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Previously, somatic hypermutation (SHM) was considered to be exclusively associated 
with affinity maturation of antibodies, although it also occurred in T cells under certain 
conditions. More recently, it has been shown that SHM generates diversity in the variable 
domain of T cell receptor (TCR) in camel and shark. Here, we report somatic mutations in 
TCR alpha chain genes of the teleost fish, Ballan wrasse (Labrus bergylta), and show that 
this mechanism adds extra diversity to the polymorphic constant (C) region as well. The 
organization of the TCR alpha/delta locus in Ballan wrasse was obtained from a scaffold 
covering a single copy C alpha gene, 65 putative J alpha segments, a single copy C delta 
gene, 1 J delta segment, and 2 D delta segments. Analysis of 37 fish revealed 6 allotypes 
of the C alpha gene, each with 1–3 replacement substitutions. Somatic mutations were 
analyzed by molecular cloning of TCR alpha chain cDNA. Initially, 79 unique clones com-
prising four families of variable (V) alpha genes were characterized. Subsequently, a more 
restricted PCR was performed to focus on a specific V gene. Comparison of 48 clones 
indicated that the frequency of somatic mutations in the VJ region was 4.5/1,000 base 
pairs (bps), and most prevalent in complementary determining region 2 (CDR2). In total, 
45 different J segments were identified among the 127 cDNA clones, counting for most 
of the CDR3 diversity. The number of mutations in the C alpha chain gene was 1.76 
mutations/1,000 bps and A nucleotides were most frequently targeted, in contrast to the 
VJ region, where G nucleotides appeared to be mutational hotspots. The replacement/
synonymous ratios in the VJ and C regions were 2.5 and 1.85, respectively. Only 7% 
of the mutations were found to be linked to the activation-induced cytidine deaminase 
hotspot motif (RGYW/WRCY).

Keywords: T  cell receptor, ballan wrasse, Tcrα, polymorphism, somatic hypermutation, activation-induced 
cytidine deaminase motif, teleost

inTrODUcTiOn

T cells in jawed vertebrates are generally divided into two subtypes αβ and γδ on the basis of the 
heterodimeric T cell receptor (TCR). The αβ T cells are most abundant in circulation and lymphoid 
organs, while γδ T cells are found in mucosal and epithelial tissues. In humans and mice, γδ cells 
represent less than 5% of the total T cell population while in birds and ruminants they constitute 
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more than 40% of the total peripheral lymphocytes (1, 2). TCR 
αβ recognize peptides that are bound to major histocompat-
ibility complex (MHC) molecules. TCR γδ recognize antigens 
directly, independent of MHC molecules in a manner similar to 
immunoglobulins (Ig). They are considered as a bridge between 
the innate and adaptive immune system as they use their receptor 
as a pattern recognition receptor (3). However, TCR γδ can also 
recognize phospholipids presented by CD1d molecules, suggest-
ing that presentation by other non-classical MHC or MHC-like 
molecules might be possible (4). A unique TCRμ subtype 
first discovered in marsupials has subsequently been found in 
duckbill platypus (Ornithorhynchus anatinus), indicating that 
this locus was present in the last common ancestor of all extant 
mammals (5, 6).

T cell receptor molecules have structural and organizational 
resemblance to the Ig heavy and light chains. TCRα is encoded 
by variable (Vα) and joining (Jα) gene segments combined with 
the constant region (Cα) gene, like the Ig light chain. TCRβ is 
encoded by Vβ, diversity (Dβ), and Jβ gene segments combined 
with the Cβ gene, like the Ig heavy chain. Rearrangements of V, 
D, and J gene segments and variability generated in these junc-
tions create an enormous repertoire of receptors with different 
specificities, providing versatility and diversity to the immune 
system (7–9). The mechanism of gene rearrangement is similar 
in B and T cells. V(D)J recombination is mediated by enzymes 
encoded by recombination activating genes 1 and 2 which rec-
ognize highly conserved recombination signal sequences (RSS). 
RSS are heptamer and nonamer motifs that flank the V, D, and J 
gene segments.

