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Abstract 

Protozooplankton (PZP) (here size range: 12-200 µm) are rarely sampled over a broad scale, 

especially in ecosystem monitoring programs, despite their trophodynamic importance as 

grazers in the microbial loop and as prey for larger zooplankton and early life stages of fish. 

In this study we sampled PZP from Dutch, French, German and Norwegian research vessels 

taking part in the annual ICES coordinated International Bottom Trawl Survey (IBTS) which 

provides data on fish stock abundances and status for the entire North Sea. The abundance, 

biomass, composition and distribution of PZP were examined at 39 stations across the North 

Sea (from 3.2°W to 7.6°E and 50.5 to 59.8°N) in mid-winter (January-February 2014), a 

period of the year which is under-investigated so far. Twenty four taxa of dinoflagellates and 

ciliates were identified. Two groups comprised 89% of the total abundance of PZP: 

Gymnodinium spp. and other athecate dinoflagellates (68%) and Strombidium spp. and other 

naked ciliates (21%). The biomass of PZP at each station ranged between 0.08 and 2.4 µg C L-

1, which is much lower than that reported for spring or summer (≥100 µg C L-1) in the North 

Sea. Relatively small-sized (<40 µm) PZP contributed 46% of the total biomass. No significant 

spatial pattern in the composition of the PZP community was found, although the total 

abundance of tintinnids was highest in the southern North Sea, an important area for over-

wintering marine fish larvae. Using this fish survey (IBTS) as a sampling platform allowed us 

to obtain a synoptic view of the PZP community over a large area. The present collaborative 
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effort provides an example of how existing monitoring platforms can be augmented in the 

future to collect relevant data and potential ecological indicators needed to advance the 

ecosystem-based approach to managing marine systems. 

 

Key words: Microzooplankton, time-series, monitoring, International Bottom Trawl Survey, 

ecological indicators, ecosystem-based management 
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1. Introduction 

Protozooplankton (PZP), primarily dominated by ciliates and dinoflagellates, are important 

members of the “microbial loop” (Azam et al., 1983) that can exert considerable grazing 

pressure on primary production (Calbet, 2008). Heterotrophic protists can graze up to 60% 

of the annual phytoplankton biomass in temperate waters (Fileman et al., 2002; Levinsen 

and Nielsen, 2002). By consuming other heterotrophic organisms including bacteria (Aberle 

et al., 2007) and acting as prey for copepods (Calbet and Saiz, 2005) and even higher trophic 

levels, such as larval fish (Montagnes et al., 2010), PZP fulfils an important function in the 

carbon cycle of marine systems (Hansen et al., 1999). The strength and contribution of the 

“microbial loop” to the carbon cycle varies depending on oceanographic conditions and 

season. In oligotrophic systems, the phytoplankton community is dominated by small cells 

(pico- and nanophytoplankton); size classes which are poor prey for mesozooplankton, but 

favour the growth of PZP (Fileman et al., 2011). In nutrient-rich waters, the role of the 

microbial loop can be enhanced during times of low primary productivity, when conditions 

are unfavourable for large phytoplankton cells, such as diatoms (either due to low levels of 

nutrients or light intensity). 

PZP may be useful as an ecological indicator as these organisms i) respond quickly to physical 

and biogeochemical changes and ii) contribute to the EU’s “Good Environmental Status” by 

enabling life cycle closure of marine organisms and foster increased rates of biogeochemical 

cycling (Dickey-Collas et al., 2017). In that sense the availability of such long-term as well as 

broad-scale data on PZP would be valuable to help validate models designed to depict 

seasonal plankton dynamics such as NPZD (Nutrient Phytoplankton Zooplankton Detritus) 

models or broader end-to-end models (D’Alelio et al., 2016). Despite the importance of PZP 

in planktonic food-webs, these organisms are largely ignored in monitoring programs (Stern 

et al., 2015). Except for a few plankton monitoring programs, such as in Chesapeake Bay, 

USA, from 1984 – 2001 (Coats and Revelante, 1999), the PZP community has been sampled 

with limited coverage either spatially (Löder et al., 2012; Yang et al., 2014), or temporally 

(Tillmann and Hesse, 1998, Löder et al., 2012). Monitoring is also generally limited to 

productive seasons (Dolan and Coats, 1990, Edwards and Burkill, 1995) in temperate shelf 

seas or open ocean waters, such as the Pacific (Stoecker et al., 1996) and the Antarctic 

(Dolan et al., 2013). These studies are very valuable for understanding the PZP community, 

but more large-scale temporal and spatial coverage is needed to gain a deeper knowledge 

on processes impacting on the PZP community. 

The North Sea is a relatively large continental shelf sea (750 000 km2) situated on the 

northeast Atlantic with a shallow southern half (≤ 50 m) and a deeper northern half (max. 

