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Abstract 

Increased mortality from fishing is expected to favor faster life histories, realized through earlier 

maturation, increased reproductive investment, and reduced postmaturation growth. There is also 

direct and indirect selection on behavioral traits. Molecular genetic methods have so far contributed 

minimally to understanding such fisheries-induced evolution (FIE), but a large body of literature 

studying evolution using phenotypic methods has suggested that FIE in life-history traits, in particular 

maturation traits, is commonplace in exploited fish populations. Although no phenotypic study in the 

wild can individually provide conclusive evidence for FIE, the observed common pattern suggests a 

common explanation, strengthening the case for FIE. This interpretation is supported by theoretical 

and experimental studies. Evidence for FIE of behavioral traits is limited from the wild, but strong 

from experimental studies. We suggest that such evolution is also common, but has so far been 

overlooked.  



1. INTRODUCTION 

Contemporary fisheries have been likened to a “large-scale experiment on life-history evolution” (e.g., 

Rijnsdorp 1993). All fishing is selective, and not only with respect to life-history traits. Fishing 

operations are deliberatively selective, often because of regulations enacted to protect small 

individuals, and more ubiquitously selective because fishermen target types of fish that are most 

available or profitable to catch (Andersen et al. 2012, Holland & Sutinen 1999, Salas et al. 2004). 

Even fishing methods such as purse seining or dynamite fishing, which are unselective at the local 

scale, are selective at the population level because fish are not randomly distributed in space (Planque 

et al. 2011). 

Whenever fishing is selective for characteristics that show genetic variability among individuals, 

fishing will lead to evolutionary change in the affected populations. This insight was first 

established—well before the genetic basis of inheritance became widely known—by Cloudsley Rutter, 

a Californian scientist who worked with Chinook salmon (Oncorhynchus tshawytscha) in the 

Sacramento River. Rutter (1902) remarked that the law prohibiting the use of nets to catch small male 

salmon returning to spawn countered common sense as “a stock-raiser would never think of selling 

his fine cattle and keeping only the runts to breed from”. Yet, the fishery let the small salmon reach 

the spawning grounds, while catching the large ones. On this basis, Rutter predicted that “the salmon 

will certainly deteriorate in size”. This would not surprise aquaculturists, who have demonstrated how 

various traits in a large number of species possess significant heritabilities and have responded to 

artificial selection (Friars & Smith 2010). For example, about ten generations of selective breeding 

has increased the growth rate in Atlantic salmon (Salmo salar) threefold (Solberg et al. 2013). 

Despite clear parallels with animal breeding—fisheries-induced selection is a form of artificial 

selection, albeit unintentional and uncontrolled—the idea of fishing as an evolutionary force has been 

slow to penetrate the fisheries research community. Rutter passed away in 1903 (Roppel 2004) and 

his seminal remarks remained hidden in a long report, and were largely overlooked. Similarly, other 

early work attracted scant attention at the time it was published, including work on the effect of 

selection on growth by Cooper (1952), on fish behavior by Miller (1957), on a selection experiment 



by Silliman (1975), on gillnet selectivity with respect to multiple life-history traits by Handford et al. 

(1977), and on evolution of the age at maturation by Borisov (1978) attracted scant attention at their 

time. This situation started to change only in the 1980s, perhaps partly in response to the blossoming 

of life-history theory (Roff 1992, Stearns 1992), and partly because life-history changes had been 

observed in many populations of harvested fish (reviewed by Trippel 1995). By the early 2000s, 

fisheries-induced evolution (FIE) had become a vigorous field of inquiry. 

Several general reviews on FIE have already been presented, starting with the influential, but now 

partly outdated, review by Law (2000). Similarly, reviews by Kuparinen & Merilä (2007), Fenberg & 

Roy (2008), and Hutchings & Fraser (2008) predated many new developments. Although several 

recent reviews cover specific aspects of FIE (speed: Audzijonyte et al. 2013, Devine et al. 2012, 

experiments: Díaz Pauli & Heino 2014, growth rate: Enberg et al. 2012, theory and consequences: 

Heino et al. 2013), there is no recent general review covering the main developments of the field 

occurring during the past decade, a gap that this review aims to fill. After providing an overview of 

theoretical expectations, we summarize the empirical evidence for FIE, and conclude with discussing 

its implications. Although FIE is relevant for fisheries of finfish, elasmobranchs, and invertebrates 

alike, most of the empirical work has been based on finfish, which are the focus of this review. 

2. THEORETICAL BACKGROUND 

Theoretical expectations of fisheries-induced selection are fundamentally simple: it affects any trait 

that determines how individual fish are exposed to fishing. And to the extent that the affected traits 

possess any genetic variability, the resultant selection differentials become incorporated into a fish 

population’s gene pool. 

The salient theoretical questions are, therefore, more specific. What is the direction of fisheries-

induced selection imposed by a given fishing regime on a given trait? How strong is such selection? 

What is the resultant pace of FIE? Can the direction of selection be reversed, or the pace of FIE be 

slowed, by using alternative fishing regimes? When must we expect fisheries-induced selection to be 

disruptive or the resultant evolutionary dynamics to be bistable? How are current heritabilities 

affected by past fisheries-induced selection? 



Life-history traits are among the prime targets of fisheries-induced selection, prominently including 

traits regulating investments into growth, maturation, and reproduction (Heino & Godø 2002). 

Likewise, behavioral and morphological traits affecting exposure to fishing are likely to experience 

fisheries-induced selection; however, these targets have received less scientific scrutiny. In addressing 

the aforementioned questions, we therefore align with the literature’s focus on life-history traits, and 

in particular on maturation traits. 

2.1. Fisheries-induced Selection Pressures 

Fisheries-induced selection may be direct or indirect. Fish evolving to grow more slowly to escape a 

fishing mortality that commences above a threshold body size (e.g., Conover & Munch 2002) respond 

to a direct selection pressure on growth. In contrast, fish evolving to grow more slowly because they 

invest more energy into early maturation (e.g., Olsen et al. 2004) respond to a selection pressure that 

is direct on maturation and indirect on growth. Also any population-level covariance in the genetic 

variabilities of two traits can cause the selection pressure on one trait to be experienced by the other. It 

is therefore common that fisheries-induced selection on a trait implies such selection on many other 

traits. This is especially true for the wide ranges of traits affecting body size and/or exposure to 

fishing: whenever fishing mortalities are size-selective and/or behavior-selective, respectively, all 

these traits experience a complex array of selection pressures. 