TCRα and TCRδ cDNA sequences have been reported from 
several teleost species, including common carp (Cyprinus carpio),  
channel catfish (Ictalurus punctatus), Atlantic cod (Gadus 
morhua), rainbow trout (Oncorhynchus mykiss), zebrafish (Danio 
rerio), pufferfish (Tetraodontidae rubripes, Tetraodontidae nigro
viridis, and Sphoeroides nephelus), Japanese flounder (Paralichthys 
olivaceus), Atlantic salmon (Salmo salar), and bicolor damselfish 
(Stegastes partitus) (10–20). The genomic organization of the 
TCRα and TCRδ genes in teleosts has been characterized in 
pufferfish, Atlantic salmon, and zebrafish. Like in mammals 
the TCRδ genes are linked to the TCRα genes, but the V gene 
segments are present downstream to the other elements in an 
inverted direction: Dδ-Jδ-Cδ-Jα-Cα-Vα/δ (15, 20–22). The Cα 
and Cβ sequences were considered to be relatively conserved 
due to interactions with other components of the TCR complex. 
However, allelic polymorphism of Cα and Cβ is widespread 
among teleost fish (17, 23).

Somatic hypermutation (SHM) is a key mechanism generating 
antibody diversity. In mammals, introduction of mutations in the 
recombined V(D)J gene in mature B cells is followed by selection 
of clones with higher affinities, typically in IgG-producing B-cells 
in germinal centers (24). Activation-induced cytidine deaminase 
(AID) deaminates cytosine (C) to uracil (U) in single stranded 
DNA creating U:G mismatch lesions, resulting in point muta-
tions during SHM and double stranded breaks during class switch 
recombination. SHM occurs during transcription and primarily 
at RGYW/WRCY hotspot motifs (where G/C is a mutable posi-
tion and R = A/G, Y = C/T, and W = A/T). SHM creates point 

mutations at a rate of 10−3 mutations/bp/generation, a million fold 
higher than the background genome mutation rate (25). SHM at 
A/T base pairs (bps) (typically WA/TW motifs) is generated by 
a mismatch repair mechanism employing polymerase η or other 
low fidelity polymerases (26). SHM has been detected in Ig genes 
of both cartilaginous and teleost fish (27–29). The impact of SHM 
on affinity maturation in fish needs further studies to be fully 
understood (29). Somatic mutations within Ig light chain genes of 
zebrafish were found to be overrepresented at AID hotspot motifs 
like in mammals. Mutations were most prevalent in the V region, 
but a significant number of substitutions were introduced in the 
C region; the mutation frequency decreased slightly with distance 
from the V region (30).

It was believed that TCR diversity was generated by V(D)J 
rearrangement and that SHM did not occur in the TCR genes, 
although SHM was detected in TCRα of mice and in TCRβ of 
HIV-infected patients (31, 32), and in TCR Cβ of two children 
after in utero stem cell transplantation (33). In the latter study, 
the frequency of Cβ mutations was significantly higher than 
in other groups of patients and healthy individuals (33). It 
was suggested that the lymphocytes of the babies presumably 
were under chronic activation. The SHM mechanism has also 
been found to target other genes, including oncogenes (34–36).  
A single cell PCR approach on lymph node germinal centers 
from a healthy person did not reveal SHM in T cells, in contrast 
to the situation in B cells where IgG clones were mutated (24). 
On the other hand, AID expression was unexpectedly detected 
in a subset of T  cells in mice (37). More recently, studies of 
sandbar shark (TCRγ, TCRα) and camel (TCRγ, TCRδ) have 
shown that SHM occurs in TCRs of phylogenetically distant 
species (38–40), indicating a role in the diversification of the 
pre-immune repertoire. Accordingly, in mice it has been shown 
that early immature B cells are subjected to SHM, suggesting a 
role in B cell diversification as well as in the affinity maturation 
of antibodies (41, 42).

The aim of this study was to characterize the TCRα genes 
in Ballan wrasse and analyze Vα and potential Cα diversity 
within this species. Ballan wrasse has attracted increasing 
interest as a “cleaner fish” recently for the biological control of 
salmon lice in fish farms. Ballan wrasse belongs to Perciformes. 
Approximately 40% of all fish belong to this group (more than 
10,000 species).

MaTerials anD MeThODs

samples
Three adult wild fish of Ballan wrasse Labrus bergylta (700–800 g) 
were caught from fjords near Bergen, Norway. Ethical approval 
was not required, as the study did not involve transport or 
experiments on live fish. Fish were killed with a sharp blow to the 
head immediately after they were caught and tissue samples were 
stored in RNA-later solution (Ambion). Previously deposited 
transcriptome data (intestine) from 34 juvenile fish were provided 
from individuals sampled in a commercial fish farm in Øygarden, 
Hordaland, Norway (NCBI accession numbers: PRJNA382082 
and PRJNA360275).

https://www.frontiersin.org/Immunology/
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TaBle 1 | Primers used in this study.

