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A B S T R A C T

Marine resource surveys in large areas have high cost, and to find an optimal survey design with regard to
efficiency and scientific outcome is an important issue. A randomized zigzag design for straight line and curved
transects is developed that guarantees equal coverage probability, i.e., each point in the study area has the same
probability of being covered by the transect. The basic idea is to fit automatically either the smallest rectangle, or
the smallest circular sector enclosing the actual area. Then a recipe for the location of zigzag legs that provide
equal coverage probability everywhere in the rectangle or circular sector is outlined, and thereby also at any
location within the study area, which simplifies unbiased abundance estimation. The cost of this approach is the
unwanted distance to be traveled from the point where a transect leg leaves the study area to the point where the
next leg enters. A comparison of a randomized parallel, straight line zigzag, and curved zigzag approach applied
to 7 sandeel areas with great variety revealed an average off-effort traveling distance of 28%, 9% and 6%,
respectively. Thus, it appears that the developed zigzag design is far more efficient than the parallel design.

1. Introduction

Survey design in terms of a recipe for a transect route for continuous
sampling is an important issue related to, for example, high cost
abundance estimation of marine resources in large areas at sea. Often
there is a sparse knowledge of the spatial structure of the target species,
such as the location of possible aggregations. In these cases, it can be
appropriate to apply a randomized, contrary to a fixed, survey design in
order to reduce estimation bias. Sampling related to a randomized
survey design is often denoted design-based sampling, and this is the
approach considered in this paper.

Equal coverage probability is an essential term related to design-
based sampling that will be used throughout the paper and therefore
needs a clear definition. The paper restricts its attention to horizontal
transects with a constant sampler width, 2w, perpendicular to the
transect direction, within a study area with a predefined border (Fig. 1).
The randomized survey design provides different independent transects
so that each point in the study area has a positive probability of being
located inside the area covered by the transect. If any point in the study
area, independent of location, has the same probability of being cov-
ered by a random transect, the survey design provides what we define
equal coverage probability. Such a design has the advantage that it may
provide very simple unbiased abundance estimators.

Parallel designs are far more frequently applied than zigzag designs.

A major reason for this is its simplicity with regard to obtain equal
coverage probabilities as well as a generally simpler analysis. Another
advantage is its ability to map the actual study area by proceeding
along each leg until no more abundance is observed (Petitgas, 1993). A
major drawback is that the transportation between the parallel legs
normally is not included in the data analysis, which in practice easily
might result in a large waste of effort. The latter drawback with parallel
designs is a major argument to also consider a zigzag alternative.

An advantage with a zigzag design that to the author’s knowledge
has not been emphasized, is the possibility to examine the mobility of
the population under study by applying a return design: First a zigzag is
run from one side of the area to the other, then the complementary
zigzag is applied in the opposite direction. In this way there will be
several cross points with different time lags. Say, for example, that a
variogram (Rivoirard et al., 2000; Chilès and Delfiner, 1999) based on
the along-track observations (close in time) reveals strong positive
correlations at small scale. If these correlations disappear or are
strongly weakened for close observations in space, but with substantial
time lags, this is a strong indication of mobility. In a worst case sce-
nario, the same animal is observed several times during the same
survey, with a likely overestimation of the abundance as a result.

A general and easily applied recipe for a randomized zigzag design
based on a design axis (straight line) through the area is outlined in
Strindberg and Buckland (2004), SB henceforth. The paper strongly
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recommends that the turning points at the boundary of the study area
should be at the intersection between equidistant lines perpendicular to
the design axis (x-axis), and the boundary, in order to obtain approxi-
mately equal coverage probabilities. They also demonstrate how one
generally can construct a transect sampler with equal (average) cov-
erage probabilities perpendicular to the design axis independent of x-
value (Fig. 1). However, their approach does not guarantee equal
coverage probabilities along the perpendicular y-axis, and we will de-
monstrate that an irregular border easily causes rapid fluctuations in
coverage probabilities.

Randomized designs have the advantage that design-unbiased
abundance estimators can be constructed independent of the spatial
structure of the animal locations, based on, e.g., the coverage prob-
ability, πi, of any location in the study area to be included. A natural
choice here is the well-documented Horvitz-Thompson (HT, hence-
forth) estimator (Horvitz and Thompson, 1952; Thompson, 2002). With
equal coverage probabilities, the HT estimator for the total abundance
(biomass or numbers) is reduced to the simple average of the density
observations, e.g., abundance per square nautical mile, multiplied by
the study area. A big challenge, however, is to find an appropriate
variance estimator, and this topic is treated further in the Horvitz-
Thomspon Section 2.5.

