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1  | INTRODUC TION

The persistence of a species depends on the number, phenotypic 
differentiation, and genetic variability of its constituent populations 
(Schindler et al., 2010). Population identification in most marine 

fishes, however, remains a fundamental challenge, in part because 
of potentially high mobility. The ocean environment tends to facili‐
tate dispersal at one or more developmental stages, resulting in spe‐
cies distributions that span broad expanses. Additional challenges 
stem from observations that population connectivity is generally 
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Abstract
Successful resource‐management and conservation outcomes ideally depend on 
matching the spatial scales of population demography, local adaptation, and threat 
mitigation. For marine fish with high dispersal capabilities, this remains a fundamen‐
tal challenge. Based on daily parentage assignments of more than 4,000 offspring, 
we document fine‐scaled temporal differences in individual reproductive success for 
two spatially adjacent (<10 km) populations of a broadcast‐spawning marine fish. 
Distinguished by differences in genetics and life history, Atlantic cod (Gadus morhua) 
from inner‐ and outer‐fjord populations were allowed to compete for mating and re‐
productive opportunities. After accounting for phenotypic variability in several traits, 
reproductive success of outer‐fjord cod was significantly lower than that of inner‐
fjord cod. This finding, given that genomically different cod ecotypes inhabit inner‐ 
and outer‐fjord waters, raises the intriguing hypothesis that the populations might be 
diverging because of ecological speciation. Individual reproductive success, skewed 
within both sexes (more so among males), was positively affected by body size, which 
also influenced the timing of reproduction, larger individuals spawning later among 
females but earlier among males. Our work suggests that spatial mismatches be‐
tween management and biological units exist in marine fishes and that studies of re‐
productive interactions between putative populations or ecotypes can provide an 
informative basis on which determination of the scale of local adaptation can be 
ascertained.
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higher in the marine realm than it is for terrestrial systems (Hauser 
& Carvalho, 2008) such that even limited genetic exchange between 
populations can erode genetic divergence. Fishery and conservation 
management units are often established at very large spatial scales 
(e.g., COSEWIC 2010), although many appear to have limited con‐
formity with independent demographic units and are often based on 
decades‐old interpretations of the flow patterns of ocean currents 
(Cadrin, Friedland, & Waldman, 2004).

The Atlantic cod (Gadus morhua) is a prime example of such a 
species. Management units in the Northwest Atlantic have remained 
unchanged since the 1940s (ICNAF, 1952), the largest extending 
more than 1,000 km, despite data indicating that some of these large 
units contain multiple, smaller units that represent biologically and 
genetically distinct populations. For example, the Southern Scotian 
Shelf/Bay of Fundy fisheries management unit (Northwest Atlantic 
Fishery Organization Division 4X) includes groups of cod that have 
spatially distinct spawning locations, temporally different spawning 
periods, and genetically different responses to temperature change 
(Hutchings et al., 2007; Oomen & Hutchings, 2015, 2016 ).

Similar mismatches between the spatial scales of management 
and putative local adaptation almost certainly exist in the Northeast 
Atlantic. All cod that inhabit Norwegian coastal waters north of 
62° are managed as a single unit (www.ices.dk), despite evidence 
of variation in genetic structure, spawning location, and spawning 
time within the unit (Johansen et al., 2009). South of 62°, Norwegian 
cod are considered part of a single North Sea cod management unit 
(www.ices.dk). Yet cod that inhabit fjords and coastal waters along 
the southeast Norwegian coast—Skagerrak—can differ genetically 
from North Sea cod (Knutsen et al., 2018, 2011 ), a distinction that 
seems temporally stable, suggesting that cod spawn in, and inhabit, 
coastal Skagerrak waters throughout the year rather than the North 
Sea (Cianelli et al., 2010; Knutsen et al., 2007, 2011 ; Rogers et al., 
2011).

