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Abstract

In several species genetic differentiation across environmental gradients or between geographically separate populations has been

reported to center at “genomic islands of divergence,” resulting in heterogeneous differentiation patterns across genomes. Here,

genomic regionsof elevated divergence were observed on three chromosomes of the highlymobile fishAtlantic cod (Gadus morhua)

withingeographically fine-scaled coastal areas. The “genomic islands” extendedat least 5,9.5, and13megabases on linkage groups

2, 7, and 12, respectively, and coincided with large blocks of linkage disequilibrium. For each of these three chromosomes, pairs of

segregating, highly divergent alleles were identified, with little or no gene exchange between them. These patterns of recombination

and divergence mirror genomic signatures previously described for large polymorphic inversions, which have been shown to repress

recombination across extensive chromosomal segments. The lack of genetic exchange permits divergence between noninverted and

inverted chromosomes in spite of gene flow. For the rearrangements on linkage groups 2 and 12, allelic frequency shifts between

coastal and oceanic environments suggest a role in ecological adaptation, in agreement with recently reported associations between

molecular variation within these genomic regions and temperature, oxygen, and salinity levels. Elevated genetic differentiation in

these genomic regions has previously been described on both sides of the Atlantic Ocean, and we therefore suggest that these

polymorphisms are involved in adaptive divergence across the species distributional range.

Key words: chromosomal rearrangements, gene flow, marine organisms, population genomics, ecological adaptation, struc-

tural polymorphisms.

Introduction

Elevated genetic differentiation across environmental gradi-

ents or between geographically spaced populations is in

some species observed to center to a few genomic regions,

or “genomic islands of divergence,” contrasting the overall

genomic differentiation (Wu 2001; Turner et al. 2005; Nosil

et al. 2009). The occurrence of these patterns may be ex-

plained by spatially varying selection in combination with het-

erogeneity in recombination rates, as may be caused by

structural features such as chromosomal rearrangements or

centromeres, will affect the patterns of observed differentia-

tion across genomes (Cutter and Payseur 2013).

Consequently, heterogeneous differentiation across chromo-

somes might be a reflection of variable recombination rate

rather than suppression of gene flow due to selection

(Cruickshank and Hahn 2014), which has recently been doc-

umented in a number of species and clades (Renaut et al.

2013; Barb et al. 2014; Burri et al. 2015; Feulner et al. 2015).

Often described as “recombination repressors,” large chro-

mosomal inversions have repeatedly been identified as drivers

of genomic differentiation by repressing recombination be-

tween “noninverted” and “inverted” alleles (Sturtevant and

Beadle 1936; Dobzhansky and Epling 1948), allowing for sym-

patric divergent evolution (White et al. 2007; Fang et al. 2012;

Guerrero et al. 2012; Pyhäjärvi et al. 2013). Chromosomal

inversions have the potential to span a large number of mo-

lecular polymorphisms, and may thereby attain a selective ad-

vantage from the combination of nucleotides they hold (Noor

GBE
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et al. 2001; Rieseberg 2001; Navarro and Barton 2003). In

addition to the alleles initially captured by the polymorphism,

both structural problems during meiosis and disruption of

genes by inversion breakpoints have also been proposed as

potential targets of selection.

Inversions has been identified as drivers of adaptation in a

wide number of taxa (Hoffmann and Rieseberg 2008; Nosil

et al. 2009; Kirkpatrick 2010). For example, in three-spined

sticklebacks (Gasterosteus aculeatus) several inversions, rang-

ing up to 1.7 Mb, have been shown to facilitate recurrent

transitions between marine and freshwater forms worldwide

(Jones et al. 2012). A large inversion in the common fruit fly

(Drosophila melanogaster), first discovered over 20 years ago,

is known to contribute to climatic adaptation (Krimbas and

Powell 1992; Rane et al. 2015). In monkeyflowers (Mimulus

guttatus), a large inversion spanning over 30 cM has been

shown to distinguish between annual and perennial forms

on the American west coast (Lowry and Willis 2010;

Twyford and Friedman 2015).

