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Abstract

A novel approach to model food-web dynamics, based on a combination of chance (randomness) and necessity (system
constraints), was presented by Mullon et al. in 2009. Based on simulations for the Benguela ecosystem, they concluded that
observed patterns of ecosystem variability may simply result from basic structural constraints within which the ecosystem
functions. To date, and despite the importance of these conclusions, this work has received little attention. The objective of
the present paper is to replicate this original model and evaluate the conclusions that were derived from its simulations. For
this purpose, we revisit the equations and input parameters that form the structure of the original model and implement a
comparable simulation model. We restate the model principles and provide a detailed account of the model structure,
equations, and parameters. Our model can reproduce several ecosystem dynamic patterns: pseudo-cycles, variation and
volatility, diet, stock-recruitment relationships, and correlations between species biomass series. The original conclusions are
supported to a large extent by the current replication of the model. Model parameterisation and computational aspects
remain difficult and these need to be investigated further. Hopefully, the present contribution will make this approach
available to a larger research community and will promote the use of non-deterministic-network-dynamics models as ‘null
models of food-webs’ as originally advocated.
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Introduction

Natural living systems are characterised by a high level of

complexity, which results from the diversity of biological

components at many levels of organisation (molecules, cells,

organs, individuals, species, communities) and from the diversity of

possible interaction types (physical, chemical, trophic, behavioural,

cognitive). In addition, many biological interactions are non-

linear, include feedback loops, and biological systems display a

remarkable ability to constantly adapt and reconfigure themselves.

Such systems, which display high complexity, non-linearity, and

adaptability have been termed Complex Adaptive Systems (CAS,

[1]).

The terms chance, randomness or stochasticity are different

expressions related to the unpredictability of some events. Whether

chance is a true feature in nature, as suggested by Prigogine [2], or

simply the result of our inability to accurately observe and model

natural phenomena is a matter of debate. However, the existence

of apparent stochastic phenomena is undisputed. Throwing a dice

or playing roulette are ways to produce a random outcome

(otherwise there would be no game), despite the fact that these

processes are believed to be ruled by the deterministic laws of

Newtonian physics. In biology, the two pillars of the theory of

evolution are selection and variation. The latter assumes

randomness in the way DNA mutations and recombination take

place. At a high level of biological organisation, the exact timing,

location, and amplitude of extreme events such as pest outbreaks

cannot be precisely predicted, although after they have occurred,

their space-time evolution may be modelled statistically. These

examples point to the central role of stochastic phenomena in real

world physical and biological systems, and to the importance of

chance in shaping the dynamics of such systems. Natural systems

are therefore complex and adaptive systems partially controlled by

stochastic phenomena, which makes them difficult to analyse and

even harder to predict.

In his seminal work on ecosystem resilience, Holling [3] pointed

to the incapability of conventional deterministic models to

represent real world living systems because of their inability to

integrate complexity, non-linearities, and stochasticity in an

appropriate manner. Since Holling’s contribution, developments

in biological and ecological modelling have explicitly incorporated

stochastic processes, although these have generally been built on

deterministic skeletons [4]. The advent of individual based

modelling has also led to population models directly built on

stochastic processes occurring at the individual level [5]. Both

types of approaches have shown the importance of stochastic

processes on population dynamics, confirming the original insight

of Holling. The theoretical and mathematical developments of

stochastic models (or model components) of animal populations

have greatly progressed, but this is not the case for ecosystem

models in general and food-web dynamics models in particular.

These still depend primarily on deterministic equations that relate

predator species and their prey, though stochastic components are

sometimes considered in addition to deterministic skeletons.
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Apparent stochasticity in ecosystems may be the rule, but this

does not mean that ecosystem dynamics are totally random. This

is because Nature’s configurations are constrained by an ensemble

of physical laws (e.g. gravitation, conservation of mass and energy)

and evolutionary contingencies (e.g. pool of existing species, rate of

genetic mutations). As a result, and as Cury et al. [6] point out,

‘Nature may not be predictable but it is not totally unpredictable
either’ and it is the combination of stochasticity and constraints

that drives the spatial and temporal dynamics of ecosystems. Given

the importance of chance (stochasticity) and necessity (constraints),

these two elements should have a central place in the development

of ecosystem models.