Importantly though, selective fishing and fisheries-induced selection are by no means equivalent. As 

is sometimes overlooked, even a uniform rise in fishing mortality across all body sizes causes 

selection pressures on many traits. This is because such a rise devalues the importance of older ages in 

all life-history tradeoffs. It then becomes less valuable, in fitness terms, for a fish to postpone 

reproduction, restrain current reproduction, or make anti-senescence investments, because the 

potential gains in terms of enhanced growth, survival, and/or future reproduction are erased when a 

fish ends its life in a fishing gear. Consequently, faster life histories are favored. 

While nearly all changes in fishing mortality, be they selective or uniform, cause selection pressures, 

this is not true for what might be termed inescapable mortalities. The prime example is an elevated 

mortality on all newborn fish. Another example is an elevated uniform river mortality on anadromous 



semelparous fish. In either case, to the extent that no trait can affect the exposure to such mortalities, 

all fish experience them alike; thus, no selection pressures result. The second example, however, 

already underscores how special the circumstances must be to not cause any selection pressures: the 

elevated mortalities must be strictly uniform across all body sizes and behavioral traits, and fish must 

be perfectly semelparous, having no chances at all to spawn in a second season. While such special 

situations do exist, at least approximately, they indeed are rare. 

Theoretical models suggest that fisheries-induced selection may sometimes be disruptive, in which 

case they might increase a stock’s genetic variability (Landi et al. 2015). Fisheries-induced selection 

may also cause evolutionary bistability: the mean of a trait is then driven to alternative outcomes, 

depending on its initial value (Gårdmark & Dieckmann 2006). 

Table 1 summarizes how fishing iteroparous fish is expected to select for earlier or later maturation. 

For example, while fishing more mature fish causes delayed maturation, fishing more large fish 

causes earlier maturation—even though mature fish tend to be large and large fish tend to be mature. 

This shows the limitations of one-size-fits-all predictions of FIE. Accordingly, even qualitative 

insights into FIE are best derived from stock-specific models that account for the life-history details of 

the fished stock and for the selectivity patterns of its fishery. For quantitative predictions, such models 

are strictly needed. 

2.2. Eco-genetic Models 

Eco-genetic models integrate principles of life-history theory and quantitative genetics theory to 

account for a fish stock’s life history, its fishing regime, and its genetic variability—resulting in a 

modelling framework that is especially suited for understanding, forecasting, and managing FIE 

(Dunlop et al. 2009). Such models benefit from the—historically, mutually exclusive—advantages of 

two alternative quantitative approaches to predicting evolutionary dynamics based, respectively, on 

the theories of quantitative genetics and adaptive dynamics. While models of quantitative genetics 

excel at predicting the time scales of evolutionary responses to selection pressures, models of adaptive 

dynamics excel at accounting for realistic population structures and life-history detail. Eco-genetic 

models simultaneously feature both advantages. 



Building on the pioneering work by Law & Gray (1989), as well as on earlier model-based studies, 

such as those by Heino (1998), Ernande et al. (2004), and Hutchings (2005), eco-genetic models have 

been devised and calibrated for a variety of fish stocks and fishing regimes. Resultant insights range 

from the asymmetrically fast pace of FIE compared to the evolutionary reversal when fishing is 

relaxed (Dunlop et al. 2009), to the influence of FIE on stock recovery (Enberg et al. 2009), 

differences in selection pressures caused by different gear types (Jørgensen et al. 2009), and the 

economic implications of FIE (Eikeset et al. 2013, Zimmermann & Jørgensen 2015). 

There are also studies that retain the detailed descriptions of life histories, evolving traits, and 

selectivity patterns found in eco-genetic models, while focusing attention on predicting selection 

pressures, rather than the course of FIE (e.g., Arlinghaus et al. 2009, Matsumura et al. 2012). These 

models can be simpler, in so far as they do not require keeping track of genetic variabilities. 

Appropriately standardizing selection pressures turns out to be crucial for comparing these across 

species, stocks, and traits (Matsumura et al. 2012). On this basis, these studies confirm the general 

finding that the strongest selection pressures fishing mortalities impose on life-history traits typically 

are those causing earlier maturation (Dunlop et al. 2009). 

However, what models of fisheries-induced selection cannot describe is how a stock’s heritabilities 

change through FIE. Although it is still common to consider ranges of heritabilities to be 

characteristic of types of traits (e.g., the heritabilities h2 of life-history traits are often assumed to lie 

between 0.2 and 0.3), the empirical and theoretical basis for this is slim. the empirical and theoretical 

basis for this is slim. Empirical meta-analyses report much wider ranges (Friars & Smith 2010) and 

show that evolvabilities are more informative than heritabilities (Hansen et al. 2011). Theoretical 

studies suggest that FIE may boost or erode heritabilities (Marty et al. 2015), so that observed 

heritabilities are strongly impacted by a stock’s past selection regimes. To capture any such effects, 

eco-genetic models are needed. 

3. EVIDENCE 

Theory makes a strong case for fishing being a potent driver of evolutionary changes in exploited 

populations. A conclusive empirical demonstration that FIE has occurred in a particular population 



and trait would require proving two logically independent conditions: that (a) the observed change is 

evolutionary and thus genetic, and that (b) it has been caused, at least partly, by fishing, rather than by 

other selective forces alone (Dieckmann & Heino 2007). 

Evidence for exploitation-induced evolution is conceptually easy to obtain through controlled 

experiments (section 3.2), but much harder through observation of wild populations (section 3.3). 

Observational studies in the wild can never conclusively prove that fishing is a driver, since causal 

interpretations generally require replication and controls. Strengthening the case that fishing is indeed 

among the drivers is thus only possible through two approaches: comparative studies (Devine et al. 

2012, Sharpe & Hendry 2009) and careful analysis of the roles of other drivers (i.e., environmental 

factors). The latter can be achieved using process-based models parameterized for specific case 

studies (e.g., Wright et al. 2014) or through pattern-oriented statistical modelling (e.g., Neuheimer & 

Grønkjær 2012). Nevertheless, the role of fishing as a driver of selection often goes unchallenged. In 

contrast, the use of phenotypic data to reveal evolutionary (and thus genetic) change, as discussed 

below, is a matter of considerable debate. 

3.1. Genotypic versus Phenotypic Evidence 

Adaptive change can be examined studying phenotypic traits or molecular markers, but both 

approaches present challenges. Monitoring phenotypes allows studying demographically important 

traits (e.g., growth or maturation), but disentangling adaptive change from phenotypic plasticity is 

challenging. Monitoring molecular markers could enable unambiguous identification of genetic 

changes associated with FIE, excluding alternative explanations such as phenotypic plasticity and 

population replacement (Hemmer-Hansen et al. 2014). Field studies supporting FIE in the wild 

(section 3.3) have been criticized for not reporting changes in gene frequencies together with 

phenotypic changes in maturation (Browman et al. 2008, Jørgensen et al. 2008, Kuparinen & Merilä 

2008, Marshall & Browman 2007, Merilä 2009). While this point is easy to make, in practice it is 

difficult to link variation in molecular markers to the phenotypic variation associated with fishing 

(Hansen et al. 2012). 



