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Abstract 

There is evidence that fisheries are altering the phenotypic composition of fish 

populations, often in ways that may reduce the value of fish stocks for the exploiters. 

Despite the increasing number of theoretical and field studies, there is still debate 

whether these changes are genetic, can be reversed, and are occurring rapidly enough 

to be considered in fisheries management. We review the contribution that selection 

experiments have already had in the study of the evolutionary effect of fisheries, 

identify issues that still require more study, and outline future directions to do so. 

Selection experiments have already been crucial in showing that harvesting can lead 

to phenotypic and genetic evolution over relatively short time frames. Furthermore, 

the experiments have shown the changes involve many other traits than those under 

direct selection, and that these changes tend to have population-level consequences, 

including decreasing fisheries yield. However, experiments focused on fisheries-

induced evolution that fulfil all our desiderata are still lacking. Future studies should 

have more controlled and realistic set-ups and assess genetic changes in maturation 

and growth—traits most often reported to change—in order to be more relevant to 

exploited populations in the wild. 
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INTRODUCTION 

Fishing is an inherently selective process, most commonly targeting large, more 

valuable individuals (Law, 2000). There is now a steadily increasing body of evidence 

suggesting that fisheries are driving phenotypic changes in fish and that these changes 

have a genetic component (reviewed by Law, 2000; Dieckmann & Heino, 2007; 

Jørgensen et al., 2007; Law, 2007; Sharpe & Hendry, 2009; Devine et al., 2012). 

Timing of maturation and growth are the main traits that have been observed to 

change (Law, 2000). However, there are many other traits (behaviour, morphology, 

sex ratio, etc.) that are directly affected by fishing (Miller, 1957; Heino & Godø, 

2002; Enberg et al., 2012). In addition, fishing can be indirectly selective on further 

traits that are correlated with those under direct selection, such as fecundity, egg 

survival, mating strategy, metabolic rate, etc. 

A selective pressure imposed on a genetically variable population causes evolutionary 

change. Breeding programs in aquaculture clearly show evolvability of relevant traits 

in fish (Pottinger & Carrick, 1999; Fjalestad, Moen & Gomez-Raya, 2003; Gjedrem, 

Robinson & Rye, 2012).  However, selective fishing can lead to population-level 

changes in characteristics such as growth and maturation without involving 

evolutionary change through density-dependent feedbacks that trigger phenotypical 

plastic responses or by reducing population’s mean age, and thereby size.  

Discussions whether the changes created by intensive fishing are due to “mere” 

phenotypic plasticity or also due to genetic adaptation are ongoing (Browman, Law & 

Marshall, 2008; Jørgensen et al., 2008b; Kuparinen & Merilä, 2008; Andersen & 

Brander, 2009). Efforts on disentangling phenotypic and genetic changes have 

focused on maturation schedules, as maturation is the main trait observed to change 

due to fishing (Law, 2007). There are probably two reasons for this: many models 

suggest that maturation is particularly prone to undergo harvest-induced evolution 
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(Dunlop, Heino & Dieckmann, 2009; Enberg et al., 2009; Audzijonyte et al., 2013; 

but see Andersen & Brander, 2009), and maturation is the only trait for which 

statistically accounting for a major source of plasticity is straightforward using so-

called maturation reaction norms (Stearns & Koella, 1986), in particular the 

probabilistic maturation reaction norms (PMRNs; Heino, Dieckmann & Godø, 2002). 

However, PMRNs cannot account for all phenotypic plasticity (Dieckmann & Heino, 

2007; Kraak, 2007; Uusi-Heikkilä et al., 2011; Diaz Pauli & Heino, 2013), and 

thereby cannot conclusively show whether evolution has taken place.  

To unequivocally show that the documented phenotypic changes represent fisheries-

induced evolution (FIE), (1) a genetic basis of the changes should be demonstrated 

(Kuparinen & Merilä, 2007) and (2) fishing should be identified as a driver of the 

changes (Heino & Dieckmann, 2008). In principle, the first condition is easily met. 

However, despite the rapid development of genetic techniques that now allow 

analysing large materials at low cost (Nielsen et al., 2009; Hansen et al., 2012), the 

genetic basis of traits associated with phenotypic changes in fish is still poorly known, 

and evidence for genetic change that could be linked to phenotypic differences in 

exploited populations is still very scarce (Jakobsdóttir et al., 2011). Disentangling 

phenotypic and genetic consequences is also possible with comparative studies of 

populations of recent common origin but different harvest regime, but opportunities 

for carrying out such studies in fish stocks are limited (see Haugen & Vøllestad, 2001, 

for a rare exception). The second condition—that fishing is a driver of change—is 

usually not challenged, although it perhaps should be. Observational field studies are 

fundamentally handicapped in differentiating the effects of single factors (Heino & 

Dieckmann, 2008; Rosenbaum, 1995). However, comparative studies can facilitate 

credibility of fishing as a driver (Sharpe & Hendry, 2009; Devine et al., 2012; 

Audzijonyte et al., 2013), as do estimation of selection differentials caused by fishing 
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(Law & Rowell, 1993; Arlinghaus, Matsumura & Dieckmann, 2009; Kendall & 

Quinn, 2012). 

Selection experiments are well-suited to understand both the nature and drivers of 

changes seen in harvested populations. With this review we present the contributions 

that selection experiments have made to the study of FIE.  We argue that selection 

experiments specifically aimed at studying size-dependent selection may fill 

important gaps in our understanding of FIE.  

Related reviews have already been carried out: Fuller, Baer & Travis (2005) presented 

importance of selection experiments for understanding evolutionary processes in 

general, whereas Conover & Bauman (2009) and Reznick & Ghalambor (2005) 

presented how experiments have increased our understanding of FIE. Our review 

differs from these earlier reviews in two important aspects. First, we focus on studies 

that were specifically carried out to understand FIE; we do not cover the classic 

experiments carried out to understand rapid life-history evolution in fish in general 

(e.g., Moav, Hulata & Wohlfarth, 1975; Wohlfarth, Moav & Hulata, 1975; Reznick & 

Endler, 1982; Reznick & Bryga, 1987). Second, our approach is analytic and critical, 

rather than descriptive: we assess the strengths and weaknesses of the experimental 

set-ups used, and evaluate the success or failure that selection experiments have had 

in clarifying the issues where the understanding of FIE is least complete.  

We have identified seven key issues in understanding FIE: 1) clarify the role of size-

selective mortality (or other harvesting-specific mortality) on direct phenotypic 

changes, 2) study how other traits are indirectly affected by selective fishing, 3) 

determine whether there are genetic changes associated with the phenotypic ones, 4) 

answer whether rapid evolution of maturation is possible due to size-selective fishing, 

5) determine whether the rate of change is fast enough to have management 

implications, 6) test whether the change can be reversed, and 7) establish whether 
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these changes may affect the profitability of the fishery. The present review is 

organized around these seven points.  

