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Abstract Ocean heat content in the Norwegian Sea exhibits pronounced variability on interannual to
decadal time scales. These ocean heat anomalies are known to influence Arctic sea ice extent, marine
ecosystems, and continental climate. It nevertheless remains unknown to what extent such heat anomalies
are produced locally within the Norwegian Sea, and to what extent the region is more of a passive receiver
of anomalies formed elsewhere. A main practical challenge has been the lack of closed heat budget
diagnostics. In order to address this issue, a regional heat budget is calculated for the Norwegian Sea using
the ECCOv4 ocean state estimate—a dynamically and kinematically consistent model framework fitted to
ocean observations for the period 1992-2015. The depth-integrated Norwegian Sea heat budget shows that
both ocean advection and air-sea heat fluxes play an active role in the formation of interannual heat
content anomalies. A spatial analysis of the individual heat budget terms shows that ocean advection is the
primary contributor to heat content variability in the Atlantic domain of the Norwegian Sea. Anomalous
heat advection furthermore depends on the strength of the Atlantic water inflow, which is related to
large-scale circulation changes in the subpolar North Atlantic. This result suggests a potential for
predicting Norwegian Sea heat content based on upstream conditions. However, local surface forcing
(air-sea heat fluxes and Ekman forcing) within the Norwegian Sea substantially modifies the phase and
amplitude of ocean heat anomalies along their poleward pathway, and, hence, acts to limit predictability.

1. Introduction

Ocean heat content variability plays an important role in our climate system. In the Arctic-Atlantic region,
ocean heat anomalies have been shown to affect sea ice (e.g., Arthun et al., 2012; Yeager et al., 2015), marine
ecosystems (Hatun et al., 2009), and potentially also continental climate (Arthun et al., 2017). There is,
however, at present neither consensus nor any complete understanding of the mechanisms causing and
maintaining such heat anomalies. One primary question regarding the nature of ocean heat anomalies in
the North Atlantic is whether the anomalies are related to upstream ocean circulation changes (e.g., Arthun
& Eldevik, 2016; Dong & Kelly, 2003; Hatun et al., 2005; Jungclaus et al., 2014; Sutton & Allen, 1997), or
whether they are more the surface ocean signature of evolving large-scale atmospheric patterns such as the
North Atlantic Oscillation (NAO; Foukal & Lozier, 2016; Krahmann et al., 2001; Saravanan & McWilliams,
1998). Understanding the mechanisms of ocean heat anomalies, with a special emphasis on quantifying the
relative influence of ocean advection and air-sea heat fluxes, has implications for climate predictability, as
heat anomalies caused by ocean circulation changes appear more predictable than those caused by surface
heat fluxes (Yeager & Robson, 2017).

The Norwegian Sea (Figure 1a) is a key component of the North Atlantic climate system, as it acts as a tran-
sition zone between the temperate North Atlantic and the cold Arctic Ocean. The oceanographic conditions
are influenced by the northward flowing Norwegian Atlantic Current (NWAC) transporting warm, saline
Atlantic water into the region (Orvik & Niiler, 2002; Skagseth et al., 2008). After entering the Norwegian
Sea, the Atlantic water is modified along its poleward pathway due to heat loss to the atmosphere and lateral
eddy exchanges with the colder and fresher Greenland and Iceland Seas (Chafik et al., 2015; Furevik, 2001;
Segtnan et al., 2011). In leaving the Norwegian Sea, parts of the Atlantic water will enter the Barents Sea
and the Arctic Ocean through the Barents Sea Opening (BSO) and the Fram Strait respectively, and parts
will recirculate within the Nordic Seas (Eldevik et al., 2009; Skagseth et al., 2008).
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Figure 1. North Atlantic-Nordic Seas temperature and bathymetry. (a) Upper-ocean (0-350 m) mean potential
temperature and 35 isohaline (white contour line), with main circulation features indicated. (b) Ocean depth, with
Norwegian Sea domain boundary Sections1-6 marked. NwWAC = Norwegian Atlantic Current.

Heat exchanges between the Norwegian Sea and neighboring oceans have been studied ever since the first
budget estimate was put forward by Mosby (1962). While early work (as summarized in Simonsen & Haugan,
1996) was based on mean ocean transports to and from the Nordic Seas, more recent budget studies have
additionally applied atmospheric reanalysis fields to estimate mean heat exchanges with the atmosphere
(Segtnan et al., 2011; Simonsen & Haugan, 1996). An alternative approach has been to use air-sea heat fluxes
from atmospheric reanalysis together with ocean heat content from hydrography and calculate the ocean
heat transport component as a residual (Carton et al., 2011; Mork et al., 2014), something which allows for
heat content changes to be assessed.