Primer Primer sequence 5′→3′ location of primers

Tcra 2F CAGTTACAGCATCTCACCTCTACA Leader
Tcra 2R CCACAGTTTGAAGGTCATCAGG TCR Cα
TCR-VF TGGTAACACCTTGGAGGATGA TCR Vα
TCR-JCR CGTGCTTCTCCCTTGGTTCA TCR Cα
TCR-CR GCCGTCGAGTTGTTTCCCT TCR Cα
BCD3eF1 CTAGCATCAGTGTTGGCGCT CD3ε
BCD3eR1 CCGATGTGTGCACAGTCCTT CD3ε
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rna isolation and cDna synthesis
For transcriptome sequencing, intestinal tissues were homoge-
nized using zirconium beads (4 mm) in a Precellys 24 homogenizer 
(Bertin Technologies, Montigny-le-Bretonneux, France) prior to 
RNA extraction. Total RNA was extracted using a BioRobot® 
EZ1 and RNA Tissue Mini Kit (Qiagen, Hilden, Germany). All 
samples were DNase treated according to the manufacturer. RNA 
quality and integrity was assessed using NanoDrop ND-1000 
Spectrophotometer (NanoDrop Technologies, Wilmington, DE, 
USA) and an Agilent 2100 Bioanalyzer with RNA 6000 Nano 
LabChip kit (Agilent Technologies, Palo Alto, CA, USA) respec-
tively. The 260/280 and 260/230  nm ratios for the total RNA 
samples were >2.0 and the RNA integrity number >7.0 for all 
samples. For cDNA cloning and sequencing, total RNA was iso-
lated from spleen and thymus using TRIzol® reagent (Invitrogen). 
First strand cDNA was synthesized using SuperScript™ II reverse 
transcriptase (Invitrogen) and an oligo dT16 primer.

Mapping of intestinal sequence Data
Raw Illumina HighSeq 2000 sequence reads deposited in the 
NCBI sequence read archive (SRA) database were analyzed in 
this study (SRA accession number: PRJNA382082). The raw 
FASTQ reads from individual intestinal samples originated from 
juvenile Ballan wrasse. Sequence adaptors were removed using 
Cutadapt (43, 44) with default parameters. The reads were further 
trimmed for low quality sequences using Sicle1 retaining reads 
with 40  bps minimum remaining sequence length and Sanger 
quality of 20. Prior to mapping, the quality of reads was investi-
gated using FASTQC version 0.9.22 TopHat (version 2.1.1) short 
read aligner and Bowtie2 (version 2.2.9) was used to individu-
ally map each sample against the L. bergylta genome assembly 
(European Nucleotide Archive accession number: PRJEB13687) 
(44). Subsequent BAM files were further analyzed using the IGV 
genome browser (version 2.3.68).

Pcr-amplification of cDna Fragments 
and Dna sequencing
Primer construction for TCRα amplification was based on 
intestinal transcriptome data, genomic sequences and addi-
tional Vα sequence information obtained in the course of the 
present study (Table 1). Amplification using standard Taq poly-
merase (Invitrogen) was performed as follows: denaturation at 

1 https://github.com/najoshi/sickle.
2 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

94°C for 2  min, followed by 35 cycles of denaturation at 
94°C (30  s), annealing at 55°C (30  s), and extension at 72°C 
(1 min/1,000 bps), and final extension for 10 min. Amplification 
using AccuprimeTM Taq DNA polymerase and AccuprimeTM 
High Fidelity Taq DNA polymerase (Invitrogen) was performed 
as follows: denaturation at 94°C for 2 min, 30 cycles of denatura-
tion at 94°C (30 s), annealing at 55°C (30 s), and extension at 
68°C (1 min/1,000 bps). DNA fragments were excised from the 
gel and further amplified for 5 cycles before cloning into pCR™ 
4-TOPO® vector (Invitrogen). Sequencing was performed at an 
in-house sequencing facility using Big Dye termination chem-
istry (Applied Biosystems).

sequence analysis and Phylogeny
DNA/protein sequences were compared to the GenBank/EMBL 
databases using BLAST.3 DNA was translated into amino acid 
sequence using the translate tool available at ExPasy.4 Multiple 
alignments were performed using ClustalW.5 Phylogenetic trees 
were constructed using MEGA6 software and neighbor joining 
(NJ) and maximum likelihood (ML) matrixes with 1,000 boot-
strap replicates (45).