Our discussion on the strengths and weaknesses of experimental set-ups of the studies 

is focused on two criteria: 1) how the experiment was designed to unequivocally 

conclude that selection is the source of change (i.e., how well-designed the 

experiment is), and 2) how the study can be related to the study of fisheries-induced 

evolution in the wild (i.e., whether the experimental design is realistic enough to be 

related to more general processes). Furthermore, we discuss the potential of and the 

need for further selection studies to improve our knowledge on evolutionary processes 

and on fisheries-induced evolution in particular. 

SELECTION EXPERIMENTS 

DEFINITION 

Selection experiments study evolution in action, in a controlled and replicated 

manner, in contrast to observational studies made in the wild (Garland, 2003; Fuller et 

al., 2005). They allow observing phenotypic and genetic change in populations and 

communities that are caused by experimentally imposed selective pressures. As under 

experimental conditions other factors can be controlled or their impact can be reduced 

to noise, such changes may be indisputably attributed to the selection imposed 

(Garland, 2003; Fuller et al., 2005).  

Garland (2003) classified selection experiments in four different categories: artificial 

selection, laboratory culling, laboratory natural selection, and introduction 

experiments. We do not, however, see compelling reasons to restrict ‘laboratory 

culling experiments’ and ‘laboratory natural selection experiments’ to laboratory 

settings. Moreover, for the current purposes, the classification can be further 
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simplified to just two categories: natural selection experiments and artificial selection 

experiments. 

Natural selection experiments and artificial selection experiments differ in the extent 

the experimenter controls the selection. In artificial selection experiments (culling and 

artificial selection experiments sensu Garland, 2003), the experimenter is the direct 

agent of selection controlling the nature, strength and consistency of selection, by 

determining the number and type of breeders in each generation. Examples of 

artificial selection experiments include those of selection for certain traits (e.g., fast 

larval development, laterality and activity) in fruitflies, fish and mice, just to cite a 

few (e.g., Zwaan, Bijlsma & Hoekstra, 1995; Bisazza et al., 2007; Meek et al., 2009). 

In natural selection experiments (Garland’s natural selection and introduction 

experiments), the strength and consistency is not directly controlled (the breeders are 

not directly selected), but different selective forces can be imposed by controlling 

certain factors in the environment (Garland, 2003; Fuller et al., 2005). These selective 

forces can be naturally imposed, as in the particular case of introduction experiments, 

or experimentally imposed, which usually requires a laboratory setting or a controlled 

field setting, e.g. field enclosures. Introduction experiments of guppies are a good 

example of natural selection experiments (Reznick & Bryga, 1987). 

In addition to classic, manipulative experiments with controlled treatments, we also 

include mensurative experiments where the “treatments” are based on pre-existing 

variability in space or time (Hurlbert, 1984). This variability could be either naturally-

occurring (e.g., lakes differing in water quality) or human-induced (e.g., lakes 

differing in fishing pressure). Mensurative experiments are usually observational field 

studies and are natural selection experiments rather than artificial selection 

experiments. 
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EXPERIMENTS CONSIDERED 

Here we review selection experiments that have specifically studied fisheries-induced 

evolution, and how these experiments have enhanced our understanding of this 

phenomenon. We do not consider selection experiments not focused on the study of 

FIE, even though results of some of those can be applied to understand FIE; many of 

such experiments have been reviewed elsewhere (Reznick & Ghalambor, 2005; 

Conover & Baumann, 2009). Neither are non-evolutionary experiments that addressed 

the effect of size-selectivity on population dynamics, rather than its effects on 

phenotypic and genetic composition, considered (e.g., Silliman & Gutsell, 1958; 

Schröder, Persson & de Roos, 2009). We could identify three artificial selection 

experiments and six natural selection experiments fulfilling our selection criteria. Of 

the six natural selection experiments, three took advantage of existing lake 

populations, while the other three were performed under laboratory conditions. The 

studies and their key characteristics are summarized in Table 1; a more detailed 

description of the experiments is presented as supplementary material.  

CONTRIBUTIONS OF SELECTION EXPERIMENTS TO UNDERSTANDING OF 

FISHERIES-INDUCED EVOLUTION 

Our presentation of selection experiments is organized around the seven core 

questions outlined in the introduction. Here we elaborate on these questions and 

review the answers that the experiments offer, before summarising the emerging 

insights. 

1. DOES SELECTIVE FISHING LEAD TO PHENOTYPIC CHANGES?  

Most commonly fishing is selectively removing large individuals from the population 

(Law, 2000). Not surprisingly, most empirical studies focus on phenotypic changes in 
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size. However, fishing can be directly or indirectly selective towards behaviour, 

growth rate, maturation, fecundity, etc. (Miller, 1957; Heino & Godø, 2002; Enberg et 

al., 2012), and it is important to understand these broader impacts.  

Lessons from experiments  

Three mensurative field experiments (sensu Hurlbert, 1984) have studied the 

phenotypic effects. Drake et al. (1997) showed differences in bluegill male 

reproductive strategies from high or low fishing pressure. In low fishing lakes, 

parenting males were older and bigger and there were fewer cuckolders compared to 

males from the lakes with high fishing pressure that were smaller and younger at 

maturation and had slower growth at older ages. Grayling from the five populations 

studied by Haugen & Vøllestad (2001) differed in their early growth rate, time to 

swim-up (i.e., when larvae change from living in substrate to living the water column 

and rely in exogenous feeding), larval survival (Haugen, 2000b), age at maturity, 

adult survival and growth rate (Haugen, 2000a). Haugen & Vøllestad (2001) 

concluded that the most likely cause of the between-lake differences in adult traits is 

the different fishing regimes that those populations experienced, while differences in 

juvenile traits may be due to differences in spawning habitats. The study by Carlson, 

Edeline and collaborators (Carlson et al., 2007; Edeline et al., 2007) is one of the first 

that considered the interaction between harvesting and natural selection and the effect 

of these on individual size and reproductive investment. They showed natural 

selection on growth changed over time, either favouring fast growth (antagonistic 

with fishery selection), or slow growth (synergistic with fishing; Edeline et al., 2007).  

Phenotypic effects have also been studied in manipulative experiments. Silliman 

(1975) showed how growth rate in length was reduced in harvested populations 

(where large individual were removed) for males but not females, compared to 
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unharvested control populations (Silliman, 1975). Edley & Law’s (1988) Daphnia 

magna populations with positive size-dependent harvesting produced lower yield that 

decreased over time. In addition, this type of harvest resulted in populations 

dominated by slow-growing clones that reproduced at smaller size relative to harvest 

with negative size-selection (Edley & Law, 1988). Kasperski & Kozlowski (1993) 

showed that reduced adult life expectancy in harvested guppy populations lead to a 

reduced size at maturity in males and females, compared to the control populations. 