While selection acting chromosomes of the same arrange-

ment will create an excess of linkage disequilibrium (LD) in a

narrow region extending on both sides of a beneficial genetic

variant, but a lack of LD across the two sides (Fay and Wu

2000; Kim and Stephan 2002; Sabeti et al. 2002; Kim and

Nilsen 2004; McVean 2007), a large inversion will cause re-

duced recombination between noninverted and inverted al-

leles, and excess of LD may be observable also between loci at

opposite margins of the rearrangement (Navarro and Ruiz

1997; Navarro et al. 1997; Munte et al. 2005; Bansal et al.

2007; Fang et al. 2012). As the genomic region showing re-

duced recombination will be physically determined by the two

inversion breakpoints, it should reach the same physical extent

within the distribution of the polymorphism.

In marine organisms the potential for gene flow is high.

Recent studies, however, have revealed the presence of ge-

netic structuring, even in mobile species (reviewed in Hauser

and Carvalho 2008; Salmenkova 2011).

The Atlantic cod (Gadus morhua), a highly mobile fish dis-

tributed throughout the continental shelf on both sides of the

North Atlantic Ocean, exploiting a wide range of marine en-

vironments through a variety of life-history strategies and be-

haviors. On both sides of the Atlantic Ocean, genomic regions

of elevated differentiation on Atlantic cod linkage groups 2, 7,

and 12 have been observed across latitudinal and climatic

gradients (Bradbury et al. 2010), and elevated LD have been

described within the same genomic regions (Bradbury et al.

2014).

In this study, we show that for these genomic regions of

elevated differentiation on Atlantic cod, the observed differ-

entiation reflects vast molecular divergence between pairs of

morphs, or alleles, extending 5, 9.5, and 13 Mb on linkage

groups 2, 7, and 12, respectively. These alleles segregate

within both coastal and oceanic sampling locations in a

North-sea—Skagerrak study area. We further show that

these three genomic regions mirror the divergence and re-

combination signatures of large polymorphic inversions, and

assign alternate inversion alleles within individual samples.

Based on the allelic shifts observed herein between coastal

and oceanic environments, and previously observed patterns

of genome differentiation across the species distributional

range, we finally relate these extensive polymorphisms to

adaptive evolution on both sides of the Atlantic Ocean.

Materials and Methods

Species, Study Area, and Sampling

Atlantic cod are seasonal batch spawners with pelagic egg

and larval stages (Kjesbu 1989). Its distribution spans the

North Atlantic from Novaya Zemlya (Russia), Spitsbergen

(Norway and Russia) and Greenland in the north, to Bay of

Biscay (France and Spain) and Cape Hatteras (USA) in the

south. In the Skagerrak, which separate southern Norway

from Denmark, and in the North Sea, spawning generally

takes place during January to April and juveniles settle a few

weeks later. Coastal cod typically become sexually mature at

ages 2–4 years (Olsen et al. 2004; Yoneda and Wright 2004),

and average generation length in the Skagerrak area is around

4 years (Knutsen et al. 2011). In all parts of its distribution, cod

in oceanic areas typically move more extensively than cod in

sheltered areas (Fox et al. 2008; Neuenfeldt et al. 2013),

which holds also for the North Sea—Skagerrak system

(Danielssen 1969; Espeland et al. 2008, Rogers et al. 2013),

and genetic divergence between cod inhabiting oceanic

waters and cod from coastal locations has been reported on

both sides of the Atlantic ocean (Ruzzante et al. 1999;

Knutsen et al. 2004, 2011; Westgaard and Fevolden 2007).

Here altogether six coastal sites were chosen, representing

the three coastal study systems Kristiansand (K), Lillesand (L),

and Risør (R). From each of these three study systems, samples

(n = 47–48) were taken from an inner, supposed sheltered,

fjord (abbreviated KI, LI, and RI) and from a nearby, more

exposed outer-coast location (KO, LO, and RO). For all six

coastal localities, juveniles (young-of-the-year) were collected

in the autumn by beach seine, as part of an on-going long-

term survey of the Norwegian Skagerrak coast (Olsen et al.