Despite technological advances facilitating the compilation of genome-wide molecular data 

(Hemmer-Hansen et al. 2014), few studies have successfully applied them to study shifts in gene 

frequencies in response to environmental change in general (Hansen et al. 2012) and fishing in 

particular. Genetic differences due to selection, rather than population replacement, were found in 

populations of Atlantic cod (Gadus morhua) from Iceland and Canada (Jakobsdóttir et al. 2011, 

Therkildsen et al. 2013). In Iceland, the changes were associated with differential fishing mortality, 

which was higher in shallower than in deeper waters, in agreement with different observed allele 

frequencies (Jakobsdóttir et al. 2011). However, fishing pressure is just one of the factors differing 

between shallow and deep waters. Shifts at loci in Canadian cod seemed correlated with temporal 

trends in temperature and midpoints of probabilistic maturation reaction norms. However, these 

temporal correlations were based on small sample sizes, and more data are needed to corroborate 

these results (Therkildsen et al. 2013). In an experiment on guppies (Poecilia reticulata), differences 

in candidate genes associated with body length were found in association with contrasting size 

selection on males (van Wijk et al. 2013). 

The difficulty of monitoring FIE at the level of molecular markers lies in identifying the genetic basis 

of specific traits of interest and linking it to fishing pressure (Hemmer-Hansen et al. 2014, Vasemägi 

& Primmer 2005). To overcome this challenge, population genomics and quantitative genetics need to 

be combined, but performing quantitative genetic tests in natural populations of marine fishes remains 

difficult (Hemmer-Hansen et al. 2014). Consequently, molecular genetic approaches are 

complementing, not replacing, phenotypic approaches to study FIE. 

3.2. Experimental Evidence 

Field observation and comparative studies aided by common-garden experiments can provide 

evidence of divergent adaptation in the wild (Conover & Baumann 2009, Díaz Pauli & Heino 2014). 

However, cases are rare that feature appropriate wild replicate populations suitable for experiments 

(but see Haugen & Vøllestad 2001). We therefore suggest that selection experiments, instead, are best 

suited to mimic changes observed in harvested populations and understand their nature and drivers. 

The main advantage of selection experiments is that genetic and phenotypic changes can both be 

observed and unequivocally attributed to the experimentally imposed selection pressure. Moreover, 



selection experiments enable concentrating attention on traits of interest for fisheries. Prime examples 

are maturation traits, which are particularly susceptible to FIE (Audzijonyte et al. 2013, Dunlop et al. 

2009) and have been observed to change in response to fishing pressure after accounting for major 

sources of plasticity (Heino & Dieckmann 2008, Law 2007). Selection experiments also allow 

assessing the rate at which changes happen, their reversibility, and their effect on population 

productivity and fishery profitability, which are major issues for resource management.  

Most experimental studies performed to date, independently of their model species, can be 

categorized into (1) studies using semelparous species (or iteroparous species forced into semelparity, 

both referred as semelparous species below) and (2) studies using iteroparous species. The choice of 

model species reflects the trade-off between the feasibilities of running large experiments and linking 

the results to real fisheries, but the difference in results is not trivial. Experiments with both types of 

model species seem to reach similar conclusions about size-selection on life-history traits. Removal of 

large individuals from a populations leads to evolution of reduced body size in both semelparous 

(Conover & Munch 2002, van Wijk et al. 2013) and iteroparous species (Edley & Law 1988, Haugen 

& Vøllestad 2001, B. Díaz Pauli & M. Heino, in prep.). It also leads to maturation at smaller body 

sizes in both iteroparous (Edley & Law 1988, B. Díaz Pauli & M. Heino, in prep.) and semelparous 

species (van Wijk et al. 2013). 

However, conclusions concerning the effect of size-selection on population productivity and fishery 

profitability are diametrically opposite in experiments using iteroparous or semelparous species. 

Removal of large silversides (Menidia menidia, a semelparous species) led to markedly lower total 

biomass yield after four generations of size-selective harvest, relative to the removal of small 

individuals (Conover & Munch 2002). In contrast, removal of large-sized daphnids led to higher 

biomass yield after nine generations of selection (Díaz Pauli & Heino 2014, Edley & Law 1988). The 

absolute biomass yield decreased to lower levels in populations in which small individuals were 

culled than in populations in which large individuals were culled (Díaz Pauli & Heino 2014, Edley & 

Law 1988). Also the decrease in biomass yield relative to initial conditions was steeper in populations 

in which small individuals were culled (Díaz Pauli & Heino 2014). Similar results were found for 

guppies in a selection experiment allowing their iteroparous life history: after four generations of 



selection, the removal of large guppies resulted in higher biomass yield compared to the removal of 

small guppies (B. Díaz Pauli & M. Heino, in prep.). Thus, considering species with semelparous or 

iteroparous life histories leads to contrasting conclusions regarding the effect of fishing on biomass 

yield: removing large individuals from iteroparous species results in higher biomass yield than 

removing small individuals, whereas this relation is reversed for semelparous species (Figure 1). 

Experiments also allow studying fisheries-induced selection pressures that are difficult to observe in 

the wild. In addition to being size-selective, fishing can be directly selective on behavior (Enberg et al. 

2012, Heino & Godø 2002, Law 2000). Experiments show that different fishing methods tend to 

remove fish with particular behavioral traits. Passive gears (traps, gillnets, long-lines) selectively 

catch bold individuals, while active gears (e.g., trawls) seem to catch more shy individuals (Biro & 

Post 2008, Díaz Pauli et al. 2015, Klefoth et al. 2012). This experimental evidence is in accordance 

with evidence from the wild (section 3.3; B. Díaz Pauli & A. Sih, in prep.). 

Fishing exerting selection pressure on a given trait can lead to changes in other life-history traits, 

behavioral traits, and physiological traits, as sets of traits are usually coevolved (Réale et al. 2010). 

Selection experiments are well suited to study such correlated traits. For example, the selection 

experiment by Philipp et al. (2009) on vulnerability to angling in largemouth bass (Micropterus 

salmoides) showed that individuals more vulnerable to fishing were better at nest guarding (Cooke et 

al. 2007) and had higher metabolic rates. Walsh et al. (2006) showed that the removal of large 

silversides also selected for lower consumption rate and fecundity. 