Philipp, Cooke and collaborators performed artificial selection experiments to study 

angling effects on physiology and behaviour of largemouth bass, Micropterus 

salmoides (Cooke et al., 2007; Philipp et al., 2009; Redpath et al., 2009). Their study 

showed that angling was selective on a “vulnerability trait” (captures/recaptures by 

angling effort) and it was possible to create two distinct lineages (high and low 

vulnerability to angling). Conover & Munch’s  (2002) study on Atlantic silversides 

concluded that the populations subjected to negative size selective harvest presented 

faster growth, compared to populations where larger individuals were harvested 

(Conover & Munch, 2002). van Wijk et al.’s (2013) study on guppies showed that 

size-selective mortality in males lead to changes in length, and age and size at 

maturation on males.  

On the one hand, the more controlled set-up in the artificial selection experiments 

enables to unequivocally attribute the selective force as the driver of the changes, as 

was the case with the studies by Philipp et al. (2009), Conover and Munch (2002), 

and van Wijk et al. (2013). On the other hand, natural selection experiments allow for 

ecological feedbacks, which can play a role in the changes observed. Thus, natural 

selection experiments require extra caution in determining whether the selection is 

directly the cause for the differences in the traits measured, or through the different 

ecological feedbacks that the selection produced.  
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The studies by Drake et al. (1997), Edeline et al. (2007) and Haugen and Vøllestad 

(2001) are mensurative studies that took advantage of pre-existing variation in space 

(Drake et al.; Haugen & Vøllestad) or time (Edeline et al.), without controlling the 

selection pressures. Thus, their potential to study harvest-induced change depends on 

how well other factors were controlled for. They all took into account many 

environmental factors (lake area, depth, nutrients, prey abundance, etc.), but other 

important factors that were not considered could always confound the results. The 

studies performed separately by Silliman, Edley and Law, and Kasperski and 

Kozlowski are manipulative (sensu Hurlbert, 1984) natural selection experiments 

where the selective pressure on life history traits was controlled. The experimental set 

up allows controlling for confounding factors better than in the case of mensurative 

studies. However, only Edley and Law’s study was an appropriate natural selection 

experiment to conclude that size-selective culling led to changes in size at maturation. 

Silliman’s experiment had no replication and his founder populations were small and 

of mixed origin. Thus, the changes in growth may have resulted from fluctuations in 

the dynamics of a population that had not yet reached equilibrium or from founder 

and other random effects. Kasperski and Kozlowski’s study on the other hand had 

replication and single-origin populations. The observed reduction of size at maturity 

may be attributable to size-selective harvest; however the small starting populations 

should be born in mind.  

Conclusions 

Numerous experiments have shown that fishing can cause a wide range of phenotypic 

changes in experimental populations. Selective fishing can lead to populations with 

reduced individual size, lower growth, and earlier maturation, as well as individuals 

less likely to be captured. These changes can have important ramifications on yield 

and thus for the future of the fishery. Artificial selection experiments are the best at 



 12 

unequivocally attributing the selective force as the driver of the changes. However, 

such experiments do not allow for a realistic setting where ecological feedbacks can 

interact with and alter the effect of fishing. Results from natural selection experiments 

can be applied more generally due to their higher realism, but their complex set-up 

makes them more difficult to control and interpret.  

2. DOES SIZE-SELECTIVE FISHING ALTER OTHER TRAITS CORRELATED WITH THE 

SELECTED TRAIT?  

Experimental studies allow observing a wider array of potentially evolving traits than 

observational field studies. Furthermore, when several traits are measured from a 

single individual, the experimenter can also estimate correlations between traits, 

something that is usually beyond the scope of observational field studies (but see 

Mollet et al., 2010). 

Lessons from experiments 

In the largemouth bass studies by Philipp, Cooke and collaborators (Cooke et al., 

2007, Philipp et al., 2009), vulnerability to angling was also related to differences in 

physiological, behavioural (Cooke et al., 2007; Nannini et al., 2011; Sutter et al., 

2012) and life-history traits (Redpath et al., 2009; Sutter et al., 2012). High-

vulnerability individuals showed higher resting heart rate and cardiac output during 

the resting period, which is associated with higher metabolic rate, and this in turn with 

higher aggression and dominance (Cooke et al., 2007; Sutter et al., 2012). In addition, 

high-vulnerability individuals presented superior parental care (more time guarding 

and oxygenating the nest; Cooke et al., 2007; Sutter et al., 2012), higher mating 

success (number of eggs in nest placed by females; Sutter et al., 2012) and higher 

reproductive fitness (number of sired offspring; Sutter et al., 2012), compared to low-

vulnerability individuals. Moreover, high and low-vulnerability individuals differed in 
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growth rate and gonadosomatic index (Redpath et al., 2009), in metabolic capacity 

(Redpath et al., 2010) and in foraging behaviour (number of attacks to prey, capture 

efficiency, etc.; Nannini et al., 2011).  

The differently selected lineages of Conover & Munch (2002) did not only differ in 

size and growth rate, but also in fecundity, egg size and larval growth. Later on also 

differences in egg volume, larval viability, larval size at hatching, consumption rate, 

swimming performance and antipredator behaviour were assessed (Walsh et al., 

2006). The populations subjected to the removal of small individuals presented higher 

spawner biomass, larger egg size and faster larval growth and thus, higher larval 

viability, compared to populations where larger individuals were harvested (Conover 

& Munch, 2002; Walsh et al., 2006). In addition, the populations in different 

treatments differed in physiological and behavioural traits, with the positively size-

selected individuals expressing lower food consumption rate, fecundity and boldness, 

among other traits (Walsh et al., 2006). Low food consumption and fecundity result in 

low survival and fitness (Walsh et al., 2006; but see Billerbeck, Lankford & Conover, 

2001).  

Grayling from the Norwegian populations differed in age and size at maturity and 

growth rate due to differences in adult survival caused by fishing (Haugen, 2000a). In 

addition differences in egg size, fecundity and gonadosomatic index were also found 

and were correlated with fishing pressure (Haugen & Vøllestad, 2001). As mentioned 

before the differences in juvenile traits did not seem to be related to size-selective 

fishing. 

Conclusions 

The studies summarized above show that the effect of fishing pressure is more 

complex than just removing certain size classes; it affects other traits in sometimes-
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unexpected ways. The correlated changes observed in the experiments mentioned 

above due to selective harvest, such as reduced fecundity, reduced gonadosomatic 

index, reduced feeding rate, reduced willingness to forage and reduced parental care, 

may ultimately reduce a population’s resilience (Walsh et al., 2006). It was previously 

thought that fishing reduces competition and thus increases food availability and 

productivity, but the studies discussed above show that fishing can influence traits 

related to converting available energy into population growth, therefore reducing the 

recovery capacity of populations (Walsh et al., 2006; Conover et al., 2009; Sutter et 

al., 2012).  

