr. 5358). We did not observe any adverse effects of the experimental diets during the experiment.

We obtained 70 male C57BL/6j (BomTac) mice from Taconic (Ejby, Denmark). To quantify energy intake and apparent fat and nitrogen digestibility, all mice were housed individually. To avoid thermal stress, all mice were housed at thermoneutrality (30°C±1°C) [27] and with a standard 12/12-h light/dark cycle. After 1 week acclimatization, all mice were fed the obesogenic HF/HS diet for 8 weeks. Thereafter, 60 representative animals were divided into 6 equal experimental groups based on body weight and body composition and subjected to an 8-week intervention. Twenty mice continued on the HF/HS diet, while the remaining 40 mice were given LF diets ad libitum based on a 1:1 mixture of casein and salmon or entrecote protein. Ten mice within each of the three experimental diet groups were allowed to exercise voluntarily (Supplementary Fig. 1A). Body mass was measured weekly. Fat mass, lean mass and free water were determined in conscious mice by noninvasive scanning (Bruker Minispec LF50 Body Composition Analyzer mq7.5, Bruker Optik GmbH, Germany) before the intervention and after 7 weeks on the experimental diets. After 8 weeks, the animals were anesthetized using isoflurane (Isoba-vet, Schering-Plow, Denmark) and sacrificed by cardiac puncture. Liver and adipose tissue depots (eWAT and iWAT) were dissected out, weighted and fixed voluntary exercise level by measuring the average running distance per week using standard setup and settings (ENV-044, Low Profile Wireless Running Wheel for Mice) as described by the manufacturer (Med Associates, Inc.). No restrictions on distance or period (night/day) were made.

2.3. Voluntary exercise

The mice were allowed to exercise using low-profile wireless running wheels. We quantified voluntary exercise level by measuring the average running distance per week using standard setup and settings (ENV-044, Low Profile Wireless Running Wheel for Mice) as described by the manufacturer (Med Associates, Inc.). No restrictions on distance or period (night/day) were made.

2.4. Energy intake, feed efficiency and apparent nitrogen and fat digestibility

The mice were fed three times per week and given approximately 3 g of feed per day. The total energy intake was calculated based on the amount of feed eaten and energy content in the experimental diets. Feed efficiency was calculated based on body weight gain and energy intake during the 8-week intervention. Apparent fat and nitrogen digestibility were estimated based on measurements of fat and nitrogen concentrations in feces collected during 1 week (the fifth week of the intervention) in the experiment, and apparent digestibility was calculated using the formula: amount of fat or nitrogen excreted − amount of fat or nitrogen ingested x100. The fatty acid composition in feces was determined by the method described earlier [28,29].

2.5. Hematoxylin and eosin (H&E) staining of tissue samples

Tissue samples of eWAT, iWAT and liver were fixed, dehydrated and embedded in paraffin. Five-micrometer-thick sections were cut throughout the tissue and stained with H&E as previously described [30]. One representative micrograph from each group is presented, and tissue from five mice per group was quantified. The five animals chosen in each group were selected based on body weight and reflected the mean within each of the groups.

2.6. TAG quantification in liver tissue

TAG measurements were performed with free glycerol reagent (Sigma-Aldrich, F6428) and triglyceride reagent (Sigma-Aldrich, T2449) on liver tissue from termination. Fifty to hundred milligrams of tissue was homogenized in isopropanol and centrifuged at 5000 rcf for 5 min. One microliter of tissue extract was diluted in 150 μl free glycerol reagent followed by 37.5 μl triglyceride reagent. All samples were measured at 450-nm absorbance after 1-h incubation at 37°C.

2.7. Glucose (GTT) and insulin tolerance test (ITT)

A GTT was performed during the sixth week of the intervention period in 6-h feed-deprived animals using 3 mg glucose/g lean mass given by oral gavage. Blood glucose was measured with a glucometer (Ascensia Contour, Bayer) 15, 30, 60 and 120 min after glucose administration. Blood samples were collected at baseline and 15 and 120 min after glucose administration, and insulin was quantified with EIA–3439 as described in the manufacturer’s instructions (DRG Diagnostics GmbH). An ITT was performed during the seventh week of the intervention period. Animals were transferred to a clean cage 2 h prior to ITT. The test was performed at 10 a.m. by an intraperitoneal injection of 1 U insulin/kg lean mass. Blood glucose levels were measured prior injection and 15, 30, 45 and 60 min after insulin injection.