The main objective of this contribution is to outline a concept for a
randomized zigzag design that guarantees equal coverage probabilities
per unit area at any location in the study area, including return zigzags.
The basic idea is to develop a randomized zigzag sampler with equal
coverage probabilities for any circular or rectangular sector. The next
step is then to enclose the actual study area by the sector with the
smallest area, and to develop algorithms that automatically find the
needed parameters for this optimum enclosing area. The cost of this
approach is the transport from the point where a transect leg leaves the
study area to the point where the next leg enters the study area again.
Applied to an actual curved-shaped minke whale study area in the
Antarctic, this unwanted transport posed just a minor part of the total
transect length, contrary to a parallel design alternative with the same
coverage of the study area. Similarly, efficiency was improved by ap-
plication of the enclosing rectangular and enclosing circular approaches
to several sandeel areas in the North Sea, compared to the parallel
design.

2. Methods

2.1. The Strindberg-Buckland (SB) even coverage concept

The SB concept for a randomized zigzag sampler with even coverage
is illustrated in Fig. 1 for a trapezoidal study area, where 2w is the
width of the sampler perpendicular to the travel (transect) direction.
First a random transect point, (xinit, yinit), within the area is generated
(see Fig. 1). Then the transect points in each direction from the initial
point are calculated by an iterative procedure. Let = ∙A h dxΔ cr s denote
the area of the cross section between the transect and a vertical strip
with height, H, width, dx, and area ΔA=H·dx. To obtain equal cov-
erage probability independent of x, the ratio = h H/A

A s
Δ
Δ

cr must be
constant independent of x. This constant must also be equal to the ratio
between the total area covered by the sampler, ∙L w2 , and the study
region area, A, where L is the total transect length and 2w is the width
of the sampler. This leads to the following expression for the angle, θ,
between the transect direction and the x-axis:

⎜ ⎟= ⎛
⎝

⎞
⎠

≥−θ x cos A
LH x

L A H x( )
( )

, /min ( ( ))1

(1)

where H is the height of the study region in the y-direction at position x.
The concept depends on the assumption that L≥ A/min(H(x)), i.e. that
the effort (transect length), L, needs to be sufficiently large. Note also
that there are two different solutions for θ, because = −θ θcos cos( ). In
the SB concept either of these two values at the initial x y( , )init init point is
chosen with equal probability.

Though the equal coverage probability concept above ascertains
equal average probabilities along the y-axis independent of x, it does
not guarantee equal coverage probabilities along a vertical strip for
different y-values. In fact, the region borders might have a rather dra-
matic effect on the coverage probabilities in the y-direction, as illu-
strated in Fig. 2 for the Antarctic region (documented in Fig. 7 in SB)
and described further in the result Section 3.1.

2.2. The equal coverage probability sampler for a circular sector

We created a new randomized design such that a random transect
has the same probability of covering any small unit area domain within
a circular sector independent of location (x,y). An example is shown in
Fig. 3 by the curved zigzag transect with width 2w, along with a defi-
nition of terms to be used in the following outline. The transects are
cyclic with a repeated shape and cycle αc. A random transect cycle can
be generated by first choosing a starting point at r= r1 (the inner circle)
and a random angle αrnd from a uniform distribution U(α1, α1+ αc).
How the rest of the transect is generated is further described below.
First, we outline the concept of the equal coverage probability ap-
proach.

Consider a circularly shaped strip at radius r with an infinitesimally
small width dr and area −r α α dr( )2 1 , and a survey transect with width
2w much smaller than r. Further, let the u-axis denote an axis along the
circular strip at any point, i.e. perpendicular to the radial through that
point (Fig. 3). The cross section between the strip and the transect
comprises a parallelogram with area dAcr that depends on the angle, θ,
between the u-axis and the transect direction. Due to symmetry dAcr,
and thus the value of θ, must be equal for each cross section at the same
value of r (but different α’s) to obtain equal coverage probability within
the strip. Further, we see that the expected number of cross sections is
independent of r, while the strip area increases with r. Thus θ has to
change with r in order to obtain equal coverage probability. The re-
maining mathematics is given in Appendix A. It turns out that

⋅ = =r ksin θ constant (2)

Thus, as r increases θ must decrease. Note that k cannot be greater than
r1, which puts a limit to the maximum number of legs before the ap-
proach breaks down. k is a crucial parameter, and it is outlined further

Fig. 1. Illustration of the concept of equal average coverage probability, in-
dependent of x, by Strindberg and Buckland (2004). For each vertical strip with
width Δx, the ratio of the area ΔAcr covered by the sampler, and the area, ΔA, of
the strip (or hs(x)/H(x)), must be a constant independent of x. 2w is the width of
the sampler perpendicular to the transect direction.
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below how the k-value can be determined.
As shown in Appendix A, the (r,α) points on a random transect leg

between r1 and r2 in a counterclockwise direction, starting at (r1, αrnd),
can be calculated by the equation