 

3. ARE THE OBSERVED CHANGES PHENOTYPIC OR GENETIC?  

In order to prove that fisheries-induced evolution has occurred, it is necessary to 

prove that the changes have a genetic basis. Suitably designed experiments have 

power to disentangle phenotypic and genetic changes, without the use of molecular 

genetic analyses. Because parental environment or condition may affect offspring 

traits (i.e., trans-generational plasticity; Uller, 2008), the gold standard today is that 

only differences that persist to second generation under common-garden conditions 

are considered as likely genetic (Falconer & Mackay, 1996; Urban 2008; for 

examples see, Reznick & Bryga, 1987; Dam, 2012; Pascoal et al., 2012). In the 

present review, we mainly refer to maternal-environmental effects, i.e. the influence 

of the mothers’ environment on her offspring (Mousseau & Fox, 1998; referred to as 

‘maternal effects’ in the review), rather than the broader definition (which covers 

epigenetic inheritance, transmission of organelles, nutrients, hormones or paternally 

modified environment, etc.; Badyaev & Uller, 2009, but see Wolf & Wade, 2009, for 

a narrower definition).  



 15 

Below we will only consider those studies where genetic changes have been explicitly 

considered either through molecular methods or common-garden experiments. We 

thus exclude the studies by Drake et al. (1997), Carlson et al. (2007) and Edeline et 

al. (2007) that were ambiguous in this respect.  

Lessons from experiments 

Silliman (1975) concluded that the difference in growth rate between his control and 

harvested populations was due to genetic changes. However, we consider this 

conclusion as very uncertain. Silliman assessed genetic change by extracting 46 

individuals from each population and rearing them outside the selection aquaria, with 

ad lib feeding for two months. Males from the selectively harvested aquarium 

presented slower growth than control ones, while females did not differ. In addition to 

the concerns mentioned above about the experimental design (mixed-origin and lack 

of replication, making the results vulnerable to the effects linkage equilibrium and 

randomness; Conover & Baumann, 2009), we assert that the observed difference 

cannot be attributed to genetic changes with a high confidence because maternal 

effects were not accounted for. 

Kasperski & Kozlowski (1993) did rear the offspring (F1 generation) of their 

experimental populations (five size-selected and five controls) in common-garden 

conditions until maturation. They concluded that the differences in maturation size 

observed in the harvested populations compared to the controls were due to 

phenotypic responses to the different environments because the differences were not 

maintained in the offspring when reared in common-garden conditions (Kasperski & 

Kozlowski, 1993), which controlled for environmental factors, but not for maternal 

effects. Thus, a 15 month-experiment (2–3 generations according to Kasperski & 

Kozlowski, 1993) in guppies in which selection intensity was approximately 2% 
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every four weeks (one large individual was removed each time from populations with 

an average size of 47 individuals) resulted in a phenotypic but not genetic decrease in 

size at maturation. It should be noted that even though female guppies may produce 

their first offspring when they are on average twelve weeks old (Auer, 2010), the 

generation time of a population where reproductive period is prolonged (iteroparity) is 

much longer than age at first reproduction. Thus, we believe that the numbers of 

generations in the populations of Kasperski & Kozlowski (1993) were probably less 

than the stated 2–3 generations.  

Conover & Munch’s (2002), Philipp, Cooke and collaborators’ (Cooke et al., 2007, 

Philipp et al., 2009), and van Wijk et al.’s (2013) artificial selection experiments 

showed that genetic changes took place in their populations. In general, the set-up of 

artificial selection experiments is characterized by 1) environmental effects that are 

controlled for (i.e. between-population differences are minimized), 2) maternal effects 

and epigenetic effects that are diluted as the lines are maintained for several 

generations and 3) genetic drift which influence is minimized with replication and 

large population size. Therefore, the changes observed in the experimental 

populations are most likely genetic (Figure 1). Furthermore, van Wijk et al. (2013) 

used molecular genetic methods to show that genetic change had taken place. 

Conover & Munch’s (2002) experiment proved evolvability of length at age (through 

evolution of growth rate) under the controlled conditions of the lab. In addition, 

genetic correlations between adult length and egg size were found. Egg diameter was 

found as genetically correlated with adult length at harvest with a realized 

coheritability of 0.0006, which was highly significant, i.e., selection in adult size lead 

to small but significant genetic change in egg diameter (Munch, Walsh & Conover, 

2005). However, while it is undeniable that evolution took place, it has been 
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suggested that due to the simple and unrealistic conditions of the experiment, their 

results cannot be applied to real fisheries (Hilborn, 2006; Brown et al., 2008). 

Philipp et al.’s (2009) study showed that angling could act as an evolutionary force 

towards a “vulnerability trait”. However, the set-up was not as controlled as Conover 

& Munch’s (2002), as the founder population was small (three pairs) and rearing both 

lineages together in a common pool may have introduced confounding factors. While 

rearing the lineages together for testing the vulnerability to angling was appropriate to 

reduce possible environmental differences in the test, it also introduced possible noise 

in the study of selection and genetic change. In principle, changing the individuals 

from one single-lineage-pond to a mixed-lineage-pond might affect how the 

individuals were interacting, thus confounding the effects of selection. However, later 

studies more unambiguously indicate that a genetic change took place: Sutter et al. 

(2012) showed that the selected lineages maintained their differences in angling 

vulnerability after two generations without selection. 

Haugen & Vøllestad (2001) concluded that the differences in adult traits observed 

between lakes were most likely caused by the different fishing regimes. In addition, 

some of the phenotypic differences were also shown to be genetic, at least in three of 

the lakes (Lesjaskogsvatn, Hårrtjønn and Aursjøen), under common-garden conditions 

(Haugen & Vøllestad, 2000). Early life history traits (survival, growth and size during 

the period of first feeding) were assessed from first generation individuals reared in 

the laboratory. Traits remained different between populations and thus it was 

concluded that the differences had a genetic basis (Haugen & Vøllestad, 2000), 

although maternal effects could still play a role. However, the genetic basis of the 

differences was only studied for the juvenile traits and not for the adult ones, the latter 

being those more closely associated with selective fishing. 
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Edley & Law (1988) showed evidence for clonal evolution of maturation size. 

Removal of big individuals resulted in populations dominated by slow-growing clones 

that reproduced at smaller size relative to negative size-selection harvest. These 

differences were maintained when the size-dependent selection was halted and when 

sampled individuals from all populations were reared isolated under common 

conditions. Edley & Law’s (1988) study was the first one to show genetic changes 

due to harvesting under experimental conditions. However, the life cycle of Daphnia 

differs profoundly from that of the commonly exploited fish, making it difficult to 

apply Edley and Law’s (1988) results to fisheries-induced evolution. 