2.8. 16S ribosomal rRNA amplicon sequencing and bioinformatics

Microbiota composition was analyzed using fresh spot fecal samples collected prior to start of the intervention and during the seventh week of the intervention period.
of the data were analyzed using two-way ANOVA test, only including mice given LF diets, using exercise and protein source as two independent variables. A significant effect caused by exercise is marked with #, and an effect of the dietary protein source is denoted by different letters (a, b, c).

3. Results

3.1. Voluntary exercise enhances LF-induced reduction in obesity but does not reduce adiposity in mice maintained on an HF/HS diet

Obesity was induced by feeding all mice an HF/HS diet (Table 1) ad libitum for 8 weeks (Supplementary Fig. 1A and B). This was followed by a 6-week intervention where the obese mice were given isocaloric LF diets containing salmon or entrecote, while a group of mice was maintained on the HF/HS diet (Table 1, Supplementary Table 1 and Supplementary Table 2). For each diet, half of the animals was allowed to exercise (Supplementary Fig. 1A). As expected, due to a shift to diets with lower energy content, both LF diets led to reduced body weight independent of exercise (Fig. 1A). We observed no difference in body mass change between mice fed the salmon- or entrecote-containing LF diets (Fig. 1A and B). Voluntary exercise enhanced LF-induced weight loss but did not affect weight in mice maintained on the experimental HF/HS diet (Fig. 1B). The mean running distance was significantly higher for mice fed LF diets (LF salmon Ex and LF entrecote Ex) than for mice fed an HF/HS diet (HF/HS Ex) (Fig. 1C). This effect was evident from week 2 in the intervention period.

Body composition was determined after 5 weeks on the experimental diets, prior to the glucose and insulin tolerance tests. Despite a reduction in body mass, mice fed LF diets exhibited increased lean body mass (change from week 0 to 5) compared to mice fed an HF/HS diet (Fig. 1D). When comparing fat mass in mice allowed to exercise, all mice given LF diets exhibited a reduction in total fat mass compared to HF/HS-fed mice. The LF-induced reduction in fat mass was overall increased by exercise, whereas no reduction in fat mass was seen by exercise in mice fed HF/HS diet (Fig. 1E).

3.2. A switch to LF diets reduces energy intake and modulates nitrogen and fat absorption

We quantified the energy intake throughout the intervention period, and as expected, the cumulative energy intake during the study was significantly lower in mice fed an LF diet than in mice maintained on an HF/HS diet (Fig. 2A). However, no significant compensatory increase in cumulative or mean energy intake per week was observed with voluntary exercise in mice fed LF or HF/HS diets (Fig. 2A and B). All mice fed LF diets (LF salmon ± Ex and LF entrecote ± Ex) had a negative feed efficiency (g BW/Mcal intake), which was further accentuated by voluntary exercise. By contrast, feed efficiency was similar in sedentary and exercised mice fed the HF/HS diet (Fig. 2C).

We quantified apparent nitrogen and fat digestibility after 5 weeks on the experimental diets (Supplementary Fig. 1C). Nitrogen digestibility was not affected by exercise in either LF- or HF/HS-fed mice (Fig. 2D). However, nitrogen digestibility was lower in all mice fed LF diets compared to HF/HS-fed mice (Fig. 2D). Mice fed the LF diet containing entrecote had lower fat digestibility compared to mice given LF diet containing salmon, but the apparent fat digestibility was unaffected by exercise in any of the experimental groups (Fig. 2E).

