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Summary

The Norwegian Food Safety Authority (NFSA) asked the Norwegian Scientific Committee for
Food Safety (VKM) for an opinion of risks of reduced welfare implications associated with the
different marking and tracing methods, and combinations thereof, for farmed salmonid fish,
restricted to Atlantic salmon (Sa/mo salar) and Rainbow trout (Oncorhynchus mykiss) in
Norway. A working group was established comprising members from the Panel on Animal
Health and Welfare and external experts from the Institute of Marine Research, the
Norwegian Institute of Nature Research, and VKM staff. The Panel on Animal Health and
Welfare has reviewed and revised the draft prepared by the working group and has
approved the opinion.

There are environmental concerns of escaped farmed salmon interbreeding with wild fish,
potentially threatening genetic integrity, and transmission of diseases. The Norwegian
government intends to prevent or reduce escapes of farmed salmonids from occurring, and
wishes to have those farmed fish that have escaped removed from the environment. In
order to facilitate these actions, it is essential to be able to identify escaped fish. In addition,
reliable methods for tracing the origin of the escaped fish are also crucial. Mandatory
marking of all farmed fish in Norwegian aquaculture has therefore been suggested. On this
basis, this VKM report will be used by the NFSA to evaluate which marking methods are most
suitable, from both short- and long-term perspectives, in relation to the Animal Welfare Act.

In order to fulfil the requirements, the marking must enable visual identification of escaped
fish and also enable an individual fish to be traced back to its origin. There is no single
marking system that fulfils both these criteria.

A variety of marking and tracing methods are available for mass marking of farmed fish.
These methods differ with regard to their suitability for actually distinguishing wild from
farmed (escaped) fish in the field. External marks may be lost or fade over time. Morphology
will often differ between wild and farmed fish. However, the differences are often small if the
fish has escaped early in the production cycle. Reliable determination of origin, based on
morphological variation, requires experience and handling of the fish. Adipose fin removal is
the only definitely visible and 100 % permanent marking method, as the adipose fin does
not regenerate.

Marking is commonly done by attaching a tag, either externally on the surface of the fish, in
tissue, or internally in the body. All marking procedures involve handling fish; this is stressful
to the fish, and/or may induce pain. All marking will therefore have an impact on fish
welfare. With most marking methods, the risk of reduced fish welfare decreases with time.

Tracing methods differ with regard to their suitability for being used to trace the marked fish
back to its origin, either on an individual level (a mark that identifies each fish) or the farm
level (a mark that identifies each farm).

In order to visually identify escaped fish and enable tracing back to the farm of origin, a
combination of both marking and a tracing method, with sufficient number of available
codes, is necessary. Visible marking methods, such as adipose fin removal, VIA tags, VIE
tags, freeze branding, or injection of pigments may be used for identifying the fish. These
can be combined with tracing using natural marks or the use of CW tags or PIT tags that,
with varying reliability, may enable both identification of a fish on an individual level or batch
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level and from where it originated. Chemical marking along with all types of natural marks
(i.e. scales, otoliths, biochemical or genetic composition in tissue) was evaluated as
representing the lowest risk of reduced fish welfare. However, these marks require analysis
after catch and sampling, in order to determine whether the fish is wild or farmed. All other
marking methods presented in this report represent a Aigh risk of reduced fish welfare

during or shortly after marking. This risk is reduced to moderate for most of the methods on
a long-term scale. Spraying of pigments and most externally attached tags remain a high risk
of reduced welfare, on both short-term and long-term scales.

VKM concluded that there are no combinations of marking and tracing methods that are
feasible without an increased risk of reduced animal welfare.

VKM also recognizes a number of uncertainties and data gaps related to how and to what
extent the different marking methods affect may fish welfare. For example, the functional
role of the adipose fin is still unclear, making evaluation difficult concerning how fin clipping
affects fish long term. It must also be emphasized that, regardless of the method used to tag
fish, there will always be higher risks of reduced fish welfare associated with large-scale
marking as opposed to small-scale marking. VKM therefore highlights the need for more
scientific documentation and suggests that marking methods should be tested in large-scale
trials.

Key words: VKM, risk assessment, Norwegian Scientific Committee for Food Safety,
marking methods, surgery, injection, natural marks, animal welfare, salmonid fish, tracing,
fish farming, escapes
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Sammendrag pa norsk

Mattilsynet har bedt Vitenskapskomiteen for mattrygghet (VKM) om en vurdering av risiko
for svekket dyrevelferd ved bruk av ulike metoder for merking og sporing, samt
kombinasjoner av disse, for oppdrettsfisk. Oppdraget er begrenset til atlantisk laks (Sa/mo
salar) og regnbuegrret (Oncorhynchus mykiss) i Norge. Det ble nedsatt en arbeidsgruppe
bestaende av medlemmer fra VKMs faggruppe for dyrehelse og dyrevelferd, eksterne
eksperter fra Havforskningsinstituttet og Norsk institutt for naturforskning samt fra VKMs
sekretariat. Faggruppe for dyrehelse og dyrevelferd har gjennomgatt og revidert et utkast og
godkjent den endelige risikovurderingen.

Remt oppdrettsfisk er et alvorlig miljgproblem. Oppdrettsfisk kan blande seg genetisk med
villfisk og derved true det genetiske mangfoldet i ville bestander. Remt fisk kan ogsa spre
sykdommer. Norske forvaltningsmyndigheter har som mal & forebygge remming og fjerne
remt oppdrettsfisk fra hav og elver. For & kunne nd malene er det avgjgrende & kunne skille
vill og oppdrettet fisk fra hverandre, og ha metoder som gjgr det mulig & spore den remte
fisken tilbake til oppdrettsanlegget den kom fra. Det har derfor veert diskutert om det skal bli
obligatorisk & merke all oppdrettsfisk. VKMs rapport vil danne bakgrunn for Mattilsynet nar
det skal ta stilling til hvilke merke- og sporingsmetoder som er mest anvendelige — bade i
forhold til kort- og langtidseffekter, sett i relasjon til Dyrevelferdsloven.

For & kunne na myndighetenes mal om merking og sporing ma det bade vaere mulig &
identifisere ramt fisk visuelt, og veere mulig a spore fisken tilbake til oppdrettsanlegget den
kom fra. Det finnes i dag ingen merkemetode som tilfredsstiller begge kravene.

Det finnes flere metoder for merking og sporing av store grupper av oppdrettsfisk. Hvor
anvendelige metodene er, varierer med hensyn pa om de er egnet til & skille vill og
oppdrettet fisk fra hverandre i naturen. Utvendige merker pa fisken kan ga tapt eller bli
usynlige over tid. Bruk av forskjeller i utseende mellom villfisk og oppdrettsfisk (f.eks.
finneslitasje) for & identifisere remt fisk vil veere ungyaktig for fisk som remte i en tidlig fase,
og palitelig identifisering pa bakgrunn av morfologisk variasjon krever erfaring og innebaerer
at fisken ma handteres. Fettfinneklipping vurderes som den eneste utvendige merkemetoden
som er helt tydelig og varig, ettersom fettfinnen ikke vokser ut igjen.

Merking kan gjeres ved at det festes et merke pa fisken, eller at det injiseres et merke enten
i vev eller ved implantering i bukhulen. Alle merkemetoder medfgrer at fisken ma handteres.
Handteringen vil i ulik grad stresse fisken og/eller forarsake smerte. Alle merkemetoder vil
derved ha en effekt pa fiskens velferd. Ved de fleste merkemetoder vil risiko for redusert
fiskevelferd reduseres over tid.

Sporingsmetodene har ulik anvendelighet, med hensyn pa i hvilken grad de kan brukes til &
spore fisken tilbake til oppdrettsselskap eller anlegg, eller kunne identifisere fisken pa
individniva.

For & visuelt kunne identifisere rgmt fisk og spore disse tilbake til oppdrettsanlegget de kom
fra, kan det veere ngdvendig & kombinere en merkemetode med en sporingsmetode som har
det ngdvendige antall tilgjengelige koder for hver gruppe eller individ. Synlige merkemetoder
som fettfinnefjerning, VIA-merker (ayemerker), VIE-merker, frysemerking eller injeksjon av
pigmenter kan kombineres med identifisering av naturlige merker eller bruk av CW tags
(snutemerker) eller PIT-merker som med varierende ngyaktighet kan brukes til & spore
fisken tilbake til anlegg eller utsettsgruppe. Kjemisk merking og ulike naturlige merker, som
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skjell, otolitter, biokjemiske eller genetiske markegrer i vev, er vurdert a gi lavest risiko for
redusert fiskevelferd, men krever prgvetaking og pafglgende analyse for & kunne avgjgre om
fisken er vill eller oppdrettet etter fangst. Alle andre merkemetoder som er inkludert i denne
rapporten, er vurdert & medfare Aay risiko for redusert fiskevelferd under eller like etter
merkingen. Risikoen er redusert til moderat for de fleste metodene nar effektene vurderes i
et lengre tidsperspektiv. Spraying av pigment og de fleste eksterne merker gir en Agy risiko
for redusert velferd, bade i et kort- og langtidsperspektiv.

VKMs konklusjon er at det ikke finnes kombinasjoner av merke- og sporingsmetoder som
ikke medfarer gkt risiko for redusert fiskevelferd.

VKM har identifisert en rekke usikkerheter og kunnskapshull knyttet til hvordan ulike
merkemetoder pavirker fiskens velferd. For eksempel er det fremdeles uklart hvilken
funksjonell rolle fettfinnen spiller. Dette gjer det vanskelig & evaluere langtidseffektene av
fettfinneklipping. Det ma ogsa understrekes at det - uavhengig av hvilken metode som
benyttes - alltid vil veere hgyere risiko for redusert fiskevelferd ved storskala merking enn
ved merking av mindre grupper. VKM understreker derfor at det er viktig a fremskaffe mer
vitenskapelig dokumentasjon pa utpreving av merkemetoder i stor skala for a kunne
evaluere om og i hvilken grad ulike merkemetoder pavirker fiskevelferden.
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Abbreviations and glossary

Abbreviations
BKD = Bacterial kidney disease

C&R = Catch and release

CNS = Central nervous system

CWT = Coded Wired Tag/Coded wire tagged

FA = Fatty acid

IMR = Institute of Marine Research

LA-ICP-MS = Laser ablation inductively coupled plasma mass spectrometry
NFD = The Ministry of Trade, Industry and Fisheries
NFSA = The Norwegian Food Safety Authority

NINA = Norwegian Institute of Nature Research
NMT = Northern Marine Technology

PIT = Passive integrated transponder

VIE =Visible implant elastomer

VIA = Visible Implant Alphanumeric

VKM = The Norwegian Scientific Committee for Food Safety

Glossary

Welfare = the quality of life experienced, integrated over the whole or a defined period of
life.

Welfare needs = requirements as perceived by the animals, i.e. as monitored by animals’
emotional/affective systems.

Welfare indicators = observable, measurable attributes of an animal and/or its environment
(e.g., water quality parameters) that are correlated with the focal animal’s welfare.

Animal-based welfare indicators = welfare indicators based on observations of animals
themselves, ranging from observations of health and morphology, behavior, and
performance, to physiological/biochemical samples. Also called outcome measures.

Resource-based welfare indicators = welfare indicators based on observations of
environmental conditions and available resources (e.g., water quality, food availability, and
safety). Management-based indicators (e.g., feeding system) are included or may sometimes
appear as a third category. Also called input measures.

Operational welfare indicators = welfare indicators that are feasible to use to assess welfare
on full-scale/commercial fish farms.
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Welfare assessment protocol = a collection of parameters/measurement points, usually
including both resource-based and animal-based indicators (covering health, behaviour
and/or physiology), and tailored to the specific assessment task.

Overall welfare assessment = making a science-based evaluation of the welfare of a selected

group of animals using a set of animal-based and resource-based welfare indicators, with the
intention of covering all of the animals’ welfare needs.
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Background as provided by the
Norwegian Food Safety Authority

Escaped farmed salmon is a serious environmental problem because it can interfere genetically
with wild fish in rivers. Genetic changes in wild Atlantic salmon populations, as a result of
interbreeding between wild and farmed conspecifics have been well documented. It is
generally accepted that farm escapees represent a significant threat to the genetic integrity,
and the long-term evolutionary capacity of recipient wild salmon populations. In order to
reduce the number of escapees, there is a need for robust methods to trace escapees back to
their origin. This requires both catch strategies, marking and tracing methods.

The government administration's goal is primarily to prevent escapes, but also to remove as
much as possible of the escapees. In this context, it is important to find out where the fish
have escaped from. Therefore, it is a political desire to consider tagging all farmed fish, cf.
Stortingsmelding nr. 12 (2001-2002). Tagging of farmed salmon will make it possible to
differentiate wild fish from escaped farmed fish and at the same time could trace escaped fish
to the farm it came from.

The Norwegian Government wants to put into practice the principle that the fish farm that is
responsible for the escape is also responsible for covering the expenses of cleanup/fishing
escapees. The Ministry of Trade, Industry and Fisheries (NFD) points out that today it is not
possible to implement this because farmed fish are not marked or traceable. On this basis,
shall The Norwegian Food Safety Authority (NFSA) survey tagging and tracing methods for fish
and assess whether they are tested and found suitable with regard to animal welfare.

Current legislation

The aquaculture industry and investigation organizations have in recent years developed new
methods for marking and tracing farmed fish. The NFSA is uncertain whether these methods
are tested and found suitable with regard to animal welfare, cf. § 8 of the Act of 19 June 2009
No. 97 of Animal Welfare (Animal Welfare Act). In addition, whoever is marketing or selling
new methods, equipment and technical solutions for use on animals or livestock shall ensure
that these are tested and found suitable with regard to animal welfare.

Paragraph 8 in the Animal Welfare Act implies that the person using methods and equipment,
and who markets and sells new methods and equipment, is responsible for ensuring that they
are justifiable for use. It must also be considered to what extent such testing of new methods
application is required in accordance with the Regulations of 15" of January 1996 nr. 23 on
experimental animals.

The Animal Welfare Act allows marking of animals so long it is performed in a justifiable way
in relation to animal welfare, cf. § 9. The provision includes methods for examination and
diagnosis, vaccinations, drug therapy, surgery and other therapeutic methods. Surgery is
defined here as treatment that involves perforation of the skin or mucosa, as well as crushing
of tissues. The term includes as well acupuncture and injections, and other perforation of skin
associated with vaccination, sampling and administration of drugs and fluids. Most fish marking
methods fall into this category.

When tagging animals, appropriate methods shall be used that do not cause the animal
behavioral limitations or unnecessary stress and strain, cf. § 10 of the Animal Welfare Act. The
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preparatory works for the Animal Welfare Act (Proposition 15 (2008-2009)) states on labeling:
“Labeling is defined as change of body shape or location of objects on the animal to easily
identify the animal, gaining knowledge about who is its owner etc. or to register where the
animal is located”. This provision must be seen in conjunction with the statutory provision
regarding medical and surgical treatment.

Marking of fish is also mentioned in the Regulations on 17 June 2008 no. 822 concerning
abattoirs and processing plants for aquaculture animals (Aquaculture Operation Regulations).
According to 8 31 Aquaculture Operation Regulations:

“Surgical intervention and removal of body parts from live fish is forbidden”.

The provision in the first paragraph is not to prevent marking which does not cause
fish behavioral limitations, damage or unnecessary stress or that a veterinary
surgeon is performing operations for fish health reasons.”

The term "intervention" in the first line also includes implants. Use of marking implant must
therefore be in accordance with the provision requirements.

Paragraph 20 in the Aquaculture Operation Regulations provides clear documentation
requirements for new methods and technical solutions. This documentation requirement is
targeted towards the user. This means that the enterprise that is responsible for the fish also
has a duty to ensure that the method/equipment is documented justifiable from an animal
welfare point of view.
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Terms of reference as provided by the
Norwegian Food Safety Authority

The Norwegian Food Safety Authority (NFSA) requests the Norwegian Scientific Committee for
Food Safety (VKM) to undertake a risk assessment of welfare implications of the different
marking and tracing methods, and combinations thereof, for farmed fish and fish for
cultivation. With farmed fish and fish for cultivation, we mean Atlantic salmon (Sa/mo salar)
and rainbow trout (Oncorhynchus mykiss).

The NFSA requests VKM to answer the following:

1. How do the described marking methods affect the welfare of farmed fish and fish for
cultivation? Special attention should be given to the following risk factors:
a. The skills of the person marking the fish.
b. The procedure/technique used, along with post-operative complications and
pain management.
c. Factors that may affect achieving good welfare, f. ex., when shall marking
methods used, environmental factors etc.
d. The marking method, i.e.,:
i. Suitability in relation to the fish size.
ii. Suitability for large-scale tagging.
iii. Pain or discomfort it causes.
iv. Reliability and durability of the marking device.
v. Risk of losing the marking device.
vi. s there a risk for at the marking device or the procedure:
e Limits the fish's natural movements or changes fish's behavior.
o Causes injuries or diseases.
e Causes mortality. If possible state estimated mortality percent.
e. Describe possible mitigation measures

2. Is there a risk of negative welfare implications when using the described tracing
methods for farmed fish? If yes,
a. Describe the risk.
b. Describe possible mitigation measures.

3. Which combination of marking and tracing methods are feasible in practice without an
increased risk of reduced animal welfare?