3.3. Evidence from the Wild 

Evidence for FIE in wild exploited populations is still almost entirely based on using phenotypic data 

to infer genetic change. Genetic changes in selected loci have been reported in populations of Atlantic 

cod (Jakobsdóttir et al. 2011, Therkildsen et al. 2013), but it remains difficult to link these changes to 

phenotypic traits under selection and to specific agents of selection. This section is therefore 

summarizing evidence for the evolution of phenotypic traits. A central challenge is to disentangle 

evolutionary changes from those that are phenotypically plastic or implied by demographic changes 

(Heino & Dieckmann 2008, Policansky 1993, Ricker 1981, Rijnsdorp 1993). 



3.3.1. Life-history Traits 

Life-history traits are by far the most studied trait class, partly because the underlying theory is well-

developed, but probably mostly because of the availability of data. Many monitoring programs on 

marine fish resources started in the late 1970s when coastal states obtained ownership to resources 

within their newly-enacted Exclusive Economic Zones. Time series from these programs are now 

more than three decades long, and typically include individual data on age, size, and sex, and 

sometimes gonad size, allowing estimation of parameters related to growth, maturation, and 

reproduction. Some monitoring programs started even much earlier. This puts oceanic fish in a special 

position as a test bed for life-history theory—nothing comparable exists for terrestrial systems. 

Maturation. Maturation is the most studied life-history trait, for several reasons: maturation is a key 

life-history trait (Roff 1992, Stearns 1992), data are relatively abundant, maturation changes have 

obvious impacts on a stock’s productivity, and large changes towards earlier maturation (as predicted 

by theory) have been documented for numerous fish populations (Trippel 1995). Earlier maturation, 

however, is also a well-known “compensatory response” to fishing: when fishing reduces population 

abundance, resource competition may be partly relaxed and the remaining fish can thus grow faster, 

attaining the body size required for maturation earlier in their life (Jørgensen 1990, Law 2000, Trippel 

1995). Moreover, at the population level, an earlier average age at maturation is also observed as a 

direct demographic response to fishing, because the average age in a population declines with 

increasing mortality (Dieckmann & Heino 2007, Heino & Dieckmann 2008, Policansky 1993, Ricker 

1981). The possibility of exploitation-induced evolution was acknowledged during the 1990s, but 

most researchers concluded that evolutionary changes could not be satisfactorily demonstrated from 

the available data, while phenotypically plastic (compensatory) and demographic responses appeared 

sufficient to explain the observed patterns (Jørgensen 1990, Smith 1994, Trippel 1995). A notable 

exception is the pioneering study by Adriaan Rijnsdorp (1993), who concluded that plaice 

(Pleuronectes platessa) in the North Sea had adapted to fishing by maturing earlier. 

Introduction of the probabilistic maturation reaction norm (PMRN) approach (Heino et al. 2002) was 

an important methodological step that helped to move the field forward (as reviewed in Dieckmann & 

Heino 2007, Heino & Dieckmann 2008). Fundamentally, the strength of this approach stems from 



studying individual age and size simultaneously—size-at-age is a proxy of growth, and the effects of 

many environmental variables on maturation are channeled through growth. The approach builds on 

the earlier deterministic maturation reaction norm concept and the associated notion that such reaction 

norms can be used to disentangle growth-related phenotypic plasticity and genetic change (Stearns & 

Crandall 1984, Stearns & Koella 1986). Just how well this disentanglement works has been debated 

(see, e.g., the theme section edited by Marshall & Browman 2007), with experiments showing some 

of its limitations (Díaz Pauli & Heino 2013, Salinas & Munch 2014, Uusi-Heikkilä et al. 2011). 

Nevertheless, the PMRN approach has become the standard method for analyzing phenotypic data, 

and despite its shortcomings, has provided an important improvement over earlier approaches. 

The PMRN approach has been used to analyze changes in maturation in a large number of fish 

populations and species (Figure 2). By far the most-studied species is Atlantic cod; all studies suggest 

that FIE in maturation has taken place. Also other demersal marine species show mostly positive 

findings. Only three studies have looked at pelagic marine species, suggesting no or only weak 

evolutionary changes. For anadromous, freshwater, or estuarine species, the picture is mixed with 

positive and negative findings similarly represented. 

Many of the negative findings come from short-lived species that naturally experience high mortality 

and exhibit early maturation (e.g., Norway pout, sardine, and capelin; Baulier et al. 2012, Silva et al. 

2013, Marty et al. 2014). Arguably, such species are already adapted to high mortality levels and may 

therefore have little scope for a further acceleration of their maturation. Some others come from 

populations that are selectively harvested at spawning grounds only (Norwegian spring spawning 

herring; Engelhard & Heino 2004) or are semelparous and subject to terminal harvest (capelin, Pacific 

salmon; Baulier et al. 2012, Kendall et al. 2014), settings that are known to exert less selection on 

maturation. A few other negative cases are associated with short time series that may have lacked 

statistical power. On the other hand, some short time series have shown significant changes. These 

have been demonstrated in populations possessing relatively short generation times (e.g., eastern 

Baltic cod, Vainikka et al. 2009) or ones that were intensively exploited (northern cod, Olsen et al. 

2004). Taken together, Figure 2 suggests that FIE in maturation is common but not ubiquitous. 



Reproduction. Theory predicts that fishing favors increased investments into reproduction after 

maturation. These investments can take many forms. An individual’s investment into the production 

of its gametes can be relatively easy to quantify, but the same is not true for investments into 

secondary sexual characteristics or into behaviors related to reproduction (such as migrations or 

courting).  

A handful of studies have examined reproductive investment, relying on proxies such as weight-

specific fecundity, relative gonad weight, and weight loss during the spawning period (Supplemental 

Table 5). Plaice is the most studied species, with most proxies showing no change or only changes 

that can be attributed to the environment (Rijnsdorp et al. 2005, van Walraven et al. 2010). Studies of 

other demersal fish have reported positive results, but typically not for all populations or for both 

sexes (Baulier 2009, Wright et al. 2011, Yoneda & Wright 2004). One of the freshwater studies shows 

a positive result (Thomas et al. 2009), while another does not (Nusslé et al. 2009). Whether this mixed 

picture reflects the difficulty of measuring reproductive investment or systematically lower selection 

pressures on, or evolvabilities of, reproductive investment remains an open question. 

Growth. Most fishing methods are directly size-selective, and it was fisheries-induced selection on 

growth or size-at-age that first drew scientists’ attention (Cooper 1952, Handford et al. 1977, Miller 

1957, Rutter 1902, Silliman 1975, Spangler et al. 1977). However, it was recognized already early on 

that growth is readily influenced by the environment (Miller 1957, Spangler et al. 1977), including 

both fisheries-independent factors (e.g., temperature) and fisheries-dependent factors (e.g., resource 

availability). Because of the difficulty of disentangling these effects from evolutionary changes in 

growth, obtaining strong evidence for FIE of growth has proven difficult in observational studies 

(Enberg et al. 2012).  