There is compelling evidence that cod inhabiting the inner waters 
of some Skagerrak fjords are phenotypically and genetically distinct 
from cod inhabiting outer waters of the same fjord (Knutsen et al., 
2018; Øresland & André, 2008). In this respect, the most extensive 
data are available for Risør Fjord (58.7°N, 9.2°E). Although they are 
not physically restricted from moving between the two areas, cod 
inhabiting inner and outer Risør waters can differ genetically from 
one another (Knutsen et al., 2011). Recent analyses of single nucleo‐
tide polymorphism (SNP) data have revealed that two different gen‐
otype clusters of cod coexist in various proportions along coastal 
Skagerrak (Knutsen et al., 2018); a “fjord” ecotype dominates the 
waters of the inner fjords, for which Risør is an excellent example, 
whereas a “North Sea” ecotype is often predominant in outer‐fjord 
waters. Phenotypically, cod from inner Risør grow at a slower rate 
than those from outer Risør (Kuparinen, Roney, Oomen, Hutchings, 
& Olsen, 2016). Differences in life‐history traits are evident among 
several coastal Skagerrak fjords and appear to be spatio‐temporally 
stable (Roney et al., 2016).

Thus, Risør Fjord would appear to be an ideal location in which 
to study questions related to the spatial scale of local adaptation 

in marine fish with high dispersal capabilities. However, notwith‐
standing the phenotypic and genetic differences between the two 
populations described above, it is not known whether individu‐
als would have equal reproductive success in a mixed‐population 
spawning situation. Here, we explore this hypothesis. Equivalence 
in reproductive success under such conditions would imply an ab‐
sence of intrinsic barriers to interbreeding attributable to potential 
differences in factors likely to affect mating probability, such as 
body size, behavior, physiology, and (or) gamete quality. In contrast, 
if one population experiences higher average reproductive success 
when cohabiting the same breeding environment, ceteris paribus 
it might indicate that genetic and life‐history differences between 
inner and outer populations reflect processes contributing to re‐
duced probability of interbreeding, and increased probability of re‐
productive isolation, between populations (Rundle & Nosil, 2005; 
Schluter, 2000).

2  | MATERIAL S AND METHODS

2.1 | Parental fish collection

Skagerrak (Figure 1) is a strait bounded by southeast Norway, south‐
west Sweden, and Denmark’s Jutland peninsula, connecting the 
North Sea and the Kattegat sea area (the latter being the entrance to 
the Baltic Sea). The Norwegian Skagerrak is highly heterogeneous, 
comprising a multitude of habitats ranging from sheltered mud flats 
and wave‐exposed cliffs to semi‐enclosed fjords and deep (~700 m) 
near‐coast waters (Sætre, 2007).

Risør Fjord (Norwegian Skagerrak) encompasses ~20 km2, pro‐
viding habitat for two putative populations of cod, one inhabiting 
the inner fjord and the other the outer fjord. Four to six weeks prior 
to spawning (December 2014), adults were collected by fyke net 
from the inner and outer fjord at Sørfjorden and Østerfjorden, re‐
spectively. Fish were measured for length, tagged externally (using 
a T‐Bar anchor tag labeled with a unique identification code), and 
subsequently placed in a single spawning basin at the Institute of 
Marine Research Flødevigen Research Station (~60 km south of 
Risør) where they spawned undisturbed in a ~1‐m deep, 9 m × 5 m 
spawning basin lined with natural rock. Although the overall sex ratio 
(determined by postmortem inspection) was female‐biased 1.6:1.0 
(45 females, 28 males), sex ratio did not differ between populations 
(χ2 = 0.40, p = 0.53), the number of females:males being 24:12 and 
21:16 for outer‐fjord (length range: 45–63 cm) and inner‐fjord cod 
(45–57 cm), respectively. Water in the spawning basin, pumped reg‐
ularly from a depth of 75 m, averaged 7.4°C (ambient temperature). 
Lights were adjusted to mimic the natural photoperiod and cod were 
fed ~2 kg of frozen shrimp daily.

2.2 | Offspring sampling protocol

Eggs were sampled daily (between 08:00 and 10:00 hours), using a 
small container through which the spawning‐basin outflow passed. 
The spawning period began when eggs were first evident in the egg 
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collector (20 January 2015) and ended when no eggs had been col‐
lected for five consecutive days (the final date of egg collection was 
24 April 2015; Figure 2). Eggs were collected on 90 of the 94 days 
that comprised the spawning period. At each daily collection, the 
volume of eggs was measured, using a 4‐l graduated cylinder, and 
placed into a separate incubation tank.

Eggs were incubated at 6.1 ± 0.5°C (mean ± SD) until they were 
visually assessed to be at 50% hatch (15.0 ± 0.6 days; mean ± SD) 
at which time genetic samples were taken for 50 individual larvae 
sampled at random (each whole larva was preserved individually in 
microtubes containing 250 µl of ThermoFisher RNAlater). During 
the 94‐day spawning period, daily genetic samples were available 
for 4,500 larval individuals.