4. Which consequences for fish welfare have the different combinations of feasible
marking and tracing methods?
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Assessment

1 Introduction

1.1 Literature

Literature searches were conducted using ISI Web of Knowledge, Google Scholar, and by
searching data archives at the Institute of Marine Research (IMR) and the Norwegian
Institute of Nature Research (NINA). No restrictions were set on date of publication or
language of articles. Individual members of the working group also provided literature that
was, if relevant, included in the report, based on their expertise on the topic.

For handling-related welfare effects, Boolean searches were used containing the following
keywords (or different combinations of): handling, surgery, injection, fish, effect, and stress.

Boolean searches were used for different types of marking methods containing the keywords
(or different combinations of): marking, fish, effect, stress, pain, adipose fin removal,
chemical marking, freeze branding, Carlin tag, Floy tag, T-bar tag, Visible Implant tag,
Passive Integrated Transponder tag, Coded Wire tag, pigment injection, and spraying
Pigment.

For tracing of origin based in natural markers, Boolean searches were used containing the
following keywords (or different combinations of): catch, release, scale, otolith, DNA stand-
by, lipids, fatty acid, and earth elements.

1.2 Fish welfare

The value of animals, and their worth in relation to human interests have been discussed
throughout history. Animal welfare science explores and evaluates the welfare of animals,
and the ethics perspective is necessary to decide which levels of welfare level are
satisfactory. Those conditions that are regarded as acceptable for animals and those
conditions that are regarded as unacceptable will depend on societal factors and thus vary
among cultures and over time. The word “welfare” probably originates from the old Norse
word “vel ferd”, meaning “good journey”. In the context of animal welfare, this expression
implies an animal’s “good journey” through life or over a selected production period; e.g.,
the period in which salmon are kept in sea cages, or the time at slaughter. In order to be
able to experience a “good journey” or a “bad journey”, an animal must have a sentient
gualitative experience of life. The term “animal welfare” is therefore considered meaningful
only to animals with a central nervous system (CNS) that enables the animal to have
subjective and conscious emotional experiences. Sentience is also the key characteristic that
determines whether a species or life stage is protected by the The Animal Welfare Act.

In Norway, all vertebrates, cephalopods, decapods, and honeybees have been considered to
be encompassed within the moral circle and are included in The Animal Welfare Act.
However, there is no scientific consensus or exact knowledge on which branches of the
phylogenetic tree should be described as sentient beings. This is not surprising, given that
even for humans we are still unable to explain consciousness and how it emerges from the
multitude of electric and chemical signals in the brain-body axis. Even when some doubt
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exists, and we choose to treat an animal species (like salmon) as non-sentient, then the
potential for enormous consequences in terms of suffering for an immense number of
individuals should the assumption be wrong, prompts us to apply the precaution principle
and act as if, despite any doubts, the species is sentient (Lund et al., 2007).

From an evolutionary point of view, sentience, emotions, and the ability to feel pain are
characteristics that have evolved and provide attention, quality, and meaning to the sensory
signals, and motivation to, and flexibility of the behaviour needed to fulfil an individual’'s
needs, e.g., to seek food and protection. In an ever-changing environment, the ability to
learn how to predict where to find food and how to avoid dangers is a great advantage. In
order to be able to learn to predict the outcome of actions, an animal must have an
evaluation system for success or failure. This is provided by the emotional “reward systems”
in the brain, where successful coping is rewarded by good feelings (wellbeing, excitement,
joy, comfort, good taste, etc.) and results in good welfare. In contrast, poor welfare, and
learning from mistakes, arises from unsuccessful coping and ill-health, and is punished by
the punishment systems (suffering, fear, pain, discomfort, etc.) (Spruijt et al., 2001; Duncan,
2005.).

Over the past few decades, animal welfare science has become a substantial part of the
science related to farm animal production, including fish farming. The concept of animal
welfare is referred to in thousands of papers ranging from molecular biology to animal
ethics. However, the concept is rarely defined or used in a systematic or rigorous way, and
different disciplines in animal welfare science use the concept in different ways, where
welfare can include both the state of an animal and their living conditions. There is currently
no consensus regarding the preferred or “correct” definition and conceptual clarity is lacking.
Nevertheless, the relevant definitions centre around one or combinations of the following
three approaches (Fraser, 2009; Duncan and Fraser, 1997): Biological functioning -
emphasizing health, normal development and growth/production, bodily homeostasis and
the ability to cope with the environment; Affective states/feelings - emphasizing the
presence of positive feelings and lack of suffering; and ANatural /iving - emphasizing that the
animals can live reasonably natural lives and have the possibility of performing a repertoire
of species-specific, motivated behaviours. For farmed fish, and especially when considering
farm operations or procedures such as tagging, the first two approaches are more relevant.
However, restricting the use of the term welfare to the overall emotional experience created
by the CNS and conveyed through endocrine systems provides conceptual clarity and
anchors the welfare concept to evolved neuro-biochemical processes occurring in individual
animals, causing them to experience a certain quality of life (Torgersen et al., 2011). Factors
like biological functioning and living conditions also affect an animal’s welfare and are useful
welfare indicators. This is explored further below.

In the report on the needs for animal welfare research in Norway (The Research Council of

Norway 2005) the following definition of animal welfare was adopted: Animal welfare is an

individual’s subjective experience of its mental and physical state, as regards its attempt to
cope with its environment. This is an expansion of Broom’s definition (Broom, 1986), which
emphasizes that welfare is a property of an individual, and that it addresses this individual's
subjective experience of its state as the balance between positive and negative perceptions
(Spruijt et al., 2001; Damsgard et al., 2006).

The International Association for the Study of Pain defined human pain as ‘An un-pleasant
sensory and emotional experience associated with actual or potential tissue damage, or
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described in terms of such damage’ (IASP, 1979, p. 249). However, although full consensus
is lacking (see Rose 2012; Key 2016 and following discussion: Animal Sentience.
http://animalstudiesrepository.org/animsent/), there is growing evidence that teleost fish are
sentient beings and thus able to experience states of welfare. Furthermore, fish fulfil the
following criteria for pain perception (Sneddon, 2003; Chandroo et al., 2004; Braithwaite,
2010; Sneddon et al., 2014):

e Fish have nociceptors, both myelinated “fast” A delta fibers and unmyelinated C
fibres, in the skin.

e There is evidence of central processing of nociception in fish involving brain areas
that regulate motivated behaviour (including learning and fear), and the nociceptive
processing is sensitive to endogenous modulators (opioids).

e Fish possess the functional equivalents of the limbic and dopaminergic nervous
systems as in other vertebrates. These systems are linked with emotion, memory,
spatial relationships, primary consciousness, reward, cost-benefit estimation and
decision-making.

¢ Nociception in fish activates physiological responses like changes in respiration, heart
rate, or hormonal (e.g., cortisol) levels.

e Fish pay selective attention to noxious stimuli, whereby the response to a noxious
stimulus has high priority over other stimuli and the animal does not respond
appropriately to concurrent events (e.g., presentation of predator; reduced
performance in learning and memory tasks).

e Fish demonstrate avoidance learning, i.e. show alterations in behaviour over the
longer term that reduce encounters with the stimulus, and show long-lasting changes
in a suite of responses, especially those related to avoidance of repeat noxious
stimulation.

1.2.1 Welfare indicators

As it is not possible to measure an animal’'s own experiences (feelings) directly, measurable,
validated, and scalable indicators of the animal's welfare are required. Welfare indicators are
often categorized as “animal-based” or “resource-based” measures, alternatively named
“outcomes” and “inputs”. Animal-based indicators (the outcomes) are measured on the
animal itself, and may comprise measures of health/morphology, physiology, and behaviour.
Examples in fish include body condition score, fin damage, skin ulcers, gill health, stress
hormone levels, opercular ventilation rate, swimming behavior, and aggression. Resource-
based indicators (the inputs) are measures of the resources offered to animals, and also
include management (management is sometimes categorized as a third category). Examples
for fish include water quality parameters (temperature, Oz, CO2, ammonia, particles, etc.),
water current, light and light programs, enrichment items (e.qg., hiding places for cleaner
fish), tank or cage size and design, stocking densities, feed and feeding method, number of
handlings and methods used, etc.

If we consider the experience of welfare as an animal’'s own assessment of fulfilment of its
needs, then objective assessment of the fulfiiment of an animal’'s’ needs should provide a
reasonable indication of its welfare. One example is the “four welfare principles” suggested
by the Welfare Quality-® project: good feeding, good housing (or living environment), good
health, and appropriate behaviour, all accompanied by 2-4 specific welfare criteria. For
instance, the criteria for health include: absence of injuries, absence of disease, and absence
of pain induced by management procedures. In order to be able to measure welfare, welfare
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indicators are needed. For a measure to be called a welfare indicator, it should be valid, i.e.,
it should be correlated with the welfare status of the animal, or, more specifically, to the
stated principles/criteria. Welfare indicators should be reliable in the sense that inter- and
intra-observer variability, or scoring of test-retest variability, should be low. Furthermore,
indicators should be feasible, i.e., practical and not too costly to use. Operational indicators
are measures that may be used on farm, as checkpoints and as tools for daily management.
By using a protocol comprising of welfare indicators that cover the criteria and principles, an
overall welfare assessment may be performed.

The Salmon Welfare Index Model, a method for overall welfare assessment of Atlantic
salmon based on the theory of semantic modelling (Bracke et al., 1999) has been developed
by Stien and colleagues (2013), using both animal-based and resource-based welfare
indicators. This method has been expanded to include welfare indicators to be measured by
fish health services (Pettersen et al., 2013) and has been evaluated at 10 different fish farms
(Folkedal et al., 2016).

The aim of the present risk assessment is to assess if and how various marking and tagging
methods for fish may have any negative impacts on the welfare of farmed Atlantic salmon
and rainbow trout, in both the short-term and long-term. (Short-term is defined as length of
time ranging from minutes (during the handling/marking procedure) to weeks, depending on
how fast the wound heals post-operation. Long-term is defined as length of time beyond this
point, possibly lasting for years until death.) The tagging procedure, which generally
requires the fish to be taken out of water, will impact on the animal’s stress levels and their
perception of fear and pain during and shortly after the process. The marking procedure will
last for seconds or minutes, depending on whether this is done in conjunction with
vaccination and measurements, and the post-operation period, with accompanying pain and
malaise, may last for hours or days. Apart from during this relatively short aversive period,
the marking procedure will have little impact on fish welfare over time. However, we are
concerned about the risk of a potential long-lasting effect. A method may be associated with
longer-lasting side-effects, such as an increased risk of inflammation or infections, impacts
on the ability to swim/manoeuvre, competitiveness, or increased fearfulness. Depending on
these factors, marking/tagging will have varying effects on fish welfare integrated over the
whole production period. For this risk assessment, the short-term and long-term welfare
consequences are described separately.

1.3 Production of salmonid fish in Norwegian aquaculture

Norway is the leading country globally in the production of Atlantic salmon, Sa/mo salar, and
rainbow trout, Oncorhynchus mykiss, with a standing stock of 375 million salmon and 25
million rainbow trout in the sea in 2014. The annual production of Atlantic salmon has
gradually increased over the last decades, reaching around 1.3 million tonnes in 2015. In
order to achieve this production volume, an estimated 281 million smolts were released into
net pens in 2014. In comparison, the registered landed catch of wild Atlantic salmon in 2015
was 56 237 individuals in the sea and 160 237 fish in the rivers (Statistisk sentralbyra), i.e.,
only around 0.1 % of the salmon harvest in Norway consists of wild fish.

There is also an annual production of approximately 70 000 tonnes of rainbow trout in sea
cages. A few farms produce a total of around 500 tonnes of Arctic char, Salvelinus alpinus.
There are also numerous small hatcheries producing salmon and brown trout, Sa/mo trutta,
for restocking of rivers and freshwater lakes.
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1.4 Escapes

There is increasing evidence that escaped farmed salmon may threaten native and
potentially locally adapted wild salmon populations through interbreeding and competition
(e.g., Hindar et al., 1991; McGinnity et al. 2003; Garcia de Leaniz et al., 2007) and spreading
diseases (Madhun et al., 2015). Farmed salmonids escape at all life stages. Most of the
reported escape events are largely due to technical and operational failures of farming
equipment during the marine farming phase (Jensen et al., 2010). Large-scale escape events
are more common during the autumn months when coastal storms are most frequent and
intense, resulting in structural damage to farm equipment (Jensen et al., 2010). However,
farmed salmon also escape during the land-based production phase, and Jensen et al.
(2010) found that 11% of reported escape events occurred from smolt production facilities.

Fish farmers have a legal obligation to report escapes to the authorities. According to the
statistics made available by the Directorate of Fisheries (www.fiskeridir.no), 160 000 salmon
were reported to have escaped in 2015. However, not all escape events are reported, and it
is believed that smaller unnoticed or unreported escapes (so-called trickle escapes) make up
a significant proportion of escapes not included in the official statistics. It has been estimated
that the true number of fish escaping from net pens may be two to four times the reported
number (Skilbrei et al., 2015).

Escaped farmed salmon can migrate very long distances, even over relatively short time-
periods (Hansen et al., 1997; Milner and Evans, 2003; Skilbrei et al., 2010). It has been
shown that a significant number of fish farm escapees return to (or never leave) coastal
areas in the summer and autumn of each year, on their way to enter rivers in part of their
spawning migration (Lund et al., 1991; Webb et al., 1991; Crozier, 1993; Walker et al.,
2006). Escaped farmed salmon have been systematically registered in catches, both from the
sea and from rivers, since 1989 (Diserud et al., 2013; Fiske et al., 2014; Anon, 2015). From
2014, a national monitoring programme has coordinated the efforts of several agencies for
monitoring escaped farmed salmon in more than 140 rivers in Norway (Anon, 2015).
Identification of escaped salmon is commonly based on morphological characteristics and
analysis of scale-growth patterns (Lund et al., 1991; Lund et al., 1989).

The proportion of escaped salmon in recreational fisheries during the summer months has
been relatively stable the over last 10 years, and has varied between 3-9 % (Anon, 2016). In
2015, the proportion was 3.4 % in 98 examined rivers, which was somewhat lower than in
2014 when 5.4 % of the recreational catches was escaped salmon (Anon, 2016). The
proportion of escaped salmon has, however, been higher in out-of-season surveillance
fisheries carried out during the autumn months, for which 9.1 % of the salmon captured in
2015 was farmed (Anon, 2016). This is mainly due to escaped salmon entering the rivers
later in the season than wild salmon, as well as a higher probability of capturing escaped fish
on sports-fishing gear. Escaped salmon found in the rivers may have originated from multiple
sources (potentially farms located along the entire coastline), and this complicates the
identification of the source of the escaped fish.

1.5 Methods for marking fish

Marking or tagging fish involves attachment of some kind of external or internal
object/material, or removal of body parts that will not regenerate during the remaining
lifetime of the fish, in order to enable subsequent identification at the individual level or as
belonging to a group. The purpose of fish marking is often to recognize, trace, or track the
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fish in research or monitoring activities (reviewed by Hastein et al., 2001). In this section,
methods for marking fish that have the potential to be used for recognizing and identifying
farmed salmonids in nature are reviewed. The aim is not to give a full review of the myriad
of fish tags and marking methods that have been developed during the last century, but to
summarize the most relevant tags and methods that may be used for mass marking of
farmed salmon and trout (Figure 1.5-1). The review serves as a background for subsequent
evaluation of how these methods could affect fish welfare.

Externally attached visible tags

£ T2

Visible implant tag Adipose fin removal

Coded wired tag

PIT tag

Figure 1.5-1 lllustration of various marking or tagging techniques in fish (S. Mortensen, Institute of
Marine Research).

1.5.1 Adipose fin removal

The adipose fin is a small, hon-rayed fin, looking like a flap of tissue between the dorsal and
caudal fin, found in salmonids and in approximately 6000 ray-finned fish species. Adipose
fins lack the endoskeleton, dermal skeleton, and associated musculature that characterize
the other fins found in extant fishes. Instead, adipose fins tend to be passive structures,
supported by rods of collagen oriented along the proximodistal axis of the fin called
actinotrichia, which sandwich a sub-dermal space composed of either adipose tissue, as in
some siluriformes (catfishes), or a non-adipose tissue, loosely termed ‘connective matrix’ as
in salmonids (Stewart et al., 2014). Thus, despite its name, the adipose fin in salmon
contains no fat. The apparently rudimentary anatomy of adipose fins inspired a long-
standing hypothesis that these fins are vestigial and lack function. However, fossils do not
support this hypothesis. Within ray-finned fishes, structurally elaborated, second dorsal fins
(i.e., with dermal skeleton, endoskeleton and associated musculature) are found almost
exclusively within the Acanthopterygii (spiny-finned fishes), which lack adipose fins (Mabee
et al., 2002). Stewart and colleagues (2014) used phylogenetic and anatomical evidence to
demonstrate that adipose fins originated repeatedly. This suggests that adipose fins are

VKM Report 2016: 67 20



adaptive, although the details of their function are not yet resolved. One hypothesis
suggested by Reimchen and Temple (2004) is that the adipose fin might play a role as a
precaudal sensory organ. When examining the subdermal space of the adipose fin they
found innervated tissue that contained many star-like astrocyte cells that are commonly
found in the spinal cord and the brain (Buckland-Nicks et al., 2012), supporting the
precaudal sensor hypothesis. Recently, Aiello et al. (2016) published a study on the catfish,
Corydoras amens, in which neural activity, recorded from nerves that innervate the adipose
fin, was shown to encode information on both movement and position of the fin membrane,
including the magnitude of fin membrane displacement. The authors of this study concluded
“that the adipose fin of C. amens is medianosensitive and has the capacity to function as a
“precaudal flow sensor”.