700 m) with dominant inflows of Atlantic water from the north and a cyclonic current regime 

which is strongest in the southern region (for a thorough review of the hydrography see 

Sündermann and Pohlmann (2016)). The plankton dynamics of this shelf ecosystem have 

been well-studied using long-term monitoring stations such as Helgoland Roads (Wiltshire et 
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al., 2010), Plymouth L4 (Harris, 2010) and several other locations (www.wgze.net). Phyto- 

and mesozooplankton are also monitored using ships of opportunity as part of the 

Continuous Plankton Recorder (CPR) program (O’Brien et al., 2013). Unfortunately, plankton 

monitoring programs in the North Sea, and adjacent areas, have largely ignored PZP, except 

at Plymouth Station L4 where microplankton is routinely collected and various taxa  are 

quantified. Moreover, much less monitoring of plankton (from phyto- to zooplankton) has 

been conducted in the North Sea during winter, when plankton blooms are absent and, 

consequently, the microbial loop is considered to play a major role in energy transfer to 

higher trophic levels (Fileman et al., 2011). 

The present study investigates the abundance, biomass and community composition of PZP 

in the North Sea in mid-winter (January / February) 2014. We explored whether spatial 

patterns in PZP existed and how those might be related to key abiotic characteristics such as 

water temperature or salinity. Furthermore, this study acts as a proof-of-concept for the 

feasibility of adding PZP sampling to an existing, large-scale fish survey (the ICES coordinated 

International Bottom Trawl Survey (IBTS)). The semi-annual IBTS also samples the 

overwintering larvae of autumn-spawning herring (Clupea harengus) to calculate an index of 

recruitment strength (ICES, 2017). Sampling PZP during this phase of the IBTS was 

considered to be highly relevant given the potential importance of PZP as prey for herring 

larvae (Bils et al., 2017; Denis et al., 2016; Figueiredo et al., 2005; Friedenberg et al., 2012; 

Illing et al., 2015). It has been suggested that recruitment success of herring may be linked to 

feeding conditions experienced by overwintering larvae (Hufnagl et al., 2015; Payne et al., 

2013).  

2. Materials & Methods 

2.1 Sampling  

Water samples were collected on the IBTS Q1, between January 15th and February 19th 

2014, by marine institutes in the Netherlands, Norway, Germany, and France respectively. A 

total of 157 stations were sampled covering the area bounded by 49.4°N to 61.2°N and 

2.5°W to 7.8°E (Fig 1, Table 1), of which 39 were chosen for PZP analysis.  

Water samples were taken at 10-m depth using a Niskin bottle attached to a CTD rosette. 

This depth was chosen to guarantee sampling in the photic surface zone, practicable even 

under adverse sea conditions. The samples were immediately transferred into brown, 500 -

 mL glass bottles and preserved with neutral Lugol’s iodine solution (2% final concentration). 

Samples were stored in darkness. Environmental factors were recorded by a CTD (RV 

Tridens, RV G.O. Sars & RV Walther Herwig: Seabird SBE 911, RV Thalassa: Seabird SBE 19+) 

on 254 stations including the stations sampled for PZP. Fluorescence was recorded only 

during the nine stations of the French and the 14 stations of the German coordinated cruises 

and no calibration of the sensors was performed. Hence, the factor fluorescence was 
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excluded from most statistical analyses. Density σt was calculated using the temperature and 

salinity recorded at 10m depth. 

Table 1: Survey dates and research vessels used during the International Bottom Trawl Survey Q1 in the 

present study. Time period of sampling and number of samples from each survey analysed in this study are 
provided. 

Country                Ship Survey Period 2014 Period analysed 

Number of 

samples 

Norway G.O. Sars 14.1. - 19.2. 7.2. - 14.2. 9 

Germany Walther Herwig 23.1. – 24.2. 30.1. - 19.2. 14 

France Thalassa 13.1. - 14.2. 19.1. - 8.2. 8 

Netherlands Tridens 26.1. - 28.2. 27.1. - 6.2. 8 

 

2.2. PZP biomass, abundance and community composition  

The 39 stations chosen were located on 6 latitudinal transects (A – F, North to South) (Fig 1). 

On each transect, stations were labelled numerically from West to East. Due to very poor 

weather conditions and sea state which limited PZP sampling, no longitudinal transect was 

possible between 52 and 54°N. 
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Figure 1: Protozooplankton sampling stations in the North Sea during the International Bottom Trawl Survey Q1 

in 2014. Stations are colour- and shape-coded according to the country in charge of the IBTS sampling. Samples 

analysed in the present study are highlighted in black, labelled from North to South alphabetically and from 

West to East numerically. Abbreviations: N = Norway, G = Germany, F = France, NL = The Netherlands. 