calculation of Mutability index (Mi)  
and statistical analysis
Mutability index is a measure of observed/expected number 
of mutations for a specific nucleotide without target bias.  
A mutability score of 1 represent unbiased mutation, while higher 
scores indicate that a specific nucleotide is selected for mutation. 
Relative frequency of each nucleotide was multiplied by total 
number of observed mutations within all sequenced clones to 
calculate the expected number of mutations. Observed numbers 
of mutations were divided by expected numbers for each nucleo-
tide to calculate MI. Chi-squared analyses of MIs were carried out 
by comparing observed mutational frequencies to their expected 
(unbiased) mutational frequencies. P values <0.01 were consid-
ered statistically significant.

resUlTs

genomic Organization of the Tcr α/δ 
locus in Ballan Wrasse
Ballan wrasse TCRα sequences were identified by BLAST 
searches in an intestine transcriptome database using salmon 
TCRα as query (18). In the course of the present work, genomic 
sequence data of a heterozygous individual became available, 
and two scaffolds containing two allelic variants of the Cα gene 
in Ballan wrasse were identified by BLAST searches of whole 
genome shotgun data (GenBank): LaB_20160104_scaffold_928 
(99,234  nt) and LaB_20160104_scaffold_4467 (16,780  nt). 
The Cα gene consisted of three exons corresponding to the Ig 
domain, the connecting peptide (CP) and the transmembrane 
(TM)/cytoplasmic (CYT) part. In total, 65 putative Jα segments 

3 http://blast.ncbi.nlm.nih.gov/.
4 http://www.expasy.org/.
5 http://www.ebi.ac.uk/.
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FigUre 1 | Genomic organization of the T cell receptor α/δ locus in Ballan wrasse (LaB_20160104_scaffold_928). Arrows show the direction of transcription.  
Cα is encoded by three exons shown in green, which are followed by 65 Jα segments. Light blue arrows present potential Jα segments, while dark blue represent 
the sequences found in cDNA clones. Cδ is encoded by three exons indicated here as Cδ1, Cδ2, and Cδ3. One Jδ segment is shown in yellow and two Dδ 
segments are represented in gray (Dδ1 and Dδ2). The SMG-7 gene was identified upstream of Cδ and its location is shown by the pink arrow.
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were found by manual inspection of the region upstream of Cα 
in scaffold 928. All putative Jα segments contained the highly 
conserved core motif FGXG or slightly modified versions of this, 
and splice sites and RSS flanking the Jα exons. The presence of J 
segments was further confirmed by alignment of transcriptome 
data with scaffold 928, using the IGV program (46). The TCRα 
cDNA clones characterized in this study contained 45 of the 65 
identified Jα segments. A single Jδ segment and two putative 
Dδ segments were identified upstream of the Cδ gene. As in 
other teleosts, the SMG-7 gene was identified further upstream 
of Cδ (Figure 1; Table S1 in Supplementary Material). Scaffold 
4467 was shorter and represented the other allele of the TCRα 
locus, comprising the Cα gene and 13 Jα segments (Table S2 in 
Supplementary Material). Several scaffolds containing Vα genes 
were found in the genomic sequence database, but a complete 

assembly of all Vα genes was not possible based on the present 
whole genome shotgun data.

sequence analysis of Tcrα cDna clones
The assembled Ballan wrasse TCRα sequence was used as a 
basis for primer construction, and cDNAs encoding part of the 
leader sequence, V/J, and Cα were amplified by PCR. In total, 
79 distinct TCRα clones were analyzed from three individuals. 
The V gene regions of the cDNAs were sorted into four groups 
based on 75% nucleotide identity (Figure S1 in Supplementary 
Material). The translated sequences in group Vα1 showed all 
conserved characteristics of a V domain, while Vα2, Vα3, and 
Vα4 lacked the conserved cysteine (Cys) at position 26 (replaced 
with tyrosine); a pattern which was also seen in bicolor damselfish  
and olive flounder (16, 17). Figure  2 shows representatives of 

https://www.frontiersin.org/Immunology/
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FigUre 2 | Representatives of four TCRα V gene families from Ballan wrasse aligned with corresponding sequences from other species. Amino acid percentage 
identities between Ballan wrasse Vα1 and the other sequences are indicated at the end. GenBank accession numbers are: Wrasse Vα1 (MG594685), Wrasse Vα2 
(MG594679), Wrasse Vα3 (MG594717), Wrasse Vα4 (MG594664), Atlantic salmon (ABO72169.1), bicolor damselfish (AAO88984.1), olive flounder (BAB82535.1), 
common carp (BAD88980.1), channel catfish (AAD56889.1), nurse shark (ADW95871.1), and human (AAD15154.1).