The function of fins is generally propulsion and precise manoeuvering in the water. In
addition, various displays of the fins and body may also be used as signalling tools between
individuals during sexual courtship or other social interactions, and some fins even function
as taste organs. In mature salmon males, the adipose fin becomes enlarged and is believed
to play role in courtship, with females selecting males with larger adipose fins to mate
(Westley et al., 2008). Thus, although the adipose fin has been believed to be a vestigial
(degenerated) structure with no function, and therefore loss of the adipose fin should
therefore have no disadvantages for the fish and should not cause any ethical dilemma.
However, the information above tends to contradict this belief, and suggests that the
adipose fin is a functional organ (Buckland-Nicks et al., 2012; Stewart et al., 2014). The
ethics if removing a functional organ by clipping adipose fins is therefore debatable

Figure 1.5.1-1. Clipping of adipose fin in Atlantic salmon parr (S. Mortensen, Institute of Marine
Research).

Clipping or surgical removal of whole or parts of the fins are probably the most used
methods for identifying groups of fish (Figure 1.5.1-1). These are very cheap, quick marking
methods compared with most other methods (Hammer and Blankenship, 2001), and require
only a small pair of surgical scissors and minimal training. Identification of a tagged fish is
also quick and easy. In salmonids, clipping the adipose fin is most common, and has been
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used to mark billions of hatchery-reared fish that are released into the wild for stock
enhancement and sea ranching in many parts of the world. In Washington State, USA,
around 200 million hatchery reared chinook, Onchorynchus tshawytscha, and coho salmon,
O. kisutch, are fin clipped and released annaully (
http://wdfw.wa.gov/hatcheries/mass_marking.html). Fin clipping is mainly done manually by
cutting the fin of anaesthetized salmon parr or smolts using a small pair of curved scissors; a
trained operator can mark up to 8000-10000 fish a day (Kristiansen and Skilbrei , 2012,
Mortensen et al., 2013). For Pacific salmon, Onchorhyncus sp, an automatic adipose fin
cutter has been developed that has better clip quality than hand-clipped fish (Northern
Marine Technology (NMT) Inc, http://www.nmt.us/products/afs/afs.shtml) (Hand et al.,
2010).

Clipping of other fins has also been used to mark groups of fish (e.g., family groups) in stock
enhancement, scientific experiments or by breeding companies (e.g., Gjerde and Refstie
1988; Dietrich and Cunjak 2006; Peterson et al., 2014). Mass marking of farmed salmon by
adipose fin clipping or other fin clipping, could be used to distinguish farmed from wild fish,
but for further identification of escape location or owner of the fish this method would need
to be combined with other marking methods with more unique codes.

Many studies have shown that adipose fin clipping is the best method for obtaining a
permanent mark (Petersson et al., 2014) and has no significant effect on growth and survival
(Gjerde and Refstie, 1988; Johnsen and Ugedal, 1988; Stauffer and Hansen 1969;
Vincentlang, 1993; Petersson et al., 2014). Most published studies have compared return
ratio and growth rates of tagged and untagged fish released for stock enhancement and sea
ranching. In a study in which more than five million tagged chinook salmon were released
from four hatcheries in three different years, Vander Haegen et al. (2005) compared adipose
fin-clipped and coded wired tagged (CWT) fish with otolith-marked fish. They found no
significant effects of CWT or adipose fin clipping. In the river Imsa in western Norway,
Hansen (1988) found lower return rates for CWT and adipose fin-clipped wild Atlantic salmon
smolts, but the reduced recapture rates were attributed to the anaesthesia and handling
process, rather than the marking per se.

An important issue when using fin clipping is that some fins may regenerate, especially if
only parts of the fin are clipped. The adipose fin is most suitable for long-term studies as it
shows least regeneration, followed by the pelvic fins (Armstrong, 1949; Stauffer & Hansen,
1969; Weber and Wahle, 1969; Johnsen and Ugedal, 1988). Pectoral fins and the anal fin
regenerate more quickly, and are probably not suitable for marking intended to last more
than one year.

1.5.2 Freeze branding

Freeze branding is applied by pressing a metal bar, bearing a identifying design and cooled
to sub-zero temperatures, to the body of a fish (Guy et al., 1996). Branding causes the skin
to scar in the shape of the branding symbol, and pigment is either concentrated or displaced
at the branding site (McFarlane et al., 1990). The fish are anaesthetised before branding.
Various agents may be used to cool the metal bars, such as liquid nitrogen, compressed COx,
dry ice and Freon. Different patterns can be used to distinguish between only a limited
number of groups. The marks may be visible for years, but generally branding is a short-
term mark that becomes less legible as the fish grows (Guy et al., 1996). A Norwegian
commission that evaluated methods for identification escaped farmed salmon did not
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evaluate freeze branding as a potential methid for mass marking of farmed salmonids
(Merkeutvalget, 2004). Due to the low number of unique codes and the instability of the
mark, Mortensen and colleagues (2013) concluded that freeze branding was probably not a
realistic solution for marking farmed salmon.

1.5.3 Externally attached visible tags

These tags comprise a range of visible markers that are attached to the fish by puncturing
the skin and using one or two metal or monofilament wires, that traverse the fish body, to
affix the tag (Guy et al., 1996). Alternatively, the tags can be affixed with a single wire with
an intramuscular anchor, without traversing the body of the fish. Externally attached visible
tags are one of the oldest and extensively used fish marking techniques, and examples of
such tags are T-bar anchor tags, Dart tags, Spaghetti tags, Disc tags, Operculum tags,
Streamer tags, and Carlin tags (Jacobson, 1970; MacFarlane et al., 1990, Hammer and
Blankenship, 2001, www.floytag.com, www.hallprint.com). External tags are often used for
marking salmonid fish in studies mapping their distribution and dispersal following some kind
of experimental treatment or simulated escape from fish farm facilities. The external tags
usually have a printed number code on one or several sides, and the number of unique
codes typically varies from thousands to tens of thousands, although the potential number of
codes could be almost infinite. The most common tags that may be used for mass marking
of farmed salmon are Carlin -tags and Floy/T-bar tags. Carlin tags are small plastic plates
with a printed number code, which are attached to the fish by inserting two metal wires
through the body of the fish immediately below its dorsal fin (Carlin, 1955). Carlin tags are
fixed by crimping the two ends of the wire together. Floy/T-bar tags are internal anchor
tags, that may be inserted into the musculature or body cavity by using a semiautomatic
tagging gun (Gutherz et al., 1990). In salmonids, such tags are usually implanted just below
the dorsal fin and they penetrate only one side of the fish. The anchor side of the tag is T-
shaped. In Norway, external tags have been used to investigate migration of wild and
escaped farmed fish, fishing mortality, population sizes, and efficiency of stock enhancement
(e.g. Jacobsen, 1970; Svasand et al., 2001, 2004; Skilbrei and Jgrgensen, 2010). In addition,
individually numbered tags have been used in controlled experiments for individual
recognition. Carlin tags have been used to study migrations of Atlantic salmon in the ocean
and their return to the rivers, and many studies have used Floy anchor tags.

Merkeutvalget (2004) concluded that Carlin tags- and Floy/T-bar tags were not suitable for
identification of escaped farmed salmonids due to logistic, economic, and fish welfare
concerns.

1.5.4 Visible internal tags

Visible internal tags comprise several types of tags that are inserted or injected under the
epidermis of the fish. They are visible for various periods following implantation, either by
naked eye or by using additional light sources. Here, we consider three visible internal tag
types that could be used for mass marking of salmonids; Visible Implant Elastomer tags
(VIE), “pigment” tags and visible implant aljphanumeric (VIA- or eye tags) fags.

Visible Implant Elastomer (VIE)
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Visible Implant Elastomer (VIE) is a two-component, silicone based-material that is mixed
immediately before use and that is injected as a liquid that soon cures into a pliable,
biocompatible solid (http://www.nmt.us/references/vie.shtml). The tags are implanted
beneath transparent or translucent tissue. VIE is available in 10 different fluorescent and
non-fluorescent colours. The tags are visible under ambient light, but tag detection is
enhanced if the fluorescent tags are illuminated with UV-light. Different colours and tag
positions may be used to identify several group or batch codes. VIE tags have been
implanted in various body locations in salmonids (Bailey et al., 1998; Olsen and Vollestad,
2001; Walsh and Winkelman, 2004), with retention and visibility being best when the
elastomer is implanted in the adipose eye tissue (Close and Jones, 2002; Fitzgerald et al.,
2004). Problems with reading the tags have been reported, as it is difficult to distinguish
between some colours and because the tags may become less easily to identify as fish grow
(Lipsky et al., 2012). As with freeze branding, VIE tags were not evaluated as a potential
method for mass marking of farmed salmonids by the Norwegian commission that evaluated
methods for identification of escaped farmed salmon (Merkeutvalget, 2004). Although a
higher number of unique codes can be achieved by using VIE tags than with branding, the
number will still be too low to allow secure tracing of an individual fish back to its farm of
origin. Furthermore, the temporal instability of the VIE marks also restrict their applicability
and therefore VIE tags were not recommended for mass marking of farmed salmon
(Mortensen et al., 2013).

Pigment tags

“Pigments” used for marking include dyes, stains, inks, and paints, as well as microscopic
plastic chips, that are applied by immersion, spraying, injection, or tattooing (McFarlane et
al., 1990; Guy et al., 1996). These tags are injected under the epidermis, and therefore they
may be considered as being internal tags. In the same way as for branding and VIE-tags,
pigments tags may be used to identify several groups or batch codes. Pigment tags are
easily visible during the initial months after tagging, but long-term detectability depends on
the material and application method. To our knowledge the potential for using pigment tags
for mass marking of farmed salmon has not been assessed in detail, but the applicability of
the method will most likely be limited due to the same factors as for branding and VIE tags.

Visible implant alphanumeric tags (eye tags)

These tags are small (2.5/3.5mm x 1/1.5 mm) flat, rectangular tags that are implanted
under transparent tissue (Bergmann et al., 1992). The tags may be numbered to facilitate
individual recognition of some hundreds or thousands of fish (Haw et al., 1990). In
salmonids, such tags have been implanted below the transparent tissue posterior to the eye,
and have therefore been referred to as “eye-tags” Tag retention for visible implant tags is
low and it is reasonable to expect tag loss of between 30 % and 50 % (Merkeutvalget, 2004
#28). Merkeutvalget (2004) also concluded that visible implant tags are not suitable for
identification of escaped farmed salmonids due to logistic and economic concerns.

1.5.5 Remotely detectable internal tags

Remotely detectable internal tags are electronic or magnetic tags that are implanted into the
fish, but are invisible following insertion. Since the tags are either magnetic or electronic,
they can be detected with an appropriate detector. Two types of remotely detectable internal
tags may be used for mass marking of salmonids; Passive Integrated Transponder (PIT) tags
and Coded Wire Tags (CWT).
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Passive Integrated Transponders (PIT-tags)

A PIT-tag is a small electronic microchip encased in a biocompatible glass tube (Thorstad et
al., 2013; Guy et al., 1996; Gibbons and Andrews, 2004). The tag requires an external
energy source to be activated. Once activated the tag relays a unique code to a detector.
PIT-tags can be injected into the body cavity or muscle of the fish with a hand-held
semiautomatic tag injector. Although there is the potential for developing automatic
injectors, such systems are presently not available. A range of detectors, including hand-held
models, automatic tubular versions, and antennaes covering the entire width of rivers, has
been developed. The length of the tags typically varies from 8 to 23 mm, while the diameter
is a couple of millimetres. Due to their small size, PIT-tags can be used to tag fish down to 5
cm (Thorstad et al., 2013). The detection range increase with tag size, but is typically less
than one meter. The tags can be coded with billions of unique codes. At present, several,
partly incompatible, PIT-tag systems are commercially available. PIT-tags have been used in
numerous studies on fish dispersal, movements and behaviour during the last decades and a
large body of literature on the functionality of PIT tags exists (Cooke et al., 2013).
Merkeutvalget (2004) concluded that PIT-tags (approximately 1.5 Euro per tag in 2016)
would be too expensive be a suitable tag method for mass marking of farmed salmon.
However, prices are expected to fall, especially for long-time contracts that concern millions
of tags. Furthermore, the use of PIT-tags also represents practical challenges in large,
commercial-scale farming. The transponders are embedded in a glass cylinder that may
break during gutting and processing of fish at the slaughter plant, if they have not been
removed beforehand.

Coded wire tags (CWT) (shout tags)

CWT are small pieces of magnetized stainless steel wires (0.25 mm in diameter, 0.5 — 2.2
mm in length) that are injected hypodermically using a range of different tag injectors, from
simple, hand-held devices to automatic injectors that are custom-made for tagging large
numbers of fish (Jefferts et al., 1963; see also NMT,
http://www.nmt.us/products/cwt/cwt.shtml). The tags can be coded with an almost infinite
number of unique codes, branded into the wire with laser technology. Due to their small
size, fish down to a few centimetres may be marked with CWT. The presence of a tag can be
detected using a magnetic sensor, but the tag has to be dissected out of the fish before the
tag number can be read under a microscope. This means that the fish must be killed before
the tag number can be read. Thus, the actual presence of the tag can be used to distinguish
between tagged and untagged fish without killing the fish, but the tag number can only
reveal the origin of the batch or individual after dissection. Salmonid fish are usually tagged
in the snout, and CWTs are therefore often referred to as snout tags for salmonids. The tag
retention is typically high in salmonids (Isaksson, 1978; Tipping and Heinricher, 1993;
Champigneulle et al., 1987). A commercial, mobile, and automatized system exists that
enables tagging and vaccination of millions of salmonid parr at the same time as the adipose
fins are clipped as visible markers that the fish is equipped with a CWT
(www.nmt.us/products/afs/afs.shtml). This system has been developed as a “swim in”
system for pacific salmonids, but has been found not to function for Atlantic salmon as they
behaved differently and did not swim towards the dark area and water current into the
marking unit. Merkeutvalget (2004) concluded that CWT was the most promising tag type for
mass marking of farmed salmon at the time that the report was written. However, it was
emphasized that the method would involve considerable logistic, economic and technological
challenges before being a realistic alternative for marking all or a specific proportion of
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farmed salmon in Norway. These challenges include construction of automatic tagging
machines that could be moved among smolt farms without risk of disease transfer,
establishment of a central tag database, and development of functional logistic solutions for
tagging and tracing of tagged fish in smolt farms and sea cages, as well for analysing
recaptured fish. In addition, if the heads of farmed salmon are to be used for fish-meal or
consumption, the small metal tag may represent a food safety issue.

1.5.6 Chemical marking

Chemical marking of fish for identification purposes has become an important tool in
fisheries management and research, and recent advances in molecular science and mass
spectrometry technology now allow routine application by fisheries scientists and biologists.
The principle behind chemical marking is that the fish is exposed to a chemical compound
(pigments, trace elements, or stable isotopes) by means of immersion, injection, or
ingestion, and this results in the compound becoming physiologically incorporated within the
fish on a more or less permanent basis (Guy et al., 1996). Thereafter, tissue samples may be
analysed with specialized equipment for detection of the chemical compound. Here we
briefly summarize two types of chemical marking: fluorescent and elemental.

Marking of otoliths with fluorescent pigments

Fluorescent pigments may be incorporated into calcified structures at early life stages by
immersion in a pigment solution for a short period. The most commonly used fluorescent
compounds are tetracycline, calcein, and alizarin red (Weber and Ridgeway, 1967;
Szedlmayer and Howe, 1995; Beckman and Schulz, 1996; Guy et al., 1996; Mohler, 1997 ;
Jones et al., 1999; Liu et al., 2009; Williamson et al., 2009; Smith et al., 2010; Wells et al,
2013). Fluorescent marking is also possible via the feed, but this method requires a longer
period of treatment (Odense and Logan, 1974; Hendricks et al., 1991). If taken up by
calcified structures, these compounds can be seen as fluorescent marks in scales, fin rays,
vertebrae, bones, and otoliths when using ultraviolet light under a microscope. The
immersion normally has minimal negative effects on fish welfare, although to improve dye
uptake the calcein-tagging technique requires a high salinity dehydration step prior to the
calcein bath. All the techniques may be applied on large numbers of eggs, larvae, or juvenile
fish. However, the fish must be killed and the otoliths dissected out before analysis. The
analyses do not require expensive equipment or a high level of expertise and may thus be
applicable under field conditions. To our knowledge, automatized equipment and
methodology that allow mass marking of fish with fluorescent compounds has not been
developed. The number of unique codes is also limited to the number of exposures to the
compound, as each exposure induces a separate ring in the otolith. Thus, it would probably
be difficult to create sufficient codes to be able to use them to trace escaped salmon to a
particular producer or an individual fish farm. The Norwegian commission that evaluated
methods for identification of escaped farmed salmon did not evaluate the use of fluorescent
compounds (Merkeutvalget, 2004).