2009; Rogers et al. 2011). Fish were selected from three dif-

ferent years (i.e., cohorts) when available, to obtain represen-

tative samples from each locality. In addition, two oceanic

North Sea samples was taken of adult fish (several age classes)

off the Danish coast (NSS; n = 43) and off the Norwegian coast

(NSN; n = 48). Previous mapping of North Sea—Skagerrak

spawning grounds (Fox et al. 2008), as well as studies of the

effects of oceanic—coastal currents on drift of egg and larvae

(Stenseth et al. 2006; Knutsen et al. 2007; Ciannelli et al.

2010), have shown that these oceanic spawning grounds

have the potential to genetically influence the coastal study

areas represented herein. All sampled fish (n = 378: table 1)
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were frozen in the field and stored whole until DNA

extraction.

Single Nucleotide Polymorphism Array Development

A custom single nucleotide polymorphism (SNP) array, manu-

factured by Illumina (San Diego, CA), was constructed as part

of the Norwegian Cod SNP Consortium (CSC) composed of

four Norwegian research organizations (Norwegian University

of Life Sciences, University of Oslo, Institute of Marine

Research, and NOFIMA). Genomes from seven individual

cod samples collected from a wide geographic range across

the North East Atlantic (including cod from the Risør inner-

coast) were shotgun sequenced as paired-end read libraries

using Illumina GAii instrumentation. For each sample an aver-

age of 79% of reads were aligned to the reference genome

(gadMor1; Star et al. 2011) using the Burrows–Wheeler

Aligner (Li and Durbin 2009). SNPs were detected using

SAMtools (Li et al. 2009). A list of 2,877,794 putative SNPs

was reduced using a variety of filters including their physical

distribution, functional associations, and a need to display a

minor-allele frequency greater than 0.1 in the sequenced

samples.

From a total of 10,605 assayed SNPs, quality and validity

assessment performed at Center for Integrative Genetics,

Norwegian University of Life Sciences, left 9,420 working

assays (Kent M, unpublished data). Of these 9,420 SNPs,

260 were previously published (Moen et al. 2008; Hubert

et al. 2010), 672 were in proximity to selected candidate

genes, and 1,595 were nonsynonymous coding SNPs. There

was an average of 409 SNPs per chromosome, with a maxi-

mum of 554 (linkage group 7) and a minimum of 279 (linkage

group 19).

Genotyping and Initial Data Exploration

Genotypes were clustered using the Illumina GenomeStudio

software 2011.1, and 9,187 SNPs were found to be ac-

tual polymorphic loci called for at least 95% of individuals

across the 378 samples. All 9,187 SNPs are identified in

supplementary table S1, Supplementary Material online, by

their accession number in the dbSNP database (Sherry et al.

2001).

The R software 3.1.3 (R Core Team 2014) was used for

subsequent analyses. The GenABEL R package (Aulchenko

et al. 2007) was applied to test for deviations from Hardy–

Weinberg equilibrium across, while minor-allele frequency

and average observed heterozygocity was estimated with

the hierfstat R package (Goudet 2005). LD was estimated

as composite LD (Schaid 2004), a method suitable for

unphased genotype data, for all pairs of SNPs with the R

software utilizing the algorithm proposed by Gao et al.

(2009). SNP pairs with LD>0.5 were classified as being in

high LD, and physical extent of LD blocks was estimated by

summing the lengths of the scaffolds in the Atlantic cod

genome assembly (Star et al. 2011) anchoring SNPs spanned

by the blocks.

Population Differentiation and Genome Divergence

Population differentiation were characterized by FST (Weir and

Cockerham 1984) and estimated between pairs of sampling

locations as well as for groups of sampling locations with the

wc function in the hierfstat R package (Goudet 2005). For

examining patterns of divergence across the genome, SNPs

were mapped to the 23 Atlantic cod linkage groups (supple-

mentary table S1, Supplementary Material online; nomencla-

ture of Hubert et al. [2010]), and approximately positioned

within linkage groups 2, 7, and 12 based on preliminary link-

age data (supplementary table S1, Supplementary Material

online; Lien S, unpublished data).