The Norwegian Sea exhibits pronounced variability in ocean heat content on interannual to decadal
timescales. It is, however, not known to what extent the region is a passive receiver of heat anomalies formed
elsewhere and to what extent the anomalies are produced locally, for instance, by anomalies in the regional
atmospheric circulation (Lien et al., 2014), or a varying influence of the East Icelandic Current (Mork et al.,
2014). Focusing on the Atlantic domain of the Nordic Seas, Carton et al. (2011) find ocean advection to
be the dominant cause of interannual to decadal heat content variability for the time period 1950-2009,
with local air-sea heat fluxes only having a weak reinforcing effect on the anomalies. Mork et al. (2014),
on the other hand, find local air-sea heat fluxes to explain about half of the observed heat content variabil-
ity in the Norwegian Sea between 1951 and 2010. However, these studies, based on comparisons between
observed heat content variations (from hydrography) and air-sea fluxes from different reanalysis products,
suffer from the inability to close the heat budget, as ocean heat transport is not a well-observed quantity.
The role of ocean advection in observation-based studies can therefore only be obtained as a residual, and
a detailed examination of the relative contributions of ocean dynamics and local surface forcing has yet
to be performed.

In this paper we identify the mechanisms responsible for ocean heat content variability in the Norwegian
Sea, using the physically consistent ECCOv4 ocean state estimate (Forget et al., 2015a; Fukumori et al.,
2017; Wunsch & Heimbach, 2007). First, we quantify the contribution from air-sea heat fluxes and ocean
advection. Then, the contribution of ocean advection is elucidated in more detail by exploring the relative
importance of resolved (Eulerian) and eddy-driven (bolus) advection in driving ocean heat transport conver-
gences, as well as the importance of wind-driven Ekman dynamics. A temporal and spatial decomposition
furthermore identifies the main sources of advective heat transport variability. Finally, we assess the domi-
nant large-scale oceanic and atmospheric circulation anomalies associated with a variable heat transport to
the Norwegian Sea.
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2. Methods

2.1. ECCOv4 Ocean State Estimate

ECCO version 4 release 3 (hereafter referred to as ECCOv4) is an ocean state estimate of the 1992-2015 global
ocean circulation and sea ice state, generated by fitting the Massachusetts Institute of Technology General
Circulation Model (MITgcm) to satellite and in situ ocean observations in a least square sense (Forget et al.,
2015a; Fukumori et al., 2017; Wunsch & Heimbach, 2007). The ocean-ice component of the MITgem pro-
duces monthly fields by solving the primitive equations for a time-evolving, Boussinesq, hydrostatic ocean
with a nonlinear free surface. Through the adjoint method (Heimbach et al., 2005), these model fields are
constrained by ocean observations. Latent, sensible, and upward radiative heat fluxes are calculated from
bulk formulae (Large & Yeager, 2004), with ERA-Interim reanalysis (Dee et al., 2011) used as the initial near
surface atmospheric state (air temperature, humidity, precipitation, downward radiation, and wind stress).
The MITgcm framework obeys the conservation laws of momentum, mass, heat, and salt, and the adjoint
method avoids adding nonphysical source/sink terms to the model equations. Consequently, the ECCOv4
estimate is dynamically and kinematically consistent and allows for closed heat, salt, and volume budgets
at each grid cell, to machine precision (Buckley et al., 2014, 2015; Piecuch et al., 2017).

The ECCOV4 state estimate is gridded at a LLC90 grid—a global lon-lat-cap (LLC) grid split into five “gcm-
faces,” one of which is the “Arctic cap” (Forget et al., 2015a). The four grid vertices of the Arctic cap are placed
over land at 67°N, while for Antarctica two grid vertices are placed over land at 80°S and away from major
ice shelves. The grid has a 1° nominal horizontal resolution, and 50 unevenly spaced vertical layers. The
meridional resolution in the Norwegian Sea region is approximately 0.5°, which is larger than the internal
deformation radius (Nurser & Bacon, 2014) and the dominant eddy scale (Poulain et al., 1996). The effect of
unresolved mesoscale eddies is parameterized as a bolus velocity (Gent & Mcwilliams, 1990). Time-invariant
three-dimensional turbulent transport parameters, such as the Gent-McWilliams bolus velocity (eddy) coef-
ficient, are estimated within the ECCOv4 framework under the constraints of observations (Forget et al.,
2015a). Constraining the turbulent transport parameters in ECCOv4 greatly improves the fit to in situ
profiles compared to earlier ECCO solutions (Forget et al., 2015b).

2.2. Comparison to Observations

In combining the physical consistency of a GCM with actual observational data, ECCOv4 is ideal for a
regional heat budget analysis of the Norwegian Sea. To test ECCOv4's general applicability for the Nordic
Seas region, we compare to observed ocean heat and freshwater anomalies from the combined data sets of
the Institute of Marine Research, the Polar Research Institute of Marine Fisheries and Oceanography, and
the Argo Global Data Assembly Centre (Coriolis Data Centre), acquired from the ICES Report on Ocean
Climate (Gonzalez-Pola et al., 2018). The ECCOv4 heat and freshwater content is calculated by integrating
temperature and freshwater (relative to a reference salinity of 34.8) over the Norwegian Sea domain seen in
Figure 1b. The observed heat and freshwater content is an estimate over the Atlantic water layer of the topo-
graphically defined Norwegian Sea domain seen in Mork et al. (2014; mean Atlantic water depth between
1951 and 2010 is 409 m). We note, however, that the comparison is not sensitive to the exact definition of
our domain.

The overall variability in heat and freshwater content for the 1992-2015 period is captured well by the
ECCOv4 estimate (Figure 2; r = 0.87 for the upper 400 m). ECCOv4 does, however, appear slightly colder
and fresher than the observations. Another noticeable difference is the delayed late 1990s warming trend
in ECCOv4. Still, the comparison to hydrography is favorable, though not entirely surprising, as ECCOv4 is
constrained to some of the same observational data (e.g., Argo data).