Marking with trace elements and stable isotopes

Marking may also be performed by manipulating otolith chemistry using enriched stable
isotopes (Warren-Myers, 2015). Uptake of an isotope into the calcified structures of fish, like
otoliths, results in a detectable change in the relative concentration of the isotope compared
with the natural composition. Thus, artificial stable isotope ‘fingerprint’ marks can be created
when sufficient, but harmless, amounts of enriched isotope are introduced. The most
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relevant isotopes are those of Barium, Strontium and Magnesium (Warren-Myers et al.,
2014). Chemical marking with enriched stable isotopes can create unique single and multiple
markers with 100 % accuracy (Thorrold et al., 2006) and stable isotopes have been used
successfully to mark several fish species and ontogenetic stages (Williamson et al., 2009;
Thorrold et al., 2006; Munro et al., 2008; Smith and Whitledge, 2011). The isotopes can be
delivered via (1) transgenerational transfer, in which enriched stable isotopes that have been
injected into brood stock are passed on to the offspring (Thorrold et al. 2006; Kuroki et al.,
2010); (2) immersion of larvae or juveniles in an isotope-enriched solution (Schroder et al.,
1995; Smith and Whitledge, 2011; Wickstrom and Sjoberg, 2014); or (3) via isotope-
enriched feeds (Ophel and Judd, 1968; Behrens-Yamada et al., 1979; Woodcock et al.,
2013). It has also been shown that such marking may be accomplished by incorporating the
marker in an injected vaccine (Warren-Myers et al., 2014). As with the use of fluorescent
compounds, a suspect fish has to be killed and the otoliths dissected out before analysis. The
levels of isotopes in various regions of the otoliths can be measured using high-resolution
laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) (Thorrold et al.,
2006). A recent study, in which the potential for using the methodology in industrial mass
marking was evaluated, suggested that 63 unique fingerprint marks could be made at low
cost, using different Barium and Strontium isotopes, but there is also the potential for
developing a higher number of marks (Warren-Myers, 2015). However, the method has to
be optimized and validated for each species. Warren-Myers (2015) found no negative welfare
effects on the progeny following transgenerational, immersion or injection techniques for
marking the fish. Although the method has never been used as a mass marking tool, it has
the potential to be used for creating an identification mark at the company level, although it
would not allow tracing back to individual smolt factories or sea cage farms.

1.6 Methods for tracing fish origin based on natural marks

An alternative to conventional fish marking methodology is to utilize naturally occurring
markers for tracing or determining the origin of farmed fish found in nature. One well-known
example is the use of fish scales for assessing growth history of the fish, which, in turn,
could be used for deciding whether a fish has been raised in a hatchery as such fish usually
have a rapid, non-seasonal growth pattern in the juvenile part of their life history. It is also
possible to use morphological variations to assess the origin of salmon, as overall body
shape, fin condition, pigmentation, and colour often differ between farmed and wild salmon
(Fiske et al., 2005; Jonsson and Jonsson, 2011). Morphological assessment of origin is
however, commonly based on subjective evaluation of differences, and it is difficult to
identify farmed salmon that have escaped during their early life stages. Furthermore, the
reliability when using morphological variation to identify escaped salmon depends on the
level of experience of the examiner and the fish has to be handled out of water. In this
section, the most relevant methods for using natural markers for tracing or identifying
farmed salmonids are reviewed.

Analysis of natural marks does not involve handling or manipulation of fish, and potential
effects on fish welfare would be more likely to be related to sampling relevant biological
material (e.g., scales or tissue) from live fish. If the material is collected from fish that are
captured and killed in regular fisheries, then collection of material would not affect the fish
beyond that which is commonly accepted for recreational and commercial fisheries.
However, if the material is collected during extraordinary out-of-season sampling (e.g.,
during autumn surveillance fisheries or organized recapture of escaped fish), it could be
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necessary to collect material from live fish. In such fisheries, salmon that may be determined
visually to be escapees are killed, whereas fish that are assumed to be wild are released
following the same guidelines as in ordinary catch and release (C&R) fisheries. In order to be
able to assess the proportion of escaped salmon in the sample, biological material has to be
collected from both killed and released fish.

1.6.1 Tracing based on structures indicating growth pattern

A range of external and internal structures of fish can be used to estimate their age and
growth patterns as they show natural growth rings (Dahl, 1910; Fiske et al., 2005). The
most commonly used structures are scales, otoliths, vertebrae, fin spines, eye lenses, teeth,
or bones of the jaw, the pectoral girdle, and opercular series. The variations in growth
patterns can also be used for discriminating between wild and farmed fish, because the
latter grow faster during their early life stages due to more favourable conditions in the
hatcheries. This results in the spacing between the growth rings being larger, as well as
farmed fish having weak or a lack of seasonal spacing-patterns as typically occur in wild fish
(Ross and Pickard, 1990; Barlow and Gregg, 1991). It is also possible to manipulate growth
ring patterns in otoliths by exposing the fish to short-term temperature fluctuations in the
hatchery to induce distinctive structural marks on the otoliths. Manipulation of growth ring
patterns is often referred to as “thermal marking” and is a widely used technique for
identifying the origins of hatchery-produced salmonids (Volk et al., 1993). In addition,
information about growth can contribute to tracing the fish after escape, as it may be
possible to estimate the time in liberty due to a change in growth pattern and comparison
with the growth patterns of fish from farms with those of recaptured escapees. In this
section, we briefly summarize the use of scales and otoliths to identify farmed salmon, as
these are the most commonly used structures for identifying escaped salmonids.

Scales

Analysis of scales provides a relatively simple and objective way of differentiating between
farmed and wild salmon (Friedland et al., 1994). The scales are sampled from both dead and
live fish, and are stored dry, without any need for preservation, before the analyses. The
sampling is often carried out by local anglers, who may send the samples to the laboratory
by mail. Sampling of scales is usually conducted by; a) using a blunt knife first to remove
mucus, and thereafter to scrape off several scales or; b) using a pair of pliers to pull out
single scales without prior removal of mucus. The latter method is gentler for the fish, and is
the method used when sampling scales from live fish. Scales are predominantly sampled
from salmon that have been captured and killed during regular recreational and commercial
fisheries, both in the sea and rivers. However, scale sampling is also carried out as a part of
out-of-season surveillance fisheries in rivers during the autumn and in extraordinary
recapture fisheries following reported escape incidents. In the latter case, scales have to be
sampled from live fish to avoid killing wild salmon, as not all escapees can be discriminated
from wild fish on a morphological basis and it is necessary to assess the proportion of
escapees in the rivers. In the laboratory, the scales are examined under a stereomicroscope
and the origin of the fish decided, either manually or by semi-automatic image processing
(Friedland et al., 1994; Thorstad et al., 2008). Usually, only a few scales are needed for
differentiating between wild and farmed salmon with more than 90 % reliability (Lund and
Hansen, 1991). Scales are routinely used for determination of the origin of thousands of
salmon each year by several Norwegian institutes, and, besides genetic analysis, is
considered the most precise way of identifying escaped farmed salmon (Fiske et al., 2005).
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Otoliths

Otoliths can provide more accurate age determination than scales (Jonsson, 1976; Hindar
and L'Abee-Lund, 1992), but are more difficult to obtain and to analyse. In order to retrieve
the otoliths the fish has to be killed and the otoliths dissected out. Although the otoliths can
be stored dry, the analysis itself may involve grinding or cutting before the otolith can be
analysed under a microscope following similar principles as for scales. Because of the more
laborious collection and analyses for otoliths compared with scales, Fiske and colleagues
(2005) recommended that scale analyses would be more appropriate for large-scale
screening aimed at determining the origin of salmonids.

Figure 1.6.1-1. Removal of the otolith from the skull of a fish. (S. Mortensen, Institute of Marine
Research).

1.6.2 Tracing based on genetic composition and variation
The DNA database method

Tracing based on a DNA database has been considered. This would represent a “top-down”
approach to identification, using a database consisting of a combination of breeding
information and individual DNA profiles to enable the identification of escapees through
match/exclusion to family (Glover, 2010).

However, a DNA register consisting of allele frequencies for a panel of molecular genetic
markers for the major strains would incur problems due to genetic drift from the breeding
programmes to commercial production. The DNA register would need to be combined with
rigorous documentation of fish movements across the supply chain, and perhaps would
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require test of genotyping proficiency. A register could provide some of the advantages that
a physical tag could also provide over the DNA stand-by method, notably, diagnostic
identification of escapees, even in the case of drip-leakage, and an indefinite time delay
following escape.

While a DNA register approach is technically viable, and feasible within the logistical
framework of individual producers who require a verification tool for monitoring and tracing
own production. However, for management authorities requiring an identification tool for
farmed escapees for the entire industry, this approach has major and arguably
insurmountable logistical challenges. A major problem with the DNA register approach is that
it cannot, alone, assign ownership of an individual fish. Maintaining a database containing
this number of fish, and documenting fish-family movements between the various producers
would be technically challenging. As with physical tagging, it would also incur high costs for
fish that do not escape.

The DNA stand-by method

The DNA stand-by method is based on combined sampling, genotyping and statistical
analyses, and enables the origin of the fish to be traced back to its cage and farm of origin.

The DNA stand-by method implements a “bottom-up” approach to identification, i.e., starting
with the DNA of escapees and sampling the last plausible link within the supply chain to
identify/exclude the potential source(s) of escape.

The method has a number of conditions that need to be fulfilled in order to be able to be
implemented in a robust manner, and, not least, to offer the best possible chances of
identification (Glover et al., 2009; 2008). Rapid recapture of a homogenous group of
escapees in restricted time and space represents the most important step in identification of
farmed escapees. In order to avoid having to compare the genetic profile of recaptured
escapees with every single farm, which is clearly not feasible, the escapees needs to be
captured close to the source of escape, before the fish disperse and mix with fish from other
potential sources.

The DNA stand-by method has been implemented successfully in the identification of
escapees from fish farms in Norway.

1.6.3 Tracing based on biochemical variation in tissue and internal
structures

The biochemical composition of various fish tissues may be affected by the environment in
several ways. Assuming that, in comparison with farmed salmon, wild fish experience
different environmental conditions throughout their life history, it might be possible to use
variations in biochemical composition to reveal the background of a fish and thus also its
origin. Below, we have briefly summarized the use of lipids, fatty acids and earth elements
for tracing the origin of Atlantic salmon.

Lipids and fatty acids

The biochemical composition of the feed used in salmon farming differs from the natural
sources of feed for wild salmon. A major difference is that farm feed is composed of a high
proportion of terrestrial ingredients, and, in 2013, only 30 % of the ingredients in Norwegian
salmon feed were of marine origin (Ytrestayl et al., 2015). The terrestrial ingredients
generate chemical signals that can be used for assessing the origin of salmon. The potential
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for using variation in biochemical composition to discriminate between wild and farmed
salmon has been examined using several methods including fatty acid (FA) distributions,
chemical profiling with elemental analysis, 13C nuclear magnetic resonance, and the use of
stable isotopes (Dempson and Power, 2004; Aursand et al., 2009; Axelson et al., 2009;
Schrdder and de Leaniz, 2011; Skilbrei et al., 2015). The results indicate that quantification
of lipid composition and FA-profiling would, in most cases allow correct discrimination
between farmed and wild salmon, and that such analyses could be a good tool for studying
the history of escaped salmon. Analyses of biochemical composition would, nevertheless,
probably be of limited value for tracing escapees back to smolt producers or individual
salmon farms, as the feed at different farms would generally contain similar ingredients.

Natural variation in earth elements

The elemental and isotopic composition of bio-minerals in bones, teeth, scales, and otoliths
may also be used to identify potential geographical differences between fish populations,
because regional differences in water composition are reflected in the bio-minerals (Thresher
et al., 1994; Campana et al., 1997; Severin et al., 1995). Variation in feed sources will
further add to the variability, and the elemental composition in such tissues may thus be
used to determine the origin of farmed salmon. For instance, Adey and colleagues (2009)
found that 87 % of samples taken from six farm sites around the west coast of Scotland
were correctly classified to their farm of origin on the basis of scale chemistry. Since otoliths
and scales grow incrementally, by analyzing the elemental variation in specific areas in scales
or otoliths they may also provide a record of the location/environment of the fish throughout
its life. This may be done by using high-resolution LA-ICP-MS to ablate sections of a scale or
otolith, as was done for scales by (Flem et al., 2005). Flem and colleagues (2005) found that
two farmed populations differed chemically from one wild and one cultivated stock, although
the two farms were only partially delineated from one another. It has also been suggested
that a database of elemental fingerprints of otoliths/scales from different salmon farms could
be used to identify the origin of escapees (Veinott and Porter, 2005). The Norwegian
commission that evaluated methods for identification of escaped farmed salmon
recommended that the use of variation in natural earth elements to trace escaped salmon
should be investigated further (Merkeutvalget, 2004). During recent years, a large on-going
Norwegian project has been investigating the potential for using the variation in naturally
occurring elements in scales to establish a method for tracing escapees back to their source
(www.fhf.no/prosjektdetaljer/?projectNumber=901016). Preliminary results indicate good
discrimination in the freshwater phase of the salmon life cycle, but it is still unclear whether
the method may be used for tracing fish back to individual farms with adequate precision.
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2 Hazard identification and
characterization

2.1 Methods for marking fish

Pre-marking procedures - anaesthesia

Successful anesthesia of salmonids is also a well-researched area and standard operational
procedures exist that should ensure maximal fish welfare and minimal post-exposure effects.
Marking of fish is commonly done under general anesthesia in order to immobilize the fish.
As the fish are removed from the water during the marking procedure, air temperatures
should not be below 0 °C. The amount of cortisol released in response to anaesthesia
appears to be low, but may represent an extra load under otherwise stressful circumstances.
Furthermore, anaesthetics may cause secondary adverse reactions such as acidosis and
osmotic stress due to respiratory arrest and insufficient exchange of gas and ions between
the blood and the water. Overall, anaesthetics may reduce stress, thereby improving
welfare, but can also have unwanted side effects that reduce fish welfare and therefore
should always be used with caution (Zahl et al. 2012). In the following evaluation of fish
welfare effects due to marking, we assume that adequate measures will be taken to reduce
negative effects during the marking procedure through appropriate administration of an
efficient anesthetic

2.1.1 Adipose fin removal
Acute welfare effects during clipping

Clipping is done at the base of the adipose fin with a small pair of surgical scissors, carefully
avoiding cutting into the muscle. The adipose fin will not regenerate if the whole fin is
removed (Armstrong, 1947; Stauffer and Hansen, 1969; Weber and Wahle, 1969; Johnsen
and Ugedal, 1988, Mortensen et al., 2013).

Clipping is a manual procedure demanding full concentration to avoid clipping too deep and
into the muscles. In order to avoid handling fish several times, fin clipping should be done
during vaccination, when the fish is 25-50g (Kristiansen and Skilbrei, 2012), but it is also
possible to mark fish at a smaller size (Mortensen et al., 2013). In studies of wild salmon,
these are usually marked in the rivers 1-2 months prior to smolt migration, at 15-25g size
(Ugedal et al. 2014). In a stressful environment, with a need to keep up with the speed of
the vaccination process, errors will probably be more frequent. Furthermore, if there is a
large number of fish to be clipped, and many hours per day of clipping, the risk of loss of
concentration and operator fatigue, and consequent errors and injuries, may increase. Hand
and colleagues (2010) compared automatic and manual fin clipping of Pacific salmon and
found that only 70 % of manual clips were of good quality compared with 95 % of
automatic clips. An automated machine (developed by NMT), that utilizes the natural
behavior of Pacific salmon, did not function when tested on Atlantic salmon. However,
should adipose fin removal be implemented in farmed Atlantic salmon, then equipment for
automatic removal of adipose fins will probably be developed and included as a part of the
vaccination machines (Kristiansen and Skilbrei, 2012). Over-doses or too long duration of
anaesthesia may lead to mortality, but do not cause suffering in that the fish do not wake
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up. However, this will lead to economic losses. Vaccination and fin clipping need good
logistics, and there is a risk that delays in the process lead to air exposure of fish ready for
clipping being too long. The vaccination and fin clipping process have a risk of poor water
quality in anaesthesia and recovery tanks. Aeration of anaesthesia tank is particularly
important and requires frequent changing of the water according to tested routines.
Pumping, netting, and manual handling of fish may remove mucus and scales from the fish
skin, especially if the hands are dry. It is therefore important to keep the fish in water or
under moist conditions and handlers should not touch the fish with dry hands.

Fish experience stress during crowding, pumping, and handling. Vaccination should proceed
as quickly as possible, in order to minimize the stress associated with being exposed to air.
Anaesthesia during tagging would relieve acute pain. As the adipose fin is innervated
(Buckland-Nicks et al. 2012) it is possible that the fish may feel pain after recovery from
anasthesia, but the extent of this is unknown.

Impacts on welfare post-clipping

A recent study showed that the small wound made by adipose fin clipping closes within a
few hours and seems to cause no osmotic problems or have lasting effects on the fish, based
on histological observations (Andrews et al., 2015). All fish will have a small open wound for
4-6 hours at 10-14°C, and for between 6-12 hours at 4 °C (Andrews et al., 2015), which will
increase the risk of infections. The wound may also influence the vaccine response, since the
immune response of the fish will probably prioritize the wound (Andrews et al., 2015).

As the wound created by adipose fin removal has been reported to heal within a day after
tagging (Andrews et al., 2015), it is reasonable to believe that the probability that fish
experience chronic pain and stress for longer periods is low. However, neuroma formation,
which may cause phantom pain, is known to occur in beak-trimmed poultry (Breward and
Gentle, 1985).

Most studies report no effects from adipose fin clipping on growth and mortality (Gjerde and
Refstie, 1988; Johnsen and Ugedal, 1988; Stauffer and Hansen, 1969; Vincentlang, 1993;
Mortensen et al. 2014; Petersson et al., 2014). However, mass marking of all farmed salmon
may increase the risk of fungal or other infections in fresh water.