Chromosomal phases for linkage groups 2, 7, and 12 were

predicted employing an algorithm for unrelated individuals

with the Beagle software (Browning and Browning 2007).

Genealogies of phased chromosomes were explored by

unrooted neighbor-joining (BioNJ; Gascuel 1997) of euclidean

distances by a method allowing for incomplete distance

Table 1

Genotyped Samples Used in the Study

Name Location N Years Called HWE MAF Het

KI Inner 48 2000, 2005, 2008 99.3 0.06 0.77 0.358

KO Outera 48 2000, 2005, 2008 99.1 0.06 0.53 0.361

LI Inner 47 2004, 2005, 2010 99.3 0.09 0.69 0.358

LO Outer 48 2004, 2005, 2010 99.3 0.09 0.76 0.355

RI Inner 48 1997, 1998, 2004, 2005 99.3 0.05 0.67 0.356

RO Outer 48 1997, 1998, 2004, 2005 99.6 0.03 0.59 0.355

NSN Oceanic 48 2012 98.7 0.05 0.72 0.362

NSS Oceanic 43 2002 99.7 0.01 0.70 0.360

NOTE.—Name, location, number of individuals (N), years of sampling, percentage of called genotypes (out of 9,187 SNPs), percentage of SNPs out of Hardy–Weinberg
(HWE; False-discovery rate<0.1), percentage of SNPs with minor-allele frequency (MAF) below 0.01, and average observed heterozygocities (Het) are given for each sample.

aThe KO sample proved more similar to the inner-coast samples when comparing overall population differentiation (table 2), and was in further analyses not included as
an outer-coast sample.
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matrices (Criscuolo and Gascuel 2008), implemented in the

dist and bionjs functions in the R package ape (Paradis et al.

2004). Genealogies were found separately for SNPs within the

blocks of LD on linkage groups 2, 7, and 12, and for the

remainder of these linkage groups. Random balanced subsets

of chromosomes (n = 100) were used for the final neighbor-

joining trees.

A probabilistic sliding-window analysis for detection of in-

versions (Sindi and Raphael 2010) was conducted with

codeHaplo and scanInv functions in the R package inveRsion

(Càceres et al. 2012) using a window size of 4 cM and block

size 3. Individuals were assigned to inversion genotypes by

principle component analysis (PCA) based on SNPs within

the LD blocks on linkage groups 2, 7, and 12 using the

snpgdsPCA function in the R package SNPRelate (Zheng

et al. 2012), following the approach suggested by Sindi and

Raphael (2010). Differentiation characterized by FST (Weir and

Cockerham 1984) for the inversion alleles were estimated

with the basic.stats function in the hierfstat R package

(Goudet 2005). Sliding window analyses (window size 5 cM,

step size one SNP) of net divergence (DXY; Nei and Li 1979), as

well as across-loci analyses of nucleotide diversity, were calcu-

lated with the DNAsp software version 5.0 based on phased

chromosomes (Librado and Rozas 2009).

Results

Patterns of genome differentiation (FST; Weir and Cockerham

1984) in Atlantic cod were observed on a fine geographic

scale in its southern range of distribution (i.e., North Sea—

Skagerrak area) based on 9,187 genome-wide distributed

SNPs. Samples included inner-coast (KI, LI, and RI), outer-

coast (KO, LO, and RO), and oceanic locations (NSS and

NSN), and a total of 378 individual fish (table 1). The average

amount of differentiation over loci among sample pairs indi-

cated a pattern of spatial genetic structure with inner-coast

samples being very similar between themselves, yet divergent

from the outer-coast and oceanic samples, which were

generally more similar to each other (table 2). This inner–

outer dichotomy was more pronounced in the full (9,187

loci) SNP data set than in a LD filtered data set (LD<0.5;

8,107 loci). The KO sample, initially classified as an outer-

coast sample, was observed to be more similar to the inner-

coast samples than the remaining outer-coast samples (table

2), and hence excluded from further analyses of between-lo-

cations genome divergence.