To investigate possible factors accounting for the reduced fat digestibility in mice fed the entrecote-containing diet, we determined the fecal levels of saturated (SFAs), monounsaturated (MUFAs) and polyunsaturated fatty acids (PUFAs). These analyses revealed higher excretion levels of total SFAs, MUFAs and PUFAs (Fig. 3A), including 16:0 and 18:0 SFAs, 18:1n-9 and 18:1n-11 MUFAs and 18:2n-6 and 20:4n-6 PUFAs (Supplementary Fig. 2), in feces of LF entrecote-fed mice compared to LF salmon-fed mice. No difference in excretion of fatty acids was observed by exercise in any of the experimental groups (Fig. 3 and Supplementary Fig. 2).

3.3. Voluntary exercise and an LF diet containing salmon reduce hepatic TAG levels

To evaluate the effect of LF diets and exercise on hepatic TAG levels in obese mice, liver sections of samples obtained after 8-week intervention were evaluated. Examination of H&E-stained sections revealed the presence of lipid droplets in mice fed HF/HS ± Ex and in livers from sedentary mice fed LF entrecote, but not in mice fed LF salmon ± Ex or in mice fed LF entrecote combined with voluntary exercise (Fig. 4A). In accordance with examination of the H&E-stained liver sections, hepatic TAG levels were reduced in mice fed an LF salmon diet compared to LF entrecote (Fig. 4B). Reduction in hepatic TAG was observed when exercise was combined with LF diets, whereas exercise did not reduce hepatic TAG in mice fed an HF/HS diet (Fig. 4B). Liver weight was not affected by the dietary protein source or exercise (Fig. 4C), but hepatic mRNA expression of ColIa1, a marker of liver steatosis, revealed a reduction in exercised mice given the HF/HS diet or LF diets (Fig. 4D). Increased liver TAG may be caused by reduced beta-oxidation and/or increased fatty acid synthesis. The expression level of Acox in liver indicated a significantly higher beta-oxidation in mice fed LF diet containing salmon compared to entrecote. In addition, the hepatic expression of Scd1 and Fasn tended to be higher in mice fed LF entrecote, indicating lower fatty acid synthesis in mice fed an LF salmon diet (Fig. 4E–G).
3.4. LF-diet-induced improvement in insulin sensitivity, but not glucose tolerance, is augmented by voluntary exercise

Blood glucose levels in mice given the experimental diets for 6 weeks were measured in animals feed-deprived for 6-h prior to the GTT. A lower blood glucose level was observed in feed-deprived mice given LF diets with either salmon or entrecote, but blood glucose levels did not decrease further by voluntary exercise (Fig. 5A). Similarly, blood glucose levels at all time points and area under the curve during the glucose challenge revealed that voluntary exercise did not augment the LF-diet-induced improvement of glucose tolerance. Neither did voluntary exercise improve glucose tolerance in HF/HS-fed mice (Fig. 5B and C). Plasma insulin levels were quantified in feed-deprived animals and 15 and 60 min after a glucose injection to evaluate glucose-stimulated insulin secretion in first and second phase. Lower plasma insulin levels 60 min after a glucose injection were observed in all mice fed the LF diets compared to mice fed the HF/HS diet. No significant reduction in plasma insulin levels was observed in response to exercise in mice fed HF/HS or LF diets (Fig. 5D–F).

Insulin sensitivity was evaluated after 6 week intervention. Mice fed LF diets, compared to HF/HS-fed mice, exhibited an improved insulin response evaluated by delta blood glucose 15-0 (Fig. 5G). A tendency towards improved initial insulin response was observed in mice given HF/HS combined with exercise compared to sedentary mice fed HF/HS (Fig. 5G). Further, a significant improvement in area over the curve was observed with exercise in both HF/HS- and LF-fed mice (Fig. 5H–I).

3.5. Dietary fat level strongly modulates the gut microbiota composition in obese mice

Whereas the gut microbiota has been shown to be strongly affected by the amount and type of dietary fat and protein [7,11,19,20,32–34], less is known about how a shift from an HF/HS diet to LF diets with different protein sources affects the gut microbiota in already obese mice.