We furthermore compare temperature and volume transport estimates in ECCOv4 to observations from the
Faroe-Shetland Channel (FSC; available from the ICES Report on Ocean Climate and Marine Scotland, UK,
respectively) and the BSO (provided by the Institute of Marine Research, Norway). As seen in Figures 3c
and 3d, the observed temperature compares well with the ECCOv4 estimate for both the FSC and the BSO.
While the time-mean volume transport at the BSO is captured accurately by ECCOv4 (Figure 3b; 2.0 versus
2.1 Sv in observations), the interannual variability is not reproduced. The low correlation could, in part,
be a result of insufficient horizontal resolution in both current measurements (Ingvaldsen et al., 2002) and
ECCOV4, neither being able to resolve the internal radius of deformation in the BSO (Nurser & Bacon,
2014). We note that high-resolution (1/4°-4 km) ocean models also struggle to capture observed volume
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Figure 2. Comparison to hydrography. (a) May freshwater anomaly for the Norwegian Sea in ECCOV4 relative to 34.8,
and May-centered freshwater anomaly for the Norwegian Sea Atlantic water layer in observations. (b) May heat
content anomaly for the Norwegian Sea in ECCOv4, and May-centered heat content anomaly for the Norwegian Sea
Atlantic water layer in observations. Correlations between the observations and the 0-400 m anomaly in ECCOV4 is
noted in the upper right-hand corner. May-centered hydrography stems from annual internationally coordinated
cruises between 15 April and 15 June and is acquired from the ICES Report on Ocean Climate.

transport variations in the BSO (Lien et al., 2016). The transport of Atlantic water through the FSC is, on
the other hand, reproduced well by ECCOv4 (Figure 3a; r = 0.68). As the inflow through the FSC is the
main provider of Atlantic heat to the Norwegian Sea, these results (Figures 3a and 3c), together with the
favorable comparison to observed hydrography (Figure 2), provide confidence in the ability of ECCOv4 to
assess ocean heat content variability in the Norwegian Sea, and its drivers.

2.3. Heat Budget

In order to identify the processes driving interannual heat content variability in the Norwegian Sea, a
regional heat budget is calculated using the ECCOv4 ocean state estimate. The Norwegian Sea domain
(Figure 1b) is enclosed by six boundary sections plus the Norwegian coast as the eastern boundary. Section1
is split into two parts and will be treated separately, as the inflow of warm Atlantic water occurs in
Sectionl's southernmost part (Sectionla; 6.1 Sv in), while small amounts of relatively cold water is exiting
the domain through the northernmost part (Sectionlb; 0.6 Sv out). The northern section toward the Fram
Strait (Section4; 8.2 Sv out) and the section at the BSO (Section5; 3.3 Sv out) are the main outflow regions
where warm Atlantic water exits the Norwegian Sea domain and continues toward the Arctic (Figure 1a).
Although the locations of the defined boundary sections make them not directly comparable to observa-
tions from the Fram Strait and the BSO, we note that the simulated transports toward the Arctic are in broad
agreement with observational estimates (Schauer et al., 2004; Skagseth et al., 2008).

The heat content tendency for a given control volume is determined by convergence of advective, diffusive,
and surface heat fluxes. The heat budget equation describing this relationship, originates from integrating
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Figure 3. Comparison to observations. Annual mean volume transport in (a) the Faroe-Shetland Channel (Berx et al.,
2013), and (b) the Barents Sea Opening (Skagseth et al., 2008), from observations and ECCOv4. Annual mean
temperature at (c) the Faroe-Shetland Channel (0-200 m), and (d) the Barents Sea Opening (50-200 m), in observations
(ICES Report on Ocean Climate) and ECCOv4. The time-mean volume transport (a, b) and temperature (c, d) are noted
in parentheses in the lower right-hand corner. Correlations between the respective time series are noted in the upper
right-hand corner (“ns” stands for “not significant”).

the conservation of heat equation over a chosen geometric volume V:

0, [[f 2 _dv_p,, 6 [l w0V 4, 6 [l oA+, p// W W
ADV

DIFF Qnet

Tend

where p, is a reference density of seawater, C,, is the specific heat capacity, 6 is potential temperature, u is the
three-dimensional velocity vector, K is the diffusive temperature flux vector, and Q is the net air-sea heat flux
(sensible, latent, shortwave, and longwave). For conceptual and methodological simplicity and robustness,
for example, to avoid effects of local vertical heaving, we choose to integrate the Norwegian Sea domain from
the sea surface to the ocean bottom. However, we note that the heat budget is dominated by upper-ocean
variability (Figure 2b). The budget terms will for simplicity be referred to as heat content tendency Tend,
advective heat transport convergence ADV, diffusive heat transport convergence DIFF, and net air-sea heat
fluxes Qnet.