One month after completion of spawning, the 73 adults were 
sampled, otoliths extracted, and the following morphological traits 
recorded: total standard length (mm); stomach weight with and 

without contents (g); total weight (g); liver weight (g); gonad weight 
(g); and pelvic fin length (mm), a sexually dimorphic trait that appears 
to affect male cod mating success (Skjæraasen, Rowe, & Hutchings, 
2006). The gonadosomatic index (GSI = gonad weight/total body 
weight) and the hepatosomatic index (HSI = liver weight/total body 
weight) were calculated as proxies for body condition (Lambert & 
Dutil, 1997). Due to poor health, two adults were sacrificed early in 
the spawning season, at which time only length, weight, otolith, and 
sex were recorded.

Age estimates were obtained from otoliths for 72 of the 73 adults. 
One otolith from each individual was embedded in a black polyester 
resin and transversally sectioned at the Otolith Research Laboratory 
at the Bedford Institute of Oceanography, Canada. Images of sec‐
tioned otoliths were then obtained under reflected light, using an 
Axiocam Mrm camera mounted to a Zeiss SteREO Lumar v12 ste‐
reomicroscope. All images were processed to enhance local contrast 

F I G U R E  1   Atlantic cod were collected 
from the inner (red‐lined area) and the 
outer (blue‐lined area) Risør Fjord on the 
Norwegian Skagerrak coast. Modified 
from Kuparinen et al. (2016)

F I G U R E  2   Daily volume (ml) of eggs 
collected throughout the spawning period 
(20 January–24 April 2015). Absent 
estimates of egg volume were due either 
to an absence of eggs or an overflow 
of the egg collector, resulting in an 
inaccurate egg‐volume estimate
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between the opaque and translucent zones, after which ages were 
estimated by counting annuli along transects starting from the nu‐
cleus in the center of the otolith, proceeding until the edge.

2.3 | Genetic analysis

Family reconstruction was based on tissue samples from offspring 
and parents. DNA was extracted from parental fin clips, using an 
OMEGA Bio‐tek tissue extraction kit, and from whole offspring, 
using the OMEGA Bio‐tek 96‐well plate DNAeasy extraction kit. 
All samples were amplified, using two multiplexes consisting of 
four loci each. Multiplex 1 comprised three tetranucleotide repeat 
loci (Gmo8, Gmo19, and Tch11) and one trinucleotide repeat locus 
(Gmo35; Miller et al., 1988; O’Reilly et al., 2002). Multiplex 2 com‐
prised three dinucleotide repeat loci (Gmo132, Gmo2, Tch13) and 
one tetranucleotide repeat locus (Gmo34; Brooker, 1994; Miller 
et al., 1988; O’Reilly et al., 2002). Both multiplexes were chosen 
based on the high levels of heterozygosity at each locus, genotyp‐
ing reliability, and demonstrated efficiency for paternity studies in 
Atlantic cod (Dahle, Jørstad, Rusaas, & Otterå, 2006; Wesmajervi, 
Westgaard, & Delghandi, 2006). Loci were amplified by polymerase 
chain reaction, as specified by Wesmajervi et al. (2006) and Dahle et 
al. (2006), and then analyzed using the capillary gel electrophoreses 
instrument 3130xl Genetic Analyzer (Applied Biosystems). Allelic 
sizes were calculated with instrument‐specific software and the pro‐
gramme GeneMapper (Applied Biosystems). To ensure absolute ac‐
curacy in parental genotypes, all adults were amplified three times 
per multiplex and scored independently by three different people. 
Disagreements on genotyping identification were referred to a 
fourth individual. The software MICRO‐CHECKER (van Oosterhout, 
Hutchinson, Wills, & Shipley, 2004) was used to test the microsatel‐
lite loci for evidence of stuttering or null alleles.

Family reconstruction of the allelic data from both offspring 
and parents was performed with the programme COLONY v2.0.6.1 
(Jones & Wang, 2010). Larvae were run in batches of 10 days (~500 
larvae per batch). All runs used the full‐likelihood method with high 
precision and a random seed number. Genotyping error was set to 
0.02 per locus. Each analysis was repeated, using medium, long, and 
very long runs, to assess whether maximum likelihood configuration 
had been reached. (The length of each run of the programme is de‐
termined by the user [Jones & Wang, 2010]; the longer the run, the 
greater the number of configurations considered in the searching 
process, and the greater the likelihood that the maximum likelihood 
configuration will be found.).