= + + − − − −− −α r α k r r k k r r k( ) sin ( / ) ( / ) 1 sin ( / ) ( / ) 1rnd
1 2 1

1 1
2

(3)

where sin−1 is the arcsine function, and = + ∙α α R αrnd c1 with R being a
random variable from the uniform U α(0, )c distribution. The corre-
sponding Cartesian coordinates are =x y r α r α( , ) ( cos , sin ). The cycle,
αc, corresponding to the α-span of two legs, can be found as follows:
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A set of increasing r-values from r1 to r2 are chosen, and the corre-
sponding α-values are calculated from Eq. (3). Once the first leg is
calculated, the next leg starts at +r α α( , /2)rnd c2 and stops at +r α α( , )rnd c1

with successive r-values in decreasing order from r2 to r1, corresponding
to mirroring the first leg around the radial that passes through

+r α α( , /2).rnd c2 Now one cycle is created and this is repeated at both
sides till the whole sector span (α1,α2) is covered. To keep the points in
an appropriate order, just sort all points by increasing (decreasing) α-
values if a counterclockwise (clockwise) order is wanted.

We now focus on how an appropriate k-value is found. Let L denote
the total transect distance available, and note that for a given k, the
total distance will change somewhat from one realization to another.
One should therefore run a sufficient number of simulations to calculate
the statistics of the resulting distances and adjust the k-value until a
satisfactory result is obtained. A simple approach is to start with the
maximum value kinit= r1, and then adjust the k-values after nsim si-
mulations. An efficient approach in the simulations is to replace the

Fig. 2. Figure panels a)–c) illustrate the caustic-like effect an irregular border (the bottom one in this case) may have on transects that start with equidistant positions
(see white lines) perpendicular to the design axis defined by the x-axis shown in b). All transects are constructed by the adjusted-angle zigzag sampler (SB), providing
equal probabilities on average for any x-value. In the right panels the result of 10 000 simulations and random start positions within the study area is shown in terms
of coverage probability figures shown as a 3D plot in d) and a 2D contour plot in e), confirming the impression of the left panel figures.

Fig. 3. Illustration of the concept for a randomized transect within a circular sector with equal coverage probability everywhere. Now it is the ratio between the area,
dAcr, covered by the sampler within a thin circular sector strip with area −r α α dr( )2 1 that must be a constant independent of r. See text for further details.
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random αrnd values with equidistant values, where the difference be-
tween succeeding values is αc/nsim. The k-value is adjusted until e.g.,
the maximum distance, or an appropriate quantile, does not exceed L.

Instead of choosing kinit= r1, an appropriate initial value can be
found numerically as described in Appendix A.

A return zigzag design with equal coverage probability is easily
implemented during each simulation by letting the return zigzag be the
same as the one described before with a deliberately chosen α-differ-
ence, Δαret, e.g., Δαret= αc/2, but with the opposite order of the
transect points (Fig. 4). There will be an “unwanted” transport along
one of the sector edges to join the forward and backward transects that
must be excluded in the analysis. An interesting feature of a return
design is the possibility to examine possible population dynamics
during the survey by e.g., comparing the variograms (Petitgas, 1993) at
small scale and short time intervals along the transect with the vario-
grams at small scale but large time intervals at the crossing points be-
tween the forward and backward transects. If, for example, small scale –
small time intervals reveal strong spatial correlations that disappear at
small scale with large time intervals, this is a strong indication that the
population has moved during the survey. To the contrary, if the var-
iograms look the same they might be applied to get reasonable model-
based estimates for the variance of the abundance estimator.

2.3. Implementation of the equal coverage probability sampler to realistic
domains

In the previous section it was outlined how one can construct
random zigzag transects in an idealized circular sector that guarantees
equal coverage probability everywhere. If we follow this recipe for any
circular sector enclosing a realistic area, equal coverage probability is
obviously obtained also for the enclosed area. However, the original
parts of the transect outside the realistic area represent a waste of time
and can be shortened, often considerably, by taking the fastest straight-
line transport from each point where a leg leaves the area to where the
next enters.

The same considerations as above are valid for the equal-spaced
zigzag sampler proposed in SB applied to a perfect rectangle enclosing a
real study area. For simplicity, let the rectangle have horizontal and
vertical edges with the x-axis being horizontal, and let xmin and xmax

denote the minimum and maximum x-values for the rectangle. A simple
approach that guarantees equal coverage probability is then to let the
initial transect value be (xmin+ xrnd, ymin) with xrnd being uniformly
distributed U(0,2Δx) where Δx is the x-spacing between two succeeding
legs and 2Δx thus is the zigzag x-period. In this case our rectangle
approach and the SB equal-spaced approach coincide.