Genomic Differentiation and LD

A genomic region of elevated differentiation, including 205

SNPs in a region of 13 megabases (Mb), was observed for

linkage group 12 (Lg12) between inner-coast and oceanic

samples and between outer-coast and oceanic samples

(fig. 1). Genomic regions of elevated differentiation were

also observed for Lg2 and Lg7, represented by 85 and 193

SNP, embraced within 5 and 9.5 Mb, respectively. Extensive

blocks of elevated LD on Lg2, Lg7, and Lg12 were evident

both across samples within the study area (fig. 1) and within

individual sampling locations (supplementary figs S1–S3,

Supplementary Material online), spanning the same chromo-

somal segments within all locations. For each of the three

genomic regions, a single, LD block was identified, with

high LD also between loci at opposite margins of these regions

of reduced observed recombination (fig. 1), separated by sev-

eral megabases. As the current genome assembly is frag-

mented (Star et al. 2011), the estimates of the extent of

these genomic regions are likely to be conservative. For the

remaining 20 Atlantic cod chromosomes, less than 0.01% of

syntenic SNP pairs were in high LD (LD>0.5).

Chromosomal Rearrangements

Divergent genealogies with two clearly separable morphs, or

alleles, were revealed for phased chromosomes within the

genomic regions of high divergence on Lg2, Lg7, and Lg12,

contrasting genealogies based on SNPs positions for the

Table 2

Overall Genetic Differentiation between Samples

Inner Fjord Outer Coast Ocean

Sample KI LI RI KO LO RO NSS NSN

KI — 0.0001 0.0003 0.0006 0.0093 0.0071 0.0110 0.0118

LI �0.0001 — 0.0001 0.0002 0.0078 0.0060 0.0090 0.0096

RI 0.0002 0.0001 — 0.0003 0.0064 0.0046 0.0076 0.0085

KO 0.0005 0.0003 0.0003 — 0.0052 0.0036 0.0063 0.0071

LO 0.0116 0.0107 0.0077 0.0068 — 0.0004 0.0005 0.0010

RO 0.0091 0.0085 0.0063 0.0046 0.0012 — 0.0003 0.0012

NSS 0.0177 0.0167 0.0143 0.0113 0.0060 0.0020 — 0.0006

NSN 0.0189 0.0172 0.0164 0.0131 0.0109 0.0058 0.0025 —

NOTE.—Population differentiation (FST) between all pairs of sampling locations. Lower triangle contain estimates based on all 9,187 loci remaining after initial quality
filtering, upper triangle contain estimates based on a subset of 8,107 loci where LD filtering (<0.5) within sympatric SNP pairs is applied.
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remainder of these three linkage groups (fig. 2). The ob-

served patterns of LD and divergence were in agreement

with genomic signatures previously described for large inver-

sions (White et al. 2007; Fang et al. 2012; Guerrero et al.

2012; Pyhäjärvi et al. 2013). This observation was supported

by a probabilistic scan by the method of Sindi and Raphael

(2010) (supplementary fig. S4, Supplementary Material

online), which models a population as a mixture of nonin-

verted and inverted haplotypes and identifies putative inver-

sion breakpoints by characteristic differences in haplotype

frequencies.

PCA based on all SNP genotypes within the genomic re-

gions of elevated differentiation on linkage groups 2, 7, and

12 were used to assign inversion alleles in individual samples

(fig. 3; supplementary fig. S5, Supplementary Material online),

following the approach suggested by Ma and Amos (2012) for

identification of alternate inversion alleles. The PCA assign-

ments were in agreement with the genealogies observed for

phased chromosomes within each of the three genomic re-

gions (fig. 2). For all the three chromosomal rearrangements

one of the two alleles showed reduced nucleotide diversity

(typically about half) relative to the other for SNPs positioned

within the rearrangements. This might indicate relative age of

an ancestral, higher-diversity allele (I), and a derived, lower-

diversity allele (II). A larger proportion of SNPs were found to

be fixated within the lower-diversity alleles than within the

higher-diversity alleles (fig. 3).