Adipose fin clipping has been reported to affect swimming behaviour of small Pacific salmon
(Reimchen et al. 2011). As far as we know, studies have not been done on Atlantic salmon,
but since the adipose fin is believed to be a water-flow sensor in turbulent water, salmon in
tanks and cages should not be seriously affected by the lack of adipose fin.

The lack of the adipose fin may be detected by eye or camera without handling the fish, but
as the aim is to remove escapee fish from the rivers the fish must be caught in traps or
harpooned in the rivers and killed. This is, of course stressful, but short lasting.

Summary

Adipose fin removal is a quick, cheap, and easy way to mark salmon, but useful only for
identifying farmed salmon as a group. The wounds heal within a day and adipose fin removal
has no effects on growth and survival in most studies. However, risk factors such as
increases in infection pressure or injuries due to human errors, should not be disregarded if
all farmed salmon are to be marked. The risk of neuroma formation is unknown. The adipose
fin is a functional organ that probably acts as a flow sensor in turbulent water, and therefore
probably most important for salmon living in rivers. However, whether it is acceptable to
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remove a functional and healthy organ is an ethical dilemma. In conclusion, adipose fin
removal is a potential, but probably a minor hazard to fish welfare if it is conducted with due
care and attention, and in conjunction with other procedures.

2.1.2 Freeze branding
Acute welfare effects during freeze branding

Freeze branding (or cold-branding) has been conducted with hand-held devices cooled down
with either liquid nitrogen or dry ice (CO) (Guy et al., 1996). Following immobilization, the
fish are removed from the water and the branding area blotted dry, before the brand is
applied for 1-2 seconds with gentle pressure. If the branding iron sticks to the fish, it needs
to be re-cooled (Guy et al., 1996). Since freeze branding involve anaesthesia and manual
handling out of water, as well as manually operated tagging equipment, training and
experience with the technique are important to ensure a good result and to minimize
potential negative welfare impacts. To our knowledge, studies examining the relevance of
training and experience to avoid welfare issues during freeze branding have not been carried
out. As both the technigue and the equipment are simple, the skills necessary could probably
be attained relatively easily. However, it has been shown that the general trauma associated
with freeze branding of rainbow trout fry may double subsequent mortality due to increased
predation risk (Maynard et al., 1996). Thus, experience, training, and optimization are
probably important factors for reducing the occurrence of negative effects due to freeze
branding.

As salmonids in general are affected more by stress under sub-optimal conditions, it is also
likely that potential negative effects from freeze branding would be related to environmental
conditions. It is also possible that different ontogenetic stages and fish sizes would respond
differently to tagging. To our knowledge, systematic studies in which the effects of freeze
branding in salmonids have been quantified under different environmental conditions and for
different stages/sizes have not been conducted. However, it has been shown that coho
salmon fry (average length: 42.9 mm) suffered a mortality of 8.3 % due to the handling
during freeze branding, but that the mortality rate after tagging was not significantly
elevated (Peters et al., 1994). It has furthermore been shown that the position selected for
branding may affect subsequent growth rate, but not survival, of roach (Rutilus rutilus)
(Evrard, 2005). However, freeze branding has been found to have no effect on survival and
growth in juvenile burbot (Lota lota), pinfish (Lagodon rhomboids), Chinook salmon and
sockeye salmon (Oncorhynchus nerka) (Smith, 1973; Ashton et al. 2013; Matechik et al.,
2013). Hence, it appears that freeze branding may have relatively minor impacts on survival
and growth of juvenile salmonids, and also that such impacts cannot be completely ruled
out.

We have not identified studies where stress related physiological parameters have been
measured for fish, during or after freeze branding. It is therefore difficult to evaluate the
extent to which the fish may feel pain during/after the tagging. However, since freeze
branding results in destruction of the outer epidermis of the fish and a histopathology study
reported cells that commonly are found in healing teleost wounds in the branding area (Laird
et al., 1975), it seems likely that freeze branding inflicts pain. Anaesthesia during the tagging
would relieve acute pain, but to what extent fish may feel pain after recovery from
anesthesia is unknown.

Impacts on welfare post-branding
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Freeze branding initially causes darkening of the brand area due, to destruction of
melanophore control, with subsequent invasion of the area of the stratum spongiosum and
hypodermis by melanin containing cells commonly found in healing teleost wounds (Laird et
al. 1975). According to Laird et al. (1975), traumatic damage was completely resolved within
four months after branding. This indicates that freeze branding is primarily suitable for short-
term batch marking.

As the wound created by freeze branding has been reported to heal within four months after
tagging, the probability that fish experience chronic pain and stress for extended periods is
likely to be low (Laird et al. 1975). However, it is likely that the fish experience short-term
pain and stress.

To our knowledge, published information regarding infection risks or diseases due to freeze
branding is lacking. The literature suggests elevated mortality due to increased predation risk
shortly after freeze branding, probably caused by the general trauma associated with
marking, rather than the marking process per se (Maynard et al. 1996). Elevated long-term
mortality has not been reported (Smith 1973; Evrard 2005; Ashton et al. 2013; Matechik et
al. 2013).

The general trauma associated with tagging may affect the anti-predator behaviour of
juvenile fish, and thereby increase mortality due to predation (Maynard et al., 1996). To our
knowledge, no other effects of freeze branding on behaviour have been reported.

As for most external tags or marks, fish must be captured and handled during inspection of
brand marks. Thus, impacts on welfare will be related to capture and handling, and not
primarily to inspection of the tag. Capture and handling may be stressful for fish and thus
have welfare effects. However, compared with other tagging methods, handling during
inspection of brands is not particularly stressful or harmful for the fish

Summary

Freeze branding creates a short-term mark that can be used for identification of a limited
number of fish batches. The mark is essentially a wound that can be identified on the fish for
a limited period, until the wound is completely healed. Freeze branding may result in an
increase in short-time mortality, partly from increased predation risk due to the general
trauma associated with being tagged. No long-term effects on mortality and growth have
been reported, although, for unknown reasons, growth rates may vary with branding
locations on the fish. As freeze branding involves causing of wounds, it seems likely that it
inflicts some degree of pain and stress, at least during the tagging and initial healing
process. Freeze branding can therefore be considered a hazard to fish welfare.

2.1.3 Externally attached visible tags
Acute welfare effects during tagging

A variety of externally attached visible tags are available. For example, Anchor tags are
injected by using a “tagging gun”. Tagging is done in a few seconds and require minimum
time out of water. Carlin tags are more invasive, as two metal wires are injected by needles
through the muscle and twisted on the opposite side. Since the procedure involves
anaesthesia and manual handling out of water, as well as the manually operated tagging
equipment, training and experience with the technique are important to ensure a good result
and to minimize potential negative welfare impacts. To our knowledge, studies examining
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the relevance of training and experience to avoid welfare issues on external tags have not
been carried out. As both the technique and the equipment are simple, the skills necessay
would probably be attained relatively easily. Because of the slow speed of tagging, Carlin
tags are not appropriate for mass marking. Floy tagging is fast and has been used in large
tagging programmes with several 100,000 Atlantic salmon (Svasand et al 2011).

It is reasonable to assume a negative correlation between fish size and negative effects.
Salmon are also more vulnerable to scale loss near smoltification. We are not aware of any
studies on optimal periods for external tagging of salmon.

As the procedure involves puncture of the skin and injection of metal or monofilament
threads into the body, it seems probable that the fish will feel some pain and irritation after
recovery from anaesthesia, but these are probably not severe. We did not identy studies in
which stress-related physiological parameters or behaviour were measured for fish, during or
after Carlin or Floy tagging. However, Hansen (1988) demonstrated that Carlin-tagged and
handled Atlantic salmon smolts had poorer survival in the sea.

Impacts on welfare post-tagging

Externally attached tags on fish will create a hydrodynamic drag, which may result in
movement of the tag and consequent skin irritation. For both Floy and Carlin tags, wounds
around the tag are frequently observed as long as the tag remain in place
(http://www.hafro.is/catag/b-fish_tags_tagqging/b12-tag_mark_types/b1201-external-
tags.html). A relatively large proportion of the fish have inflammations and wounds at the
attachment point in the skin. As the salmon swim in very shallow waters, algae and other
fouling organisms may attach to the tag and increase the drag. Both recapture rates and
growth have been shown to be reduced when using external tags (ref). Open wounds
around tags may act as a gateway for infection, and may explain some of the increased
mortality reported in several studies (ref). Reduced growth rate, wounds in the muscles that
reduce the fish quality, and increased disease risk would not be acceptable to the farming
industry.

As the wound will be irritated by a moving wire in the skin, and the tag itself may grow into
the muscles of larger fish, there will be long-term negative effects, most likely including pain.
To our knowledge, published information regarding infection risks or diseases due to external
tagging is lacking, but several studies show negative effects on survival of externally tagged
fish (e.g. Strand et al., 2002, and references therein). The literature suggest mortality may
be elevated due to increased predation risks shortly after marking that is caused by the
general trauma associated with marking, and probably not by the marking process per se
(Maynard et al., 1996).

To our knowledge, no other effects on behaviour due to external tagging have been
reported.

As for most external tags or marks, fish must be captured and handled during inspection of
the tag. Thus, impacts on welfare will be related to capture and handling, and not primarily
to inspection of the tag. Capture and handling may be stressful for fish and may thus have
welfare effects.

Summary

External tags can be used to identify almost unlimited numbers of individual fish. The tags
are attached using metal or monofilament wires or anchors (e.g. see www.floytag.com).
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The tag plates or tubes may become fouled with algae, which will increase drag. The tags
have been associated with low, but significantly increased mortality, and reduced growth. A
significant proportion of the fish will develop chronic wounds in the skin, that impact on both
welfare and flesh quality. In general, these tags have too many negative effects on fish
welfare and fish performance and quality to be suitable for mass marking programmes.
Marking with externally attached tags is therefore considered a hazard to fish welfare.

2.1.4 Visible internal tags

2.1.4.1 Visible implant elastomer (VIE) tags
Acute welfare effects during tagging

VIE tags are created by injecting a liquid into the tissues of the fish (Guy et al., 1996),
usually under anaesthesia. Within hours, the liquid cures into a pliable solid that makes a
cohesive, well-defined mark. Coding is possible by using different colors and tag positions.
As with all other tagging methods, experience during handling is probably important for
ensuring fish welfare. To our knowledge, published studies, in which the effects of
experience with the VIE tagging technique are assessed are lacking. As the VIE tags are
injected subcutaneously, and not deep into tissue, to allow visibility, it is unlikely that the
procedure itself inflicts serious harm. The immediate mortality in brown trout (Sa/mo trutta)
due to tagging under field conditions has been reported to be low (0.5 %) (Olsen and
Vgllestad 2001).

The potential impacts of using VIE tags under different environmental conditions have not
been investigated, but, the effects of VIE tags for various size classes of fish have been
examined in several species. Ward and colleagues (2015) found no effects on survival or
growth for four size classes (40-49/50-59/60-69/70-79 mm total length) in humpback chub
(Gila cypha) with VIE tags, and Wagner et al. (2013) found no effects on growth or survival
for three size groups (93/138/152 mm average total length) of juvenile spotted seatrout
(Cynoscion nebulosus) following implantation of VIE tags. Tag location, however, may affect
survival and has been demonstrated for juvenile red drum (Sciaenops ocellatus), in which no
mortality was associated with tags injected under the dorsal fin, bute 40 % mortality was
observed when VIE tags were implanted above the anal fin (Bushon et al., 2007). Thus, the
use of VIE implants does not generally affect mortality and growth among different sizes of
juvenile fish, but survival may be affected if the tags are implanted in an unsuitable position.

Injection of VIE tags in western silvery minnows (Hybognathus argyritis) resulted in elevated
levels of lactate in blood plasma, but not a corresponding increase in plasma cortisol levels
(Neufeld et al., 2015). Neufeld and colleagues (2015) concluded that the overall stress
effects were low. It has also been shown that the use of VIE tags may tempoarily affect the
immune response in three-spined stickleback (Gasterosteus aculeatus), in particular the
granulocyte:lymphocyte ratios, both for the tagged group and sham control group (Henrich
et al., 2014). This indicates that puncture of the skin during injection of a tag may
temporarily affect the immune system, but that the tag itself would not have any effect.
Henrich and colleagues (2014) recommend a two-week recovery period following tagging
with VIE implants to minimize manipulation of the immune system. Thus, application of VIE
tags appears to stimulate a weak stress response and could have a negative effect on the
immune system. Since use of VIE tags includes injection of a liquid and puncture of the skin
it is also likely that it would involve some temporary pain.
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Impacts on welfare post-tagging

We have not identified any histological studies in which the influence of injection with VIE
tags on tissues are described. Weston and Johnson (2008) reported that tagging rainbow
darter (£theostoma caerulum) with VIE tags did not result in lesions or scars. However,
Kerwath and colleagues (2006) found that VIE tags resulted in fin rot in one species of South
African linefish (Fransmadam, Boobsoidia inornata), but not in another species (Roman,
Chrysoblephus laticeps). The vast majority of studies in which effects of VIE tags have been
examined do not report any tissue damages or inflammations, and it seems probable that
the risk for such complications is low.

To our knowledge, the possibility that VIE tags may inflict chronic pain and stress on fish has
not been examined. As VIE tags do not appear to cause any mortality or growth reduction in
the long-term (se references below), it is unlikely that they would involve chronic pain and
stress.

Apart from the observations of fin rot in a South African linefish species (Fransmadam,
Boobsoidia inornata) (Kerwath et al., 2006), VIE tags have not, to our knowledge, been
reported to increase infection risk and susceptibility to disease. However, several studies of
different fish species have examined survival and growth following application of VIE tags.
Almost all these studies report no significant effects on either growth or long-term survival
(Olsen and Vagllestad 2001; Skinner et al. 2006; Kerwath et al., 2006; Weston and Johnson,
2008; Leblanc and Noakes, 2012; Matechik et al., 2013; Wagner et al., 2013; Ashton et al.,
2013; Ward et al., 2015). One exception was 40 % mortality in juvenile red drum when the
tag was injected in an inappropriate position (Bushon et al, 2007). Use of fish tags with
bright colours may attract predators and thereby increase mortality due to predation
(Catalano et al., 2001), but no such effect has been found for VIE tags (Haines and Modde,
1996; Malone et al., 1999; Roberts and Kilpatrick, 2004; Reeves and Buckmeyer, 2009;
Bouska and Paukert, 2010).

In general, the occurrence of behavioural effects due to VIE tags has been neither
investigated nor reported, apart from Suthpin et al. (2007) who found no effect on
swimming performance in Sacramento splittail (Pogonichthys macrolepitodus) with VIE tags.
With the exception of short-term behavioural effects due to the general trauma of tagging it
is unlikely that VIE tags would result in long-term behavioural impairment as the tags are
small implants that would not affect the body shape of the fish.

VIE tags are made for situations in which visual identification is required and sacrificing the
fish is not desired (Guy et al. 1996). However, as with most fish tags, capture and handling
of fish would be required during inspection; this may be stressful for fish and therefore have
an effect on welfare.

Summary

In general, VIE tags have not been shown to influence either short-term or long-term
survival, growth or behavior. There is some evidence that minor problems may occur. As
with all taggings or marking methods, injection of VIE tags involves handling fish and also
puncture of the skin. Marking fish with VIE tags thus represents a hazard to fish welfare.
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2.1.4.2 Pigment tags

Tagging with pigments involves either injection of pigment under the skin or spraying
pigment onto the surface of the fish. As these two approaches differ, both with respect to
the technique and the subsequent consequences for the fish, they are discussed separately.
We have focused on injection of either alcian blue or acrylic/latex paint and spraying with
fluorescent pigment, as these two methods would be the most appropriate for mass marking
of salmon.

Acute welfare effects during tagging — Injection of pigments

We found little information about how experience or functionality of equipment would affect
fish welfare. As with all methods that involve handling of fish and puncture of skin it is
however reasonable to believe that both varying levels of experience and functionality of the
equipment would influence fish welfare. Although injection of dyes normally is a safe and
reliable marking method, sudden fish death has been observed when tagging Atlantic salmon
parr (Bricknell and Bruno, 1995). In this case, the marking equipment was not adjusted to
the size of the fish and the dye was injected through the body wall and into the cardiac
region, resulting in considerable mortality (27%) due to internal hemorrhages.

Little information exists regarding how injected pigments may affect fish welfare immediately
after tagging under different environmental conditions or for varying fish sizes/stages.
Malone and colleagues (1999) reported a minor depression in growth in bridled goby
(Coryhopterus glaucofraenum) when using injected pigment tags, but it was unclear whether
this was a result of handling or the tag itself. Moreover, Hayes et al., (2000) did not find any
short-term mortality following injection of a photonic paint mark in adult Chinook salmon.
Injections of pigments is, similar to injection of VIE tags, a minor intervention, and it is
unlikely that acute welfare effects, besides those inflicted through handling, would have a
significant negative effect. We have not found any studies that investigated acute pain and
stress, but as injection of a dye involves puncture of the skin, short-term pain is likely to
occur.