5

Bilal et al. Teleost TCR Alpha Somatic Hypermutation

Frontiers in Immunology | www.frontiersin.org May 2018 | Volume 9 | Article 1101

the four Vα families from Ballan wrasse aligned with TCR Vα 
sequences of other species. The Vα1 amino acid sequences have 
identity indices of 40–48% with the other characterized groups in 
wrasse; Vα2, Vα3, and Vα4. Among other species, Vα1 has 53% 
sequence identity to Atlantic salmon followed by common carp 
(45.7%) and olive flounder (44.7%).

Wrasse TCR Cα encodes a polypeptide of 112 amino acids. The 
Cα region can be divided into an Ig domain, CP, TM, and CYT 
part. The structurally important Cys residues in the Ig domain 
and CP are conserved. The TM region is the most conserved 
region containing the positively charged residues lysine and argi-
nine involved in the assembly of the TCR–CD3 complex. Multiple 
sequence alignment demonstrated that Ballan wrasse TCR Cα has 
47.3% sequence identity to pufferfish, 46.6% with salmon, 40.2% 
with zebrafish, and 38.6% with cod, 31% with mouse, and 26.6% 
with human (Figure 3A). The phylogenetic relationship between 
Ballan wrasse Cα and the orthologous molecules in other species 
is shown in Figure 3B.

cα Polymorphism
The two scaffolds 928 and 4467 represent distinct Cα alleles; here 
named A and B. Analysis of transcriptome data from 34 farmed 
individuals identified A and B, and four additional allotypes of 
Cα named C, D, E, and F. Molecular cloning of TCRα cDNA from 
three wild fish corresponded to alleles A, B, and F [B1: (A/B), 
B4: (B/B), and B6: (B/F); Figure 4A; Table S3 in Supplementary 
Material].

cα somatic Mutations
Molecular cloning of TCRα from thymus cDNA of individual B1 
showed that there was a significant number of point mutations in 
Cα (1.75/1,000 bps). Amplification of the first sample was done 
with standard Taq polymerase and 5,690  bps were sequenced 
(18 cDNA clones). In a second experiment, TCRα from spleen 
cDNA was amplified from individual B4 with high fidelity Taq 
polymerase. As a control, CD3ε cDNA was amplified under the 
exact same conditions. The frequency of mutations in Cα was 
2.30/1,000 bps versus 0.62/1,000 bps in CD3ε. In total, 6,952 bps 
of Cα (22 cDNA clones) and 12,992 bps of CD3ε were analyzed. In 
a third experiment, TCRα was amplified from spleen cDNA with 
high fidelity Taq polymerase from individual B6, revealing 1.46 
mutations/1,000 bps in a total of 12,327 bps (39 cDNA clones) 
(Figure 4B; Table 2). All cDNA clones examined were confirmed 
to be unique, possessing distinct V regions. Two clones were 
regarded to be artifacts of PCR jumping (i.e., partial extension on 
cDNA from one gene and final extension on another, resulting in 
hybrids of two alleles). The replacement to synonymous mutation 
ratio (R/S) was 1.85 and most replacements were conservative 
(i.e., the biochemical properties were not changed; hydropho-
bic, charged, and neutral, etc.). In total, 93% of the nucleotide 
substitutions were transitions (primarily A to G and T to C). Of 
all mutations, 37.5% were targeted at WA motifs, whereas 7.5% 
were targeted at AID motifs. Three WA motifs were present in 
WRCY (AID hotspot), but the targeted nucleotide was not at the 
C position (Table S4 in Supplementary Material).

https://www.frontiersin.org/Immunology/
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FigUre 3 | Similarity between T cell receptor (TCR) Cα of Ballan wrasse and other species. (a) Alignment of TCR Cα sequences from Ballan wrasse (allotype A) 
and other species. Cysteines are shaded in gray. (B) Phylogenetic tree of Ballan wrasse TCR Cα and other species. The unrooted tree was constructed by the 
neighbor joining method with 1,000 bootstrap replicates using MEGA6 software. The accession numbers are as follows: Green-spotted pufferfish (CAC86243.1), 
bicolor damselfish (AAO88997.1), olive flounder (BAC65457.1), Atlantic salmon (AAS79492.1), rainbow trout (AAR19288.1), Atlantic cod (CAD28810.1), common 
carp (BAD89003.1), zebrafish (AAL29402.1), mouse (X14387.1), and human (L02424.1).
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Mutability indices for Mono, Di, and 
Trinucleotides indicate Targets for  
cα Mutation
To determine which nucleotides or combinations of adjacent 
nucleotides were preferentially targeted for mutation in the Cα 
gene, MIs for mono, di, and trinucleotides were calculated. Chi-
square analysis showed that only A nucleotides were significantly 
targeted for mutation, 93% of which were transitions. C nucleo-
tides were significant cold spots for mutation. MI scores showed 
that nucleotides were targeted in the order: A > T > G > C for 
somatic mutations (Table 3). The dinucleotide MIs revealed that 
AA, AT, GA, and AG were significant targets for mutation and 
when the analysis was expanded to trinucleotides, the dinu-
cleotides were most frequently targeted in AAT, AAA, and AGA 
combinations (Tables S5 and S6 in Supplementary Material). 