We collected spot feces from each randomized group of the obese mice prior to and after 7 weeks of intervention. In addition, we collected cecum content after 8 weeks at termination. Bacterial DNA was isolated and analyzed using 16S rRNA V4 gene amplicon sequencing. PCoA analyses of unweighted and weighted UniFrac distances showed no significant separation of the randomized groups prior to the intervention, but as expected, clear diet-driven separations were observed by week 7 (Supplementary Fig. 3A–D). Similar to the analysis of the spot feces samples, analyses of the cecum samples collected at termination revealed a strong diet-driven separation (Supplementary Fig. 3E–F). Interestingly, PCoA using weighted UniFrac distances indicated that the separation in the gut microbiota between mice fed the HF/HS and the LF diets in both spot feces and cecum samples was most pronounced for the entrecote-containing LF diet (Supplementary Fig. 3D and F). Alpha diversity in neither fecal nor cecum samples was significantly different between the experimental groups (Supplementary Fig. 4A–B). We observed as expected differences in the relative abundances of taxa at the phylum and family levels comparing spot feces and cecum sample, but in addition, we also observed consistent changes in responses to the diets (Fig. 6A–D). At the phylum level, the most conspicuous general changes included an increase in the abundance of Verrucomicrobia and a decrease in the abundance of Proteobacteria in mice fed the LF diets. At the family level, Erysipelotrichaceae dominated, and we observed a trend towards higher relative abundances of Verrucomicrobiaceae in response to voluntary exercise. Reduced abundances of Rikenellaceae, Desulfovibrionaceae and Clostridiaceae were observed in response to LF feeding in samples collected from cecum (Fig. 7).

The high level of Erysipelotrichaceae may reflect HF/HS feeding at thermoneutral condition as observed previously [35]. An increased abundance of Clostridiaceae is a feature of HF feeding [32], and accordingly, we observed a decrease in the abundance of Clostridiaceae when mice were shifted to the LF diets (Fig. 7).

3.6. The protein source and voluntary exercise induce changes in the composition and functional potential of the gut microbiota

To further dissect the effect of diet composition and training, we focused our analyses on the microbiota of the cecum. The fat content of the diet was as expected a strong driver determining the bacterial composition (Supplementary Fig. 5A–B). Hence, the effect of exercise was analyzed in HF/HS- and LF-fed mice separately. Voluntary exercise did not lead to significant changes in the overall composition of the gut microbiota in LF-fed mice (Supplementary Fig. 5C–D). Still, using LefSe [36] to calculate differences in bacterial composition in LF-fed mice, we observed an increase in the relative abundances of the Verrucomicrobia phylum and the Dorea genus in mice allowed to exercise (Supplementary Fig. 5E–F). Further analyses of mice maintained on the HF/HS diet revealed no significant changes in the bacterial composition by voluntary training using weighted UniFrac distances, whereas PCoA using unweighted UniFrac distances revealed two statistically distinct groups (not shown). Accordingly, using LefSe to search for functional differences, we found a number of KEGG modules that were enriched in either sedentary or exercised mice. Specifically, we noted that bacterial genes involved in biosynthesis of secondary bile acids and secretory systems in the gut microbiota were enriched in the nonexercised mice, whereas genes involved in sugar transport were enriched in the mice allowed to exercise (Supplementary Fig. 5G).

We next performed comparisons between the gut microbiota in sedentary mice fed the two different salmon- or entrecote-containing LF diets. We observed no differences in the composition of theecal microbiota using PCoA analyses of unweighted and weighted UniFrac distances (Supplementary Fig. 6A–B) but noted a differential enrichment of a limited number of KEGG modules (Supplementary Fig. 6C). Comparing salmon- or entrecote-fed mice allowed to exercise, we noted a significant separation on PCoA between theecal microbiota of mice fed the two diets using weighted UniFrac distances and a trend using unweighted UniFrac distances (Supplementary Fig. 7 A–B). In this case, MetaSeq analyses also identified a number of taxa that differed significantly in abundances, with Desulfovibrionales, Burkholderiales and Verrucomicroiales being more abundant in the gut microbiota of mice fed salmon, whereas the abundance of Caccae was higher in mice fed entrecote (Supplementary Table 3). Comparison of KEGG modules revealed a large number of modules that were differentially enriched in exercised mice fed salmon or entrecote (Supplementary Fig. 7C). In the salmon-fed mice, we observed enrichment in modules involved in amino acid transport, whereas in the entrecote-fed mice, we observed a broader enrichment involving numerous pathways with no clear pattern (Supplementary Fig. 7C).