Methods for disentangling environmental effects from fisheries-induced selection include multiple 

regressions. In principle, if one constructs a statistical model that accounts for important 

environmental effects on growth in a biologically meaningful way, a residual trend is consistent with 

the action of a driver, such as fisheries-induced selection, that creates cumulative effects. However, 

this approach is typically hampered by a lack of data: even such a key factor as “resource availability” 

is difficult to quantify. Physical variables like temperature are straightforward to measure, but it is 



difficult to quantify an individual’s ambient temperature at the locations where, and over the time 

intervals during which, its growth has occurred. While data storage tags now enable gathering such 

data, they have not yet been used at the scale necessary for drawing inferences about evolutionary 

changes. 

An improvement of this strategy is to include fisheries-induced selection pressure as an explanatory 

variable, as first shown by Swain et al. (2007) for southern Gulf of St. Lawrence cod. By modelling 

the change in body length as a function of the selection differential induced by fishing and two 

environmental variables (temperature and density), they were able to show that changes in body 

length over a two-decade period likely resulted from the joint action of all three factors, although the 

strength of this conclusion can be challenged (Heino et al. 2008, see reply by Swain et al. 2008). 

A comparison of 73 fish populations world-wide found no correlation between changes in size-at-age 

and the intensity of fishing, and on this basis concluded that there is little evidence for FIE (Hilborn & 

Minte-Vera 2008). However, this study did not control for environmental effects, despite noting that 

evolutionary and density-dependent effects of fishing likely counteract each other. It should also be 

remembered that FIE of growth is not always expected to be towards slower growth, complicating 

such meta-analyses. 

Case studies of single populations or species have had more success in finding evidence for FIE of 

growth. Figure 3 summarizes studies in which FIE has been addressed. The selection represents our 

best knowledge about relevant studies, but probably many studies have been missed, particularly 

when results were inconclusive or negative and not reported among the main results. There are seven 

studies of marine fish species that have all found positive evidence, but in all but two (Pardoe et al. 

2009, Swain et al. 2008) changes in growth are attributed to changes in maturation. Studies on 

freshwater or anadromous species have covered 13 species, mostly salmonids. These studies, when 

suggesting FIE of growth, are generally not attributing it to increased reproductive allocation, while 

investing less scrutiny than marine studies into trying to understand the role of changes in maturation. 

Ricker’s (1981) classic study of five species of Pacific salmon (Oncorhynchus spp.) in British 

Columbia is a notable exception—Ricker was very cautious in attributing changes in size-at-age to 



FIE (which was an unorthodox idea at the time), reaching a strongly positive conclusion only for one 

species, pink salmon (O. gorbuscha), and a more conditional positive conclusion for coho salmon (O. 

kisutch). These conclusions held up after Ricker extended the time series by 16 years (Ricker 1995). 

Ricker’s conclusions have not gone unchallenged, though, and other researchers have attributed 

greater importance to environmental drivers, particularly density-dependent effects, than Ricker did 

(Bigler et al. 1996, Healey 1986). Nevertheless, there has been no rigorous attempt to estimate the 

relative strengths of various factors contributing to the size trends in Pacific salmon, and to date there 

is no consensus regarding just how good the evidence for an FIE component in these size trends is. 

3.3.2. Behavioral Traits 

Evidence of FIE in behavioral traits in the wild remains scarce. Probably the single most important 

reason for this is data availability. The only behaviors that are routinely observed are related to the 

phenology of migrations in species such as salmon. Changes in run timing that seem partly to reflect 

different vulnerabilities of early- and late-running fish have been documented for Atlantic salmon 

(Salmo salar) in Ireland (Quinn et al. 2006) and, more conclusively, for sockeye salmon 

(Oncorhynchus nerka) in Alaska (Quinn et al. 2007). However, few fish species have such easily 

observed migrations, and run timing is just one of many behavioral traits that could be under selection. 

Rapidly improving technology is opening new possibilities for observing behaviors that were 

unthinkable just a few decades ago. Methods include active fisheries acoustics (sonars and echo 

sounders, e.g., Handegard & Tjøstheim 2005), acoustic tracking (e.g., Langård et al. 2015), and data 

storage tags (e.g., Le Bris et al. 2013). However, behavioral observations using these methods tend to 

be one-off studies; only fisheries acoustics are widely used in routine monitoring, and then not for 

monitoring behavior, but spatial distribution and abundance. Past acoustic surveys represent a 

potential source of time series of behavioral data, but remain, to our knowledge, unutilized for this 

purpose. 

It is much easier to find evidence that fishing selects for certain behaviors than that it also results in 

FIE. Experimental studies documenting correlations between behavioral traits and vulnerability are 

already numerous (section 3.2), but a few studies have also shown this in the wild. Olsen et al. (2012), 

using acoustic tagging of Atlantic cod in their natural habitat, were able to show that individuals with 



certain movement patterns were more likely to be fished than others. Wilson et al. (2011) showed that 

bluegill sunfish (Lepomis macrochirus) caught using a seine net differed from those caught by angling 

when tested in a lab for the boldness of their behavior. However, Kekäläinen et al. (2014) did not find 

such differences in perch (Perca fluviatilis) in a similar setting. Nevertheless, combined with the 

evidence that key behavioral traits possess heritable components (Ariyomo et al. 2013, Chervet et al. 

2011, Philipp et al. 2009), these studies suggest that such traits evolve in response to fishing just like 

life-history traits—so far, we simply have been unable to document these changes happening. 

3.3.3. Caveats 

Exploitation-induced evolution is fast compared to other examples of contemporary evolution 

(Darimont et al. 2009), and it has been argued that the changes are too fast to be evolutionary 

(Andersen & Brander 2009). Empirically observed rates are also generally higher than rates in 

evolutionary models (Audzijonyte et al. 2013). The reasons for this discrepancy are not yet 

understood, but could be caused by unaccounted drivers of phenotypic change. 

Using phenotypic field data to study evolution relies on a correlational approach to account for effects 

of certain confounding factors and estimated selection differentials, or to link residual patterns to 

assumed patterns of selection. The strength of such inference depends on how well the non-

evolutionary effects can be modelled. Achieving a good description of non-evolutionary effects is 

easier for maturation than for other traits. Since individual size-at-age is a proxy of the growth 

conditions an individual has encountered, studies using the PMRN approach are in a special position, 

because the data that are used to estimate the trait also carry information on the environment. This 

environmental proxy is evidently not perfect, but studies on other traits usually have to rely on even 

weaker proxies. By construction, any single observational field study is handicapped in demonstrating 

that phenotypic changes are evolutionary or that such changes are fisheries-induced when only 

phenotypic data are available. 