Van Wijk et al. (2013) not only showed a genetic basis of the observed changes in 

male guppy length with their controlled artificial selection, but they also showed that 

the selected lines differed in allele frequencies of candidate genes. Four candidate 

genes associated with quantitative trait locus for length (linked to the Y chromosome) 

showed a response to size-selection on males (Van Wijk et al., 2013), while variation 

in neutral microsatellites was not different between lines. This study is thus the first 

one to show a direct link between genetic and life-history change in selection 

experiments directly focused on FIE. It should, however, be noted that Van Wijk et 

al.‘s (2013) experiment only considered size-selective mortality on males, a setting 

not representative of most fisheries. Indeed, their evidence for genetic changes was 

strongly linked to the male sex (Y) chromosome. Furthermore, the set-up with strong 

knife-edge selection and non-overlapping generations was no more representative of 

real fisheries than Conover and Munch’s (2002) study. 

Conclusions 

Experiments have shown with high likelihood that life history and larval traits can 

undergo evolution when populations are subjected to harvesting. However, 
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experiments that have employed the necessary design to unambiguously achieve this 

are still few in number. Knowledge on whether the changes induced by fishing have a 

genetic basis is necessary in order to develop appropriate management plans. Thus, 

more selection experiments used to their full potential should be performed. 

4. IS THE MATURATION SCHEDULE AFFECTED BY FISHING? 

Most of the changes observed in the wild stocks are related to maturation schedules, 

and secondly with growth (Trippel, 1995; Law, 2000; Hutchings & Baum, 2005). In 

many of these examples the changes have been interpreted as fisheries-induced 

evolution (Jørgensen et al., 2007). Most of the evidence comes from studies using one 

approach, the probabilistic maturation reaction norms. The capacity of this approach 

to disentangle phenotypic and genetic changes has been challenged, both on basis of 

fundaments of reproductive physiology (Wright, 2007) and on basis of concrete 

experiments (Morita, Tsuboi & Nagasawa, 2009, Uusi-Heikkilä et al., 2011, Diaz 

Pauli & Heino, 2013). Thus, selection experiments aimed at studying the effect of size 

selective fishing would help to clarify this matter, and even further, to test whether 

probabilistic maturation reaction norms are appropriate for disentangling genetic and 

plastic changes in maturation. Despite of this, few selection experiments have dealt 

with maturation schedules.  

Lessons from experiments 

Haugen (2000a) studied differences in age at 50% maturity among lake populations, 

and found individuals maturing at earlier ages in the lakes with higher fishing 

intensity. Even though divergence rates and evolutionary rates have been calculated 

for many life history traits in these lakes, those related to maturation schedules were 

based on phenotypic, not genetic data (Haugen & Vøllestad, 2001). Thus, this study 

was unable to conclusively show genetic changes in maturation schedules. 
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Until recently, Edley & Law’s (1988) experiment with water fleas was the only 

selection experiment that studied the evolution of maturation schedules due to size 

selection. As mentioned in the section above, those populations in which large 

individuals were removed started reproducing at smaller size. With common-garden 

experiments, Edley & Law (1988) were able to show that the changes were genetic. 

van Wijk et al. (2013) showed that the guppy lines differed in male age and size at 

maturation after three generations of size-selective mortality. Because there was only 

a minor change in growth (results not reported, but this can be inferred from their Fig. 

1), underlying maturation tendency had evolved. This phenotypic change could be 

concluded to have a genetic basis, thanks to their controlled artificial selection 

experiment set-up. van Wijk et al. (2013) also performed a molecular genetic 

analysis, but the candidate genes that responded to selection were associated with 

individual size and not maturation. 

van Wijk et al. (2013) joins Edley and Law’s (1988) as the only evidence from 

selection experiments for evolution of maturation schedule in size-selected 

populations. Notice that Conover & Munch (2002) did not consider evolving 

maturation, despite the experiment being sometimes interpreted in that way (e.g., 

Morita et al., 2005; Rankin & López-Sepulcre, 2005; Mollet, Kraak & Rijnsdorp, 

2007; Quinn et al., 2007). In their experiment maturation was triggered by 

photoperiod, and thus it was not allowed to evolve; changing size at maturation was a 

secondary consequence of changing juvenile growth. 

Conclusions 

Very few experimental studies have so far focused on maturation, and only two 

studies rigorously demonstrated harvest-induced evolution of maturation. There are 

more experimental studies considering fishing-induced changes in growth than in 
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maturation schedules, perhaps because growth is easier to measure in experiments 

than maturation. This is contrary to the field-based, observational evidence of 

harvesting-induced changes that are dominated by maturation. We believe that this is 

the main gap that should be filled in the study of FIE, and we encourage more studies 

that focus on how maturation schedules are affected by different types of fishing. 

However, the ability of probabilistic reaction norms to disentangle genetic and 

phenotypic changes has been assessed by Uusi-Heikkilä et al. (2011) and Diaz Pauli 

& Heino (2013), and several studies are currently being performed to study adaptation 

of maturation schedules in experimental populations. 

5. WHAT IS THE RATE OF CHANGE, AND 6. IS IT REVERSIBLE? 

For fisheries-induced evolution to be included in management plans, knowledge on 

the rate of fisheries-induced evolutionary change and its reversibility are critical. It is 

the quantitative rate of the change that is most important for practical purposes (Law, 

2007). Conclusions about the rate of evolution range from fast and important 

(Jørgensen et al., 2007; Darimont et al., 2009; Sharpe & Hendry, 2009; Devine et al., 

2012) to probably moderate (Law, 2007) or so as to be unimportant (Andersen & 

Brander, 2009). Thus, there is a need to understand intensities of selection generated 

by fishing, heritabilities of the traits under selection, and whether the rates of change 

in traits predicted from this information are consistent with the changes observed. 

Heritabilities and selection differentials are useful as they provide a preliminary 

understanding of the absolute rate of evolution (Law, 2007), while rates in haldanes or 

darwins enable us to compare studies and to infer relative speed of evolution (Hendry 

& Kinnison, 1999; Sharpe & Hendry, 2009; Devine et al., 2012). As the traits 

changing are important for fisheries, a related question is whether these changes can 

be reversed and how fast this can be done.  
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Lessons from experiments 

Philipp et al. (2009) estimated a cumulative selection differential of 0.07 (relative to 

0.04 in the initial generation) in catch rate (captures per hour, individual and hectare) 

after three generations between selected lines; heritability in the vulnerability of being 

angled was h2=0.14. These values were calculated taking into account the divergence 

response, not the change relative to the parental population. The population that was 

selected for low vulnerability to angling presented a reduction of 49% in the catch rate 

after three generations (Philipp et al., 2009).  