2.4 | Statistical analyses

Individual reproductive success was defined as the number of off‐
spring to which an individual’s genotype had been identified as one 
of those contributing to the fertilization (male) or production (fe‐
male) of each offspring.

Generalized linear models (GLMs) were used to examine the 
relative contributions of population identity and trait morphology 

to individual reproductive success. Models were run separately for 
each sex, such that the number of offspring produced (reproductive 
success, or RS) was a function of population (inner and outer fjord) 
and the following morphological variables, measured (with one ex‐
ception) postmortem: body length (prior to spawning), body weight, 
HSI, GSI, age, and the residual mean pelvic fin length (calculated 
from the residuals of linear regressions between pelvic fin length 
and body length sensu Skjæraasen et al., 2006):

Because of the high degree of skewness in the number of sired 
offspring (see below), the GLM for males incorporated a quasi‐pois‐
son error structure. The model for females was run under the as‐
sumption of a normal distribution. Model selection was performed 
following the protocol suggested by Zuur, Ieno, Walker, Saveliev, and 
Smith (2009), using stepwise model reduction. Residual plots were 
examined to ensure appropriate model fits to the data. To examine 
the robustness of the model selection process and final models, 
stepwise forward model selection was also performed. All analyses 
were conducted with R version 3.1.0.

The influence of body size on temporal variation in reproductive 
success was examined, using linear models run separately for each 
sex, such that the day of the spawning period was a function of the 
mean length of fish known to have successfully spawned on each 
day (as determined by genetic analysis), that is, Day ~Mean length 
of spawning fish. Mean length was calculated as both the arithme‐
tic and weighted mean lengths of spawning fish (i.e., those whose 
RS > 0), the latter being the length of each spawning fish weighted by 
the relative number of offspring produced by that fish on a given day.

Cumulative rank curves were used to visualize skewness in re‐
productive success such that the proportion of offspring fertilized 
was plotted against the rank of the individual in terms of highest 
number of offspring produced. Deviation from the 1:1 ratio line is 
indicative of skewed reproductive success. Population differences in 
reproductive phenotype were examined, using t tests.

3  | RESULTS

3.1 | Parentage analysis

Microsatellite genotypes were successfully obtained for all putative 
parents with a minimum of two successful replicate amplifications 
per locus per adult. There was some evidence of potential null al‐
leles at Gmo19 (frequency = 0.068) and Tch11 (0.070) for cod from 
the inner‐ and outer‐fjord populations, respectively, although it is 
possible that the MICRO‐CHECKER software misinterpreted minor 
deviations from Hardy–Weinberg equilibrium (HWE) as evidence 
of null alleles. Given the lack of consistency of null alleles between 
populations, and that failure to meet HWE is not typically grounds 
for discarding a locus (Selkoe and Toonen, 2006), these loci were re‐
tained in the analyses. None of the other markers exhibited evidence 
of scoring error, large allele dropout, or null alleles. Microsatellite 

(1)
RS∼Population+Length

+Weight+HSI+GSI+Age+Pelvic Fin Length
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genotypes were ultimately obtained for 4,489 of the 4,500 larvae 
(99.8%). Of the larvae successfully genotyped, 3,508 of 4,489 (78%) 
comprised all eight loci and 4,459 of 4,489 (99%) comprised four or 
more loci.

Short and medium runs in COLONY v2.0.6.1 produced variable 
parentage results whereas results from long and very long runs 
were nearly identical. Thus, the results from long runs were used 
for parental assignment. The maximum likelihood was clearly ob‐
tained during long runs, providing further indication that the long 
run provided sufficient time for the programme to reach the best 
configuration. In the instance where an offspring was assigned to an 
unknown parent, the genotype of “unknown” parents was compared 
to the known parental genotypes. If an unknown parental genotype 
matched at least 5 of 8 loci of a known parent, the unknown parent 
was reassigned as the known parent. The final parentage analysis 
resulted in successful paternal assignment to 94.0% of the larvae 
(4,221 of 4,489) and successful maternal assignment to 93.5% of the 
larvae (4,198 of 4,489).