Water samples were settled in a 100-mL sedimentation chamber (HydroBios, Germany) for 

48 h, and PZP was counted and identified under an inverted microscope (Leica DMI 3000, 

x200) using the method described by Utermöhl (1958). Due to the low density of cells, the 

whole plate was counted to avoid underrepresentation of less abundant groups. 

Heterotrophic and mixotrophic ciliates and dinoflagellates >12 µm were identified to the 

lowest taxonomic level possible, following a combination of references and identification 

keys (Dodge and Hart-Jones, 1982; Hoppenrath et al., 2009; Kraberg et al., 2010; Montagnes, 

1996; Olenina et al., 2006; Strüder-Kypke et al., 2006). The classification of Löder et al. 

(2012) was used to determine trophic status. The ciliate species Mesodinium rubrum and 

Laboea strobila were included as mixotrophs due to their photosynthetic capabilities 
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coupled with optional phagotrophy (Crawford, 1989; Stoecker et al., 1988). To ensure more 

precise biomass calculations, the most abundant taxa were separated into up to four size 

classes. 

Images were taken with a camera system (Moticam) attached to the microscope. 

Biovolumes (µm3) were estimated for each taxon (n >10) using image analysis (Image J, 

1.6.0, freeware, Wayne Rasband J), applying specific geometric shapes (Hillebrand et al., 

1999; Olenina et al., 2006; Strüder-Kypke et al., 2006). The biovolume of less abundant taxa 

was estimated using literature values (Löder et al., 2012; Olenina et al., 2006; Strüder-Kypke 

et al., 2006). Biovolume was converted to carbon biomass (µg C L-1) using the carbon to 

Volume (C:Vol) relationship for protists (Menden-Deuer and Lessard, 2000). 

2.3. Data analysis 

Maps and figures were produced with the R software. Interpolated environmental variables 

were calculated and graphically displayed using RGeostats (Renard et al., 2016) in the R 

software (R core team, 2014).  

As sampling was conducted 24 h per day and the sampling lasted for 5 weeks, an analysis of 

similarity (ANOSIM) was performed to test for the influence of light and/or s ampling week 

on the PZP composition. The ANOSIM results are based on the test statistic R (between 0 

and 1), which gives the strength of the factor on the samples and the significance level p.  

BIO-ENV routine was performed to identify the key impacts of environmental variables on 

the PZP community composition. The Euclidean distances of the environmental variables  

(temperature and salinity) was calculated and a Bray-Curtis similarity matrix was built on the 

log10(x+1) transformed biomass data (µg C L-1) of all taxa. The best subset explaining the 

dissimilarities in the PZP community are then expressed as Spearman correlation ρ. To 

account for potential bias of rare taxa, the BIO-ENV routine was repeated with the biomass 

of the seven most dominant taxa (Gymonodinium spp., Gyrodinium spp., Protoperidinium 

spp, Torodinium robustum, Stenosemella spp., Strombidium spp. and Strobilidium spp.). 

Dominance was defined as contributing not less than 3% to the total PZP biomass at each 

station in at least 75% of the stations (29 stations). ANOSIM and BIO-ENV routines were 

performed using PRIMER 6 (Clarke and Warwick, 2005) 

Similarities in abundance (Ind L-1) of the single PZP taxa identified among stations were 

examined with Correspondence Analysis (CA), using the χ2 distances calculated with the 

package ‘vegan‘ (Oksanen et al., 2016) using R software. This allows for grouping stations 

according to the occurrence of specific taxa and, thus, to identify potential regional clusters. 

Potential (dis)similarities in the diversity of the PZP community among stations or areas  were 

examined with the Shannon diversity index (H). It was calculated for each station (Shannon 

and Weaver, 1949): 

𝐻 = ∑ 𝑝𝑖 ∙ ln𝑝𝑖

𝑛

𝑖=1

 

Where pi is the proportional abundance of species i and n is the number of taxa. 
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3. Results 

Care should be taken when attempting to compare diversity values calculated in this and 

other studies, as each taxon was not always identified to the same taxonomic level. In order 

to explore potential factors impacting on the total biomass of PZP (µg C L-1), linear 

dependence of PZP biomass and environmental/geospatial factors (temperature, salinity, 

fluorescence, longitude, latitude) was tested using Pearson correlation coefficient (p <0.05).  

3.1. Environmental  conditions 

Weather conditions were generally harsh (ICES, 2014), wind speeds often in excess of 18 ms-

1 and significant wave heights in excess of 3m (R. Nash & M. Kloppmann pers. Obs.) and the 

water column was well mixed (data not shown). Temperatures ranged from 4.0°C in the 

northern North Sea (55.12°N, 7.77°E) to 10.9°C in the English Channel (50.08°N, 0.29°W) and 

were generally higher in the shallower southern areas compared to central and northern 

areas (Fig 2). Salinity ranged from 31.4 in coastal areas (53.86°N, 6.87°E) to 35.4 in offshore 

areas and in the English Channel (50.53°N, 0.47°E). Where fluorescence was measured, it 

was generally low (<0.4 relative fluorescence units) and only a few stations had values above 

0.6. Density σt ranged from 24.9 in the German Bight (53.86°N, 6.87°E) to 27.6 in the 

northern North Sea (59.28°N, 1.32°W). 