Haugen & Vøllestad (2001) studied the rates of divergence and evolution of both 

adult and juvenile life history traits in grayling. They studied divergence rates using 

synchronic data (i.e., comparing different populations at the same time period) of life 

history traits in five different populations in lakes in Norway. Rates of evolutionary 

change were estimated from allochronic data (time series of single populations) in a 

single lake. The evolutionary rates obtained were high (0.002–1.008 haldanes, 10–

30,500 darwins) compared to other life-history studies on the same temporal scale 

(Haugen & Vøllestad, 2001; Hendry & Kinnison, 1999). However, they are only 

about twice as large as the average rate estimated for exploited fish (Darimont et al., 

2009). The allochronic data showed that constant reduction in age (−0.33 years in 10 

years) and length (−18 mm in 10 years) at maturity had taken place and that selective 

fishing was the driver of those changes. 

van Wijk et al. (2013) estimated both heritability and evolutionary rates for male 

length in their guppy selection experiment. Positively size-selected males were 6.5% 

shorter in standard length, while negatively size-selected males were 7.5% larger after 

three generations of selection. The estimated heritability was 0.20 and 0.27 for the 

positively and negatively size-selected lines, respectively. This resulted in an 

evolutionary rate for male length of 50,000-55,000 darwins and 0.3 haldanes (van 
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Wijk et al., 2013). These values are two to ten times larger (after 7 and 13 

generations, respectively) than the rates estimated for guppy male weight in natural 

habitats (Reznick et al., 1997), and five times larger than the average rate estimated 

for changes in fish length due to fishing (Darimont et al., 2009). 

Conover & Munch (2002) controlled the selection pressure in their study, thus the 

response and the heritability of the selected trait could be easily estimated with the 

breeders’ equation. The heritability for mean length on day 190 was h2=0.20 and the 

cumulative selection differential was approximately 

 

±60 mm, depending on 

treatment. 90% size-selectivity intensity per generation produced a reduction of 25% 

in size at age over four generations in those populations where large individuals were 

harvested (Conover & Munch, 2002). However, this study used unrealistically high 

fishing pressure, thus the evolutionary change obtained cannot be readily compared 

with wild populations. Simulations based on this experiment showed that a more 

realistic fishing pressure would have resulted in an evolutionary change in size of 

25% only after 15–50 generations (Brown et al., 2008). Nevertheless, these 

simulations over longer time scales resulted in evolutionary change of magnitudes 

comparable to those estimated in the wild (Brown et al., 2008).  

The experiment of Conover & Munch (2002) was also taken one step further to assess 

the reversibility of the changes. During four more generations the populations 

experienced 90% harvest rate, but there was no selection for size, i.e. the removals 

were size-independent (Conover et al., 2009). The initially positively size-selected 

populations started a slow recovery, and full recovery to initial values of mean length 

was projected to happen after about 12 generations. The negatively size-selected 

populations did not recover. Conover et al. (2009) suggested that the ultimate cause of 

the recovery is due to factors intrinsic to the population. In the positively size-selected 

populations there was selection pressure for size-dependent traits that increased 
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fitness and genetic correlations among traits during the time size selectivity was 

halted. This led the population to reverse to the original conditions. The negatively 

size-selected populations may have experienced stabilizing selection on size. Under 

the experimental conditions there were no factors that would lead to evolution of 

smaller size, so there was no recovery to initial conditions (Conover et al., 2009).  

Even though the positively size-selected line partially recovered the initial values of 

size and growth, not all the correlated traits followed the same trend after size-

selective mortality was halted (Salinas et al., 2012). Larval viability and growth 

efficiency under unlimited food availability showed full recovery, egg volume and 

size-at-hatch showed partial recovery, while food consumption, vertebral number and 

growth efficiency under limited food availability showed no recovery at all in 

positively size-harvested lines after 11 generations  (Salinas et al., 2012). During the 

recovery phase size-selection was halted, but there was still selection for increase 

fecundity; this resulted in traits related with fecundity and early survival to experience 

recovery in the positively size-selected lines (Salinas et al., 2012). 

Conclusions 

Several studies have shown that fishing can cause significant changes in a few 

generations. However, standardised rates of change have only been estimated by two 

studies (Haugen & Vøllestad, 2001; van Wijk et al., 2013), which is what is needed in 

order to compare the speed of evolution with other studies. It is necessary to set a 

reference point or to compare with other studies’ evolutionary rates to determine 

whether the change takes place rapidly (for reviews of evolutionary rates, see 

Kinnison & Hendry, 2001; Darimont et al., 2009; Devine et al., 2012).  

The selection studies presented here show that populations become adapted to fishing. 

Populations that are adapted to fishing are thought to be more resilient to fishing 
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pressure compared to those not well adapted. However, this may come to the cost of 

not being well adapted to natural conditions and to changing environments (Conover, 

2000; Jørgensen et al., 2008a; Heino, Rijnsdorp & Dieckmann, 2012). Experimental 

evidence for whether fishing-adapted populations are more resilient is lacking; only 

Walsh et al. (2006) looked at whether the characteristics of the fishing-adapted 

populations are suitable for a potential recovery. Furthermore, only one experiment so 

far has directly addressed the question of reversibility (Conover et al., 2009; Salinas 

et al., 2012), showing that rates of recovery, while not negligible, were slower than 

rates of adaptation to fishing in positively size-selected lines, and that the recovery of 

traits depends on the selective landscape remaining after size-selectivity is relaxed. 

While acknowledging that under laboratory conditions it is difficult to create a natural 

selection regime that would realistically drive recovery, these studies provide some 

support for the idea that we might be building up a Darwinian debt: for each year of 

selective fishing, it will take longer time for the inherited trait to recover to its original 

value (Dunlop et al., 2009).  

7. DO CHANGES IN THE POPULATION AFFECT THE PROFITABILITY OF THE FISHERY? 

Selective fishing pressure results in changes in the composition of the population. 

These changes are initially demographic and phenotypic, but eventually can become 

genetic (Pigliucci, 2005; Tuomainen & Candolin, 2011). On the one hand, 

evolutionary changes caused by the fishery are positive from the fish point of view; 

fish become better adapted to the environment and thus produce the most progeny 

possible in such conditions (Heino et al., 2012). On the other hand, those changes do 

not have to be positive from the fishery perspective; for instance, evolution to smaller 

size could mean more fish under the minimum legal body size, i.e. not attractive for 

fisheries and thus low yield and productivity for the fishery (Heino et al., 2012).  
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Lessons from experiments 

Only three experiments have considered the effect of FIE on yield or catch rate. In 

general terms, the experiments showed that the removal of large individuals lead to 

lower yield, even though they were quite different in their set-up. Conover and 

Munch’s study showed that removal of large individuals led to lower yield (biomass), 

spawning stock biomass, smaller individual size (Conover & Munch, 2002) and lower 

fecundity (Walsh et al., 2006) in populations with discrete generations and fed ad-

libitum. Edley & Law (1988) revealed that culling of large individuals in clonally-

reproducing populations with overlapping generations and ecological feedbacks 

resulted in reduced catch (measured in numbers of individuals) over time, while 

culling of small individuals showed no such reduction. However, the biomass yield 

decreased in both selected lines; in absolute terms the decrease was steeper for 

populations where large individuals were culled (Figure 2a), but the decline of yield 

biomass relative to the initial conditions was stronger for populations that experienced 

culling of small individuals (Figure 2b). This happened because both culling regimes 

led to smaller mean size of harvested individuals, but this decrease was stronger in 

populations where small individuals were culled.  