Note, however, that the SB paper does not specify clearly the ran-
domization part for the equal-spaced zigzag sampler, and it is easy to
believe that the initial x-values can be taken randomly between xmin

and xmax following a uniform distribution. If this is done, however,

equal coverage probability is not obtained, unless xmax− xmin is exactly
a multiple number of the x-distance between two successive legs. This
point is not obvious but is easy to verify by simulations.

A common challenge for the circular as well as the rectangular
enclosing approaches is to find the optimal circle sector or rectangle. A
natural approach is to minimize the enclosing area, which is equivalent
to minimize the ratio between the area of the enclosing and the real
domain. Some results are seen in Fig. 5.

For the rectangle area, there is only one unknown parameter, which
is the rectangle orientation (rotation). For a given orientation it is
straight forward to find the rectangle that at each of the four edges
touch the enclosed area at least at one of the polygon points without
intersecting the area. Then one can search for the rotation angle giving
the smallest “touching” area. The results in this paper are found effi-
ciently by an algorithm that applies the Matlab m-file fminsearch.m (m
is the extension of file names for command scripts in Matlab).

For the optimal enclosing circular sector, the circle origin is the
unknown, i.e. there are two unknown parameters in this case, x0 and y0.
For each choice it is easy to find the two (straight line) radial parts of
the sector touching the realistic area without intersecting it, and in the
same way the circular part with maximum radius. To find the optimum
circular part with minimum radius, however, the circle with radius
equal to the smallest distance from the origin to the border polygon
points may still intersect the area. Thus, also the shortest distances from
the origin to the straight lines between two succeeding polygon points
have to be checked out as the possible smallest radius for a circle that
still hits the polygon domain without intersecting it.

Also, for the circular sector results in this paper, the optimal origin
is found automatically by applying the fminsearch m-file in Matlab. To
succeed, however, the choice of a reasonable initial origin might be

Fig. 4. An example of a return zigzag transect, from a sampler with guaranteed
equal coverage probability everywhere (the thick lines), with the unwanted
transport indicated by the thin lines. In this example the clockwise return zigzag
(dashed curve) is translated a half α-cycle compared to the anticlockwise zigzag
(solid curve).

Fig. 5. An example of comparison between the parallel, rectangular and cir-
cular equal coverage probability approaches applied to the Antarctic example.
The figure illustrates a general trend that the zigzag designs with equal cov-
erage probabilities are far more efficient than a parallel design, and in many
cases the circular approach is also considerably more efficient than the rec-
tangular approach.
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necessary. One way to do this is to manually choose 3 points in the area
that appear to lie on an appropriate circle reflecting the gross shape of
the area and use the origin for the circle going through these 3 points as
an initial value.

2.4. Simulation of coverage probability

First the border polygon values, (x,y), and the available distance to
travel, L, are scaled by a common factor so that the area consists of an
appropriate number of square pixels (cells) with size one. This is a
balance between high resolution and extensive computer time on one
side, and fast analysis and coarse resolution on the other. Then the
distance between succeeding transect points is chosen to be smaller
than 1, e.g., 0.99. For each simulation each of the pixels hit get a weight
equal to the length of the transect intersecting the pixel. Then nsim si-
mulations are run, and the accumulated weights are successively cal-
culated in each simulation. Note that this is different from just counting
the number of times each pixel is hit, because the probability of hitting
a pixel is strongly dependent on the transect direction with regard to
the pixel orientation.

An alternative and simpler option (SB), which is more appropriate
for straight line transects, is to model the transect legs as “rectangles”
with width 2w, grid the area and accumulate the number of times each
grid cell node (“point”) is covered by the transect over the simulations.
For an equal coverage probability design the number of scores should
converge to the same number as the number of simulations increase.
This approach, however, is more time demanding for curved legs, be-
cause these need to be approximated by far more points than the few
points needed to define the straight lines.

2.5. The Horvitz-Thompson estimator applied to acoustic abundance data

The HT estimator applied to minke whale counting surveys in the
Antarctic is well described in SB. Here we focus on the HT estimator
applied to a classical acoustic fish survey with a downward looking
echo sounder mounted on the bottom of a ship hull. We assume that the
echo beam has a constant geometry with a known efficient beam width,
2w, that will increase with depth. Thus, strictly speaking, this is in
conflict with the assumption of a constant transect width. We can
imagine, however, that the water is partitioned in successive depth
layers where the beam width is approximately constant in each layer. If
we have an unbiased estimator for the abundance in each layer, we will
have an unbiased estimator for the whole water column as well.