Following the approach and terminology of Piecuch and Ponte (2012), we use “Variance Explained” (v) as
a metric to quantify the amount of variability in heat content tendency Tend explained by the respective
budget terms:

VX, ) = 100% X (1 — —“Z(f Y, ©)
o%(x)

where o2 is the temporal variance. The v(x, y) takes on values between —co and 100 and gives the percentage
of variance in variable x explained by variable y. A value of, for example, 40% indicates that 40% of the
variance in x can be explained by variance in y, while a value of —40% means that the variance in y increases
the variance in x by 40%. Large negative values (< —100%) indicate that the signals are out of phase and/or
that the variance in y is larger than the variance in x. Applying the metric to our heat budget (Tend =
ADV + DIFF + Qnet), x equals the heat content tendency Tend and y equals one of the remaining budget
terms, depending on which one is being analyzed.

In order to explore the link between Atlantic water inflow and large-scale atmospheric forcing, the lead-
ing modes of atmospheric variability for the ECCOv4 time period (1992-2015) are identified by calculating
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Figure 4. Norwegian Sea heat budget. Deseasoned, detrended, and 1-year low-pass-filtered heat budget (1993-2014)
for the Norwegian Sea domain, where Tend is the heat content tendency, ADV is the advective heat transport
convergence, DIFF is the diffusive heat transport convergence, and Qnet is the net air-sea heat fluxes; 1 TW equals 10'?
J/s. Variance in Tend explained by the respective budget terms is noted in parentheses.

empirical orthogonal functions for area-weighted sea level pressure over the North Atlantic region, using the
original ERA-Interim reanalysis fields used to force the MITgcm (the adjusted fields are not available as out-
put). The two leading modes are the NAO (41% of the variance) and the East Atlantic Pattern (EAP; Barnston
and Livezey (1987); 17% of the variance). NAO and EAP indexes are defined using the principal component
time series. Our empirical orthogonal function-based NAO index is strongly correlated (r = 0.85) with the
station-based index of Hurrell (1995).

As we focus on interannual variability, seasonal cycles and linear trends are removed from all time series
from here and onward. In order to accentuate interannual variability, the time series are smoothed by apply-
ing a 1-year low-pass triangular filter (24-month filter width). To avoid edge effects from filtering, the first
and last 12 months of the time series are removed, leaving us with the 1993-2014 time period that will be
analyzed here.

3. Results

3.1. Norwegian Sea Heat Budget

The Norwegian Sea heat budget shows pronounced interannual variability, with standard deviations of 10.3
TW for Tend, 6.8 TW for ADV, 7.1 TW for Qnet, and 0.8 TW for DIFF (Figure 4). Fifty-one percent of the
variability in Tend is explained by variability in ADV, and 53% is explained by variability in Qnet. DIFF is
practically negligible, explaining only 0.9% of the variability. These results translate to an equal contribu-
tion from ocean advection and air-sea heat fluxes in driving the interannual Norwegian Sea heat content
variability, consistent with the findings of Mork et al. (2014).

While ADV and Qnet are found to be equally important when integrating the heat budget over the Nor-
wegian Sea domain in its entirety, this does not exclude the possibility of large spatial variations in the
importance of the individual budget terms. Consequently, a spatial analysis is carried out by calculating the
depth-integrated heat budget for each horizontal grid cell within the Norwegian Sea domain and neigh-
boring areas, and mapping the relative importance of the budget terms (Figure 5). Note that summing the
depth-integrated budgets within the Norwegian Sea domain gives the volume-integrated budget in Figure 4.

Figure 5a shows pronounced spatial variations in the ability of ADV to explain the variability in Tend. Toward
the center of the Norwegian Sea domain (southwest to northeast), ADV explains the majority of the variabil-
ity in Tend (60-80%). This area largely coincides with the extent of the Atlantic water (defined here as the
horizontal area with salinity >35 in the upper 350 m within the Norwegian Sea domain), along which ADV
explains 62% and Qnet 39% of the interannual heat content variability. A branching pattern is also visible at
the northern boundary, indicating that heat content variability along the NWAC is closely related to advec-
tive heat transport. As ADV and Tend are largely positively correlated (Figure 5b), areas with large negative
v values are generally due to a larger temporal variance o2 in ADV compared to that in Tend (equation (2)).
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Figure 5. Spatial heat budget analysis. (a, ¢, and e) Variance in Tend explained by respective budget terms in each
horizontal grid cell, and (b, d, and f) correlation between Tend and respective budget terms. The analysis is based on
deseasoned, detrended, and 1-year low-pass-filtered depth-integrated heat budgets. The Norwegian Sea domain is
indicated by the solid black lines.

A noticeable feature in Figure 5a is the discontinuity at the Iceland-Scotland Ridge, separating high v values
in the subpolar North Atlantic and within the Nordic Seas. The Atlantic inflow across the ridge takes place
through narrow channels, and the flow is characterized by high mesoscale activity, leading to high transport
variability (Sherwin et al., 2006; Zhao et al., 2018). Closer inspection of the region shows that the discon-
tinuity in v values across the ridge is much reduced if we consider unfiltered monthly time series. While
exchanges between the Norwegian Sea and the North Atlantic south of the ridge are observed to occur on
a broad range of time scales (Bringedal et al., 2018; Hansen & @sterhus, 2000), the processes driving local
heat content change at the ridge is thus found to act predominantly on subannual time scales.
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Figure 6. Role of Ekman forcing. (a) Variance in ADV explained by Ekman forcing ADV,,, in each horizontal grid cell,
and (b) correlation between ADV and ADV,;.. The analysis is based on deseasoned, detrended, and 1-year
low-pass-filtered depth-integrated heat budgets. The Norwegian Sea domain is indicated by the solid black lines.