In addition, fishing alters the behavioural composition of the population; individuals 

that are better at parental care (Drake et al., 1997; Sutter et al., 2012) are being fished 

more, increasing the proportion of cuckolders. Given that vulnerability to fishing is 

heritable and can reduce catch rate in almost 50% in three generations (Philipp et al., 

2009), experiments now indicate that evolution toward fish that are more difficult to 

catch is possible—contrary to what Miller (1957) postulated half a century ago. 
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Conclusions 

The only three experiments that considered the effect of FIE on yield show that 

selection towards large individuals or more vulnerable individuals produce lower 

yield, but also that the populations are less productive. However, the experiments 

have either used simplistic set-ups (Conover & Munch, 2002; Philipp et al., 2009; 

Walsh et al., 2006) or species (Edley & Law, 1988) that make it difficult to apply the 

results to real fisheries. We urge carrying out further experiments to better understand 

this important aspect of FIE.   

Fishing selectivity is included in harvesting management plans to protect productivity 

of the fish stock and thus, the profitability of the fishery. However, selection 

experiments show that this selectivity leads to populations adapting to fishing, and 

this change may in turn reduce the productivity and the resilience of the population. 

Thus, it should be in the interest for fisheries managers to reduce such evolutionary 

effects of fishing. 

Selection experiments also highlight another aspect of profitability. Experiments tend 

to suggest that fishing leads to smaller body size, at least post-maturation. Smaller 

individual sizes are often less valuable (Zimmermann & Heino, 2013) and even illegal 

catch when they lie under the minimum size limit. Smaller size is correlated with 

lower fecundity, reduced parental care and lower willingness to forage, which can 

result in lower productivity of the population. In addition, the removal of highly 

vulnerable fish can result in populations with higher gear avoidance abilities, which in 

turn would lead to lower probability of catching, and thus lower productivity and 

profitability.  

 

GENERAL SUMMARY 



 28 

In the previous section, we presented how selection experiments have contributed to 

the seven questions of concern in the study of FIE. In this section we summarize their 

contribution to FIE research according to their experimental design. The utility of 

selection experiments to elucidate FIE presumes both well-designed and realistic 

experimental set-ups. Thus, our discussion considers these two issues. 

A well-designed selection experiment disentangles the effect of selection from other, 

confounding factors (environmental trends and feedbacks, maternal effects, drift, 

etc.). This is not an easy task, as this review shows for the particular case of FIE. In 

the present framework, the number of selection experiments performed is small, a 

mere nine experiments (some reported in multiple papers), but this number is nearly 

halved when only considering those studies with the “cleanest” experimental designs 

(viz. Conover & Munch, 2002; Edley & Law, 1988; Haugen & Vøllestad, 2001; 

Philipp et al., 2009; van Wijk et al., 2013).   

In addition, we think that selection experiments designed such that their results can be 

applied to more general settings are crucial. This is what we called a more realistic 

design, where life histories similar to those of wild stocks are mimicked, and where 

ecological feedbacks and sexual selection are allowed (and accounted for, to fulfil the 

criteria of well-designed experiments); these can interact with and alter fishing-

induced selection. After considering this criterion the number of studies is 

unfortunately reduced to zero. Conover & Munch’s (2002), van Wijk et al.’s (2013), 

and Philipp, Cooke and collaborators’ (Cooke et al., 2007; Philipp et al., 2009; 

Redpath et al., 2009, 2010; Nannini et al., 2011) studies only allow single 

reproductive events and discrete generations; i.e. the life history is constrained to be 

semelparous. For species or populations that are naturally iteroparous, this is a 

dramatic simplification. These simplifications ease the study of the mechanism of 

selection, but hamper comparisons with results obtained from wild populations 
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(Figure 1; Table 2). Edley & Law’s (1988) work with Daphnia in principle fulfils the 

requirements presented here, but the use of tiny, clonally reproducing crustaceans 

limits the applicability of the results to exploited fish stocks in the wild. The studies 

by Haugen and Vøllestad (Haugen, 2000a, b; Haugen & Vøllestad, 2000, 2001) took 

fully advantage of the natural selection experimental design. They also took their 

analysis further by estimating genetic change and the rate of that change. However, 

only juvenile traits were assessed for genetic change; these traits were affected 

primarily by environmental factors and not fishing. The adult traits that were affected 

by fishing were not assessed under common-garden conditions. Thus, for the 

particular perspective of this review, we cannot consider Haugen & Vøllestad’s 

(2001) study as fulfilling all our desiderata, despite being a well-designed and realistic 

experiment in many respects. 

We must, of course, acknowledge that running an experiment that would pass all our 

criteria is very demanding. For example, the discrete-generation setup is much-used 

probably because it makes experiments easier to manage and for naturally iteroparous 

species, greatly reduces the generation time. We have also lamented the lack of 

studies focused on maturation, a key trait observed to change in the wild. A key 

challenge for experimental studies is that for many species, maturation is difficult to 

detect without sacrificing individuals. However, the most fundamental problem with 

experimental studies is creating conditions that resemble those in the wild. Natural 

selection experiments are a step into this direction, but unless carried out in the wild, 

involve only caricature representations of natural feedbacks due to resource 

availability, parasites, and predation (within the European Union, it is usually 

forbidden to run experiments with two or more interacting vertebrates). This also 

limits our ability to experimentally study population-level consequences of fishing. 
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The experiments have been based on a wide range of fish species that can be 

separated in two groups: small species with short life cycle suitable for tank 

experiments (guppy, silverside) and larger species that are targets of commercial and 

recreational fisheries and which tend to require larger enclosures or ponds (all the 

rest). Tilapia is an outlier in the latter group, and perhaps surprisingly, the only 

species that is used in aquaculture. Again, the choice of study species reflects the 

trade-off between the ease of running large experiments and linking the results to real 

fisheries. 

FUTURE DIRECTIONS 

Studying FIE is not easy, neither in the wild or experimentally. Both approaches have 

their strengths, and both are indispensable. We believe natural selection experiments 

are the most appropriate experiments to study fisheries-induced evolution. They 

enable one to study the effect of size selectivity on age- and size-structured 

populations under conditions allowing for iteroparous life history where trade-offs 

between current and future reproduction can unfold. Sexual selection can play its role 

in mating, as the experimenter does not choose the breeders. In addition, such 

experiments allow for density-dependent feedbacks and “natural” selection that might 

reduce the effects of fishing through compensatory effects, thus allowing more 

realistic selection pressures (Figure 1; Table 2). This all is making the experimental 

conditions more realistic and thus, more comparable to those experienced by 

exploited stocks, making the results more readily applicable. On the other side, results 

might become more complicated to interpret when some control on the experiment is 

sacrificed for realism. 