Let the study area be gridded in N quadratic cells so small that we
can ignore the border effect that only a random portion of the cells
hitting the transect border will be included by the transect. Further, let
n denote the number of cells included in the transect, and let ρi denote
the density of a target species in cell i in terms of biomass per square
nautical miles, kg/n.mi.2. The HT estimator, BHT, for the total biomass,
B, is now

∑= ⎛

⎝
⎜

⎞

⎠
⎟

=

B
N

ρ
π

A1 ˆ
·HT

i

n
i

i1 (5)

where ρ̂i is the estimated density in cell i from the acoustic records and
πi is the probability of cell i being covered by the transect and A is the
area of the study area. For an equal coverage probability design the HT
estimator is simplified to
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eq

j
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j j
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i.e., the average density estimate, over m successive parts of the
transect of equal length, e.g., 1 n.mi., multiplied by the study area. If
each local density estimate is unbiased, this simple HT estimator will
provide a design-unbiased estimator for the true abundance,

independent of the spatial structure and possible hot spots in the spatial
distribution of the target animals. Design-unbiasedness means that the
average abundance estimate over several simultaneous random surveys
would converge towards the true abundance.

To illuminate the assumption of unbiased local density estimates, let
= …ρ ρ ρˆ ( ˆ , , ˆ )tr m1 be a random transect observation vector where the

whole transect is partitioned in m successive parts of equal length (and
area), each represented by a local estimate of biomass density. Assume
that we can ignore the uncertainty of this local estimate at the time of
observation. Further, let f ρ( ˆ )x t tr, denote the distribution of observed
densities as a function of space, x=(x,y), and time, t. Suppose local
stationary conditions in the sense that for a random survey in the same
study area during the same survey time, T, the corresponding ρ̂tr can be
considered a random sample from the fx t, - distribution. Different
samples will then be independent with regard to the fx t, - distribution,
and unbiased local estimates follow, whatever spatial correlations that
are involved. The assumption will be violated in case of a sufficiently
large drift of the population during the survey, which is a challenge for
a parallel design as well. In this case, however, a return zigzag is an
appropriate design to reveal such a drift, as pointed out in the main
text.

Though it is straight forward to construct an exact analytic ex-
pression for the design-based variance of the HT-estimator (Thompson,
2002), it is hard to find appropriate estimators (Murthy, 1957; Brewer
and Hanif, 1983, pp. 90–91). In practice other options are often ap-
plied, as described in SB with references (Borchers et al., 1998; Marques
and Buckland, 2003). One appealing approach is to treat each transect
leg as a primary sampling unit, and bootstrap among the legs. A chal-
lenge by zig-zag transects is that positive correlations are often present
at the turning point between two successive legs, thus causing neighbor
leg observations to be dependent. If, on the other hand, the observa-
tions reveal, e.g., stationary conditions in a geostatistical sense (Chilès
and Delfiner, 1999), the zigzag provides good directional information at
a range of different scales, which is useful to get good estimates of
variogram parameters. In such a case it is straight forward to estimate
the estimation variance of the HT-estimator based on the estimated
variogram (Chilès and Delfiner, 1999).

There is a range of bias issues related to the local density estimates,
such as how fish reacts to the echosounder and the uncertainty of dis-
criminating between different species. This represents challenges for
any survey design, and is outside the scope of this paper.

2.6. Computer efficiency

For the curved zigzag, the most time-consuming design, the number
of points for Ltot was about 1000 for each simulation. To run 1000 si-
mulations, the computing time was c. 1 min with a Macbook Pro with a
2.2 GHz Intel Core i7 processor and 16 GB MHz DDR memory. All
scripts are written in Matlab and were run by Matlab R2015b.

3. Results

3.1. The Antarctic example with the SB adjusted-angle zigzag sampler

In this case the adjusted-angle zigzag sampler introduced by SB is
applied, which ascertains that the average coverage probability in strips
perpendicular to the design axis indicated in Fig. 2b is independent of
position along this x-axis. In Fig. 2 each of the 3 different left panels
(a–c) show 20 transects, 10 at each of the two possible θ-values, that are
initiated with equidistant starting points along the axis perpendicular to
the design axis, marked by white lines. In all cases we see that as the
transects move away from their starting points, they develop a clus-
tering behavior. We also see that the patterns are quite different in the 3
cases.