For Lg2 and Lg12, shifts in frequency of rearranged chro-

mosomes were observed from oceanic to coastal sampling

sites, where outer-coast samples were intermediate to the

inner-coast and oceanic samples (figs. 3 and 4). For the two

alleles on Lg2, elevated differentiation (FST) was observed be-

tween inner-coast and oceanic samples and between inner-

coast and outer-coast samples, whereas for the alleles on

Lg12 elevated FST was observed between inner-coast and oce-

anic samples and between outer-coast and oceanic samples

(fig. 3). Sliding window analyses of net divergence (DXY) be-

tween phased chromosomes showed high divergence

between alleles I and II relative to divergence between sam-

pling locations (fig. 5), and each pair of inversion alleles were

differentiated by a set of fixed SNPs (fig. 3; supplementary

table S1, Supplementary Material online).

FIG. 1.—Genomic differentiation and LD. Left; allelic differentiation (FST) between “inner-coast” (pooled samples KI, LI, and RI) and “outer-coast”

(pooled LO and RO) locations, between “inner-coast” and “oceanic” (pooled NSs and NSN) locations, and finally, between “outer-coast” and “oceanic”

locations, for SNPs mapped to the 23 Atlantic cod linkage groups. Linkage groups 2, 7, and 12 are indicated in yellow, orange and red, respectively. Right;

allelic differentiation (FST; black bars) across linkage group 2 (between inner-coast and outer coast locations), 7 (between outer-coast and oceanic locations),

and 12 (inner-coast and oceanic locations) is shown for SNPs according to preliminary linkage maps (cM), with SNP pairs showing high LD (LD>0.5), color

coded as in the left panel.
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Discussion

Utilizing genome scans for understanding evolutionary and

ecological processes, described as reverse ecology (Li et al.

2008), represent an unbiased approach for identifying the

mechanisms behind adaptive evolution in natural populations

(Crawford and Nielsen 2013; Ellegren 2014; Storz et al. 2015).

Here, within a geographically fine-scaled marine study area, a

newly developed panel of over 9,000 genome-wide distrib-

uted SNPs was utilized to identify and accurately position three

large genomic regions of elevated genetic differentiation, ex-

tending 5, 9.5, and 13 Mb on Atlantic cod linkage groups 2, 7,

and 12. Both the level of differentiation and the size of these

genomic regions were unanticipated, as divergent selection

should not be observable beyond the kilobase-scale in the

presence of gene flow (Kim and Stephan 2002). Instead, re-

duced genetic exchange between pairs of divergent alleles

spanning these three genomic regions, likely to have emerged

through chromosomal inversions, was found to cause the ob-

served genetic differentiation.

Evidence is accumulating regarding the importance of re-

combination heterogeneity in adaptive radiation and specia-

tion in a number of species and clades (Hoffman and

Rieseberg 2008; Nosil et al. 2009), and the novel view of

the Atlantic cod genome presented herein represents a strik-

ing example of how repressed recombination may allow adap-

tive divergence in the face of gene flow.

Chromosomal Rearrangements as Promoters of
Genome Divergence

Large chromosomal inversions may lead to the segregation of

noninverted and inverted chromosomes, where meiotic re-

combination may be almost completely repressed between

the alternate inversion alleles (Sturtevant and Beadle 1936;

Dobzhansky and Epling 1948; Navarro and Ruiz 1997;

Navarro et al. 1997). In time, repressed recombination will

create a block of LD spanning the rearranged chromosomal

segment, physically bound by the inversion breakpoints

(Munte et al. 2005; Bansal et al. 2007; Fang et al. 2012).