Within the Norwegian Sea domain, Qnet is positively correlated to Tend (Figure 5d), though the correlations
are slightly weaker compared to ADV (Figure 5b). Figure 5c shows higher v values in the eastern Nordic
Seas, compared to the western Nordic Seas, implying that air-sea heat fluxes acts as a source of interannual
heat content variability throughout the Norwegian Sea domain.

The ability of DIFF to explain variability in Tend is modest (Figure 5e). Figure 5f shows a highly frac-
tioned spatial pattern, with the highest correlations near the northwestern boundaries of the Norwegian Sea
domain, something which could be related to lateral heat loss from the warm NwAC by isopycnal diffusion
observed in the region (e.g., Isachsen et al., 2012; Nilsen et al., 2006).

3.2. Role of Local Wind Forcing

Ocean advection appears to be the dominant driving mechanism of ocean heat content variability in the
Atlantic domain within the Norwegian Sea domain. However, some fraction of this advective heat trans-
port variability is likely directly attributable to local wind forcing (Ekman forcing). In order to quantify this
contribution, we calculate the advective heat transport convergence by Ekman transport ADV,.

Following the approach of Buckley et al. (2014), we assume that the horizontal velocity u, can be decom-
posed into a geostrophic part u, and an Ekman part ug,: uy, ~ U, + . The horizontal Ekman velocity is
given by

M. TXZ

U = —= = (3)

D ek Po f D ek
where M, is the Ekman transport, D, is the Ekman depth (here 50 m is used; e.g., Rio & Hernandez, 2003),
7 is the wind stress, and f is the Coriolis parameter. The vertical Ekman transport vanishes, as we consider
the full ocean depth. Advective heat transport convergence by Ekman transport for a horizontal grid cell is
then given by

n
ADVy = p,C, / N (=V -0, 0)dz 4
ek

where @i and 0 is the time-evolving Ekman velocity and potential temperature, averaged over the Ekman
layer. The lack of difference between using time-evolving § and climatological 8 (not shown), indicates that
local wind variability dominates over temperature field changes in causing interannual variability in ADV,.
The shallow areas along the Norwegian coast and at the southern boundary (Figure 1b) will not be discussed,
as the approximation w, ~ u, + g breaks down for shallow regions due to lateral friction and bottom
Ekman layers (Buckley et al., 2014).

Figure 6 shows that ADV and ADV,, are largely positively correlated, and ADV,, is found to contribute to
interannual variability in ADV toward the center of the Norwegian Sea domain, explaining 30-40% or less
of the variability. These results suggest that Ekman dynamics is important, but not dominant, in driving
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Figure 7. Role of eddy-scale processes. Decomposition of the Norwegian Sea heat budget term ADV into advection by
resolved (ADV,,;) and bolus (ADV},,) velocities. Variance in ADV explained by ADV,,; and ADV}, is noted in
parentheses.

advective heat transport convergence ADV. Forcing by local wind variability within the Norwegian Sea par-
ticularly acts to enhance the variance of heat anomalies advected into the domain with the North Atlantic
Current/NwAC.

3.3. Decomposition of Advection

Advection of heat anomalies into the Norwegian Sea domain has been shown to be a driving mechanism
of Norwegian Sea heat content variability comparable in size to that of local surface forcing (air-sea heat
fluxes and Ekman forcing). In order further to understand the advection mechanism, spatial and temporal
decompositions of the volume-integrated Norwegian Sea heat budget term ADV from Figure 4 are now
carried out.

3.3.1. Eulerian and Eddy-Driven Advection

Advection by both resolved (Eulerian) and parameterized (bolus) velocities constitute the advective heat
transport convergence budget term: ADV = ADV,,, + ADV}, (Buckley et al., 2014; Piecuch et al., 2017).
Considering the two model velocities separately, we find that ADV largely originates from temperature
advection by the resolved velocity field ADV,,, (Figure 7). The eddy-driven advection ADV, acts in the oppo-
site direction of ADV,,, but has a small magnitude in comparison. ADV,; acting to compensate for ADV,, is
consistent with eddies cooling the NWAC by transporting the warm Atlantic water away from the mean cur-
rent (Isachsen et al., 2012). A stronger Atlantic water current would then imply increased eddy activity, and
more heat loss from the Atlantic water core. The importance of eddy exchanges with the colder and fresher
neighboring Iceland and Greenland Seas has been highlighted in previous budget studies (Segtnan et al.,
2011) and is consistent with ADV,, contributing to heat transport convergence along the northwestern and
northern boundaries of our Norwegian Sea domain.

3.3.2. Source of Advective Heat Transport Variability

The heat transport convergence term ADV accounts for heat transport variations through six boundary
sections encompassing the Norwegian Sea. The sections capture the different branches of the NwAC;
the Atlantic water inflow across the Greenland-Scotland Ridge (Sectionla; AWin), and the two northern
branches entering the Fram Strait (Section4; FS) and the Barents Sea (Section5; BS). By analyzing the impor-
tance of the different branches and their driving mechanisms, we aim to identify the source of advective
heat transport variability for the Norwegian Sea.