This pattern of substitution indicates that mutations targeted 
particular nucleotides and combinations.

Vα somatic Mutations
To study the mutation pattern in one single Vα gene, the B4-34 
sequence was selected, and primers (TCR-VF/TCR-CR) were 
designed to amplify the VJ region (and a relatively short part 
of Cα). High fidelity Taq polymerase was used for amplification 
of spleen cDNA from individual B4, and the resulting PCR-
fragment was cloned. In total, 48 clones were analyzed. The 48 
cDNA clones contained 25 different Jα gene segments (Table S1 in 
Supplementary Material). Out of the 48 clones, 45 were in frame. 
One clone had a stop codon (caused by point mutation) in the 
V sequence while two clones had frameshifts at the VJ junction. 
Alignment of the 48 cDNA clones indicated the presence of two 

https://www.frontiersin.org/Immunology/
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TaBle 2 | Cα-mutations in 79 cDNA clones of three Ballan wrasse individuals.

name of individual fish # clones # Base pairs (bps) # Mut Mut/1,000 bps Types of mutations

repl. silent Transition Transversion Frameshift

B1 18 5,690 10 1.75 6 2 7 1 2
B4 22 6,952 16 2.30 12 4 16 0 0
B6 39 12,327 18 1.46 8 8 14 2 2
Total 79 24,969 44 1.76 26 14 37 3 4

FigUre 4 | T cell receptor (TCR) Cα allotypes and somatic replacement mutations in Ballan wrasse. (a) TCR Cα allotypes in Ballan wrasse. Allotypes were found by 
analysis of scaffold 928 and 4467, intestinal transcriptome data from 34 Ballan wrasse individuals, and 79 cDNA clones from three wild fish (B1, B4, and B6). Green 
highlights residues which characterize each allotype. (B) Alignment and positioning of somatic replacement mutations found in TCR Cα of individuals B1, B4, and 
B6. Mutations are underlined in red. Accession numbers are given in Table S10 in Supplementary Material.
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subgroups, highly similar to B4-34 (differing at two nucleotide 
positions). The subgroups were treated separately before the 
total number of substitutions at each position was calculated. 
Substitutions at positions 82 and 95 were considered allotypic 
differences as they had two alternative nucleotides represented by 
approximately 50% each (Figure S2 in Supplementary Material).

Of the total 102 substitutions, transitions (53%) were more 
common than transversions (47%) with a T/V ratio of 1.12. 
Transversions were relatively abundant in FR2 and complemen-
tary determining region 2 (CDR2) with a T/V ratio of 0.3. When 
there is no bias toward transition or transversion, the theoretical 
ratio of transition to transversion is 0.5 for random substitutions. 

The overall ratio of replacement to synonymous substitutions was 
2.5. Replacement substitutions were more frequent than silent 
mutations in both CDRs and FRs, except for FR4 where silent 
mutations were dominant (Table S7 in Supplementary Material). 
SHM studies in mammals and other teleost Ig variable genes have 
shown relatively high T/V and R/S mutation ratios (30).

Mono, Di, and Trinucleotide Targets  
in the Vα1 gene
The MIs for mononucleotides in the B4-34 group showed that 
nucleotides were preferentially targeted in the order: G > C > A~T. 
Of total mutations, G nucleotides were mutated 56.8%, followed by 

https://www.frontiersin.org/Immunology/
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TaBle 4 | Substitutions and mutability index (MI) of T cell receptor Vα 
mononucleotides.

From substitutions Observed 
mutations

expected 
mutations

Mi

a c g T

A – 2 9 0 11 28.5 0.38a

C 16 – 2 4 22 24.6 0.89
G 28 6 – 24 58 22.5 2.57a

T 0 11 0 – 11 26 0.42

In total, 22,481 nucleotides were analyzed from B4-34 (A = 6342, T = 5746, 
G = 4961, C = 5432). There were 102 point mutations. MI values were calculated 
by dividing observed number of mutations to expected number of mutations. The 
observed and expected numbers of mutations were compared by χ2 analysis and 
significant differences are indicated on MI values.
aStatistically significant by χ2 test (p < 0.001).