In the right panels (d and e) in Fig. 2, a 3D coverage probability plot
based on 1000 simulations are shown in the upper panel (d), where for
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each simulation a random point in the region is chosen as an initial
value. We clearly see a non-constant probability surface, which is fur-
ther illustrated by the 2D contour plot in the lower panel. The major
reason for this deviation is in the author’s opinion the irregular shape of
the southern border. This is in a sense analogous to the physical phe-
nomenon called1 caustics, which can be seen, for example, as con-
centrated bright curves on the bottom in a swimming pool (see Fig. 6)
caused by the irregular water surface that cause incoming light rays to
cluster.

Obviously, the substantial deviation from equal coverage prob-
ability described above is not a wanted feature of a design with the
intention of providing equal coverage probabilities and may lead to
severely biased abundance estimates if equal coverage probabilities are
assumed. To reduce such unwanted effects, one of 3 options suggested
in SB is to apply a convex hull surrounding non-convex areas. This
would probably cause much less deviation from equal coverage prob-
ability for many different convex hulls. In fact, an enclosing rectangle,
as applied in the present paper, is the only option among all enclosing
convex geometries that can guarantee perfect equal coverage prob-
ability.

3.2. The Antarctic example with enclosed circular sector and the proposed
equal coverage probability zigzag sampler

Fig. 4 shows the original Antarctica region with an enclosed circular
sector and an example of a return zigzag that guarantees equal coverage
probability in the study area. In this case it is natural to let the circular
upper border of the sector be equal to the original upper border, though
the sector does not necessarily become the one with smallest area. Note
also that the sector end edges between the inner and outer radii need to
be perpendicular to the sector circles at the intersection points between
the edges and the circles. Thus, some deviation from the original bor-
ders will in general appear also at the sector edges, though not in this
case because longitudes are perpendicular to latitudes.

The result of 10,000 simulations following the recipe for the equal
coverage probability sampler is illustrated in Fig. 7, except that in this
case the initial angle αrnd is changed by exactly the angle span of one
cycle, Δα, divided by 10,000 from one simulation to the next. In the
upper panels the results of the robust simulation method (W) are
shown, and in the lower panels are shown the results by the naïve
counting approach (N). The nice results by the robust simulation
method confirm that the sampler provides equal coverage probabilities
as expected, and also that the robust simulation method works. The
results by the naïve simulation approach clearly illustrate that this is
not the appropriate way to simulate coverage probabilities in this case.

A typical example of applying the random parallel, rectangular
zigzag and circular zigzag approaches are shown in Fig. 5. Over 1000
simulations, the average relative waste, i.e., ratio of distance traveled
off-effort and on-effort, was 9.5%, 15.7% and 57.5%, for the curved
zigzag, straight line zigzag and parallel zigzag approach, respectively.
Note that the straight-line zigzag approach is synonymous with the
equal-spaced zigzag sampler in SB with a rectangle as an enclosing non-
convex hull, while the more efficient curved zigzag has the convex
circular sector as the enclosing hull.

In the simulation runs the area is gridded so that the total study area
contains 2759 pixels. To obtain real scale values we can use the fact that
the upper border of the study area is along the 64.5 degrees latitude
south. Set the earth radius to 6400 km. The radius of the circle defining
the 64.5 degrees latitude is then 6400 km·cos(64.5°)= 2755 km. On our
gridded scale, the corresponding radius is r2=202.51 pix, so we get a
factor 2755 km/202.51 pix= 13.60 km/pix to transform from our pixel
scale to real km’s. So, as an example, an average Leff=178 pix

corresponds to 178pix·13.60 km/pix= 2421 km.

3.3. The North Sea sandeel fields

Fig. 8 shows some sandeel fields where the SB equal-spaced zigzag
has been applied at many of the fields for several years. We also see
examples of the return zigzag design and the parallel design. Based on
the same effort as applied in the abundance surveys, the efficiency of
the parallel (P), rectangular zigzag (R) and curved zigzag (C) equal
coverage probability alternatives are compared by simulations. The
rectangular zigzags are constructed based on the equal-spaced zigzag
described in SB for the enclosing rectangle. Based on 10,000 simula-
tions, the average distance travel results in terms of wasted divided by
inside area travel in percent are shown in Table 1. In 7 of the cases, all
approaches worked with an average of 28% waste for P, 9% for R and
6% for C. As we see, the zigzag designs appear to be considerably more
efficient than the parallel design, and most efficient for the circular
enclosing approach, though the latter could not be applied in all cases
due to a too “fat” minimal circular enclosing sector.

4. Conclusion

A zigzag sampler with guaranteed equal coverage probabilities is
constructed for a pure circular sector, with an exact analytical expres-
sion for the curved transects so that no iterative procedure is needed to
calculate the transect points. An equal coverage probability is therefore
obtained for any domain enclosed by a circle sector by applying the
circle sector sampler. This is also obtained by the equal-spaced zigzag
sampler (SB) for a rectangle and thus any area enclosed by the rec-
tangle.