While we must acknowledge that individual studies might have missed important drivers of 

phenotypic change—not just any drivers, but drivers that would cause similar patterns as predicted for 

fisheries-induced selection—it seems unlikely that many independent studies suffer from the same 

bias. Therefore, the body of literature interpreting documented phenotypic patterns in terms of FIE 



jointly provides stronger evidence for FIE than any individual case study can possibly accomplish on 

its own. 

4. IMPLICATIONS 

Fisheries-induced evolution (FIE) is an intriguing example of contemporary anthropogenic evolution 

(Palumbi 2001). But it is much more than that—FIE affects the properties of fish populations, which 

in turn influence their dynamics and productivity, and ultimately, their utility for humankind 

(Jørgensen et al. 2007, Laugen et al. 2014). These effects can be undesirable, but as Rutter (1902) 

pointed out, not all FIE is undesirable. 

FIE means that fish populations adapt to fishing. While evolution is not driven by benefits to 

populations, adaptation to fishing nevertheless can benefit populations that are intensively fished: a 

population with a faster life history will generally tolerate more additional mortality before being 

driven to extinction, and may initially recover faster when exploitation is reduced (Enberg et al. 2009, 

Heino 1998, Kaitala & Getz 1995). This beneficial aspect of FIE is not guaranteed, though, and under 

special conditions adaptive evolution can even lead to extinction (so-called evolutionary suicide; 

Ernande et al. 2004). 

FIE has also been characterized as “unnatural selection” (Allendorf & Hard 2009, Stenseth & Dunlop 

2009). Indeed, adaptation to fishing often occurs at the cost of adaptation to a population’s natural 

environment (Heino et al. 2013). While this will only happen when the net effect is positive at the 

individual level, evolution assesses this net effect myopically, over the course of just a few 

generations. Adaptation to fishing may thus turn costly in the long run, when environmental 

conditions change, exploitation is reduced, or rare environmental fluctuations probe a population’s 

resilience. The situation is similar to domestication: it makes organisms better suited to the conditions 

established by humans, but less suited to the conditions in the wild. 

A more immediate concern is that FIE is expected to reduce sustainable fisheries yields, at least in 

populations that are not seriously overfished (Eikeset et al. 2013, Heino 1998). Also the average body 

size of caught fish will decline (Heino 1998), usually implying a lower price per biomass unit 

(Zimmermann & Heino 2013). All these considerations lead to the recommendation that FIE best be 



minimized. This recommendation was challenged by Andersen and Brander (2009), who suggested 

that the rate of FIE is so low (0.1–0.6% per year in their model) that dealing with FIE is less urgent 

than reducing the direct detrimental effects of overfishing. This argument misses the point, for two 

reasons. First, even low rates of change are important when they persist. An annual loss of 0.5% may 

sound insignificant at first glance, but amounts to a loss of 10% in just 21 years. Such a loss is indeed 

significant, given that fish are an important source of nutrition for many people, and the human 

population is increasing. Second, dealing with the most urgent challenge (i.e., overfishing) is 

fundamentally compatible with curbing rates of unwanted FIE: reducing exploitation addresses both 

challenges. 

We explicitly encourage a precautionary approach for dealing with FIE. It would not be wise to wait 

until there is full certainty about the extent of FIE and its consequences: not only is there a risk that 

the consequences are serious, but at the time scales relevant for resource management, FIE is 

practically irreversible. Such a precautionary approach does not require a full overhaul of 

contemporary fisheries management. Rather, FIE should be assessed along with other determinants of 

sustainability, e.g., using the Evolutionary Impact Assessment (EvoIA) framework (Jørgensen et al. 

2007, Laugen et al. 2014). 

5. SUMMARY POINTS 

• Theory predicts that most types of fishing favor evolution of faster life histories. This usually 

means earlier maturation, and may involve increased reproductive investment. At least post-

maturation growth is also expected to decline. 

• Fishing will exert selection pressures also on other traits, either directly (e.g., when fishing 

methods are directly selective on bold behaviors) or indirectly (e.g., when increased fishing 

mortality favors bold behaviors by devaluing survival). 

• Theoretical studies suggest that reversing FIE through natural selection after fishing pressures 

are relaxed may be considerably slower than causing it. 



• Empirical evidence for fisheries-induced evolution (FIE) is almost entirely based on 

phenotypic data, which suffices to infer evolutionary change under experimental conditions, 

but not from observational data collected in the wild. 

• Empirical evidence for FIE in the wild is strongest for maturation, and the majority of case 

studies suggest evolution towards earlier reproduction. There is also some evidence for 

evolution towards slower growth and increased reproductive effort. 

• Evidence of evolutionary changes in behavioral traits in wild fish is so far limited to 

phenology. Historic baseline data for other behavioral traits are missing, but experimental 

studies clearly show selection on behaviors and suggest that evolution in behavioral traits 

must have taken place. 

• Empirical studies suggest that FIE can be fast, even compared to other examples of 

contemporary evolution. Concerns remain that phenotypic methods for studying FIE 

exaggerate its speed. 

• FIE can make fish populations more robust to over-exploitation, but it can also reduce their 

resilience to natural fluctuations and undermine sustainable fisheries yields. There is a need to 

acknowledge and account for FIE when managing wild fish resources. 
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Table 1. Selection pressures towards earlier or later maturation predicted to be caused by 

different patterns of fishing mortalities on iteroparous fish. 

Increased fishing mortality on Induced selection pressures on maturation 

All fish ↓ 

Small fish ↑, ↓, or ↕ 

Large fish ↓ 

Young fish ↓ or ↕ 

Old fish ↓ 

Immature fish ↓ 

Mature fish ↑ 

↓: Selection for earlier maturation. ↑: Selection for later maturation. ↕: Evolutionary bistability. Table 

compiled in collaboration between U.D. and Anna Gårdmark, Swedish University of Agricultural Sciences, 

Department of Aquatic Resources, Institute of Coastal Research, Öregrund, Sweden. 

  



 

Figure 1. Comparison of the total biomass yield obtained from selection experiments with (a) guppies 
(Poecilia reticulata), an iteroparous species (B. Díaz Pauli & M. Heino, manuscript in preparation), 
and (b) silversides (Menidia menidia), a semelparous species with terminal harvest (data extracted 
from figure 1 in Conover & Munch 2002). Both selection experiments lasted for approximately four 
generations. 



 

Figure 2. Studies in which probabilistic maturation reaction norms have been used to help interpret 
changes in maturation. Horizontal lines indicate whether fisheries-induced evolution is implicated and 
the time span of the data. See Supplemental Tables 1–4 for details and references. 