Here, elevated genomic differentiation coinciding with ex-

tensive LD blocks, spanning 5, 9.5, and 13 Mb, were observed

on Atlantic cod linkage groups 2, 7, and 12 within a geo-

graphically fine-scaled study area. High LD was also observed

between SNPs separated by several megabases, positioned at

opposite margins of each block. LD blocks of the same extent

FIG. 2.—Genealogies within genomic regions of high divergence. Chromosomal regions spanned by the detected inversions are indicated for linkage

group 2 (Lg2; yellow), 7 (Lg7; orange), and 12 (Lg12; red), and SNPs are positioned according to preliminary genetic maps (horizontal black bars).

Genealogies of phased chromosomes are illustrated as neighbor-joining trees to the right of each linkage group, separately for the observed genomic

regions of high divergence and for the remainder of the same linkage groups.
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were observed within all sampling locations, supporting the

presence of two inversion breakpoints as the physical deter-

minants of the genomic regions of reduced recombination. In

contrast, divergent selection on chromosomes of the same

arrangement is expected to result in separate, smaller, LD

blocks extending in both directions from loci targeted by se-

lection, but not create excess of LD extending beyond the ki-

lobase-scale, or to neutral loci at opposite margins of the

region of observed reduced recombination (Fay and Wu

2000; Kim and Stephan 2002; Sabeti et al. 2002; Kim

and Nilsen 2004; McVean 2007). Besides inversions, both

translocations of large chromosomal segments, as well as

the presence of centromeres, are known to reduce recombi-

nation rates. However, these alternative recombination re-

pressors are observed to reduce recombination proximal to a

single translocation breakpoint (Liu et al. 1994; Livingston

et al. 1999, 2000) or centromeric region (Smith et al. 2005;

Turner et al. 2005), and LD should therefore be more pro-

nounced at the center of the regions of reduced recombina-

tion than between distant loci at opposite margins of these

regions. While large translocations could theoretically cre-

ate excess of LD in a similar manner to selection acting on

noninverted chromosomes (Liu et al. 1994; Livingston et al.

1999, 2000), their genomic signatures remain poorly

characterized.

Here, highly divergent genealogies was observed between

pairs of morphs, or alleles, within previously reported genomic

regions of high differentiation on linkage groups 2, 7, and 12

(fig. 2; supplementary fig. S5, Supplementary Material online),

segregating within both coastal and off-shore sampling loca-

tions (fig. 3). These genealogies demonstrate that repressed

genetic exchange or repression of recombination, between

these alternate alleles is responsible for the observed genomic

differentiation and excess of LD. For all the three genomic

regions, high net divergence (DXY) was demonstrated to be

driven by divergent evolution between chromosomes of alter-

nate arrangements, mirroring previously observed divergence

patterns for large polymorphic inversions (White et al. 2007;

Fang et al. 2012; Guerrero et al. 2012; Pyhäjärvi et al. 2013;

Twyford and Friedman 2015). For Lg2, less pronounced inver-

sion signatures were observed, as assessed by LD (fig. 1; sup-

plementary fig. S1, Supplementary Material online) and DXY

(fig. 5), compared with Lg7 and Lg12, which might be due to

more gene exchange, reduced selective pressure or SNP as-

certainment bias, as recently discussed by Twyford and

Friedman (2015). Alternatively, recurrent chromosomal rear-

rangements within the same genomic region, as observed in

Drosophila subobscura (Puerma et al. 2014), might explain the

less pronounced signature within this linkage group. Finally,

the presence of chromosomal rearrangements within all three

FIG. 3.—Alleles of the chromosomal rearrangements. Observed alleles (I and II) of the chromosomal rearrangements on linkage groups (Lg) 2, 7, and 12

are characterized by the number of SNPs they span and the number of fixed SNPs (in parenthesis) between inversion alleles and nucleotide diversity and the

number of fixed SNPs (in parenthesis) within each inversion allele. Genotypic frequencies of the alleles (I/I, I/II, and II/II) within inner-coast (Inner), outer-coast

(Outer), and oceanic samples, as well as allelic differentiation (FST) of inversion alleles between inner-coast and outer-coast samples (In/Out), inner-coast and

oceanic samples (In/Oce), and outer-coast and oceanic samples (Out/Oce) is also presented.
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linkage groups was supported by a probabilistic scan for in-

verted haplotypes (supplementary fig. S4, Supplementary

Material online). This method models a population as a mix-

ture of noninverted and inverted haplotypes, identifying pu-

tative inversion breakpoints by characteristic differences in

haplotype frequencies. The approach has been shown to ac-

curately identify inversions in both real and simulated data

(Sindi and Raphael 2010).