The cost of the approach is the unwanted straight-line transport
between the points where a circle sector transect leg leaves the study
area to the point where it re-enters the study area. In a practical ex-
ample from a whale counting area in the Antarctic, this cost was on
average about 9.5% of the transect effort inside the area, as compared
to 57.5% when using a randomized parallel design.

The paper outlines how one, for a given study area, can construct
algorithms that automatically finds the enclosing rectangle as well as
the enclosing circular sector with minimum area.

The computer efficiency of the constructed zigzag sampler and the
coverage probability simulation method is high, where 1000 simula-
tions for realistic examples require in the order of 1min on a modern
laptop.

5. Discussion

The improved efficiency obtained with the zigzag approach com-
pared to the parallel approach depends on the shape of the study area as
well as the available survey effort. The greater effort (more legs in the
zigzag survey design) the minor drawback will be the unwanted travel
distance relative to the transect length, for both parallel and zigzag
designs. When the unwanted transport becomes a challenge, this will be
due to deviation in shape from the rectangle or circular sector, and few
legs will easily provide a substantial variety in needed effort from one

Fig. 6. Illustration of the physical caustic phenomenon. The irregular water
surface border cause light rays to cluster in the bright irregular curves seen at
the bottom of a swimming pool in this case.

1 “Caustics are natural phenomena in which nature concentrates the energy of
waves.”, ref: https://arxiv.org/abs/1706.01589.
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random transect to another. This and other features can efficiently be
studied by simulations in a concrete case at hand.

Another challenge with the circular sector sampler is that it breaks
down for a sufficiently large effort and a sufficiently “thick” sector in
terms of the ratio between the difference of the sector radii and the
smallest sector radius. This can be overcome by moving the circle origin
further away from the study area, thereby making the enclosing circle
more “rectangle-like”. This will, however, increase the off-effort

transport.
The paper has focused on equal coverage probability. For abun-

dance estimation purposes, equal coverage probability is not needed if
the coverage probabilities are known, and, for example, a Horwitz-
Thompson estimator can be applied as demonstrated in SB. Even with
deviation from equal probability coverage, however, it is an advantage
to have a probability that varies smoothly over the study area. If fitting
of a parametric surface to the simulated probabilities is wanted it
should be noted that the variance of the transect length intersecting a
pixel also depends on the transect directions with regard to the pixel
orientation. Though not shown here, it is quite easy to calculate these
variances which might be convenient to include in the estimation of the
surface parameters.

The results in this paper indicate rather strongly that a randomized
design with equal coverage probability is more efficient for zigzag than
for parallel transects when it comes to minimizing unwanted off-effort
travel distance. This is, however, only one of many aspects to be con-
sidered in the comparison of zigzag versus parallel transects. If, for

Fig. 7. The results of nsim=10,000 simulations of the exact equal coverage probability applied to the Antarctic study area with constant Δαsim= Δα/nsim between
succeeding initial azimuth angles. From the upper panels with the robust simulation approach (W), hardly any deviation from a constant value is seen. The sporadic
values between 0 and maximum y-value are just border effects. The lower panels clearly show a deviation from equal coverage probabilities by applying the naïve
approach of counting the number of pixels hit (N).

Fig. 8. Actual sandeel fields and real acoustic transects in the North Sea with
the SB equal-spaced zigzag design in several fields. Note that parallel and return
zigzag are conducted as well.

Table 1
Comparison of unwanted off-effort travel distance as percentage of the on-effort
travel distance within 11 different sandeel fields in the North Sea, for the
parallel (P), rectangle enclosing zigzag (R) and circular sector enclosing zigzag
(C) equal coverage probability designs.

Field no: P% R% C%

1 30 7 8
2 27 10 –
3 23 8 8
4 27 3 2
5 11 1 2
6 34 8 4
7 29 10 –
8 33 14 –
9 52 25 16
10 20 4 5
11 26 13 –
Average: 28% 9% 6%
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example, the border of the study area has to be decided based on the
sample observations during the survey, the parallel designs appear to be
superior by just continuing the transects until the abundance dis-
appears, without destroying the even coverage probability (Petitgas,
1993). In addition, if the population under study is strongly correlated
in space, it is a general statistical result that evenly located observations
minimize the variance of the abundance estimator. This might also be
in favor of a parallel design, because a zigzag design will have more
close and correlated observations in vicinity of the turning points. On
the other hand, if modelling of e.g., parametric variograms are wanted,
zigzag designs may be more informative for model selection and
parameter estimation.