Although PCoA analyses revealed no overall effect of exercise on LF-fed mice (Supplementary Fig. 5C–D), we used MetaSeq-based analyses and LefSe to examine if exercise had an effect on either salmon- or entrecote-fed mice. These analyses revealed a significant decrease in the abundance of the Caccae genus and a differential enrichment of modules involved in lysine degradation and branched-chain amino acid transport in mice allowed to exercise in response to exercise in salmon-fed mice (Supplementary Fig. 8A). In the sedentary mice, we observed an enrichment of modules involved in lysine, GABA and pyrimidine biosynthesis (Supplementary Fig. 8A). In the entrecote-fed mice, an increase in the abundance of Akkermansia and Dorea and enrichment of a module involved in dermatan sulfate
Fig. 2. Energy intake, feed efficiency and apparent nitrogen and fat digestibility during the intervention period. (A) Cumulative energy intake during the experimental period (P-value comparing HF/HS vs. LF salmon: < .001, LF salmon Ex: < .001, LF entrecote: < .001, LF entrecote Ex: < .001). (B) Average energy intake per week in the experimental period. (C) Calculated energy efficiency during the intervention period (P-value comparing HF/HS vs. HF/HS Ex: .291). (D) Calculated apparent digestibility of nitrogen for 7 days. (E) Calculated apparent digestibility of nitrogen for 7 days. Results were based on intake and excretion of nitrogen and fat in week 5 of the experiment. All results are presented as mean±S.E.M. and tested for normality and of homogeneity of variances (n=9–10). All data were analyzed using two-way ANOVA test, only including mice given LF diets, using exercise and protein source as two independent variables. P<.05 was considered significant, an effect caused by exercise is marked with #, and an effect of the dietary protein source is denoted by different letters (a, b).
degradation were observed in response to exercise (Supplementary Fig. 8B).

4. Discussion

Animal studies have shown that LF diets and voluntary or forced exercise attenuate adiposity development in mice [37,38]. However, less is known about the ability of exercise to enhance LF-diet-induced reduction in body weight and fat mass in already obese animals. Further, to what extent intake of LF diets containing different protein sources combined with voluntary exercise affects the composition of the gut microbiota in the obese state has not been addressed.

A switch to an LF diet, and thereby reduced energy intake, was the most important factor related to body weight and fat mass reduction. We observed that voluntary exercise enhanced LF-diet-induced reduction in adiposity. However, in contrast to a previous study that reported reduced obesity by forced exercise in HF-fed mice [39], we observed no significant effect on obesity by voluntary exercise in HF/HS-fed mice. The lack of a reduction in body weight and fat mass in mice on an HF/HS diet in response to exercise was not caused by a compensatory increase in energy intake as reported in other studies [37,39]. However, we observed that mice fed an HF/HS diet only ran about half the distance per week compared to mice fed the LF diets, which at least in part could explain the lack of reduction in body weight and fat mass in the HF/HS fed mice. It has been reported that exposure to obesogenic diets reduces the level of the D2-type dopamine receptor which lowers the level of physical activity [40,41], and such a change might contribute to the reduced activity of the HF/HS-fed mice. Since body weight and fat mass are important factors determining the extent of voluntary exercise, it is also likely that the rapid decrease in body weight 1 to 2 weeks after the switch to LF diets further contributed to the increased activity level in LF fed mice.

In HF/HS-fed mice, voluntary exercise improved insulin sensitivity without changing glucose tolerance, feed-deprived blood glucose and glucose-stimulated insulin secretion. In contrast to several studies [42–44], we failed to observe dramatic effects of voluntary exercise on the gut microbiota composition in mice maintained on the HF/HS diet. This may be related to the reduced running activity and the obese state of the mice prior to the intervention. Another reason for these differences could be the rapid weight loss observed in our study.