 
Figure 2: Temperature (°C, panel A), salinity (unitless, panel B), and density σt (unitless, panel C) at 10-m depth 

during mid-winter 2014 in the North Sea. Values are interpolated over the time frame of the IBTS survey (5 

weeks), sampling stations are displayed as black dots  in panel A and stations analyzed for PZP are asterisked. 

3.2. PZP abundance and carbon biomass  
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In total 10 ciliate and 14 dinoflagellate taxa were found, of which eight dinoflagellate and 

four ciliate taxa were considered to be mixotrophs (or containing mixotrophic species within 

this taxonomic group) (Table 2). Athecate dinoflagellates and naked ciliates represented 68% 

(40%) and 21% (32%) of the total abundance (biomass) of PZP, respectively. Gymnodinium 

spp. was the only taxon occurring at every station, Strombidium spp. was the most abundant 

ciliate taxon (present at 95% of the stations) and about 50% of the cells were <20 µm. 

Overall, small cells (<40 µm) accounted for 80% (60% dinoflagellates and 20% ciliates) of the 

total abundance (Fig 3).  

 
Figure 3: Relative contribution (%) of the different size fractions to the abundance and biomass of the PZP 

community in mid-winter in the North Sea. 

Total biomass ranged from 0.08 (Station A4) to 2.4 µg C L-1 (Station D3) (Fig 4). Ciliates 

accounted for 52% and dinoflagellates for 48% of the total biomass. In 66% of the stations, 

dinoflagellates formed >50% of the total carbon biomass (Fig 4). In two of the northerly 

stations (A6, B7), dinoflagellates exceeded 99% of the total biomass, whereas they 

contributed <25% at four stations (B2, C6, D3, F1) distributed across the sampling area  

(Table S1). Strombidium spp. and Gymnodinium spp. dominated the PZP community (Fig 5) 

and accounted for 22% and 16% of the total PZP biomass. Other taxa with a significant 

contribution to the total mean biomass were Torodinium robustum (11%) and 

Protoperidinium spp. (10%). In general, the small PZP size fraction (<40 µm) accounted for 

46% of the biomass (Fig 3).  
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Figure 4: Biomass (µg C L

-1
) of cil iates C (yellow) and dinoflagellates D (green) during mid-winter 2014 in the 

North Sea. The size of the pie represents the total biomass and the colour the relative contribution of 
cil iates/dinoflagellates. 

Table 2: Dinoflagellate and cil iate taxa identified during mid-winter in the North Sea. Maximum and mean 

biomass (µg C L
-1

) and abundance (ind L
-1

) are l isted. Taxa occurring with maximum abundances of <20 i nd L
-1

 

are not included. Size and biomass estimates used from previous studies are marked with *(Olenina et al., 

2006) or**(Strüder-Kypke et al., 2006). For ***(Löder et al., 2012), only biomass, no size data were available. 

Abbreviations: H = heterotroph, M = mixotroph, H/M = Trophic position depending on species   

      Biomass Abundance   

DINOFLAGELLATES 
trophic 

pos i tion 

mean size 

(µm) 

max  

(µg C L-1) 

mean  

(µg C L-1) 

max  

(ind L-1) 

mean  

(ind L-1) 

s tation 

with 

max 

biomass 

Gymnodiniales               

Gymnodium spp. <20 µm H 14.9 0.024 0.01 320 125.64 F5 

Gymnodium spp. <30 µm H 23.3 0.077 0.028 220 77.18 C4 

Gymnodium spp. >30 µm H 33 0.079 0.028 100 34.36 E4 

Gyrodinium spp. H 30.1 0.025 0.004 150 22.56 D3 

Gyrodinium spirale H 51.8 0.094 0.016 160 25.88 D3 

Torodinium robustum < 40 µm H 27.7 0.167 0.023 960 121.54 C8 

Torodinium robustum >40 µm H 47.7 0.412 0.03 700 46.41 C8 

Katodinium sp. H 22.1 0.01 0.001 110 14.36 C8/C9 

Amphidinium sp. H 19.2 0.01 0.002 120 21.03 D4 
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Cochlodinium sp. H 39.3 0.181 0.026 230 31.28 G 134 

  

  
  

          Peridiniales 

Protoperidinium spp. <20 µm H 15.0* 0.004 0.001 80 11.28 E4 

Protoperidinium spp. <30 µm H 25.0* 0.047 0.007 150 19.74 E4 

Protoperidinium spp. <50 µm H 40.0* 0.145 0.033 100 21.28 E5 

Heterocapsa cf. rotundata M 12.8 0.014 0.002 700 88.46 C9 

                