Impacts on welfare post-tagging — Injection of pigments

Thedinga et al. (1997) used histological analyses to investigate how injection of alcian blue
affected the tissues of three flatfish species; yellowfin sole (Pleuronectes asper), rock sole
(Pleuronectes bilineatus) and pacific halibut (Hippoglossus stenolepis), and found no
evidence of lesions in the skin or musculature, and no alterations in either the cells or the
structure of the dyed cells. In addition, they found no anomalies in hepatocytes and
concluded that alcian blue tags are non-toxic and non-irritating (Thedinga et al., 1997).

As alcian blue was shown to be non-toxic and non-irritating, and did not affect cell structure
in flatfish (Thedinga et al., 1997) it seems likely that the overall probability of chronic pain
and stress is low. However, it is important to bear in mind that different fish species may
react differently to the use of alcian blue. To our knowledge, similar tests have not been
conducted for other dyes (acrylic/latex paints) that have been used for creating
subcutaneous pigment tags.

Injected pigment tags do not typically affect survival and mortality after tagging (Ryan,
1975; Cane, 1981; Herbinger et al., 1990; Bridcut, 1993; Thedinga et al., 1995; Malone et
al., 1999; Hayes et al., 2000; Skinner et al., 2006; Simon 2007). However, Thedinga and
colleagues. (1994) found that injection of pigments might contribute to increased predation
in field situations and Malone et al. (1999) found that internal pigment tags might depress
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growth in small fish. We have not found any information regarding infection risk and
increased susceptibility to diseases.

Tagging with alcian blue using a Pan-Jet inoculator had minimal effect on behaviour of
brown trout, and recapture was possible over a period of 12 months (Bridcut, 1995). We
have not found any evidence of significantly negative effects on fish behaviour, due to the
use of injected pigment tags.

As for most fish tags, fish must be captured and handled during inspection of injected
pigment tags. Capture and handling may be stressful for fish and may therefore have an
effect on welfare.

Summary — Injection of pigments

Intradermal injection of pigments is normally a safe and reliable batch-marking method, with
few or no negative effects on growth, survival, and behaviour. The most common dye used
(alcian blue) is non-toxic and non-irritant. However, incorrect adjustment of the tagging
equipment (Panjet) has resulted in considerable rapid mortality due to injection of dye into
the peritoneal cavity of Atlantic salmon parr. Injection of pigments is therefore a hazard to
fish welfare.

Acute welfare effects during tagging — Spraying of fluorescent pigments

This tagging method involves a fluorescent pigment, of various particle sizes, being sprayed
onto the surfaces of fish under high pressure, such that the particles penetrate into the
dermal tissues. Industrial handheld abrasive blasters have been used for spraying
(Schumann et al., 2013). Both user experience and design of equipment are likely to affect
the outcome, as illustrated by the large variation in mortality of salmonids (0-97 %) after
marking (Schumann et al., 2013 and references therein). Furthermore, Bandow (1987)
showed that post-marking mortality increased with increasing pigment delivery force; from
no measured mortality at 70 g to 97 % at 330 g. Correct delivery force is important, as tag
retention appears to increase with increasing force. At present no consensus or best
practices exist to ensure optimal spraying pressure and pigment particle size that will
minimize mortality.

Mortality after spray marking has been shown to be size-dependent for several fish species.
In orangethroat darter (Etheostoma spectabile) mortality was higher for smaller fish,
whereas in plains topminnow (Funadulus sciadicus), larger individuals suffered higher marking
mortality than smaller ones (Schumann et al., 2013). The reason for this size-dependent
mortality is unclear.

To our knowledge, studies addressing stress responses during and following marking by
spraying are lacking. The main reason for post-marking mortality is believed to be
suffocation, as compacted pigment has been found around the gills of dead fish (Bandow,
1987; Schumann et al., 2013). It is likely that the fish that died experienced both stress and
pain after marking.

Impacts on welfare post-tagging — Spraying of fluorescent pigments

We did not find any studies investigating potential tissue damage or inflammation associated
with spray marking with pigments, and reports on the occurrence of chronic pain and stress
due to spray marking were also lacking.
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Mortality due to spray marking has been examined for a range of species. Bandow (1987)
examined survival using different delivery dye forces for six fish species (Chinook salmon,
lake trout, Salvelinus namaycush, muskellunge Esox masquinongy, channel catfish /ctalurus
punctatus, largemouth bass Micropterus salmoides and walleye Stizostedion vitreum).
Postmarking mortality for walleye varied from 59 to 79 %, whereas the maximum mortality
for the other species was 8 %. Schumann et al. (2013) also measured post-marking
mortality for six fish species (orangethroat darter, bluegill, plains topminnow, grass carp
Ctenopharyngodon idella, black bullhead Ameiurus melas and channel catfish). Only black
bullhead suffered no mortality, whereas between 9 and 16 % mortality was found for
channel catfish, plains topminnow and orangethroat darter. All of the grass carp died, and
the mortality for bluegills was 79 %. Most of the mortality due to spray marking with
pigments occurs within 72 hours (Hennick & Tyler 1970; Phinney., 1974; Bandow, 1987;
Schumann et al., 2013). Considerable mortality (68 %) due to spray marking has also been
observed for brook stickleback (Moodie and Salfert, 1982). In addition, spray marking
appears to inhibit or reduce post-marking growth, as well as increasing susceptibility to
disease, in several fish species (Moodie and Salfert, 1982; Bandow, 1987; Schumann et al.,
2013).

No information about the effects of spray on behaviour has been reported.

Spray marking with fluorescent pigment requires capture and handling of fish during
inspection. Capture and handling may be stressful and may therefore have an effect on
welfare.

Summary — Spraying of fluorescent pigments

Due to the inconsistency in post-marking survival and growth within and among species,
fluorescent spray procedures need further investigation and refinement to ensure that this
method would not have a negative impact on fish welfare. In some cases, the immediate
mortality after marking is unacceptably high. As the reason for mortality appears to be
suffocation, the welfare of the marked fish must be assumed to be impaired. The overall
impact of spray marking on fish welfare thus seems to vary, depending on species and size.
Spraying of pigments is thus a hazard to fish welfare.

2.1.4.3 Visible implant alphanumerical (VIA) tags
Acute welfare effects during tagging - VIA tags

Visible implant alphanumerical (VIA) tags are small pieces of plastic, with alphanumeric
characters on them, which are inserted under transparent tissues on fish, e.g. in the eye
region (Guy et al., 1996). We have not been able to find any information regarding how
experience on inserting VIA tags and functionality of the equipment used might affect fish
welfare during and immediately after tagging, although experience appears to be important
to ensure optimal tag retention (Wenburg and George, 2011).

Information regarding effects of implantation of VIA tags in relation to environmental
variation and fish/size stage is sparse. However, one study indicated that use of VIA tags in
two species of rockpool fish (Girella elevata and Bathygobius cocosensis) may result in
increased mortality (20 % vs 7 % in the control group) (Griffiths, 2002).

Information on pain or stress associated with implantation of VIA tags is also sparse, but
Neufeld et al. (2015) found a minor increase in lactate in blood in western silvery minnow
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(Hybognathus argyritis), which was interpreted as indicating a low level of stress. As the
tagging method involves handling and puncture of the skin, it is likely that some temporary
pain/stress may occur.

Impacts on welfare post-tagging — VIA tags

The tissues appear to heal rapidly after insertion of VIA tags (Wenburg and George, 2011),
and occurrence of inflammation has not been reported. Mourning et al. (1994) reported that
1 % of juvenile rainbow trout was classified as “seriously injured” following insertion of VIA
tags. Published information regarding the potential for chronic pain and stress due to
insertion of VIA tags is lacking.

Mortality and growth have been examined for a range of fish species following implantation
of VIA tags. Generally, VIA tags are not reported to have any effects on mortality or growth
,(Mourning et al., 1994 — rainbow trout O. mykiss;, Halls and Azim, 1998 — spot barb Puntius
sophore, Indian major carp Catla catla, snakehead Channa striatus, tank goby Glossogobius
giuris, climbing perch Anabast testudineus; Malone et al., 1999 — Coryphopterus
glaucofraenum; Rikardsen et al., 2001 Arctic charr Salvelinus alpinus, Woods, 2005 — pot-
bellied seahorse Hippocampus abdominalis, Wagner et al., 2013 — spotted seatrout
Cynoscion nebulosus; Davis et al., 2014 — Rainbow trout O. mykiss, Turek et al., 2014 — tiger
muskellunge Esox masquinongy, cutthroat trout O. clarki, rainbow trout O. mykiss; Barriga et
al., 2015 - Patagonian catfish Hatcheria macraei). One exception, however, are small
rockpool fish (see above), for which a somewhat increased mortality was found following
tagging. We did not find any information on increased infection risk and diseases due to
application of VIA tags.

To our knowledge, behavioural effects due to use of VIA tags have not been investigated.
Inspection of VIA tags requires capture and handling of fish, which may be stressful for the
fish and therefore have an effect on welfare.

Summary

Although VIA tags seem to have few or minor impacts on survival and growth, studies on
other potential effects on fish welfare are lacking. Marking fish with VIA tags is nevertheless
a potential hazard to fish welfare.

2.1.5 Remotely detectable internal tags - CWT and PIT tags

2.1.5.1 cwrt
Acute welfare effects during tagging - CWT

Coded Wire Tags (CWTs) are usually inserted into the muscle, adipose tissue or fibrous
tissue in the snout of salmonids. CWT is a well-tested method and automatic equipment has
been developed for Pacific salmon, but is still not functional for Atlantic salmon. More than a
billion Pacific salmon have been tagged with CWT (Johnson, 1990). Tagging is done by
pressing the snout of the fish towards a head mould, whereupon the tag is automatically
injected into the snout tissue. This procedure, including vaccination and adipose fin clipping,
is completed within a few seconds. The technique and the equipment are simple to use, and
the skills needed for manual tagging could be attained relatively easily. If this method is
intended for mass marking of farmed Atlantic salmon, a new automatic method for tagging
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should be developed that is acceptable to fish welfare and practically feasible for Atlantic
salmon juveniles.

As CWTs are very small (length: 0.5-2.0 mm, diameter: 0.25 mm) they can be used on
salmon sizes down to 1 g. In very small fish (less than 3 cm in length) care must be taken to
avoid injury to olfactory nerves and organs (Habicht et al., 1998). Morrison and Zajac (1987)
found that 18 of 44 salmon fry tagged with 0.5 mm CWTs had substantial damage to one of
the main-stem olfactory nerves. Mass marking of salmon is most appropriate during
vaccination, when the fish are 20-40 g and will tolerate the tagging. It is important to adjust
the head mould to the size of the fish to ensure correct placement of the tag.

Morrison and Zajac (1987) found inflammation in the tagging area lasting for about 10 days
after tagging. Studies in which stress-related physiological or behaviour parameters have
been measured for CWT-marked fish are apparently lacking. However, CWT-tagged and
adipose fin-clipped fish have been shown to experience stressed during the handling and
tagging procedure, but recover within few hours (Sharpe et al., 1998).

Impacts on welfare post-tagging — CWT

We found no reports of long-term injuries caused by CWTs, and CWT will probably not cause
chronic pain and stress. Vander Haegen and colleagues (2005) report indications of smaller
size of CWT-tagged Pacific salmon at return. However, in Icelandic sea ranching
experiments, returning CWT-tagged salmon were larger than Carlin-tagged salmon.

To our knowledge, information on infection risks or diseases due to CWT tagging in Atlantic
salmon is lacking. However, Zajac and colleagues (1988) report bacterial kidney disease
(BKD) infection related to CWT tagging, so care should be taken should disease, such as
BKD, be present in the hatcheries.

Effects on behaviour associated with CWT has not been reported, but whether the
magnetized tag may affect homing ability in migrating fish has been discussed (Morrison and
Zajac, 1987). However, no indications of increased mis-migration failures have been reported
(Vander Haegen et al., 2005).

In order to retrieve CWT-data from individual fish, the CWT must be surgically removed,
which, in practice, means killing the fish. For escaped farmed fish that would be killed
anyway, this does not constitute an additional welfare problem. Benign recovery of CWTs
without killing the fish is possible by placing the tag in shallow tissue (e.g., post-ocular tissue
or between fin rays). Oven and Blankenship (1993) described one such approach; they used
a magnetized scalpel to recover tags from between fin rays, and a modified syringe to
extract tags from the adipose fin and from post-ocular tissue. They also found that a 2 mm
biopsy punch was an effective way of removing tags from the adipose fin. An important
feature of this method is that the tag should be visible once it has been magnetically
detected; “blind” recovery may be more difficult or may involve more trauma to the fish. The
rainbow trout used by Oven and Blankenship (1993) more than doubled in size during the
experiment and all tags remained visible. However, the efficacy of this approach for recovery
of tags from adult salmon that were tagged as parr or smolts, for example, would need
careful evaluation.

2.1.5.2 PIT tags
Acute welfare effects during tagging — PIT tags
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In small fish, PIT tags are surgically inserted into the body cavity under anaesthesia. The tag
is inserted with a hypodermic needle or by making a small cut in the body cavity wall and
pushing the tag through. The cut punctures the skin, body wall muscles, and peritoneum,
and there is a risk of injuring internal organs if the cut is too deep. Therefore, the tagging
operator must be suitably trained, have the necessary surgical skills, and follow the tagging
manual (use of preloaded, single-use injectors is recommended by one tag producer
(Biomark.com)). Routines must be followed to avoid injuries of internal organs when the tags
are placed in the body cavity. Puncturing the body cavity by a needle or scalpel may cause
some initial pain and stress, but the fish will soon recover.

Impacts on welfare post-tagging — PIT tags

Surgical implantation of 23 mm PIT tags under anaesthesia without suture closure of the
tagging incision was found to be a feasible method for individual marking of Atlantic salmon
100 to 135 mm fork length. (Larsen et al., 2013). Reseachers are cautioned about the use of
sutures to close the surgical incisions, due to high rates of fungal infection and tissue
inflammation around the incision sites.

PIT tags can be read remotely using PIT antennae on live fish, indicating the possibility of
collecting individual data during the production phase.

Summary — CWT and PIT tags

Both CWT and PIT tags are well-tested tags that have been used on millions of fish with few
obvious_implications for welfare. CWTs have low impact on welfare, performance, and
survival of farmed Atlantic salmon, especially if anaesthesia is used. However, any tagging
procedure involving handling and anaesthesia involves some risk of errors during the process
that could result in some mortality and welfare hazards (Zahl et al., 2010).

PIT tags have minimal impact on performance or welfare if used on sufficiently large fish and
provided that the personnel inserting the tags have the necessary surgical skills and follow
recommended procedures (Prentice et al., 1990) However, the tagging procedures involve
some welfare hazards.

2.1.6 Chemical marking
Acute welfare effects during chemical marking

The potential effects on fish welfare due to chemical marking of otoliths or other calcified
structures are evaluated. As the potential welfare effects are likely to be similar for the
different substances used for chemical marking, we have not differentiated between the use
of pigments or isotopes/trace elements.

To the best of our knowledge, welfare effects associated with varying levels of experience or
functionality of equipment have not been investigated for chemical marking of fish. However,
chemical marking involves handling, as the fish are exposed to the marker either by
immersion, injection, or ingestion. As with all other handling of fish, experience is important
to reduce the risks to welfare. Furthermore, experience of using and functionality of
equipment is also of importance for markers that are injected, as this involves puncturing the
skin with some kind of marking device. In mass marking of farmed salmon, injection of
chemical markers would probably be implemented during vaccination (e.g., Warren-Myers et
al., 2014). It is highly unlikely that chemical marking during vaccination will affect fish
welfare beyond that which is normally experienced with vaccination.
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Chemical marking by immersion is usually carried out on fish eggs and larvae. Immersion
can take place in two ways; either direct immersion in water with ambient salinity or by
momentary immersion in a hypersaline bath (osmotic induction) immediately prior to
immersion in water with the relevant chemical (de Braux et al., 2014). Compared with
conventional immersion, osmotic induction reduces the time for marker immersion time by
increasing the rate of marker uptake. Both methods have been used for marking salmon with
isotopes, and no mortality for either treatment following immersion has been reported
(Braux et. al. 2014). In general, unacceptable short-term effects on mortality or growth have
not been observed following chemical marking through immersion (Bashey, 2004; Taylor et
al., 2005; Lu et al. ,2014;2015; Hansen et al., 2015), although immersion in very high
concentrations over prolonged periods may result in excessive mortalities during or after
immersion (Beckman and Schulz, 1996). Information on immediate mortality due to
chemical marking through ingestion or injection that can be ascribed to the marking
procedure was not identified.

Injection of a chemical marker will, as for all marking techniques that involve puncture of the
skin, involve short-term pain. However, it is difficult to assess the degree of pain
experienced, but it is likely to be comparable to the pain experienced with vaccination by
injection, which is carried out routinely on all farmed salmon. Chemical marking through
ingestion is unlikely to inflict pain or stress. Osmotic induction of the chemical marker may,
in theory, be stressful for the fish, but we have not identified any studies in which this effect
is assessed in terms of pain or stress. Nevertheless, it seems that any pain or stress
experienced following osmotic induction would be considerably less than that associated with
delousing in hyposaline water, which is frequently used by the fish farming industry.

Impacts on welfare post-marking

As far as we know, tissue damage, inflammation, chronic pain, and stress have not been
reported following chemical marking.