For individual sections where the volume transport is not balanced, heat transport is not well defined
(Schauer & Beszczynska-Moller, 2009), but a relative value can be calculated by using a reference tem-
perature. Because we are concerned with the heat transport (HT) that actually alters the heat content of
the Norwegian Sea domain, we use the time-evolving volume-averaged Norwegian Sea temperature as a
reference temperature 0, following the approach of Lee et al. (2004):

O () = ///H(t,x, y.2dV 5)
14

HT =p,C, / V- n)(6 - 0,,,)dS (6)
S
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Figure 8. Atlantic water inflow as source of ADV variability. Norwegian Sea heat budget term ADV versus (a) heat
transport through Sectionla (AWin), and (b) summed heat transport through Sectionla (AWin), Section4 (FS), and
Section5 (BS). Heat transport is positive when warm water (relative to 8,,; equation (6)) is brought into, or cold water
out of, the Norwegian Sea domain. Correlations are noted in the upper right-hand corner. Variance in ADV explained
by the heat transport through the respective boundary sections are noted in parenthesis.
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Figure 9. Decomposition of heat transport HT{vf} through Sectionla (AWin) into a velocity component HT{V'8}, a
temperature component HT {96’ }, and a covariance component H’ T{V'6'}. Heat transport is positive when warm water
(relative to Orefs equation (6)) is brought into, or cold water out of, the Norwegian Sea domain. Variance in HT{v6}
explained by the respective terms is noted in parentheses.
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Figure 10. Linear regression between (a) HT{v'0} and the barotropic stream function and (b) between the East
Atlantic Pattern and the barotropic stream function (units: Sv/std[index]). All time series were detrended and filtered
prior to analysis. In (a) the mean barotropic stream function (Sv) is also shown by the black contours. The subpolar and
the subtropical gyres are characterized by cyclonic (negative) and anticyclonic (positive) circulation, respectively. In

(b) the black contours show the sea level pressure anomalies (hPa) associated with the East Atlantic Pattern. The
location of Sectionla (AWin) used to calculate HT{v'#} is shown in (a) by the orange line. Dots indicate where the
correlation is significant at the 95% confidence level (Ebisuzaki, 1997).

where V is the Norwegian Sea volume and S is the surface area of the boundary section analyzed. We note
that the volume-averaged Norwegian Sea temperature is practically 0 °C, regardless of averaging over the
full ocean depth or over the upper ocean (e.g., 0-550 m), or using the corresponding time-mean value. The
applied reference temperature is thus close to that used by previous studies on heat transport in the Nordic
Seas (e.g., Arthun et al., 2012; Orvik & Skagseth, 2005), and our results are not noticeably sensitive to the
assessed methods of choosing ;.

The heat transport through Sectionla (AWin) is more related to ADV (r = 0.41; Figure 8a) than any of
the other boundary sections (HTsec4 and HTsec5 are not correlated to ADV). This supports an important
contribution to the Norwegian Sea heat budget from upstream ocean heat anomalies transported by the
North Atlantic Current/NwAC. The negative v value (—106%) arises from HTsecla having a higher variance
than ADV (10.3 and 6.8 TW, respectively). To capture the correct phase and amplitude of the basin-scale heat
anomalies, it is necessary to include the outflow regions Section4 (FS) and Section5 (BS; Figure 8b). Such
a finding highlights the important role of local surface forcing in modifying the heat anomalies within the
Norwegian Sea domain (Furevik, 2001).

ASBJORNSEN ET AL.

2918



) .¥edl!

100 Journal of Geophysical Research: Oceans 10.1029/2018JC014649
3 T T T T T T
Weak gyre
2 L -

2ot :
@,
-1+ B
/ —
HT{v'0}
ok SPG
Y EAP
3 Strong gyre | 1 . . J — — —.NAO
1992 1995 1997 2000 2002 2005 2007 2010 2012 2015

Time [yr]

Figure 11. Standardized time series of the Atlantic inflow to the Nordic Seas (HT{v'8}), the SPG strength (inverted),
and the NAO and EAP indexes (calculated as the principal components of the first two modes of sea level pressure
variability). SPG = subpolar gyre; EAP = East Atlantic Pattern; NAO = North Atlantic Oscillation.

In order to determine the driver of Atlantic water inflow variability, a temporal decomposition of the
heat transport through Sectionla is carried out. The Atlantic water inflow variability can originate from
anomalous velocities {v/8}, changes in the temperature of the advected water mass {9¢’}, or the covariance
between the two {v'6'}: HT{v0} = HT{V'd} + HT{v0'} + HT{V'0'}, where overbar denotes the time mean
and prime denotes the time anomaly. As seen in Figure 9, the Atlantic water inflow variability is dominated
by velocity fluctuations v' (explain 81% of the variability) rather than temperature fluctuations. This is in
agreement with observations from the NwAC (Orvik & Skagseth, 2005), and modeled heat transport at the
Greenland-Scotland Ridge (Arthun & Eldevik, 2016). For the two outflow regions, the same decompositions
show that velocity fluctuations v’ play a leading role at Section5 (66%), though temperature fluctuations T’
are also important (58%). At Section4, on the other hand, temperature fluctuations T take the leading role
(85%), but with velocity fluctuations v' also being important (42%).