Gonyaulacales               

Ceratium tripos M 35.0* 0.087 0.009 20 2.05 D3 

Ceratium lineatum M 20.0* 0.03 0.002 20 1.28 F3 

Ceratium fusus M 20.0* 0.028 0.002 20 1.28 C8 

                

Prorocentrales               

Prorocentrum cf. micans M 43.7 0.046 0.006 130 17.18 E5 

                

Dinophysiales               

Dinophysis spp. M NA*** 0.046 0.006 20 2.56 C5 

                

Noctilucales               

Pronoctiluca cf. pelagica H 35.0* 0.008 0.001 30 4.87 B4/D2 

                

CILIATES               

Strombidiida               

Strombidium spp. <20 µm H/M 13 0.045 0.005 460 48.97 D3 

Strombidium spp. <30 µm H/M 24.7 0.112 0.014 260 28.97 D3 

Strombidium spp. <50 µm H/M 38.3 0.343 0.049 220 29.23 D3 

Strombidium spp. <100 µm H/M 61 0.231 0.035 100 14.1 F5 

Strombidium spp. >100 µm H/M NA*** 0.317 0.019 30 1.8 D3 

Laboea strobila M 85.0** 0.127 0.003 20 0.51 C8 

                

Choreotrichida               

Strobilidium spp. <20 µm H/M 13 0.006 0.001 50 6.67 B3 

Strobilidium spp. <30 µm H/M 25.5 0.042 0.006 70 9.74 D3 

Strobilidium spp. <50 µm H/M 35 0.05 0.008 50 7.18 D3 

Strobilidium spp. <100 µm H/M 57 0.551 0.03 120 6.15 E4 

Leegaardiella cf. ovalis <30 µm H 19.7 0.081 0.004 420 21.02 F5 

Leegaardiella cf. ovalis H NA*** 0.119 0.004 50 7 C1 

Lohmanniella oviformis H 16 0.04 0.005 200 22.31 F2 

                

Cyclotrichiida               

Mesodinium rubrum M 35.0* 0.04 0.001 100 3.33 D3 
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Mesodinium rubrum M 17.5* 0.074 0.002 30 0.77 D3 

                

Haptorida               

Spathidium sp. H NA*** 0.014 0.001 20 1.03 D3 

                

Prorodontida               

Balanion cf. comatum H 16 0.003 0 50 4.36 B1/D3 

                

Tintinnida               

Stenosemella spp. <70 µm H 41 0.151 0.028 140 23.87 F1 

Tintinnid H 150 0.477 0.046 50 4.62 E1 

 

3.3. PZP distr ibution patterns  

The total PZP biomass was negatively correlated with latitude (Pearson correlation = -0.55, p 

<0.005) and depth (-0.422, p <0.05). Furthermore, a negative correlation was found for 

dinoflagellate biomass and salinity (R = -0.523, p <0.0005). Due to the missing calibration of 

the fluorescence probes, the correlation measurements were performed separately for the 

PZP biomasses from stations sampled on the German and on the French coordinated cruise 

(see table S1 for details). At the French stations a correlation of total PZP biomass and 

fluorescence was found (R = 0.713, p <0.05). 

The time (week) of sampling had a weak, albeit significant, effect on the communi ty 

composition (1-way ANOSIM, R =0.197, p <0.005) while time of day (absence/presence of 

daylight) had no significant effect (R = -0.004, p >0.5). Thus, these two factors were not 

included in the analysis. Temperature explained not more than 4% of the variability in the 

entire PZP community (BIO-ENV, ρ =0.035) neither a combination of temperature and 

salinity in the dominant taxa (BIO-ENV, ρ =0.025).  
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Figure 5: Relative biomass contribution of the different PZP taxa i n the North Sea during mid-winter 2014. See 

Figure 1 for the station coding. Left bars on each panel represent dinoflagellate biomass, right bars represent 

cil iate biomass. Note that taxa occurring at less than 20 ind L
-1

 at every station were excluded.  

Abbreviations: gymno = Gymnodinium spp., toro = Torodinium robustum, het = Heterocapsa cf. rotundata, 

proto = Protoperidinium spp., gyro = Gyrodinium spp., coch = Cochlodinium sp., amph = Amphidinium sp., pror = 

Prorocentrum cf. micans, kat = Katodinium sp., cer = Ceratium spp., pron = Pronoctiluca cf. pelagica, dinoph = 

Dinophysis spp. strom = Strombidium spp., strob = Strobilidium spp., leeg = Leegardiella cf. ovalis, spath = 

Spathidium spp., loh = Lohmaniella oviformis, bal = Balanion cf. comatum, sten = Stenosemella spp., tin = 

Tintinnida, meso = Mesodinium rubrum. 