3.2 | Population differences in reproductive 
success and reproductive phenotype

Reproductive success was significantly influenced by population 
origin (Table 1). For both males and females, outer‐fjord individu‐
als experienced, on average, lower reproductive success than inner‐
fjord females. Comparing males, the average number of offspring 
fertilized by inner‐fjord males (228.4; range: 0 to 987) was more 
than three times that of outer‐fjord males (66.1; range: 0 to 351). A 
threefold difference in reproductive success was also evident among 
females, inner‐fjord females producing an average 152.5 fertilized 
eggs (range: 0 to 319) compared to an average of 48.6 eggs (range: 
0–266) for outer‐fjord females.

Differences in average reproductive success between popula‐
tions were not reflected by differences in reproductive phenotype. 
There were no population differences in average body size at the 
beginning of the spawning period (mean ± SD) for males (inner fjord: 
50.9 ± 3.4 cm; outer fjord: 51.7 ± 5.4 cm; p‐value = 0.66) or females 

(inner fjord: 50.9 ± 4.1 cm; outer fjord: 53.5 ± 4.5 cm; p‐value = 0.06). 
Neither post‐spawning condition (males: p‐value =0.27, females: p‐
value = 0.68) nor HSI (males: p‐value = 0.11; females: p‐value = 0.12) 
differed between populations. The same was true for average male 
pelvic fin length (p‐value = 0.22). Populations did not differ in the 
initial day of spawning for males (p‐value = 0.864) and females (p‐
value = 0.114). The only trait that differed between populations was 
average post‐spawning GSI which was higher among males from the 
inner fjord (1.2%) compared to those from the outer fjord (0.2%; 
p‐value = 0.014). The same was true for females, the GSI for those 
from the inner fjord (1.2%) exceeding that for females from the outer 
fjord (0.7%; p‐value < 0.001). As noted previously, neither sex ratio 
nor number of spawners differed between populations.

3.3 | Individual differences in reproductive success

Of the 73 fish in the spawning basin, offspring were assigned to 
57 during the spawning period. Overall, males exhibited a greater 
skew in reproductive success than females (Figure 3). Of the 24 
males who contributed gametes, the top‐ranked individual (inner 
fjord) sired 23.0% of the offspring and the top three males (two from 
inner fjord, one from outer fjord) were responsible for 50.5% of the 
fertilized offspring. Females exhibited less of a reproductive skew; 
among the 33 females who produced fertilized eggs, the top‐ranked 
female contributed only 7.5% of the offspring. The top three females 
were responsible for 20.2% of the offspring, substantially less than 
the male equivalent. When the cumulative reproductive success 
curves were examined for each population separately, the males and 
females exhibited skews similar to those evident when the data were 
pooled (with the exception of the outer‐fjord females, who exhibited 
a more pronounced skew; Figure 3).

3.4 | Correlates of reproductive success

Following model simplification, the primary correlates of male re‐
productive success (number of offspring sired) included body 
weight, population identity, and GSI (Table 1). Weight was the most 

Group Fixed effect Slope SE t‐value p‐value

Males Weight 0.002 0.000 4.752 0.0001

PopOuter −1.759 0.419 −4.203 0.0005

GSI −0.336 0.160 −2.102 0.0491

Females (all 
individuals)

Length 1.206 0.390 3.096 0.0040

Weight −0.126 0.044 −2.890 0.0070

PopOuter −74.496 28.300 −2.632 0.0140

Females (outliers 
excluded)

Length 0.760 0.300 2.520 0.0180

PopOuter −105.830 29.320 −3.610 0.0010

HSI −27.010 9.010 −3.000 0.0060

Notes. Data are shown for three groups of spawners: (a) males; (b) females; and (c) a subset of females 
(for which the two largest individuals were excluded from the analysis). Only significant (α < 0.05) 
fixed effects are presented here; the population fixed effect is represented by “PopOuter”, the 
outer‐fjord population.

TA B L E  1   Output from generalized 
linear models, after model simplification, 
between individual reproductive success 
(number of offspring sired/fertilized) and 
several fixed effects, all but length having 
been measured post‐spawning: population 
identity; length; weight; hepatosomatic 
index (HSI); gonadosomatic index (GSI); 
residual mean pelvic fin length
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significant predictor with a slightly positive coefficient (0.002), in‐
dicating that increases in weight had a positive additive effect on 
the number of offspring sired. As noted above, males from the outer 
fjord experienced lower reproductive success. The GSI was the least 
significant predictor, its negative regression coefficient indicating 
that lower GSI at the end of the spawning period was associated 
with higher number of offspring sired.