Most studies that have examined the effects of chemical marking in fish have concluded that
this type of marking has no persistent effect on the marked organism (e.g. Blom et al., 1994;
Tsukamoto, 1988, Tsukamoto et al., 1989, Baumann et al., 2005; Liu et al., 2009; Hansen et
al., 2015). However, Meyer and colleagues (2012) found sub-lethal effects due to marking
Atlantic cod eggs and larvae with alizarin, in terms of reduced hatching success and reduced
growth rates and first feeding success, possibly because the larvae had ingested the
compound. In contrast, Blom et al. (1994) and Svasand (1995) did not find comparable
effects when marking similar stages of Atlantic cod.

As far as we know, the long-term effects of chemical marking on fish behavior have been
neither studied nor reported.

In most cases in which chemical markers are used, the fish must be killed to allow inspection
of the marker. Provided that fish are killed according to established and commonly accepted
methods for euthanizing fish, it seems likely that chemical marking would not affect fish
welfare beyond that which is accepted in this context

Summary

The majority of studies that have examined potential welfare effects of chemical marking in
fish have concluded that this type of marking has nho major short-term or persistent effects.
However, some concerns have been raised regarding the possibility of reduced viability of
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larval fish, especially if fish are exposed to unnecessarily high concentrations of markers for
prolonged periods. Chemical marking is therefore a potential hazard to fish welfare.

2.2 Methods for tracing fish origin based on natural marks

Use of natural marks for determining the origin of fish is based on analyses of biological
samples collected from either live or dead fish. The purpose of collecting samples from live
fish is to avoid killing fish with uncertain identity. As no live-capture methods are able to
select escapees only, collection of live fish for subsequent tracing of origin means that both
escaped farm fish and wild fish are caught. Under such circumstances, visual determination
of origin is difficult, as the fish must be handled carefully and rapidly. In order to avoid Killing
fish that appear to be wild, these are released after sampling. The main purpose of collecting
such samples is to determine the actual proportion of escapees in salmon populations as a
tool for stock management.

Our evaluation of the potential implications for fish welfare is framed on the following basis:

e |If samples are collected from dead fish, then the method of killing should follow
procedures that are representative for normal recreational or commercial fishing. As
evaluation of methods for killing fish during recreational or commercial fishing are beyond
the scope of this report, we have evaluated sampling from live fish only.

¢ We have not evaluated welfare implications for capture of salmon with conventional gear
used in recreational or commercial fishing per se, as the objective of this report is not to
evaluate welfare during fishing, but welfare issues that result primarily from tagging and
tracing of farm-produced salmonids. Thus, we have restricted our assessment to effects
from releasing live fish caught by various methods and collection of samples from live
fish.

¢ We have not differentiated between unidentified escaped fish and wild fish when
assessing potential effects on fish welfare, as we currently have no reason to assume that
the welfare effects will differ between escapees and wild fish.

e As collection of samples from live fish is conducted in the same way for the different
methods for tracing origin on the basis of natural marks, we have not distinguished
between the different analytical approaches used subsequent to sampling.

e Salmon are captured by using either passive or active equipment (reviewed in Neesje et
al., 2013). Passive gear includes: bag nets, fyke nets, permanent fish traps, or gill nets.
Active collection methods include use of sports fishing gear, driftnets, shore seines,
electrofishing, harpooning, and use of light in combination with hand nets during the
night (light fishing). The choice of collection method depends on the situation. In the
marine environment, bag nets, fyke nets, gill nets, and drift nets are the most commonly
used and suitable collection methods. In rivers, sports fishing gear, shore seines,
electrofishing, harpooning, and light fishing are the most appropriate methods. Although
electrofishing is an effective and accepted method for live-capture of small fish, it is
generally not used for live-capture of large/adult fish in rivers, and therefore is not
evaluated here. Harpooning implicitly involves the fish being killed and is not evaluated.
Nevertheless, it is important to bear in mind that harpooning could involve fish welfare
issues as an unknown proportion of fish are wounded before they are killed. The most
common methods for collection of samples from live salmon for tracing their origin are
the use of sports fishing gear, bag nets, fish traps, and light fishing. We have therefore
focused mainly on the potential welfare effects due to release of fish caught by these
methods (hereafter referred to as capture and release or C&R).

e Advances in genetically based analytical methods means it is now possible to use a single
fish scale to genotype an individual fish, and thus sampling of any other tissue than scales
is not required. Analysis of otoliths involves the fish being killed in order to collect samples
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and is not relevant here. Thus, the potential effects on fish welfare due to sampling of
scales from live fish are the focus of assessment in this report.

2.2.1 Release of salmonids captured alive for tracing based on natural
marks
Acute welfare effects

Little has been reported on the importance of experience and functionality of equipment for
C&R of salmon using bag nets, fish traps or light fishing, and the associated effects on fish
welfare. This is partly because, as fish with gear-inflicted injuries are typically killed and not
released, studies investigating the fate of injured fish have not been carried out. Like all
other methods that involve handling of fish it is, however, likely that experience and
optimization of equipment are important. It has, for instance, been shown that some of the
salmon caught in bag nets are injured in the net to such an extent that their survival if
released is uncertain (Rikstad, 2004; Hvidsten and Fiske, 2012). Fiske and Wennevik (2011)
reported that approximately 20 % of fish caught in a bag net was seriously injured.
Occurrence of injuries can be reduced by using nets with a smaller mesh size than used by
commercial fishermen (Rikstad, 2004), but this will increase the by-catch of smaller fish
(Strand and Heggberget, 1996). It is also essential to develop an adequate screening
protocol to be able to select fish with critical damage, such that these could be killed
humanely and not released. Telemetry studies in several rivers have indicated that salmon
caught in bag nets, and subsequently tagged with radio transmitters before release, show
high survival and most likely also normal progression during up-migration in rivers, provided
that only healthy and undamaged fish are tagged (Thorstad et al., 2011). C&R of salmon
using sports fishing gear and its influence on fish welfare have been evaluated by VKM in
2009 (VKM, 2009). One of the main conclusions reached in this assessment was that
“welfare issues including survival can be improved by selection of correct fishing tackle,
handling procedures, and training of anglers and guides”. Several guidelines for optimal C&R
of salmon caught with sports fishing gear exist.

Water temperature is assumed to be important for survival of salmon after C&R using sports
fishing gear. In general, mortality appears to increase when the water temperature exceeds
18 °C (Havn et al., 2015). The size of the salmon may also be related to mortality after C&R
angling. As larger fish are stronger, they are often more difficult for anglers to land before
they are exhausted, and due to their longer play times they suffer greater physiological
disturbance than smaller fish (Dempson et al., 2002; Thorstad et al., 2003). However, Booth
et al., (1995) found that post-angling physiological impacts were greater for small salmon
(grilse) than for much larger multi-sea-winter fish. Proximity to spawning is also thought to
influence survival and behaviour following release of salmon caught with sports fishing gear.
It is assumed that salmon become more tolerant of disturbances closer to the spawning
season and it has been shown that mortality due to C&R is lower during the autumn than
earlier in the season (Booth et al., 1995). In contrast, C&R of spawning fish may affect
reproductive behaviour more than if fish were released well before the spawning season.

Mortality due to C&R is mainly acute, as it predominantly occurs during the first 24 hours
after release (Muoneke and Childress, 1994; Havn et al.. 2015). Typically, the acute mortality
due to C&R varies from zero to 11-12 % at water temperatures below 18 °C (Havn et al.,
2015 and references therein; Lennox et al. 2015). In a recent Norwegian study on effects of
C&R on salmon, the average mortality in several rivers was found to be 7 % (Uglem pers
med.). Most of the fish that died in this study had injuries, had been handled in a sub-
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optimal way, or had been caught and released at high water temperatures. C&R with sports
fishing gear is also often accompanied by the released fish moving a certain distance
downstream immediately after release, and a delay in subsequent upstream migration (e.g.
Thorstad et al., 2003; 2007; Lennox et al., 2015),. However, provided that the fish are
released during the normal fishing season, the majority will be able to continue and finish
their spawning migration before the spawning season. How behaviour is affected by C&R in
rivers close to the spawning season is not known, and little is known about effects of C&R
when using equipment other than sports fishing gear, but it is assumed that smaller fish will
suffer more than larger fish when some kind of net is used, as smaller fish are more easily
trapped in the net (Naesje et al., 2013)

On the basis of a substantial literature review, VKM (2009) concluded that C&R using sports
fishing gear may harm the fish, as well as inflicting pain, but also that the welfare
implications were probably temporary. Hence, it is likely that stress and pain in salmon due
to C&R using sports fishing gear, with the purpose of collecting samples for tracing the origin
of the fish, are only short-term. The potential for fish that are captured with other relevant
gear for collection of samples for tracing their origin to experience stress and pain following
release has not been reviewed nor, to our knowledge, addressed in any relevant studies.
Should fish be seriously injured and then released, or suffer mortality during capture, then it
is likely that they experience pain and stress. However, the extent to which fish experience
pain and stress is however difficult to assess.

Long-term welfare effects

Capture of salmonids for collection of samples for tracing their origin may typically cause
injuries and tissue damages in two ways; either by causing scale loss, skin abrasions, and fin
damage due to poor handling, or by injuries in the mouth regions due to catching the fish on
a hook (VKM, 2009). Skin damage may occur when using gear that involves physical
handling of the fish and could lead to chronic stress and, in turn, increase susceptibility to
infections and pathogens. Potential pathogens include fungi (Saprolegnia spp.) and
opportunistic bacterial infections (e.g. Aeromonas spp., Pseudomonas spp.) (Ferguson,
2006). Hook damage may occur when using sports fishing gear to capture fish. For instance,
Meka (2004) found that 30 % of rainbow trout in a C&R fishery in Alaska had at least one
scar consistent with hooking. The extent to which injuries or damage due to different types
of gear used for capturing salmon for tracing their origin affects survival or welfare after
release is not known, but it is reasonable to assume that some negative welfare effects will
occur.

Occurrence of chronic pain or stress after release of fish caught for collection of samples for
tracing of the origin of salmonids has, to our knowledge not been investigated for fish in the
wild. As most of the mortality, following C&R of fish caught, for example, with sports fishing
gear, seems to occur within a few days after release, the probability of long-term effects, in
terms of pain and chronic stress, may be relatively limited.

Most of the mortality of fish captured and released with sports fishing gear occurs during the
first days after release and the long-term mortality appears to be low (Muoneke & Childress,
1994; Havn et al., 2015). To our knowledge, long-term mortality following release has not
been investigated or determined for other relevant fishing gear, but several experiments on
radio-tagged salmon caught in bag nets indicate that long-term survival is high (Thorstad et
al., 2011 and references therein). Fish caught and released are subject to wounds during
hooking, and the skin may be damaged due to handling prior to release (VKM, 2009).
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However, it is has not been demonstrated whether fish caught with sports fishing gear and
thereafter released are more prone to secondary infections through wounds, but this cannot
be excluded. Injuries (skin damage, gill lesions etc.) may be invaded by opportunistic aquatic
pathogens (particularly Saprolegnia spp.) that may cause severe lesions and increased
mortality (Ferguson, 2006; VKM, 2009).

C&R using sports fishing gear may result in a delay in migration to the spawning areas for
salmon (Thorstad et al., 2003; 2007; Lennox et al., 2015). In some cases, this delay may be
several weeks. Despite a significant delay in migration, reproduction would probably not be
seriously affected as the majority of the salmon that experience delayed migration are
observed at known spawning areas during the spawning season. Behavioural effects on fish
captured and released with other relevant gear, or close to the spawning seasons, have not
been investigated or reported.

Summary - release of salmonids captured alive for tracing of origin

Apart from C&R of salmon with sports fishing gear, little is known about the welfare effects
due to release of fish captured for collecting samples for tracing their origin. However, it is
well documented that C&R of fish caught with sports fishing gear has a negative effect on
welfare for a proportion of the fish, and it seems likely that the same would also be the case
for fish captured with other relevant fishing gear. In addition to optimization of handling
procedures, it is important to establish adequate routines for selecting and euthanizing fish
that, due to gear-inflicted injuries, are likely to experience reduced welfare after release. If
seriously injured fish are euthanized, the welfare effect on released fish is assumed to be
low.

2.2.2 Collection of scales for tracing origin based on natural markers

Scales are collected from live fish with a pair of pliers or tweezers. Between four and eight
scales are collected from each fish (Anon, 2016). Anaesthesia is not used. Studies on the
effects of scale sampling from live fish, which are subsequently released, are lacking. Thus,
our assessment is based on own knowledge and personal communications.

Acute welfare effects - Scales

Scale sampling from salmon for tracing their origin involves handling relatively large and
strong live fish. Hence, experience with fish handling is likely to be important for reducing
potential negative impacts. The equipment used is very simple, but as scales may be difficult
to remove, especially close to the spawning season, experience will be important to ensure
that scales are sampled rapidly and efficiently (Fiske, P. pers. comm.). It seems likely that
potential welfare effects will be reduced with experience with the method.

It is common that fish react by “jumping” or “wincing” when scales are removed (Thorstad,
E. pers comm.). This is seldom observed when items such as external radio transmitters are
attached under the dorsal fin of fish, and may be because scales are collected from an area
close to the lateral line, which is a particularly sensitive area. The extent to which this
reaction reflects pain is not known. As with all methods that involve handling of live fish, it is
reasonable to assume that scale sampling will be stressful for fish to some extent.

Impacts on welfare post-removal of scales

As scales protect the skin against the external environment, it is possible that scale removal
may result in tissue damage and inflammation in the same way as for injuries caused by
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different capture methods. However, fish are able to regrow scales that, over time, will cover
the exposed area. Since only a few scales are removed, the probability of major damage is
relatively low. Nevertheless, the actual effects of scale removal of this magnitude have not
been investigated.

If a fish develops secondary infections due to sampling of scales, it is also possible that it will
experience chronic pain and stress. The probability of developing infection and disease due
to scale sampling from live fish for tracing their origin is not known. As for skin damage and
lesions caused by C&R there is, in general, a potential for development of disease and
infection, with subsequent mortality (VKM, 2009). Effects on behaviour due to scale sampling
from live fish have, to our knowledge, not been investigated or reported.

Summary — Collection of scales for tracing of origin based on natural markers

Investigations of whether sampling of scales from live salmon affects their welfare following
release have not been conducted. As salmon show an immediate behavioural response
during scale removal, it is possible that they experience short-term pain, but the extent of
this is difficult to assess. Furthermore, because removal of scales may be associated with
development of secondary infections, there is also the potential for chronic effects to occur.
Scale sampling is, nevertheless, a relatively minor intervention compared with many tagging
methods, and is unlikely to pose a considerable hazard to fish welfare.
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3 Risk characterization

The risk of reduced fish welfare is defined as the probability that a hazard will cause welfare
reduction, multiplied by the degree of consequence of this welfare reduction.

Parameters such as pain, discomfort, infections, mortality and stress responsiveness were
taken into account with equal measures when addressing reductions in fish welfare.

In this assessment, the project group has chosen a three-grade scale concerning
probabilities and consequences. The term «fish» refers to the relevant part of the fish
population, i.e. fish subjected to the given method of marking. Numbers are estimated.

e Low probability: <1 % fish will experience reduced welfare
e Moderate probability: 1 - 10 % fish will experience reduced welfare
e High probability: >10 % of fish will experience reduced welfare

In this context, consequence relates to the severity of the effects of the different marking
methods on fish welfare, graded as:

e Limited consequence: No or limited consequence, e.g. low grade or only
transient pain, fear, or other negative affective states,
for fish welfare

e Moderate consequence: Moderate consequence, e.g. more prominent or lasting
pain, fear or other affective states, for fish welfare
e Serious consequence: Serious consequence, e.g. severe or long-lasting pain,

fear, or other negative affective states (including
increased mortality and reduced fithess), for fish welfare

The effects related to marking may be acute (during the process of marking or shortly after)
or appear as a consequence of the marking, causing chronical or long term effects. The risk
characterization is therefore divided and presented as two different tables; one presenting
acute effects, the other presenting long-term effects.

In the following risk charts of this chapter, different levels of risk are represented as follows:

e Low risk: Green
e Moderate risk: Yellow
e High risk: Red
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Low

Serious

Moderate

Consequence

Figure 3-1. Estimates of the risk of acute or short-term reductions in fish welfare associated with
marking methods. * indicates that the fish can be tagged in combination with vaccination, # indicates
knowledge gaps associated with ranking of risk estimation.
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Adipose fin clipping#

Freeze branding#
VIE tags

Injection of pigments
VIA tags

CWT

Figure 3-2. Estimates of the risk of reductions in fish welfare associated with persistant, long-term or
chronic effects of marking methods. * denotes that the fish can be tagged in combination with
vaccination, # indicates knowledge gaps associated with ranking of risk estimation.
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4 Uncertainties and data gaps

In this risk assessment, some uncertainties and data gaps remain in relation to how marking
methods affect fish welfare. These include:

Removal of body parts, such as the adipose fin. Since the adipose fin is innervated, it
is possible that the fish will feel pain following removal. Information on the functional
role of the adipose fin is scarce.

Information on how some of the marking methods (for example freeze branding,
externally visible tagging methods or visible internal tags) affects fish under different
environmental conditions or different life stages is limited or non-existing.

Overall, few studies on fish welfare, concerning pain or behavior, are available within
this context. Most of these have rather focused on fish health parameters, such as
growth and survival.

Most of the available information, regarding effects of marking methods on fish
welfare, is based on small-scale trials.