 

In terms of spatial patterns, the first two components of the CA only explained 26.7% and 

14.3%, respectively, of the variation in the PZP community composition among stations (Fig 

6). Northeastern stations (B7, B8, C7, C8, C9 and C10) were characterized by a high 

abundance of the athecate dinoflagellates Torodinium robustum and Katodinium sp., and the 

absence of the ciliates Mesodinium rubrum and Spathidium sp. which, in turn, were most 

abundant in two central stations (C1, D3). Stations in the English Channel (E1, E2, E3, E5 and 

F5) as well as one northern station (B5) could be grouped due to the high abundance of 

Prorocentrum micans and the abundance of Tintinnida was associated with southern 

stations. The total abundance of loricated ciliates correlated negatively with latitude (R =-

0.43, p <0.05). The Shannon diversity index of the PZP community ranged from 1.3 to 2.3 and 
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was not related to temperature, salinity, bottom depth or geographic location (Pearson 

correlation, p >0.5). 

 
Figure 6: Correspondence analysis (CA) performed on the PZP community composition of the North Sea in mid -

winter 2014, including the sampling stations and the PZP taxa, whereas no higher resolution than genus level 

was applied. No significant spatial distribution pattern was observed. For abbreviations see Fig 5.  

 

4. Discussion 

Ecosystem-based approaches to manage marine habitats require a broad range of physico-

chemical and biological data collected using efficient methods. The present study provides 

an example of how measurements of PZP can be added to a fish stock assessment survey 

(seven nations performing cruises on the IBTS). This type of opportunistic sampling can take 

advantage of pre-existing surveys to provide a cost-effective way of collecting information 

on factors relevant for ecosystem monitoring and a more thorough understanding of 

processes contributing to the trophodynamic structure and function of marine habitats, 

including Good Environmental Status (GES) for the pelagic system (Dickey-Collas et al., 

2017). The fisheries survey was conducted across the North Sea which allowed large-scale 

(49°N – 61°N) patterns in the abundance, biomass and community composition of PZP to be 

examined within a relatively short time window (5 weeks) during winter. 

4.1. Environmental conditions and PZP abundance, biomass and community composition 

In terms of environmental conditions, 2014 was an atypical year. In contrast to this study, 

where the temperature was below 8°C except for the English Channel and surrounding 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

15 
 
 

areas, temperatures in the northern North Sea were characterized in previous (2006 – 2013) 

and following years (2015 - 2017) by higher temperatures (>8 °C) similar or even above the 

temperatures observed in the English Channel.  

Our study suggests that the PZP community was homogenously distributed in the North Sea 

during wintertime 2014. This PZP community consisted mainly of naked ciliates and athecate 

dinoflagellates including Gymnodinium spp. and Strombidium spp., which are characteristic 

for winter communities in the North Sea (Löder et al., 2012) as well as other temperate 

regions during seasons with low primary productivity (Figueiredo et al., 2009; Levinsen and 

Nielsen, 2002; Scherer, 2012). The PZP biomass was low (mean 0.51 µg C L -1) and similar 

values have been reported in other studies conducted during autumn/winter (Levinsen and 

Nielsen, 2002; Löder et al., 2012; Scherer, 2012). Furthermore, the community mainly 

consisted of small-sized cells (<40 µm), a pattern which is typical of places and/or times with 

low productivity when the phytoplankton community is dominated by pico- and 

nanophytoplankton (Legendre and Rassoulzadegan, 1995; Levinsen and Nielsen, 2002). It 

has been observed that the average size of Strombidium spp. can be four times larger during 

spring bloom compared to non-bloom conditions (Fileman et al., 2011). As small-sized PZP 

can be important grazers of bacteria, pico- and nanophytoplankton (Sherr and Sherr, 2002), 

in winter considerable proportions of carbon may be channeled via PZP to higher trophic 

levels, such as copepods and ichthyoplankton. Thus, PZP can be considered as a key 

component of the winter food web and a component which requires further monitoring.  

4.2. PZP distr ibution patterns  

Total PZP biomass showed a clear north-south gradient with higher total biomass in the 

English Channel. Although southern stations were, on average, about 2°C warmer than 

central or northern stations, the observed patterns in PZP were unrelated to differences in 

temperature, salinity and density. The correlation of fluorescence and total PZP biomass at 

the French coordinated stations could indicate a positive impact of phytoplankton on PZP 

growth. Previous studies have shown that high fluorescence values (or chl a) are often 

correlated with high abundances of oligotrich ciliates (Dolan and Perez, 2000 and references 

therein), observed in the present study at station D3, which exhibited the highest 

fluorescence values and the highest PZP biomass and abundance, mos tly consisting of 

Strombidium spp., an oligotrich ciliate. But since the PZP, neither ciliates nor dinoflagellates, 

showed any correlation with fluorescence on the German coordinated stations, nor are 

there fluorescence data available for the remaining 16 stations, the trend seen at the French 

stations cannot be generalized for the entire sampling grid.  