Regarding body weight, although the regression coefficient was 
only slightly positive (0.002; Table 1), the statistical significance was 
high. Upon further examination, it was evident that the three most suc‐
cessful males were among the largest, resulting in a strong positive cor‐
relation, given the sample size. However, beyond these three top males, 
there was little or no relationship between reproductive success and 
body size (Figure 4). The pattern in these data indicates that there is not 
a continuous pattern of association between male body size and male 
reproductive success; if a male was not among the heaviest, weight had 
no demonstrable effect on reproductive success.

Reproductive success in females was explained by maternal length, 
population identity, and weight (Table 1). Length had the largest ef‐
fect, indicative of a positive additive effect on the number of offspring 
produced. Although the full data set indicated that weight had a neg‐
ative additive effect on the number of offspring sired, the negative 

correlation appeared to be heavily influenced by the two largest fe‐
males both of whom had very low reproductive success (Figure 4b). 
When these two females were excluded from the analysis, weight was 
reduced from the model as a non‐significant variable, leaving length, 
population identity, and HSI as the remaining correlates (Table 1).

3.5 | Effect of body size on reproductive timing 
during the spawning period

The relationship between body size and timing of reproduction dif‐
fered between sexes. Among males, there was a significant nega‐
tive relationship between day of the spawning period and body size, 
such that larger males were dominant at the beginning of the spawn‐
ing period (Figure 5a). Among females, however, larger individuals 
tended to spawn later than smaller females (Figure 5b). Both models 
suggest that smaller females were comparatively more active at the 
beginning of the spawning season. Notwithstanding the statistical 
significance of most of the associations, the explained variation, as 
reflected by r2, was low, being less than or equal to 0.10 for all mod‐
els. This might be attributable to the observation that individuals of 
an intermediate size (500–540 mm; both sexes) did not exhibit an 
obvious temporal pattern in spawning activity (Figure 5).

F I G U R E  3   Cumulative proportion of 
offspring produced by male and female 
Atlantic cod ranked from most to least 
successful. Dashed lines represent the 
relationship if all individuals contributed 
equally. (a) All data pooled (blue: males; 
red: females); (b) data separated by 
population (▲: Outer Fjord; ●: Inner Fjord)

(a)

(b)
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4  | DISCUSSION

The present study examined correlates of reproductive success in 
a broadcast‐spawning marine fish at an exceptionally fine spatial 
and temporal scale. Based on daily estimates of parentage for al‐
most 4,500 offspring, several broad‐scale patterns emerged. Firstly, 
despite their small (<10 km) spatial separation, average individual 
reproductive success differed between the two populations, after 
accounting for phenotypic variability in several traits. Secondly, re‐
productive success was skewed within both sexes, albeit much more 
so among males. Thirdly, body size affected reproductive success 
differently between sexes, being a strong positive predictor among 
females but much less so among males. Lastly, body size influenced 
the timing of reproduction, larger individuals spawning later among 
females but earlier among males.

The results of the present study indicate that genetically distinc‐
tive populations of Atlantic cod (Knutsen et al., 2018, 2011 ) can dif‐
fer considerably in individual reproductive success when competing 
for mating and reproductive opportunities. These differences ap‐
pear not to be attributable to phenotypic variability between popu‐
lations. Despite similarity in terms of number of individuals, average 
body size, sex ratio, initiation of spawning period, and body condi‐
tion, cod originating from outer Risør fjord were less reproductively 
successful than those from inner Risør fjord, a finding consistent for 
both males and females. Based on data reported in a separate study 

(Roney, Oomen, Knutsen, Olsen, & Hutchings, 2018), duration of the 
spawning period was the same for males but longer for inner‐fjord 
females.

Our work suggests that there are intrinsic differences between 
the inner and outer fjord cod populations that affect individual 
reproductive success. These might be related to population dif‐
ferences in agonistic behavior; males can be significantly more 
aggressive in some populations than others (Rowe, Hutchings, 
Skjæraasen, & Bezanson, 2008; aggression contributes to a dom‐
inance hierarchy that is associated with fertilization success; 
Hutchings, Bishop, & McGregor‐Shaw, 1999). Population differ‐
ences in reproductive success might also be related to differences 
in sound production by males, mate choice by females, or both 
(Rowe & Hutchings, 2006). There might also be genetically based 
differences in reproductive success related to local adaptation, 
given a high correlation between genetic origin and the presence 
of three inversion zones in the genome (Sodeland et al., 2016). Cod 
in the outer fjord are dominated by a North Sea genomic signature, 
whereas a coastal‐fjord genotype is predominant in inner Risør 
(Knutsen et al., 2018).