In general, parallel and zigzag designs each have advantages and
disadvantages. Both options should be continuously examined, as new

experiences and data may influence the basis on which a survey design
was decided. In general, parallel designs have dominated, probably due
to its convenience and easy interpretation and easily obtainable equal
probability coverage. One can hope that the results of this paper con-
tribute to look more thoroughly at zigzag designs as an alternative
option.
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Appendix A. The construction of zigzag transects with equal coverage probabilities everywhere within a circle sector

Note from Fig. 3 that for any narrow circular strip like the bright grey one, the strip is crossed by a zigzag transect the same number of times (on
average), independent of r. From the right panel, we see that the cross-section area, dAcr , is

= ⋅dA w θ dr(2 /sin )cr (A1)

The total area, dAr , within the strip is

= ⋅ − ⋅dA r α α dr( )r 2 1 (A2)

To obtain equal coverage probability the ratio dA dA/cr r must be a constant independent of r and α. This means that

= =r θ k const· sin (A3)

Thus, as r increases, θ must decrease, and k cannot exceed r1. It will turn out that k will increase with the travel distance L available to survey the
area. A simple approach to find an appropriate k-value is to start with k= r1 as described in the main text. At the end of this appendix it is described
how an appropriate “guestimate” can be found automatically, but simulations should anyhow be run to be sure that an appropriate k-value is found,
e.g., one that not causes a transect to exceed L.

For the time being, it is assumed that k is known. We imagine that we start constructing the transect at the inner circular boundary at a random
point r α( , )rnd1 with αrnd being a random variate from the uniform distribution +U α α α( , )c1 1 where αc is the α-cycle (Eq. (A9)) corresponding to two
successive transect legs in the anticlockwise direction (one upwards and the next downward). Imagine that we move anticlockwise. Let u be a
Cartesian coordinate along the axis perpendicular to the radial with positive direction clockwise. Then (see Fig. 3)

= ⇒ =dr du du drtan θ / /tan θ (A4)

By utilizing the expression for θ in Eq. (A3) the last expression above can be expressed as:

= = = −−du dr dr/ k r r k dr/tan θ tan ( sin ( / )) ( / ) 11 2 (A5)

which leads to the following differential ds along the transect:

= + =ds du dr r k dr( / )2 2 (A6)

Integrating the above expression from r= r1 to r= r2 gives the following expression for travelled distance, D, along one leg:

= − =D r r k r r k( )/(2 ) (¯·Δ )/2
2

1
2 (A7)

where = +r r r¯ ( )/21 2 and = −r r rΔ 2 1. To find the correspondence between r and α, we utilize the relationship du= ± r⋅dα where the plus sign
corresponds to an anticlockwise, the minus sign corresponds to a clockwise propagation, and dα is the span of α-values covered by du. We apply the
expression for du in Eq. (A5), and integrate from α= αrnd to α and from r= r1 to r to get

= ± ± − ∓ ∓ −− −α r α k r r k k r r k( ) sin ( / ) ( / ) 1 sin ( / ) ( / ) 1rnd
1 2 1

1 1
2 (A8)

where the plus/minus sign corresponds to an anticlockwise/clockwise propagation, respectively.
By now choosing a set of increasing r-values from r1 to r2, and calculating the corresponding α-values, the resulting points (r,α) will be succeeding

points on the first leg from r α( , )rnd1 to +r α α( , /2)rnd c2 , the latter point being the starting point for the next “downward” leg. By now choosing
decreasing r-values from r2 to r1 and calculating the corresponding α-values, the next leg and thus a whole cycle of the transect is determined. This
cycle is now repeated by translating the α-values by ± ∙n αc, with n=1,2,… until the whole span (α1,α2) is covered. When all the transect points
within the circular sector are found, they can be ordered according to increasing (decreasing) α-values if an anticlockwise (clockwise) direction is
wanted.

The Cartesian coordinates corresponding to (r,α) are (x,y)= ∙ ∙r α r α( cos , sin ).
The transect cycle, αc, can be calculated from Eq. (A8) as −α r α r2( ( ) ( ))2 1 :

⎜ ⎟ ⎜ ⎟= ⎛

⎝
⎜

⎛
⎝
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⎠
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⎝
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⎠
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⎠
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⎠
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2· sin 1 sin 1c
1

2

2
2

1

1

1
2

(A9)

With a distance L available, this corresponds to ≈n L D/leg legs, where the leg length D is given by Eq. (A7). This is also approximately equal to the
total α-span −α α2 1 divided by half the cyclic period, α /2c (see Eq. (A9)). Solving the equation
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− − =L D α α α k/ 2·( )/ ( ) 0c2 1 (A10)

with regards to k, will provide an appropriate initial value for k.
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