Weight loss has been reported to elicit changes in the gut microbiota [45], and such weight-loss-dependent changes may have masked the exercise-induced changes. Detailed analyses revealed that bacterial genes involved in biosynthesis of secondary bile acids were enriched only in sedentary mice maintained on the HF/HS diet, whereas genes involved in sugar transport were enriched in the mice allowed to exercise. Especially, the observed differences in abundance of genes involved in secondary bile acid metabolism would be predicted to influence metabolism and might thereby also contribute to the lack of weight loss in mice maintained on the HF/HS diet and allowed to exercise [46,47]. We observed that a shift from an HF/HS diet to LF diets for 6 weeks improved glucose tolerance in accordance with earlier reports [39]. The improvement in glucose tolerance was independent of the dietary protein source and voluntary exercise.

The shift from the HF/HS diet to the LF diet, irrespective of exercise, led to pronounced changes in the composition and functional potential of the gut microbiota, where we at the phylum level observed an increase in the abundance of Verrucomicrobia and a decrease in the abundance of Proteobacteria. The changes in the abundance of Verrucomicrobia fit the well-characterized beneficial effect of Akkermansia on metabolic health, whereas the changes in Proteobacteria are more complex, with increased abundance of Proteobacteria being associated with metabolic health [33,35]. At the family level, we further noted the decrease in abundances of Rikenellaceae, Desulfovibrioaceae and Clostridiaceae in response to LF feeding. High-fat feeding has been associated with an increased abundance of Clostridiaceae [32], and thus, the present study clearly demonstrates the fat-responsive changes in the abundance of this family. The reduced abundance of Rikenellaceae in response to the LF diet shift is of interest since it has been reported to increase in mice in response to high-fat feeding [48]. A higher abundance of Rikenellaceae in mice fed entrecote compared to salmon indicates a less favorable response. However, an increased abundance of Rikenellaceae has also been associated with improved immune responses and gastrointestinal health in mice [49]. The decreased abundance of Desulfovibrioaceae in response to the LF diet shift is difficult to reconcile with the finding that exchanging fish oil with saturated fat is reported to decrease the abundance of Desulfovibrio [33], but content of omega-3 in the HF/HS diet may in part explain this change in abundance.

By analyzing the effect of exercise independently of feed type, we observed that exercise also increased the relative abundance of the...
Fig. 4. Micrograph of hepatic tissue, liver weight and liver gene expression after the 7 week intervention period in mice fed LF and HF/HS diets with or without voluntary exercise. (A) Representative micrographs of liver tissues from each treatment. (B) Liver TAG concentration quantified in mice at termination of the study. (C) Liver weight at termination of the study. (D) Relative gene expression of Col1a1 (P value comparing HF/HS vs. HF/HS Ex: .048). (E) Acox, (F) Scd1 and (G) Fasn (P value comparing HF/HS vs. HF/HS Ex: .008) in hepatic tissue. Gene expression is normalized to expression of Tbp, and relative expression is related to gene expression in mice fed the HF/HS diet (expression=1) (n=8–10). All results are presented as mean±S.E.M. and tested for normality and homogeneity of variances. Data were analyzed using two-way ANOVA test, only including mice given LF diets, using exercise and protein source as two independent variables. P≤.05 was considered significant. An effect caused by exercise is marked with #, and an effect of the dietary protein source is denoted by different letters (a, b).
Verrucomicrobia phylum and the Dorea genus. The importance of Verrucomicrobia for metabolic health and gut homeostasis is well documented. The increased abundance of Dorea is surprising and difficult to explain, as the abundance of Dorea is enriched in the gut microbiota of HF-fed mice[32] and obese Han Chinese[50]. Finally, a systematic analysis of changes in the gut microbiota following bariatric surgery and weight loss reported on a decreased abundance of Dorea[51].