The skew in fertilization probability observed here is well within 
previously reported estimates of male cod reproductive success. 
The top three of 28 males in our study fertilized 50% of the total 
number of eggs produced during the spawning period, an estimate 
that falls within the range (48%–93%) for the top 3 males (range in 
number of males: 18–37) reported among four Northwest Atlantic 
spawning groups (Rowe et al., 2008).

The skew in male reproductive success lends firm support to the 
existence of a duality of male spawning strategies in cod. The release 
of gametes by a spawning pair is preceded by a ventral mounting of 
the female by a single male (Brawn, 1961; Hutchings et al., 1999). 
Males have also been observed to adopt a satellite strategy and to 
release milt alongside a spawning pair (Hutchings et al., 1999; Rowe 
et al., 2008). Studies suggest that males who participate in paired‐
spawning events are afforded this opportunity because of their rank 
within a dominance hierarchy, established by factors such as size and 
aggressive behavior (Brawn, 1961; Hutchings et al., 1999). Indeed, 
the most highly successful males in the present study were among 
the heaviest, lending credence to the hypothesis that they were the 
top‐ranked males within the dominance hierarchy and, thus, were 
most likely to participate in paired‐spawning events. For individuals 
not among the top‐ranked males, body size had little to no effect on 
reproductive success. Thus, small to moderately heavy males were 
likely to be lower ranked individuals who, failing to obtain mating op‐
portunities, would be more likely to adopt the satellite male spawn‐
ing behavior, resulting in lower, but presumably non‐trivial, levels of 
fertilization success (Rowe et al., 2008).

For females, a skew in reproductive success was evident, al‐
though much less so than that observed in males, and the length of 
a female had a positive effect on the number of offspring produced. 
The variance in reproductive success among females likely rep‐
resents variance in a female’s fecundity as opposed to differences 
in mating behavior, given that fecundity is intrinsically linked with 

F I G U R E  4   Number of offspring sired as a function of body 
weight (g) in (a) male and (b) female Atlantic cod (data pooled for 
both populations)

(a)

(b)
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female size (Kjesbu, Solemdal, Bratland, & Fonn, 1996; McIntyre & 
Hutchings, 2003).

An unanticipated finding is that the two largest spawning females 
had unexpectedly low reproductive success, so much so that they 
were solely responsible for a negative relationship between weight 
and the number of offspring in the initial model. Not only were these 
two females among the three heaviest fish in the spawning basin, 
the only other fish within their size range was also a female and had 
zero reproductive success. (Exclusion of these three females from 
our analyses still yielded highly significant population‐origin effects 
in the GLM.) The lack of success among the largest females might 
be attributable to a lack of suitably sized males for paired spawning, 
possibly due to a physical limitation from males failing to grasp the 
females during the ventral mount or a behavioral choice on the fe‐
male’s behalf.

The mean size of reproductively successful males decreased 
over time, suggesting that larger males dominated mating op‐
portunities during the early part of the spawning period. As the 
spawning season progressed, and larger dominant males presum‐
ably began to exhaust their energy and sperm reserves, smaller 
males were perhaps better able to become more reproductively 
successful. The temporal shifts in size ranks of reproductively 

successful males reported here, and elsewhere (Bekkevold, 
Hansen, & Loeschcke, 2002; Skjæraasen & Hutchings, 2010), 
for cod might have consequences for the strength and direction 
of sexual selection in the presence of size‐selective fisheries 
(Hutchings & Rowe, 2008).

Based on fisheries‐independent survey data, Hutchings and 
Myers (1993) reported that younger males initiated (and completed) 
spawning earlier than older males. This might be interpreted as con‐
flicting with our results, although we note that the range in age of 
cod analyzed by Hutchings and Myers (1993) (6–16 years) was con‐
siderably greater than the range considered here (4–8 years). In con‐
trast to males, the mean size of reproductively successful females 
increased throughout the spawning period, a finding concordant 
with the experimental work by Hutchings et al. (1999) and the age‐
based meta‐analysis by Hutchings and Myers (1993). In contrast, 
Marteinsdottir and Bjornsson (1999) suggested that larger females 
begin spawning earlier than smaller females, based on the relative 
prevalence of females in spawning condition on spawning grounds.