To fulfil the criterion of being well-designed, such experimental set-ups should be 

accompanied with controlled selection pressures directed to a single trait, in order to 
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unequivocally attribute the observed changes to a single driver, and the estimation of 

the rate of change, to allow comparison with other studies. In addition, demonstrating 

phenotypic divergence between populations due to dissimilar selection pressures is 

not sufficient to conclude that fisheries-induced evolution has taken place; natural 

selection experiments should be complemented with common-garden experiments 

and/or genetic analyses. 

Applying methods of population genomics and quantitative genetics (candidate genes, 

genome scan, QTL mapping, etc.) would allow identifying adaptive population 

divergence, however such techniques are still at their infancy in the study of FIE (but 

see Nielsen et al., 2009; Jakobsdóttir et al., 2011; van Wijk et al., 2013). An 

important limitation is that relatively little is known about specific genes associated 

with the processes of growth and maturation, or with other traits of interest to FIE, 

even though the genomes of some commercially important species have been 

sequenced (e.g., eel, salmon and cod; Ng et al., 2005; Star et al., 2011; Henkel et al., 

2012). Thus, up to date most molecular studies on adaptive responses have focused on 

neutral loci or genes related to immune and temperature responses and circadian 

cycles (Hansen et al., 2012). Until genetic studies can be fully harnessed to the study 

of FIE, unambiguous evidence of genetic changes can only be obtained in 

experimental conditions by rearing individuals from the diverging populations under 

common-garden conditions.  

van Wijk et al.’s (2013) recent paper is the first one that directly aimed at studying 

differences in size due to size-selective mortality combining selection experiments 

and molecular methods. Their study seems to provide the evidence demanded for the 

case of FIE (Kuparinen & Merilä, 2008). However, artificial selection experiments 

might not yet differ much from genetic improvement in aquaculture (reviewed by Gui 

& Zhu, 2012). We believe that to improve the understanding on FIE selection 
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experiments should move towards more realistic settings, comparable to populations 

harvested in natural conditions.  

Future natural selection experiments should be focused on studying how maturation 

schedules and growth are affected—which at the moment are the main concerns in 

FIE research—but not restricted to these, because we need to expand our knowledge 

of how other traits are affected. The consequences of FIE on yield are still poorly 

understood. In addition, we want to raise attention to the potential that these 

experiments have in helping to improve and test the different methods of population 

genomics (e.g. construct pedigrees that allows to study founder effect, loss of genetic 

variability and bottle necks; or identify and follow SNPs associated to certain 

phenotypes in small scale where results are easily interpretable) and applied statistics 

(e.g., the Probabilistic Maturation Reaction Norm, Heino et al., 2002; the Animal 

Model approach, Wilson et al., 2010). 
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Figure 1. a) Schema of a shift (either genetic of phenotypic) in the distribution of a 

certain trait in a population. Coloured arrows represent the processes potentially 

contributing to that change. Grey box represents how different methods mentioned in 

this review allow disentangling genetic from phenotypic nature of the change by 

filtering (accounting for) the different arrows (processes). b) In natural conditions, the 

genetic evidence for change, but not the driver, can only be obtained through 

molecular genetic analyses and/or common-garden experiments. c) Natural selection 

experiments combined with common-garden experiments also give evidence for 

genetic change and driver of selection. d) Artificial selection experiments control all 

processes involved, showing evidence for genetic change and the driver of selection. 

It is assumed that the experiments are performed with well-designed set-ups. 
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Figure 2. Trends over time in a) absolute biomass yield and b) relative to initial yield. 

The curves are derived from the results of Edley & Law’s (1988) experiment on 

Daphnia magna. Grey triangles represent populations with culling of small 

individuals, while black inverted triangles represent populations where large 

individuals were culled. Biomass yield is expressed in arbitrary units based on Edley 

& Law’s (1988) net mesh units. 
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Table 2. Main characteristics of the two types of selection experiments with their advantages 

and disadvantages. 

Artificial selection experiment 

Main characteristics Advantages Disadvantages 

Experimentally imposed selection 

Direct choice of the selected trait 

Directly controlled selection 

(nature, strength, consistency) 

Controlled reproductive events 

Discrete generations (usually) 

 

+ Simple & easy to perform 

+ Straightforward results 

+ Proximate and ultimate 

cause of change 

– Lack of realism (no environ. 

feedback or natural sel.) 

– Not all traits allowed to evolve 

Natural selection experiment 

Main characteristics Advantages Disadvantages 

Indirectly imposed selection 

No direct choice of selected trait 

No direct control of selection 

No control on reproductive events 

Overlapping generations (usually) 

Age and size structured 

populations 

+ Realism 

+ Allow for compensatory 

response 

+ Ultimate cause of change 

+ All traits allowed to evolve 

– Requires extra test 

– Unable to determine direct 

cause (proximate) of selection 

 



 48 

 

Table 3. Summary of the conclusions drawn for each of the seven issues of importance in the study of 

FIE. Numbers in parentheses refer to studies that fulfil the criterion; numbering (footnote) follows the 

same order as Table 1. 

Question Conclusion 

Number of studies  

dealing 
with the 
question 

successfully 
answering the 

question 

1. Does selective fishing 

lead to phenotypic changes? 

•  Fishing can lead to phenotypic changes. 

•  Artificial selection experiments are best at 

attributing fishing as the driver of change, at the 

cost of being less comparable to nature. 

9/9 

(1–9) 

8/9 

(1–9) 

2. Does size-selective 

fishing alter other traits 

correlated to the selected 

trait?  

•  The effect of fishing pressure is more complex 

than just removing certain size classes or traits. 

•  Many different traits are indirectly affected by 

fishing. 

4/9 

(1,2,5,9) 

4/4 

(1,2,5,9) 

3. Are observed changes 

phenotypic or genetic? 

•  Fishing can lead to genetic change. 

•  The number of experiments with appropriate 

design to answer this issue is scarce. 

6/9 

(1,2,5–9) 

5/6 

(1,2,5,9) 

4. Is the maturation schedule 

affected by fishing? 

•  Very few experimental studies focused on 

maturation. 

•  Only two studied harvest-induced evolution of 

maturation. 

3/9 

(6,7,9) 

2/3 

(6.9) 

5. What is the rate of 

change?  

•  Several studies showed fishing can cause 

significant changes in a few generations.  

•  Standardised rates of change have only been 

estimated by two studies. 

2/9 

(6,9) 

2/2 

(6,9) 

6. Is the change reversible? • Recovery rates may be slower than rates of 

adaptation to fishing. 

• Only one study focused on reversibility of change. 

1/9 

(1) 

1/1 

(1) 

7. Do changes in the 

population affect the 

profitability of the fishery? 

•  Removal of large individuals leads to lower yield 

and less productive populations. 

•  Removal of highly vulnerable individuals results in 

lower probability of catching. 

3/9 

(1,2,6) 

3/3 

(1,2,6) 
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