 

Figure 3. Studies in which fisheries-induced evolution of growth has been addressed. Dark gray bars 
indicate studies that documented evolutionary changes in the growth of adult fish but attributed these 
to changes in reproductive allocation. See Supplemental Tables 6–7 for details and references. 
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6.1. Explanation of entries in Supplemental Tables 1–7 

Column “Sex”: “F” = females, “M” = males, “C” = males and females combined 

Column “Data type”: “Time series” = continuous time series with minor gaps, “n periods” = n separate time periods, “m populations” = m separate populations for the 
same time period 

FIE implicated: “Yes” = the original authors concluded that fisheries-induced evolution (FIE) had likely occurred, “No” = the original authors concluded that 
explanations other than FIE were sufficient 



Supplemental Table 1. PMRN studies of maturation trends, or of between-population differences in maturation, associated with fishing in Atlantic cod. 

Species Population or stock Sex Time span Data type FIE implicated? Reference 

Atlantic cod, 
Gadus morhua 

Northeast Arctic C 1932–2006 Time series Yes Heino et al. 2002, McAdam 
& Marshall 2014 

Eastern Baltic F, M 1991–2005 Time series Yes Vainikka et al. 2009 

Georges Bank F, M 1970–1998 Time series Yes Barot et al. 2004 

Gulf of Maine F, M 1970–1998 Time series Yes Barot et al. 2004 

Northern (2J3KL) F, M 1977/81–2002 Time series Yes Olsen et al. 2004, 2005 

Southern Grand Bank (3NO) F, M 1971–2002 Time series Yes Olsen et al. 2004, 2005 

St. Pierre Bank (3Ps) F, M 1972–2002 Time series Yes Olsen et al. 2004, 2005 

Southern Gulf of St. Lawrence F, M 1958–2008 Time series Yes Swain 2011 

Flemish Cap (3M) F 1972–2006 Time series Yes Pérez-Rodríguez et al. 2013 

Icelandic F, M 1967–2007 Time series Yes Pardoe et al. 2009 

North Sea (3 substocks) F, M 1971–2009 Time series Yes Wright et al. 2011b 

North Sea (combined) F, M 1983–2010 Time series Yes Neuheimer & Grønkjær 
2012 

North Sea (combined) F, M 1974–2012 Time series Yes Marty et al. 2014 

  



Supplemental Table 2. PMRN studies of maturation trends, or of between-population differences in maturation, associated with fishing in marine bottom-living fish 
other than cod. 

Species Population or stock Sex Time span Data type FIE implicated? Reference 

Haddock, 
Melanogrammus 
aeglefinus 

North Sea (2 substocks) F, M 1978–2007 Time series Yes Wright et al. 2011a 

North Sea (combined) F, M 1974–2012 Time series Yes Marty et al. 2014 

Barents Sea F, M 1987–2009 Time series No Devine & Heino 2011 

Whiting, 
Merlangius merlangus 

North Sea F, M 1974–2012 Time series Yes Marty et al. 2014 

Norway pout, 
Trisopterus esmarkii 

North Sea F, M 1983–2012 Time series No Marty et al. 2014 

European plaice, 
Pleuronectes platessa 

North Sea F 1957–2001 Time series Yes Grift et al. 2003, 2007 

F, M 1900–2008 3 periods Yes van Walraven et al. 2010 

M 1985–2008 2 periods Yes van Walraven et al. 2010 

American plaice, 
Hippoglossoides 
platessoides 

Labrador–NE Newfoundland (2J3K) F, M 1973–1999 Time series Yes Barot et al. 2005 

Grand Bank (3LNO) F, M 1969–2000 Time series Yes Barot et al. 2005 

St. Pierre Bank (3Ps) F, M 1972–1999 Time series Yes Barot et al. 2005 

Sole, 
Solea solea 

Southern North Sea F 1958–2000 Time series Yes Mollet et al. 2007 

 

  



Supplemental Table 3. PMRN studies of maturation trends, or of between-population differences in maturation, associated with fishing in pelagic marine fish. 

Species Population or stock Sex Time span Data type FIE implicated? Reference 

Atlantic herring, 
Clupea harengus 

Norwegian spring-spawning C 1935–2000 Time series Yes, weak Engelhard & Heino 2004 

Sardine, 
Sardina pilchardus 

Portuguese coast C 1947–2008 Time series No Silva et al. 2013 

Capelin, 
Mallotus villosus 

Barents Sea F, M 1975–2008 Time series No Baulier et al. 2012 



Supplemental Table 4. PMRN studies of maturation trends, or of between-population differences in maturation, associated with fishing in brackish water, freshwater, 
and anadromous fish. 

Species Population or stock Sex Time span Data type FIE implicated? Reference 

Pikeperch, 
Sander lucioperca 

Archipelago Sea, northern Baltic 
Sea 

F, M 1980–2011 Time series Yes Kokkonen et al. 2015 

Estuary cobbler, 
Cnidoglanis 
macrocephalus 

Wilson Inlet, Western Australia, 
Australia 

F 1987–2008 2 periods Yes Chuwen et al. 2011 

Chum salmon, 
Oncorhynchus keta 

Shari River, Hokkaido, Japan F, M 1992–1997 Time series No1 Morita et al. 2005 

Chitose, Nishibetsu and Tokachi 
Rivers, Hokkaido, Japan 

F 1977–1996 Time series Yes Fukuwaka & Morita 2008 

Sockeye salmon, 
Oncorhynchus nerka 

5 populations spawning in the 
Iliamna Lake system, Alaska, USA 

F, M 1965–2009 Time series Yes (2/5) Kendall et al. 2014 

4 populations spawning in the Wood 
River system, Alaska, USA 

F, M 1962–2009 2 periods Yes (4/4) Kendall et al. 2014 

Lake whitefish, 
Coregonus clupeaformis 

Lakes Michigan, Huron, and 
Superior, USA/Canada 

F, M 1971–2005 4 populations Ambiguous2 Wang et al. 2008 

Smallmouth bass, 
Micropterus dolomieu 

Opeongo Lake, Ontario, Canada M 1936–2002 2 periods No Dunlop et al. 2005 

  

                                                      
1 A PMRN empirically established from data during 1992–1997 was used to interpret changes over a 50-year period. 
 
2 Some spatial differences were concordant with expectations from FIE, but fishing was just one of the factors that differed among the populations. 



Supplemental Table 5. Studies on fisheries-induced evolution of reproductive investment. “GSI” = gonadosomatic index = ratio of gonad weight to body weight. 