3.3.3. Relation to Large-Scale Forcing

Having identified volume transport fluctuations HT{v'#} in the Atlantic inflow to play a leading role in
the Norwegian Sea heat budget, we now aim to identify the dominant mechanisms of anomalous Atlantic
water circulation in ECCOv4. To assess the dynamic variations in North Atlantic circulation associated with
HT{V' 8}, Figure 10a shows the regression between HT {1/} and the barotropic stream function in the North
Atlantic. A stronger inflow to the Nordic Seas is associated with a weakened subpolar gyre (SPG) and a
strengthening, and northward shift, of the North Atlantic Current that flows along the zero line of the stream
function. The covariability between the Atlantic inflow to the Nordic Seas and ocean circulation in the sub-
polar North Atlantic can be quantified by calculating the SPG strength, defined as the absolute value of the
minimum barotropic stream function in the subpolar region. For the time period covered by ECCOv4 the
SPG strength shows a good connection to HT{v'8} (r=-0.54), and especially after the late 1990s the covari-
ability is strong (Figure 11). These results support a close coupling between the subpolar North Atlantic and
the Nordic Seas (Hatun et al., 2005; Langehaug et al., 2012; Yeager et al., 2015).

The origin of ocean circulation variability in the subpolar North Atlantic has been much studied (e.g.,
Hikkinen et al., 2011; Lohmann et al., 2009; Piecuch et al., 2017; Robson et al., 2012). Several studies have,
for instance, previously related inflow changes to large-scale wind forcing associated with the NAO (e.g.,
Bringedal et al., 2018; Hansen & @sterhus, 2000; Sandg et al., 2012). In ECCOv4, the correlation between
HT{Vv'#} and the NAO index is significant for the full time period (Figure 11;r = 0.45). However, this mostly
reflects covariability during the 1990s, and the inflow variability appears not to have been driven by the NAO
in the latter part of the time series (correlation not significant for 2000-2014). This supports the finding that
the ocean circulation in the subpolar North Atlantic has been decoupled from the NAO in recent decades
(Foukal & Lozier, 2017; Lohmann et al., 2009). The regression pattern between the Atlantic inflow strength
and the barotropic stream function (Figure 10a) does, however, closely resemble the circulation anoma-
lies associated with the EAP index (Figure 10b). The EAP reflects changes in the wind stress curl over the
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subpolar North Atlantic (Barnston & Livezey, 1987) and is known to modulate ocean circulation in the sub-
polar North Atlantic (Foukal & Lozier, 2017; Hékkinen et al., 2011). For the ECCOv4 time period, the EAP
reflects well the SPG strength (Figure 11; r = —0.70). Our results thus support a modulation of the gyre
strength through wind stress curl variability associated with the EAP.

4. Discussion and Conclusions

In this study, a regional heat budget for the Norwegian Sea has been calculated using the ECCOv4 ocean
state estimate in order to quantify the relative importance of ocean dynamics and local surface forcing. We
find ocean advection and air-sea heat fluxes to be equally important in driving interannual heat content
variability between 1993 and 2014, consistent with the findings of Mork et al. (2014). A further spatial anal-
ysis shows advection to be dominant (60-80%) in the Atlantic domain within the Norwegian Sea domain.
While this dominance of advection in the Atlantic domain is along the lines of Carton et al. (2011), we
note that, unlike Carton et al. (2011), our results suggest an active role of air-sea heat fluxes in generating
heat anomalies also within the Atlantic domain. This discrepancy could be a result of the 2-year low-pass
filter applied in Carton et al. (2011), which emphasizes multiannual variability more influenced by ocean
advection (Buckley et al., 2014).

Spatial and temporal decompositions of the advection budget term show that non-Ekman dynamics dom-
inate the advective heat transport in the region, consistent with the findings of Furevik and Nilsen (2005)
and Raj et al. (2018). Furthermore, advection by Eulerian velocities dominates, while eddy-driven trans-
ports appear to have a dampening effect. The Atlantic water inflow is found to be a major source of the
advection-driven convergence of heat within the Norwegian Sea domain (Figure 8a). However, we also find
that the outflow regions are necessary to capture the correct magnitude and phase of the basin-scale heat
anomalies (Figure 8b), suggesting that local surface forcing (air-sea heat fluxes and Ekman forcing) is impor-
tant for modifying the anomalies along their poleward pathway. Furthermore, while velocity fluctuations
are found to control heat transport variability at the Atlantic water inflow region, temperature fluctuations
become increasingly more important at the outflow regions—a result that also points to surface forcing
within the Norwegian Sea domain being important.

The ECCOv4 time period is relatively short, and, as highlighted in Mork et al. (2014), the relative amount of
heat content change caused by ocean advection and air-sea heat fluxes is likely not stationary in time. For
the Norwegian Sea this can for instance be a varying influence of the East Icelandic Current. In this paper
we have focused on analyzing overall heat content variability for the ECCOv4 time period. It is, however,
evident from our heat budget (Figure 4) that some of the warming/cooling events are purely advection driven
(e.g., 2007), some are purely air-sea heat flux driven (e.g., 1999), and some are a mix of the two (e.g., 2002).