The biomass of dinoflagellates was negatively correlated with salinity, but this might be of 

minor relevance since only marginal differences in salinity were observed across sampling 

stations (34.79 ± 0.42). As observed in this study for PZP, Fransz & Gonzalez (2001) also 

reported no distinct spatial differences in the diversity of mesozooplankton in the North Sea 

during winter. Thus, our results support the assumption, that at no location within the study 
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area certain taxa would dominate the PZP composition or that specific taxa were rigorously 

underrepresented in the community. 

One group within the ciliate community, the tintinnids, has been focused on in several 

studies in the North Atlantic (Barnard et al., 2004; Cordeiro et al., 1997; Hinder et al., 2012). 

Due to the tolerance against formalin of many tintinnid species they can be captured by e.g. 

the CPR, enabling for example, longer-term or broad scale studies. Previous studies on 

tintinnid abundance in the North Sea suggest that the mean abundance of tintinnids is lower 

in the English Channel compared to the Central and Northern North Sea (Barnard et al., 

2004; Cordeiro et al., 1997). This differs from studies using Lugol as preservative (this study; 

Fileman et al., 2011), where highest tintinnid abundances were observed in coastal stations 

compared to open waters and members of the genus Stenosemella accounted for a great 

part of the tintinnid community. One reason for the discrepancy might be that this taxon is  

not efficiently captured by the CPR (Hinder et al., 2012), which gives one more reason for 

establishing a PZP time series to avoid missing a potential important component of the 

plankton community. As this study provides only a snap shot in time, one can only speculate 

on the processes (e.g. growth, mortality, transport) that may have recently occurred to 

create such distributional patterns. For example, any increase in PZP growth rate due to 

increasing water temperature (Aberle et al., 2015; Montagnes et al., 2003) may be 

counterbalanced by increased mortality due to predation, e.g. by fish larvae (Illing et al., 

2015; Montagnes et al., 2010).  

4.3. Role of PZP in the winter food web 

Laboratory experiments have demonstrated that the larvae of many fish species feed on and 

can nutritionally benefit from PZP (Friedenberg et al., 2012; Hunt von Herbing and Gallager, 

2000; Illing et al., 2015) and field and laboratory studies have documented PZP in the diets of 

herring larvae and other larval fish (e.g. Bollens and Sanders, 2004; Denis et al., 2016; 

Figueiredo et al., 2005; Hillgruber and Kloppmann, 1999). Thus, the comparably high winter 

biomass of PZP in the southern North Sea in contrast to the Northern North Sea is highly 

relevant as this area acts as a winter nursery ground for the larvae of several marine fish 

species including Atlantic herring and European plaice (Pleuronectes platessa). For instance, 

the tintinnid taxa found in this study have a comparable size and carbon content to small 

copepod nauplii (see e.g. Kühn et al, 2008), an important prey item of many fish larvae. One 

has to keep in mind, however, that the PZP biomass we observed in the southern North Sea 

(maximum of 1.5 µg C L-1) is somewhat lower than the carbon concentration reported to be 

required for the survival and growth of young larvae of species such as herring (~ 2 µg C L-1, 

see Figueiredo et al., 2005; Munk and Kiørboe, 1985; Peck et al., 2012)). Nevertheless PZP 

can make an important contribution to larval feeding during autumn/winter when the 

abundance of other potential prey (e.g. copepod nauplii) is low (Bils et al., 2017; Wesche et 

al., 2007). Studies have hypothesized that reductions observed in the growth rates of 

overwintering herring larvae were due to shifts in available prey rather than changes in 
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temperature (Alvarez-Fernandez et al., 2015; Payne et al., 2013), but the lack of data on 

potential prey fields during winter seriously hampers our understanding of “bottom-up” 

recruitment mechanisms in North Sea herring (Hufnagl et al., 2015). Therefore, dedicated 

field process-studies undertaken in parallel with the type of broad-scale survey conducted in 

the present study would ultimately be needed to reveal the role of PZP as prey in the North 

Sea food web during winter and the factors influencing the spatial patterns observed in PZP 

abundance, distribution and community composition. 