TaBle 3 | Substitutions and mutability index (MI) of T cell receptor (TCR) Cα 
mononucleotides.

From substitutions Observed 
mutations

expected 
mutations

Mi

a c g T

A – 1 25 1 27 10.6 2.5a

C 0 – 0 1 1 11 0.09b

G 5 1 – 0 6 10 0.6
T 0 8 0 – 8 8.2 0.97

In total, 26,862 TCR Cα nucleotides were analyzed (A = 7109, T = 5528, G = 6846, 
C = 7379). There were 40 point mutations. MI values were calculated by dividing 
observed number of mutations to expected number of mutations. The observed 
and expected numbers of mutations were compared by χ2 analysis and significant 
differences are indicated on MI values.
aStatistically significant by χ2 test (p < 0.001).
bStatistically significant by χ2 test (p < 0.01).
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C (21.5%), and then A and T (10.8%). At G nucleotides 54% substi-
tutions were transitions from G→A and transversions were G→T 
(41.4%) and G→C (10.4%) (Table 4). Analysis of dinucleotide MIs 
showed that CG and GC were the preferred targets for mutation, 
while AT were mutational cold spots (Table S8 in Supplementary 
Material). GC was found to be a significant target for mutation in 
human and catfish Ig heavy chain genes and zebrafish Ig light chain 
genes (28, 30, 47). When the analysis of the wrasse B4-34 group was 
expanded to trinucleotides, CG and GC dinucleotides were targeted 
most in GCG and CGA. Other combinations with significant MIs 
were AGG, GGT, and GAT (Table S9 in Supplementary Material).

DiscUssiOn

The present study has shown that the TCRα genes in the teleost 
Ballan wrasse are subjected to SHM, and that this process also 
introduces some diversity in Cα. Similar to the situation in other 
teleosts (17, 23) the Cα gene in Ballan wrasse is polymorphic. 
Analysis of 37 fish identified 6 allotypes of Cα, each with 1–3 amino 
acid substitutions. Although TCR polymorphism is widespread  
among teleost fish it is tempting to suggest that some of the TCR 
Cα diversity observed in teleost cDNA pools might be a result 
of SHM.

The first attempt to amplify TCRα cDNA was based on a 
primer pair from a leader exon to the end of Cα, revealing four 
families of Vα genes. To analyze the SHM in a single Vα gene we 
selected the B4-34 as template and made the forward primer from 
the boundary of the leader and Vα exons. The resulting sequences 
were divided into two groups and treated separately to avoid over-
estimation of mutation frequencies (Figure S2 in Supplementary 
Material). The two groups might represent two highly similar V 
genes which have been amplified by the B4-34 primer pair.

The distribution of substitutions in TCR VJ and Cα is shown 
in Figure  5. The substitution rates were plotted against 20  bps 
nucleotide intervals. The first nucleotide corresponds to the third 
amino acid of FR1. Primers were designed from the start of the Vα 
gene and the first codons were, therefore, not included in the cal-
culations. In the VJ region, CDR2 showed the highest frequency of 
substitutions. In Ballan wrasse TCRα the frequency of AID motifs 
was found to be much higher in the V/J genes (~8/100 bps) than 

in the Cα gene (4/100 bps), but no direct relationship was found 
between mutation frequencies and AID motifs in this study. In 
the VJ region, 6.8% of the mutations were present in AID motifs, 
while 9.2% were linked to WA/TW motifs, as compared to 40% 
in Cα. In a study of Ig variable genes it was found that SHM do 
occur in the absence of AID motifs and were predominantly G to 
C substitutions although the mutation frequency was lower than 
found in the presence of AID motifs (48). Mutability index analy-
sis confirmed that nucleotides were targeted differently in the VJ 
and Cα region. In the VJ region, G nucleotides were targeted in 
CG and GC dinucleotides, and at GCG and GGG trinucleotide 
combinations. The mutations in Cα were primarily on A nucleo-
tides, targeted mostly at AA (WA motif) and AT dinucleotides, 
indicating a mismatch repair mechanism employing polymerase 
η or other low fidelity polymerases (26). Replacement substitu-
tions were dominant in both CDR1 and CDR2 and typically 
conservative. In a study of mouse TCR, extensive diversification 
by mutagenesis of CDR1 and CDR2 did not affect MHC binding 
(49), demonstrating that SHM of these regions is acceptable. In 
both Vα and Cα, replacement mutations were twice as frequent 
as silent mutations. Mutation frequencies in VJ versus Cα were 
found to be 4.5/1,000 bps and 1.76/1,000 bps, respectively. Key 
residues in Cα were conserved, showing that replacement sub-
stitutions had no impact on structural stability or interactions 
with CD3. Targeting of Cα is likely a side effect of SHM in the VJ 
region, like in the Ig light chain genes of zebrafish (30).