Distribution and Divergence of Inversion Alleles

Within each of the three rearranged genomic regions, one

morph or allele showed reduced genetic variability relative

to the other. Comparative analyses of samples across larger

spatial scales, as well as full sequencing data to avoid ascer-

tainment bias, should shed more light on the evolutionary

relationships between the alleles of the herein described

polymorphisms.

Elevated genomic differentiation within the same three ge-

nomic regions described herein have been observed on both

sides of the Atlantic Ocean (Bradbury et al. 2010), indicating

that the inversions predate the split between eastern and

western Atlantic cod, about 100 kyr ago (Bigg et al. 2008).

Although emergence at such an early stage in the evolutionary

history of cod was supported by the relatively high diversities

found within both allele I and II on all three linkage groups

(fig. 3), the possibility of subsequent dispersal cannot be ex-

cluded at this stage. Allelic clines for SNPs within these geno-

mic regions on Lg2, Lg7, and Lg12 have been shown to

correlate with latitudinal and climatic gradients on both

sides of the Atlantic Ocean (Bradbury et al. 2010, 2014),

which is here interpreted as allelic clines of the inversions de-

scribed herein. Molecular variation on Lg12 has been linked to

both environmental gradients (Bradbury et al. 2010) and be-

havior (Hemmer-Hansen et al. 2013; Karlsen et al. 2013), and

more recently, to sea temperature and oxygen levels (Berg

et al. 2015). Coastal cod are observed to show differences

in behavior from oceanic cod (Nordeide et al. 2011), and

are likely to experience different environmental conditions.

These previous findings are thus consistent with the allelic

shifts between coastal and oceanic locations observed for

the rearrangements on Lg12, where intermediate frequencies

FIG. 4.—Distribution of rearranged chromosomes in the North sea—Skagerrak study area. Frequencies of rearranged chromosomes (allele II) are

presented as pie charts for each sampling location, where linkage group 2, 7, and 12 are indicated in yellow, orange, and red, respectively. Left; North

sea North (NSN) and North sea South (NSS). Right; the three coastal locations Kristiansand, Lillesand, and Risør, each containing an inner-coast and an

associated outer-coast sampling site.
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were observed in outer-coast locations compared with inner-

coast and oceanic locations (fig. 4). Similarly, recently reported

associations between molecular variation on Lg2 and salinity

gradients (Berg et al. 2015) may explain the observed allelic

shifts from coastal to oceanic locations for the rearrangement

on this linkage group (fig. 4). It is thus plausible that fitness

effects relating to environmental heterogeneity across the dis-

tributional range of this species are maintaining the alternate

inversion alleles described here. Such fitness effects should be

identifiable by mapping allelic distributions to environmental

conditions over a larger geographical scale, as well as through

experimental studies relating to functionality of inversion

alleles.

Implications for Demography

In natural populations genome divergence is opposed by gene

flow and rarely observed without the presence of spatial bar-

riers or very strong fitness effects of segregating genetic var-

iation (reviewed in Nosil et al. 2009; Abbott et al. 2013). Most

of the observed genomic differentiation previously described

between geographic regions or behavioral types of cod cen-

ters to a few distinct genomic regions (Bradbury et al. 2010;

Hemmer-Hansen et al. 2013; Karlsen et al. 2013; Berg et al.

2015), three of which we here suggest to be caused by poly-

morphic chromosomal rearrangements.

These rearrangements span large numbers of molecular

polymorphisms, many of which show high divergence be-

tween inverted and noninverted chromosomes. In addition

to demographic processes, we thus predict that the genetic

structuring observed within this species may be influenced by

selective processes acting on the herein described inversions.

Supplementary Material

Supplementary table S1 and figures S1–S5 are available at

Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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