Species Population or stock Sex Time span Data type FIE implicated? Reference 

Atlantic cod, 
Gadus morhua 

North Sea (2 substocks) F 1969–2003 2 periods Yes, increased 
fecundity in 1 
substock only 

Yoneda & Wright 2004 

Northern (2J3KL) F, M 1978–2013 Time series Yes, increased 
GSI, but for 
males only 

Baulier 2009, L. Baulier, M. J. 
Morgan, G. Lilly, U. 
Dieckmann & M. Heino, 
unpublished 

Southern Grand Bank (3NO) F, M 1978–2013 Time series Yes, increased 
GSI, but for 
males only 

Baulier 2009, L. Baulier, M. J. 
Morgan, G. Lilly, U. 
Dieckmann & M. Heino, 
unpublished 

St. Pierre Bank (3Ps) F, M 1978–2013 Time series Yes, increased 
GSI, but for 
males only 

Baulier 2009, L. Baulier, M. J. 
Morgan, G. Lilly, U. 
Dieckmann & M. Heino, 
unpublished 

Haddock, 
Melanogrammus 
aeglefinus 

North Sea (2 substocks) F, M 1978–2007 Time series Yes, marginally 
increased 
fecundity 

Wright et al. 2011a 

  



European plaice, 
Pleuronectes platessa 

North Sea (2 subareas) F 1900–1985 2 periods No, increase in 
fecundity 
attributed to the 
environment3 

Rijnsdorp 1991 

North Sea F, M 1960–2002 Time series No, increase in 
weight loss 
during spawning 
attributed to the 
environment 

Rijnsdorp et al. 2005 

North Sea F 1948–2002 3 periods Yes, increased 
fecundity 

Rijnsdorp et al. 2005 

North Sea F, M 1985–2008 2 periods No, no 
significant 
change in 
energetic 
investment 

van Walraven et al. 2010 

Alpine whitefish, 
Coregonus lavaretus 

Lake Joux, Switzerland F 1980–2002 Time series No, no 
significant 
change in 
fecundity 

Nusslé et al. 2009 

Common whitefish, 
Coregonus lavaretus 

Lake Constance, 
Germany/Switzerland/Austria 

C 1963–1999 Time series Yes, increased 
fecundity 

Thomas et al. 2009 

 

                                                      
3 Rijnsdorp et al. (2005) interpreted the same data cautiously more positively in the context of a more comprehensive study on reproductive 
investment. 



  



Supplemental Table 6. Studies on fisheries-induced evolution of growth in marine fish. If FIE has been implicated, we distinguish between a “primary” response, 
when growth has evolved independently from changes in maturation or reproductive investment, and a “secondary” response, when evolution of growth is understood 
to have occurred as a consequence of earlier maturation or increased reproductive investment only. 

Species Population or stock Sex Time span Data type FIE implicated? Reference 

Atlantic cod, 
Gadus morhua 

Southern Gulf of St. Lawrence C 1981–2001 Time series Yes, slower 
(primary) 

Swain et al. 2007, 2008 

Icelandic F, M 1967–2007 Time series Yes, slower 
(primary and 
secondary) 

Pardoe et al. 2009 

North Sea (combined) F, M 1983–2010 Time series Yes, slower 
(secondary) 

Neuheimer & Grønkjær 2012 

Haddock, 
Melanogrammus 
aeglefinus 

Scotian Shelf C 1970–2008 Time series Yes, slower 
(secondary) 

Neuheimer & Taggart 2010 

North Sea (2 substocks) F, M 1978–2007 Time series Yes, slower 
(secondary) 

Wright et al. 2011a 

European plaice, 
Pleuronectes platessa 

North Sea F, M 1900–2008 3 periods Yes, slower 
(secondary) 

van Walraven et al. 2010 

Atlantic herring, 
Clupea harengus 

Newfoundland C 1965–2005 Time series Yes, slower 
(secondary) 

Wheeler et al. 2009 

 



Supplemental Table 7. Studies on fisheries-induced evolution of growth in freshwater and anadromous fish. See Supplemental Table 6 for explanations. 

Species Population or stock Sex Time span Data type FIE implicated? Reference 

Northern pike, 
Esox lucius 

Lake Windermere, UK C 1944–1995 Time series Yes, slower 
(maturation not 
considered4) 

Edeline et al. 2007 

Lake whitefish, 
Coregonus clupeaformis 

Lesser Slave Lake, Canada C 1941–1975 Time series Yes, slower 
(maturation not 
considered) 

Handford et al. 1977 

Common whitefish, 
Coregonus lavaretus 

Lake Constance, 
Germany/Switzerland/Austria 

C 1955–1997 Time series Yes, slower 
(maturation not 
considered) 

Thomas & Eckmann 2007 

Alpine whitefish, 
Coregonus lavaretus 

Lake Joux, Switzerland C 1980–2002 Time series Yes, slower 
(primary) 

Nusslé et al. 2009 

Brienzlig whitefish, 
Coregonus albellus 

Lake Brienz, Switzerland C 1984–2008 Time series Yes, slower 
(primary) 

Nusslé et al. 2011 

Albock whitefish, 
Coregonus fatioi 

Lake Brienz, Switzerland C 1984–2008 Time series Yes, slower 
(primary) 

Nusslé et al. 2011 

Atlantic salmon, 
Salmo salar 

River Bidasoa, Spain C 1983–2008 Time series Yes, slower 
(maturation not 
considered) 

Saura et al. 2010 

Pink salmon, 
Oncorhynchus 

British Columbia, Canada: C 1951–1991 Time series Yes, slower Ricker 1981, 1995 

                                                      
4 Enberg et al. (2012) suggested that the decline in growth might have been caused by the increase in reproductive effort reported by Edeline et al. 
(2007). 



gorbuscha multiple areas (primary) 

Chum salmon, 
Oncorhynchus keta 

British Columbia, Canada: 
multiple areas 

C 1951–1991 Time series No Ricker 1981, 1995 

 

Sockeye salmon, 
Oncorhynchus nerka 

British Columbia, Canada: 
multiple areas 

C 1951–1991 Time series No Ricker 1981, 1995 

Coho salmon, 
Oncorhynchus kisutch 

British Columbia, Canada: areas 
outside of the Southern straits 

C 1951–1991 Time series Yes, slower 
(primary) 

Ricker 1981, 1995 

British Columbia, Canada: lower 
Johnstone Strait and Strait of 
Georgia 

C 1951–1991 Time series No Ricker 1981, 1995 

Chinook salmon, 
Oncorhynchus 
tshawytscha 

British Columbia, Canada: 
multiple areas 

C 1951–1991 Time series No Ricker 1981, 1995 

Nushagak River, Alaska, USA F, M 1981 Time series No Kendall & Quinn 2011 
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