In the initial amplification and cloning of Ballan wrasse TCRα 
cDNAs about 24% of the clones had stop codons or were out of 
frame in the VJ region. The abundance of non-functional TCRα 
transcripts was similar in thymus and spleen. When narrowing 
the PCR-amplification to the B4-34 gene(s) the frequency of tran-
scripts with stop codons or frame shifts decreased to 6.25%. Thus, 
it appears that there is a significant amount of non-functional 
transcripts in circulation, while some subpopulations of func-
tional clones expand. In salmon, it was found that approximately 
32% of TCRβ transcripts and 10% of TCRα transcripts in blood 
lymphocytes had stop codons or were out of frame (18, 50). In 
another study of salmon, about 10% of the TCRα transcripts from 
thymus were non-functional (20). Corresponding frequencies in 
rainbow trout thymus were 32% for TCRβ and 12.5% for TCRα 
(11, 51). In the amphibian Mexican axolotl more than 30% of the 
TCRβ transcripts from thymus and spleen, and 13.6% of TCRα 
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FigUre 5 | Distribution of mutation frequencies and number of activation-induced cytidine deaminase (AID) hotspot motifs in VJ and C regions of Ballan wrasse 
TCRα cDNA clones. The frequencies of silent and replacement mutations are plotted at the left vertical axis, while numbers of AID motifs are plotted at the right 
vertical axis; against nucleotide position intervals. The VJ region represents the combined mutation frequencies of 48 unique VJ cDNA clones, while the C region 
represents 79 unique cDNA clones. Numbers of AID hotspot motifs are represented as dashed lines. The diagram also indicates the location of V, J, and the 
constant Ig, connecting peptide, and TM regions. Primers included the first nine nucleotides of the V gene and the cytoplasmic region of Cα and were, therefore, not 
included in the mutability analysis. Position of the CDRs is depicted as bars over the graph.
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transcripts from thymus were sterile (52). The high fraction of non-
functional TCRβ transcripts in ectothermic animals contrasts the 
situation in mammals where these mRNAs are eliminated (53, 54),  
although not absolutely (55). A more “leaky” system in cold-
blooded animals might be a result of less efficient cell proliferation 
and control mechanisms compared to higher vertebrates.

From the first amplification, TCRα clones which were in frame 
counted for 72% of the Cα mutations. As almost all replacement 
mutations were conservative there is no reason to believe that 
these are not incorporated into the functional T cell repertoire. 
Considering that we find somatic TCRα mutations in thymus as 
well as in spleen, SHM is probably involved in the diversification 
of the pre-immune TCR repertoire in Ballan wrasse, at the same 
time introducing some Cα diversity. A survey of translated TCRα 
ESTs in public databases revealed many amino acid substitutions 
in Atlantic salmon TCR Cα as well (Figure S3 in Supplementary 
Material). Thus, it is plausible to assume that SHM of TCR is a 
common phenomenon in teleost fish. However, SHM in mature 

T cells of wrasse cannot be ruled out either, and is an interesting 
topic for further research. SHM of TCR is generally believed to be 
restricted. Typically, an increase in TCR affinity after secondary 
challenge is minor compared to the affinity maturation of anti-
bodies in mammals (56). It has been suggested that high-affinity 
TCR clones might be unfavorable due to prolonged binding, 
impairing serial interactions. On the other hand, somatic muta-
tion of TCR genes in mature T cells has been documented (31, 32), 
suggesting that SHM of TCRs can occur under certain conditions, 
e.g., chronic activation (33). Vaccination of fish might facilitate 
conditions that trigger inappropriate immune responses (57, 58), 
but wild caught fish were used in the present analysis, implying 
that the results presented here are a normal situation in adult fish.

In conclusion, this study has shown that the TCRα in the tel-
eost Ballan wrasse is subjected to SHM. The mutation frequency 
was highest in CDR2, although mutations were also evident in the 
constant part and FRs of TCRα. A high-throughput sequencing 
approach will be an interesting future study that can provide a 
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more complete overview of the effects of SHM during the devel-
opment of the TCR repertoire in the teleost fish.
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