It is has been hypothesized that older, potentially more ex‐
perienced, individuals achieve higher reproductive success than 
their younger counterparts (Berkeley, Chapman, & Sogard, 2004; 
Cardinale & Arrhenius, 2000; Hixon, Johnson, & Sogard, 2013). 

F I G U R E  5   Day of spawning 
period versus mean length (mm) of 
reproductively successful (a) male and 
(b) female Atlantic cod. In the right‐hand 
plots, mean length is proportionately 
weighted by the relative number of 
offspring produced on a particular day. 
Output from linear models between day 
of spawning and length: unweighted mean 
length (males: p‐value = 0.001, r2 = 0.10; 
females: p‐value = 0.036, r2 = 0.04); mean 
length weighted by the relative number 
of offspring sired/fertilized on a given day 
(males: p‐value = 0.003, r2 = 0.08; females: 
p‐value = 0.076, r2 = 0.02)

(a)

(b)
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However, age was not a significant correlate of individual reproduc‐
tive success in the present study. As noted above, this might be at‐
tributable to the limited range in parental age (mean: 5.0 ± 1.0 SD 
year).

We cannot discount the possibility that the spawning basin might 
have altered spawning behavior and subsequent levels of repro‐
ductive success relative to those that cod would experience under 
natural conditions. The average depth of the sloped spawning basin 
(1 m, although deeper in places) was comparatively shallow when 
compared to the reported depths of many spawning locations in the 
wild (Rowe & Hutchings, 2003). Environmental variables, such as 
temperature, were held invariant in the spawning basin; such “con‐
stancy” might conceivably have affected behavior. Spawner den‐
sity was ~2 fish/m3, higher than the limited number of estimates of 
spawner density under natural conditions (0.28–0.31 m−3, Morgan, 
DeBlois, & Rose, 1997; 0.90 m−3, Rose, 1993). This might have in‐
creased stress among the spawning cod, although only 2.7% of the 
experimental fish exhibited signs of poor health in our study.

The present study provides novel insights into the spatial scale 
at which reproductive success can vary within a marine fish species 
that exhibits high dispersal capabilities. Differential reproductive 
success between spatially disparate groups of the same species is 
consistent with the hypothesis that these groups represent differ‐
ent populations and (or) ecotypes at a spatial resolution thought to 
be uncommon in highly mobile, broadcast‐spawning fish. It is also 
noteworthy that the inner‐ and outer‐fjord groups of cod examined 
here are likely to each be predominantly comprised of genomically 
different cod ecotypes (Knutsen et al., 2018). This raises the intrigu‐
ing hypothesis that the populations might be diverging because of 
ecological speciation, that is, the evolution of reproductive isolation 
between populations resulting from ecologically based but divergent 
natural selection (Rundle & Nosil, 2005; Schluter, 2000).

Our work contributes to a growing body of research highlighting 
the influence that the mating system in broadcast‐spawning fish can 
have on individual reproductive success (Rowe & Hutchings, 2003). 
Our conclusion of small‐scale population differentiation is also con‐
sistent with the finding that the temporal population dynamics of 
coastal Norwegian cod can be spatially structured, differing among 
fjords and between sheltered/exposed areas (Rogers, Storvik, 
Knutsen, Olsen, & Stenseth, 2017). Recent establishment of small‐
scale (1 km2) marine protected areas provides field‐experimental 
support for extremely local demographic processes in terms of sur‐
vival and size structure of coastal Skagerrak cod (Fernández‐Chacón, 
Moland, Espeland, & Olsen, 2015).

A fundamental challenge to achieving successful resource‐man‐
agement and conservation outcomes is to correctly identify the spa‐
tial scale at which strategies for harvesting and threat mitigation are 
developed (Cianelli et al., 2010; Conover, Clarke, Munch, & Wagner, 
2006; Kuparinen et al., 2016). A mismatch between the spatial scale 
of a management unit and the spatial scale of a biological unit may 
result in ineffective actions. Our work suggests that such spatial 
mismatches exist in marine fishes and that studies of reproductive 
interactions between putative populations or ecotypes can provide 

an informative basis on which determination of the scale of adapta‐
tion can be ascertained.
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