It is difficult to assess to what extent fish experience aversive stress responses and
fear, in relation to C&R for subsequent sampling and analysis
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5 Answers to the terms of reference

1. How do the described marking methods affect the welfare of farmed fish
and fish for cultivation?

In this section, the effects on fish welfare for each of the described marking methods are
addressed. As mentioned in the beginning of chapter 2, we assume that sufficient measures
have been taken to reduce the negative effects on welfare during the marking procedure
through appropriate administration of an efficient anesthetic. Details underlying the
classification of risks are provided in chapters 2 and 3.

Adipose fin removal

Removal of the adipose fin may involve a risk of affecting fish welfare, both on a short-term
and long-term time-scale. In terms of acute effects, surgical removal of a fully functional
body part from the fish will result in a Aigh risk of reduced welfare. Although the clipping
would be performed in connection with other procedures (e.g., vaccination) when the fish is
anaesthetized and will feel no pain during the surgery, there will probably be some pain
during recovery, before the wound is healed. Although the technique is easy to learn, the
skills of the person clipping the fin is crucial and operator fatigue may occur. There is also a
risk of clipping too deeply when this is done manually, and this may also cause pain. The risk
of permanently reduced fish welfare is, however, considered moderate, with some
uncertainties related to the lack of knowledge. For most individuals, the wound heals within
a short period after clipping. Clipping too deep may not only increase wound healing time,
but may also increase the risk of a long-lasting wound infection. The functions of the adipose
fin are not fully understood, and lack of the fin may affect swimming behaviour and possibly
social behaviour on the spawning grounds. These negative effects are probably low in caged
salmonids.

Clipping is usually done on juveniles, during vaccination or handling (transfer to a new
environment). Although adipose fin clipping requires extra handling, it may be carried out on
a large scale. Clipping may also be automatized. The adipose fin does not regenerate, and
thus the marking is permanent. As fin clipping allows differentiation into one of two
categories, (i.e., marked or unmarked), the method is only adequate as a visual mark, that
indicates whether a fish is farmed (clipped) or wild (unclipped).

Freeze branding

Freeze branding affects the welfare of fish, both on a short-term and long-term timescale.
The risk of reduced fish welfare in the short-term is considered A/gh. The fish may
experience stress linked to handling, anaesthesia, and marking. The mark is essentially a
wound that heals, and it is assumed that marking results in temporary pain or stress. The
short-term effects may also include increased mortality due to predation of the marked fish,
probably because of general stress inflicted during tagging. On a more long-term time-scale,
freeze branding is considered a moderate risk for reduced fish welfare.

The freeze branding method is simple and easy to learn, but skills in fish handling fish are
necessary. Freeze branding has been used for marking fish of salmon parr/smolt size, but is
probably not suitable for smaller fry. No automated methods for large-scale freeze branding
exist. The mark will fade as the skin heals, and is therefore a short-term mark. As the

VKM Report 2016: 67 55



number of codes that can be constructed is relatively low, freeze branding is suitable for
batch marking, and not for individual identification of a large number of fish.

Externally attached visible tags

A variety of external tags are available. Marking with external tags affects the welfare of
fish, both short-term- and long-term. To varying extents, these marks irritate the skin and
increase the risks of wounds and infections. From a short-term perspective, the risk of
reduced fish welfare is considered Aigh. The smaller types of external tags can be used on
small fish, but are generally not recommended as the negative effects appear to be
negatively correlated with fish size. Long-term effects include elevated mortality and
increased predation risk; thus external tags remain a Aigh risk of reduced fish welfare.

External tagging involves minor surgical interventions and a certain level of skill is necessary
in order to place the tag correctly and reduce the risk of infections. Although general skills in
fish handling is necessary, the method is usually easy to learn. Small external tags can be
used for salmon parr/smolt size. Automated methods for mass marking do not exist at
present.

The tag retention varies depending on type of external tags, but tag loss always occurs to
some extent. Therefore, the use of external tags does not represent a reliable permanent
marker, particularly as the degree of tag loss is usually difficult to estimate in a natural
situation. The number of possible codes is very high and therefore external tags could be
suitable for individual identification of a high number of fish, although tag loss will result in
some uncertainty.

Visible internal tags

Visible internal tags include pigments that are injected into the tissues of the fish, either as a
liquid that solidifies into a coloured mark (VIE mark), or as a liquid that forms a coloured or
fluorescent mark in the skin.

The risk of reduced fish welfare in the short-term is considered Aigh, mainly due to
puncturing of the skin and injection of a liquid substance. A certain level of skill is required,
although the method is usually easy to learn. General skills in fish handling are also
necessary. Visible internal tags can be used on small fish and therefore this is an adequate
method for tagging salmon parr/smolt-sized fish. If tagging is done correctly, the risk of
reduced fish welfare on a longer timescale is assumed to be moderate

Fully automated methods for mass marking do not currently exist. Tag retention varies
depending on types of visible internal tags, and, in some cases, the visibility of the tags
decreases as the fish grows because, over time, the tags become positioned to deeply in the
fish tissues to allow visual detection. Considerable tag loss has been reported, and therefore,
visible internal tags do not represent an adequate permanent marker. The number of codes
is limited and visible internal tags are applicable only for batch marking.

Injection of pigments

Intradermal injection of pigments is normally a safe marking method, with few or no
negative effects on growth, survival, and behaviour. However, erroneous adjustment of the
tagging equipment may result in considerable mortality. Although the technique is easy to
learn, a certain level of skill with the marking equipment is necessary, as well as experience
in fish handling. The marking method can be used on small fish and is thus suitable for
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marking of salmon parr/smolt-sized fish. Semi-automated equipment for injection of
pigments exists, and there is the potential for development of fully automated equipment
that could be used for marking fish during vaccination.

Tag tag retention is high for some pigments, but it is uncertain whether the retention will be
adequate for tracing the origin of escaped salmonids, especially if fish are tagged as parr or
smolts. The number of codes that can be constructed is limited and injection of pigments is
most suitable for batch marking. In terms of acute effects, tagging fish with injection of
pigments poses a Aigh risk for reduced fish welfare. This risk is reduced to moderate from
a long-term perspective.

Spraying of pigments

Pigments may be sprayed onto the skin of fish under high pressure, penetrating into the
tissues. There are several reports of significantly increased mortalities after marking, most
likely due to suffocation. The mortalities vary among species and according to
methodological approaches. A standardized methodology that ensures minimal welfare
effects has not been developed. The risk of reduced fish welfare is considered high, both
short-term and long-term.

The tagging method is, in itself, simple and the necessary skills would be easily attained.
General skills in fish handling are also required. In theory, the method can be used on all
sizes of the fish, but the negative effects appear to be more pronounced with smaller fish.
The mark fades over time and, thus, this method is not suitable for long-term marking.
Automated methods for large-scale marking do not exist. The number of codes is limited and
spray marking is thus a batch-marking method.

Visible implant alphanumerical tags (VIA or eye tags)

Visible implant alphanumerical (VIA) tags are small pieces of plastic that can be implanted
under transparent tissues, e.g., in the eye of fish. The short-term risk of reduced fish welfare
is considered high, which is reduced to moderate in longer timescale. Use of VIA tags
involves minor surgical interventions and a certain level of skills is required, although the
method is usually easy to learn. General skills in fish handling are also necessary. VIA tags
can be used for salmon parr/smolt-sized fish. Automated methods for mass marking do not
exist. A high degree of tag loss has been reported, and thus, this method is not reliable for
long-term marking. The number of codes can be very high and therefore, if tag loss could be
reduced, VIA tags could be used for individual identification of a large number of fish.

Coded wire tags (CWT or snout tags)

Coded wire tags (CWT) are very small (0.5-2.2mm long, 0.25 mm diameter), coded,
magnetized stainless steel rods that can be inserted into the tissues. In salmon, the most
common tagging area is the snout of the fish, usually in combination with adipose fin
clipping. Except for the general risk of stress from handling the fish, there are few impacts
on welfare from the tagging. In very small fish, there is a risk of injuring olfactory nerves.
Relatively little training is required to become proficient in CWT tagging, and, by following
well-tested procedures, the operator can insert CWT with little risk of harming the fish or
causing later mortality. CWT have minimal effects of growth, mortality, or behaviour.

As for all methods, fish should be healthy and tolerant of handling. Fish should be at least 50
mm at tagging, and the method is thus suitable for salmon parr/smolt. The risk of tag loss is
low, provided that the tagging is perfomred properly, and the high number of possible codes
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makes it possible to identify a virtually infinite number of fish. CWT can be remotely
detected, but, to allow identification of individual fish, must be surgically removed from the
fish post mortem and read under a binocular microscope. In terms of acute effects, CWT-
marking poses a Aigh risk of reduced fish welfare.

The tagging procedure is relatively fast and the tags are cheap and suitable for mass
marking of fish. However, reading the tags is slow and expensive, and industrial-scale use
would involve considerable logistical issues. For tagged fish to be detected without using an
electromagnetic reading device, the method should be combined with adipose fin removal.
For the long-term, CW tags represent a moderate risk of affecting fish welfare. It should be
noted that CWT that are not removed may represent a problem for consumers if fish heads
are used as food. However, since the CW tag is biologically inert, it represents no hazard to
human health (http://www.nmt.us/support/appnotes/apc03.pdf)

Passive Integrated Transponders (PIT-tags)

PIT-tags are surgically implanted into fish. Relatively little training is required to perform this
technique, and, by following well-tested procedures, operators can perform the tagging with
little risk of harming the fish or causing later mortality. Tags should be located in the ventral
area of the abdominal cavity, somewhere between the pyloric ceca and the pelvic girdle,
generally in the fatty tissue just posterior to the pyloric ceca. Tagging is done under
anaesthetics, either using a tag injection needle or by making a small cut with a scalpel and
inserting the tag by hand. Subsequent pain management is common, and post-operative
complications are unusual.

As with all methods, fish should be healthy and tolerant of handling; their length should be
at least 65 mm, but preferably above 80 mm. The risk of tag loss is low, if the tagging is
performed properly, and the high numbers of possible codes means it should be possible to
identify an infinite number of fish. The tags can be read remotely (distance from tag < 1 m).
Tagging usually has no effects on growth and behaviour. However, as the tag is made of
glass and metal it may represent a food safety issue. The tagging procedure is relatively
slow, and the current price of tags probably means that this method is too expensive for
mass marking of fish.

PIT tags represent a high risk of having a negative short-term effect on fish welfare, but this
risk is reduced to /ow over time.

Chemical marking

Chemical marking involves marking otoliths or other calcified structures with a suitable
chemical by exposing the fish by immersion, injection, or ingestion. Most of the studies that
have investigated the potential welfare effects of chemical marking in fish, have concluded
that this type of marking has no major short-term or long-term effects, provided that
immersion in very high concentrations over prolonged periods is avoided. If the chemical is
injected, puncture of the skin may inflict temporary pain. The risk of reduced fish welfare
due to chemical marking is considered /ow, on both the short-term and long-term scale.

As chemical marking may involve exposure through immersion, as well as puncture of the
skin, good fish handling skills are required. The marking methods are not difficult to learn,
but, as with all marking of fish that involves handling and skin puncture, experience is
important for achieving optimal results. Chemical marking can be performed for all life stages
of fish, but there are some concerns regarding the possibility of reduced viability of larval
stages, especially if fish are exposed to unnecessarily high concentrations of chemicals over
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longer periods. Automated methods for mass marking do currently not exist, but there is the
potential for developing automated vaccination equipment that simultaneously injects a
chemical marker. The chemical markers are integrated into calcified structures and the
marking is permanent. The number of possible codes, however, is relatively low and the
method is most suitable for batch marking; that is, it may be possible to compose individual
codes that identify the origin the fish at the company or fish farm level.

2. Is there a risk of negative welfare implications when using the described
tracing methods for farmed fish? If yes,
a. Describe the risk.
b. Describe possible mitigation measures.

Tracing the origin of salmonids on the basis of natural marks, e.g,. genetic variation or
composition of earth elements, has been regarded as a method with few or no negative
effects on fish welfare, as the tracing is not based on tagging per se, but merely uses a
natural intrinsic signature. Thus, in general, tracing on the basis of natural marks will not be
associated with reduced fish welfare due to the tracing method per se. provided that the
necessary biological samples are collected from fish using accepted methods in recreational
or commercial fisheries, or similar.

However, if the samples are collected under extraordinary fishery efforts, with the intention
of collecting samples for the sole purpose of tracing escaped salmonids, fish welfare may be
compromised. If the extraordinary sampling is conducted following the accepted principles
for capture in commercial or recreational fisheries, no additional negative welfare effects
should occur. However, if fish are released after collection of biological samples (scales) fish
welfare may be compromised as a result of: a) negative impacts due to C&R or b) due to
scale sampling from live fish that are subsequently returned to the river.

C&R practice was evaluated by VKM in 2009 and it was concluded that it has the potential to
harm fish, and thus, implicitly, may also reduce fish welfare. Little is known about how scale
sampling from live fish affects its welfare, but observations indicate that fish show a “startle
reaction” when scales are removed, and there is also the potential for secondary infections
to occur due to removal of scales. More knowledge is needed regarding effects of C&R in
monitoring/surveillance fisheries during autumn and close to the spawning period, as well as
the potential for infections due to scale removal. Mitigation measures should be based upon
the recommendations made by VKM in 2009 for C&R, and only the minimum number of
scales sampled.

However, as the negative welfare effects of C&R are normally to be considered minor, as far
as concerning long-term perspective, and scales only a few are sampled from each fish, it
seems likely the overall fish welfare impact associated with tracing on the basis of natural
marks would be minor.

The potential for negative welfare effects associated with tracing of origin by marking of fish,
i.e., by using artificial marks instead of natural marks, is addressed in the previous section.
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3. Which combinations of marking and tracing methods are feasible in practice
without increasing the risk of reduced animal welfare?

In this context, it is assumed that combinations of marking/tracing methods should include a
marking method that primarily provides a visible indication of whether a fish has escaped
from a farm, and a tracing or marking method that enables identification of the origin of
escaped fish. The rationale behind this approach is that a visible mark would provide a
means for identifying escaped salmon and removing them from the river without the risk of
killing wild fish, and subsequent analysis of a tag or utilization of biological samples from
these fish could then be used for tracing fish back to the appropriate level. We have
evaluated possible combinations on the basis of their effects on fish welfare, and not on the
basis on their reliability or economic feasibility, as this is not within the remit of the
assessment.

There are no combinations of marking and tracing methods that are feasible
without an increased risk of reduced animal welfare.

Chemical marking and PIT tags were evaluated as the single visible marking methods that
have the least effects on fish welfare, as far as concerning long-term scale. The methods for
subsequent tracing that were assessed as having the least effect on fish welfare were all
types of natural marks, followed by removal of adipose fin, the use of CW tags, VIA tags, VIE
tags, freeze branding, and injection of pigments. These visible marking methods can be
combined with the tracing of natural marks with a /fow to moderate probability of increased
risk of reduced animal welfare.

4. Which consequences for fish welfare has the different combinations of
feasible marking and tracing methods?

As there are many combinations that individually represent a low or moderate risk of
reduced welfare, there are also a multitude of combined consequences. The potential
consequences from each method are summarized in section 2. Empirical knowledge
regarding the consequences from combinations of marking and tracing methods is lacking.
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6 Conclusions

A variety of marking and tracing methods are available. The marking methods differ
regarding their suitability for differentiating between wild and farmed (escaped) fish in the
field.

Adipose fin removal is a permanent marking method, as the adipose fin does not regenerate
as long as the entire fin is removed. Other external marks may be lost or fade over time. All
externally applied marks have an impact on fish welfare. With most marking methods, the
risk of reduced fish welfare reduces over time. Natural or chemical marks have the lowest
risk of reduced fish welfare, but require analysis after catching and sampling.

Tracing methods differ regarding whether they can be used to trace fish back to their origin,
at the individual level or the farm level; this is mainly due to the potential number of codes
that can be derived with the different methods.

In order to identify escaped fish and trace them back to their farm of origin, a combination
of a marking approach and a tracing method, with sufficient codes, is necessary. Visible
tracing methods, like adipose fin removal, VIA tags, VIE tags, freeze branding, or injection of
pigments may be combined with tracing of natural marks or use of internal CWT- or PIT tags
that can enable identification of fish on an individual level.

Most marking methods represent a high risk of reduced fish welfare during or shortly after

marking, as a very high number of fish would be involved, but /ow to moderate increased
risk of reduced fish welfare on a long-term scale. Spraying of pigments and most externally

attached tags represent the highest risk of reduced welfare from a long-term perspective.

There are no combinations of marking and tracing methods that are feasible without an
increased risk of reduced animal welfare. These conclusions are summarized in Table 3.
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Table 3. A summary of the methods of marking and tracing of fish evaluated in this risk assessment.

The table distinguishes between methods that identify fish visually (usually after catching the fish),
with a sensor, or after killing the fish and subsequent analysis. The risk of reduced fish welfare at a
long-term scale relates to Figure 3-2.

Chemical marking

Natural marks

DNA

and readable
with sensor
after killing
fish

Method Remotely Risk of Identification | Comment
detectable long- at individual
(after term (1)- or farm
catching ) effects (F) level
of
reduced
welfare
Adipose fin removal F
Freeze branding F Mark fades over
time
Externally attached | High loss of
visible tags markers, risk of
infections /
complications
Injected pigments F
Sprayed pigments - F
VIE tags |
VIA tags |
PIT tags Detectable | Marker embedded in
. glass
with sensor
CWT Detectable May be detected

with sensor at very
close range

F(?)

Limited number of
codes

F(?)

Limitation on
number of codes

Register required
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