4.4. PZP as ecological  indicator   

Changes in the community composition or size distribution of lower trophic components in 

the plankton can serve as indicators for ecosystem changes (Beaugrand, 2005) due to their 

high abundance and fast response time to environmental changes, such as temperature or 

food concentrations (Aberle et al., 2012; Menden-Deuer et al., 2005; Montagnes et al., 

2003). For example, at monitoring station Plymouth L4, ciliates and heterotrophic 

dinoflagellates have recently occurred at relatively low (ciliates) and high (dinoflagellates) 

abundance, respectively, compared to long-term trends (O’Brien et al., 2013). The reason for 

these recent changes is unknown but differences in the abundance of ciliates versus 

dinoflagellates are expected to affect food web dynamics as these groups have different 

roles in carbon cycling. Dinoflagellates are able to prey e.g. on diatoms larger than 

themselves (e.g. Calbet, 2008) and, thus, may act as strong competitors for food with 

copepods. On the other hand, ciliates prey on small phytoplankton and can channel that 

energy to higher trophic levels (Calbet and Saiz, 2005) as copepods often prefer ciliates over 

dinoflagellates as prey (Vincent and Hartmann, 2001). Commonly, long-term data of 

phytoplankton and mesozooplankton have been used as indicators for fish recruitment 

dynamics (Beaugrand et al., 2003; Platt et al., 2003) and Mitra et al. (2014) urged the 

integration of e.g. protozooplankton to a greater extent into fisheries models. As PZP fulfils 

an important role in the food-web it can be assumed that changes in the abundance or 

community composition will affect lower or higher trophic levels. Racault et al. (2014) 

suggest three different attributes for phytoplankton to observe the state of an ecosystem: 

Composition, structure and functioning. Within these attributes several indicators are 

presented, which can be achieved by different monitoring methods. Transferring this 

approach to PZP our type of sampling was able to cover indicator measurements as 

composition attribute (by observing the most dominant groups) and as structure attribute 

(by size measurements). Further indicators, such as Chl a are planned to be added to the 

survey. On board measurements (e.g. fluorescence on live samples with a FlowCam) could 

provide estimations of mixotrophy (as an indicator for functioning of the ecosystem) and 

community composition. 

As future climate scenarios predict a shift in the phytoplankton community towards small 

sized cells (Caron and Hutchins, 2013; Rodríguez et al., 2001) 
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 energy transfer through the microbial loop may be enhanced which might in turn reduce 

trophic transfer efficiency due to the increased number of trophic steps required before 

energy reaches upper trophic levels. On a North-South transect across the Atlantic on a time 

scale from 2003–2010, microphytoplankon abundance declined while nano- and 

picophytoplankton abundance increased throughout the area (Racault et al., 2014). This will 

probably affect all trophic levels as it is known that for instance copepods shift from a 

phytoplankton based diet to PZP if small phytoplankton cells dominate the community 

(Lewandowska et al., 2014). 

In contrast to many mesozooplankton organisms the ecology and distributional patterns of 

PZP are not only poorly studied in the North Sea, but also worldwide, and this lack of 

knowledge may be due to a number of potential factors. First, using feeding mode to classify 

organisms as either phytoplankton or zooplankton has led to confusion since mixotrophy is 

often the rule rather than the exception in the PZP community (Flynn et al., 2013) with 

important consequences for estimating carbon cycling, nutrient remineralization and energy 

transfer within food-webs (Mitra et al., 2016). Second, naked PZP dissolve in formalin, which 

is the main fixative in routine plankton surveys (e.g. CPR). Lugol’s iodine solution (commonly 

used for phytoplankton and PZP) avoids this issue but does not allow long-term storage of 

samples (Gifford and Caron, 2000). 

4.5. Future perspectives for  PZP monitor ing  

The present study is the first to document the broad-scale patterns in the abundance, 

biomass and community composition of PZP in the North Sea during winter. Although the 

water column is generally well mixed during wintertime, patchiness in the distribution of PZP 

may exist. For example, the extraordinarily high biomass of PZP at station D3 might have 

resulted from sampling within a patch. Moreover, as considerable time was required to 

manually resolve the taxonomic composition of the PZP community the protocol could be 

simplified, for example, by focusing on functional types of the North Sea ecosystems (in 

general) and changes in prey fields of fish larvae (more specifically).  Automated water 

collection and DNA sequencing for microbial diversity (Stern et al., 2015) and/or automated 

image recognition systems (e.g. FlowCAM) identifying nano- and microplankton 

communities (Alvarez et al., 2013) are more rapid and may be more cost effective than 

manual identification. Furthermore, the routine use of the gear on this survey (e.g. a 335 µm 

MIKey M net; see ICES 2017) for sampling mesozooplankton and by adding nutrient and Chl 

a measurements would allow spatial patterns in potential bottom-up and top-down 

processes to be resolved. Whether the unusual temperature patterns observed in this study 

did influence PZP community, abundance or biomass, will be analyzed in future work thanks 

to the availability of subsequent PZP data from the IBTS Q1. This sampling campaign 

reported here was repeated in the ICES IBTS surveys in 2015, 2016 and 2017 with the 

intention of establishing a time series on the North Sea winter PZP community and offering 

an example of the type of holistic sampling platforms that will be necessary to collect the 
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wide range of data required to advance integrated ecosystem assessments and management 

advice. 
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