The type of protein did not influence neither obesity or glucose homeostasis. However, sedentary mice fed the salmon-containing LF diet exhibited a reduction in liver TAG accumulation, whereas exercise was necessary to reduce liver TAG levels in mice fed an LF entrecote-containing diet. This observation is in agreement with previous studies demonstrating that intake of omega-3 fatty acids and fish proteins is able to diminish liver lipid accumulation in diet-induced obesity [52,53]. Since the salmon filets used in the feed...
contain a significant amount of omega-3 fatty acids, we cannot
determine if the reduction in liver lipids should be attributed to
omega-3 fatty acids or certain amino acids in the salmon
filet or a
combination of both. We also noted significant differences elicited
in response to exercise on the cecal microbiota dependent on
the type of LF diet. We observed that Desulfovibrionales, Burkholder-
iales and Verrucomicrobiales were more abundant in mice fed
salmon, whereas the abundance of Caccae was higher in mice fed
entrecote. Considering the reported beneficial effects of Desulfovi-
brionales and Verrucomicrobiales on metabolism, this finding may
suggest an additional beneficial effect of LF diets containing
salmon. The ability of different protein sources to elicit metabolic
changes may apart from differences in amino acid and fatty
acid composition also reflect different content of micronutrients,
glycosylation patterns, possible medical residues or environmental
contaminants, all factors known to influence on the gut microbiota
[20].

The mechanisms by which exercise and diet cause changes in the
gut microbiota are far from being fully understood but may well
involve changes in stool transit time, which will differentially affect
the abundance of bacteria dependent on the rate of multiplication
[54,55]. Regardless of the mechanism, our results demonstrate that a
combination of particularly reduced dietary fat content and exercise is
needed in order to elicit metabolically beneficial changes as well as
reduction in adiposity and that different protein sources will affect the
process. While, undoubtedly, a reciprocal interaction between host
and gut bacteria also is involved, the details of this interaction remain
to be elucidated.

5. Conclusion

This study demonstrates that voluntary exercise enhances LF-diet-
induced reduction in body weight, fat mass and insulin sensitivity in
obese mice. Still, by evaluating the effects of diet and exercise, we
show that a dietary change to an LF diet is the most important single
factor related to a reduction in body weight and improvement in
glucose homeostasis. Whereas the type of protein did not influence
either weight loss or improvement of glucose homeostasis, mice fed
salmon had lower hepatic TAG levels than entrecote-fed mice. Intake
of LF diets containing salmon or entrecote leads to protein-dependent
shifts in the gut microbiota composition.

Author contributions

The authors have declared no conflict of interest.
All authors of this manuscript have directly participated in the
execution and/or analysis of the study and approved the manuscript.
E.F., L.S.M. and L.M. conceived and designed the experiments.
E.F., L.S.M., D.O.L., H.A., J.B.H., P.K., R.H. and B.L. performed the
experiments.
E.F., L.S.M., K.K. and L.M. wrote the paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.jnutbio.2019.01.003.
Fig. 7. Relative abundance of selected bacteria in cecum samples at phyla, family and genus level. Bar charts of the relative abundance of selected bacteria in cecum (n=8–10). All results are presented as mean±S.E.M. and tested for normality and homogeneity of variances. The data were analyzed using two-way ANOVA test, only including mice given LF diets, using exercise and protein source as two independent variables. P<.05 was considered significant, an effect caused by exercise is marked with #, and an effect of the dietary protein source is denoted by different letters (a, b).

References


Harris RB, Kor H. Insulin insensitivity is rapidly reversed in rats by reducing dietary fat from 40 to 30% of energy. J Nutr 1992;122:1811–22.


Tastesen HS, Keenan AH, Madsen L, Kristiansen K, Liaset B. Scallop protein with endogenous high taurine and glycine content prevents high-fat, high-sucrose-induced obesity in mice. Metabolism 2016;65:94–103.


Lamoureux EV, Grandy SA, Langille MGI. Moderate exercise has limited but distinguishable effects on the mouse microbiome. mSystems 2017;2:e00016–7.