Our results indicate that the strength of the Atlantic inflow (HT{v'#}) is related to ocean circulation variabil-
ity in the subpolar North Atlantic, as expressed by the SPG strength—a strong/weak inflow being associated
with a weak/strong gyre. Increased northward transport of Atlantic water in the northeastern Atlantic as a
result of a weakened SPG is in agreement with previous studies (Hékkinen et al., 2011; Hatan et al., 2005).
A weakened SPG is commonly associated with a northwest shift of the subpolar front, that is, a smaller
gyre, allowing an increased northward advection of warm subtropical water into the eastern subpolar North
Atlantic and Norwegian Sea (Hatun et al., 2005). However, in ECCOv4, changes in the strength of the gyre
associated with increased Atlantic inflow to the Norwegian Sea are mostly confined to the western SPG
region (Figure 10a), and not to a large degree related to the zonal extent of the gyre along the eastern bound-
ary. Hence, the eastward expansions and contractions of the gyre do not control the strength of the Atlantic
inflow to the Norwegian Sea.

In line with our results, heat budget estimates from the eastern subpolar North Atlantic, just upstream of
the Norwegian Sea, find variations in ocean heat transport to be a major source of heat content variabil-
ity (Desbruyeéres et al., 2015; Foukal & Lozier, 2018). These studies demonstrate that anomalous northward
heat transport in the eastern subpolar North Atlantic is strongly influenced by the strength of the inter-gyre
connection between the subtropical and SPGs. This is consistent with our finding of a wind-driven strength-
ening and northward shift of the North Atlantic Current when the Atlantic inflow to the Norwegian Sea is
high (Figure 10; Marshall et al., 2001).

We note that unlike gyre indexes inferred from sea surface height (SSH; e.g., Hikkinen & Rhines, 2004;
Hatun et al., 2005), the gyre strength in ECCOv4 (calculated directly from the barotropic stream function)
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shows no decline in SPG circulation. The trend in the SSH-based SPG index comes from a basin-wide sea
level rise in the North Atlantic (Foukal & Lozier, 2017; Hatun & Chafik, 2018), which does not translate into
dynamical SPG changes. Constructing an SPG index based on detrended SSH in ECCOv4 yields similar gyre
variations as to that obtained from the barotropic stream function (r = 0.67 if the SSH-based index leads
by 1 year). For a recent, more detailed discussion on the calculation and interpretation of SSH-based SPG
indexes, see Hatun and Chafik (2018).

The accuracy of the ECCOv4 ocean state estimate depends on the model fields being well constrained to
actual observational data. The good match to observed variability in Norwegian Sea heat and freshwater con-
tent (Figure 2), and FSC and BSO temperatures (Figures 3c and 3d), implies a well-constrained ocean state
estimate in our region of interest. As the Atlantic inflow strength is found to be a major source of Norwe-
gian Sea heat content variability, the good fit to observed FSC volume transport is encouraging (Figure 3a),
despite the poor representation of BSO transport variability (Figure 3b). The applied air-sea heat fluxes rep-
resent an additional source of uncertainty (Carton et al., 2011). However, ERA-Interim reanalysis, which
provides ECCOv4 with its initial atmospheric state, has been shown to perform well in the Nordic Seas
region (Lindsay et al., 2014). The mean turbulent heat fluxes calculated within the ECCOv4 framework are
higher than in ERA-Interim (93 and 77 W/m?, respectively, when averaged over the Norwegian Sea), but
the variance (6 and 5 W/m?) and interannual variability are similar (r = 0.84). As the effect of mesoscale
eddies are largely parametrized, eddy-driven transport of heat could be underrepresented and thus lead to
an elevated heat loss to the atmosphere. Lastly, although we have demonstrated the realism of ECCOv4 for
our region of interest, our results are based on a single model, and the robustness of our results therefore
need to be further established.

By performing a detailed heat budget analysis for the Norwegian Sea, we have identified an important role
of ocean dynamics/nonlocal forcing in the Atlantic domain. This finding implies a potential for prediction
of ocean heat content on interannual time scales, as skillful predictions of ocean heat content generally arise
from the realistic initialization of ocean circulation anomalies associated with ocean dynamics (e.g., Yeager
& Robson, 2017). Our results thus support and detail the findings from initialized climate prediction models,
which demonstrate that large-scale circulation changes in the subpolar North Atlantic are communicated
toward the Arctic via the Norwegian Sea (Langehaug et al., 2017; Yeager et al., 2015; Yeager & Robson,
2017). We find that interannual heat content anomalies in the Norwegian Sea are more related to the vari-
able strength of the Atlantic water inflow than to temperature changes of the inflowing water. Observations
nevertheless show that on multiannual to decadal time scales, temperature anomalies are able to propagate
into and through the Norwegian Sea (Arthun et al., 2017; Broomé & Nilsson, 2018), something which sug-
gests that temperature anomalies advected by the mean current could play a more important role in the heat
budget on longer time scales. The time period covered by ECCOv4 is, however, too short to assess decadal
variability in Norwegian Sea heat content. Our results furthermore highlight the importance of air-sea fluxes
in generating and modifying ocean heat anomalies within the Norwegian Sea, which, at times, can mask
the predictable oceanic variability. As the predictability of individual warming/cooling events is expected
to vary depending on their dominant driver, heat budget diagnostics, such as those presented here, provide
valuable benchmarks for assessing the skill of climate prediction models (e.g., Robson et al., 2012; Yeager
etal., 2012).
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