A central issue in the modelling of food-web dynamics has been

the use of functional responses that describe trophic functional

relationships. The debate on the theoretical foundations for

particular functional responses is still open [7,8]. Deriving

functional responses from empirical observations has proven

difficult because trophic data that can be raised to the population

level are parsimonious and empirical relationships are usually

masked [9]. In addition, models of food-web dynamics are known

to be highly sensitive to small variations in the shape of the

functional responses [3,10]. Even when stochastic predator-prey

systems have been modelled, these rely on deterministic skeletons

and therefore assume that the underlying relationship between

prey and predators can be defined deterministically [11].

To our knowledge, only one modelling approach has escaped

the deterministic formulation of functional responses. This work

was published by Mullon et al. [12] and constitutes a novel

alternative to existing food-web dynamics models. A major

innovation in this work is the combination of the two fundamental

ingredients: randomness (chance) and constraints (necessity). More

precisely, in this model, trophic flows (the amount of prey eaten by

a predator) are randomly chosen within a set of possible values that

fulfil specific physical and biological constraints. The model

structure is that of a Non-Deterministic Network Dynamics

(NDND) model. Its design is general and can, in principle, be

used to simulate the dynamics of any food-web or other similar

networks [13]. Mullon et al. present a specific application for the

Benguela ecosystem on the basis of which they conclude that ‘‘this
model reproduces in a robust manner observed patterns of
variability and can be used to question the relevance of other
modelling approaches of ecosystem dynamics with regard to
determinism, constraints and stochasticity. Referring to a non-
deterministic model without any functional relationships and
environmental or anthropogenic forcing can help in avoiding
misleading advice based on the belief that we can explain the causes
of observed patterns, which may simply result from basic structural
constraints within which the ecosystem functions’’. Despite the

important implications of such conclusion for the research

community working on ecosystem models, the work of Mullon

et al. has received very little attention. Five years after it was

published, the article by Mullon et al. has been cited once, and to

date, no application of this model has been published for other

areas. Does the model really work? Are the conclusions robust?

The objective of the present paper is to evaluate the replicability

of the model presented by Mullon et al. For this purpose, we revisit

the equations and input parameters that form the structure of the

original model, which we term ‘MMM’ for ‘Mullon’s Minimal

Model’ and implement a comparable simulation model. In this

contribution, we restate the model principles and provide a

detailed account of the model structure, equations, and parameters

following a model description protocol known as ODD (Overview,

Design concepts, and Details, [14,15]). We use this platform to

simulate the dynamics of the Benguela food-web, the original case

study of the MMM. We use these simulations to evaluate the

replicability of the MMM and the conclusions reached by Mullon

et al. in their original contribution.

Model Formulation

The formulation of the non-deterministic network dynamics

model for food-web is given below, following the ODD protocol

[14,15]. The ODD protocol was designed to provide detailed

information about simulation models so that these can be made

easier to understand and to duplicate. The protocol was originally

designed for individual based models (IBMs), and several

components of this framework are specific to IBMs. However,

we found many of components of the ODD protocol well suited

for the description of the NDND model and the sections below

follow the suggested headings of the original ODD protocol. The

present model sometimes departs from the original formulation of

the MMM. When this is the case, we have highlighted the

difference between the two models and presented the justification

for such departure.

Model purpose and principle
The purpose of the NDND model is to simulate food-web

dynamics, i.e. the interannual fluctuations of the biomass of species

and the trophic flows between them. The fundamental principle is

that the flows of biomass between predators and prey are not

deterministic, but are instead drawn randomly, given that they

satisfy an ensemble of physical, physiological, and life-history

constraints. Physical constraints are set by the law of conservation

of mass, i.e. the total biomass in the food-web is maintained

constant if the system is isolated (i.e. when there is no import, loss

or export of biomass). Thus, fluctuations of total biomass in the

food-web are solely the result of the balance between import of

biomass into the food-web (e.g. new production) and export of

biomass outside the food-web (e.g. fishing, egestion and metabolic

losses). This is a so-called mass-balanced model and, as such, it

shares similarities with other mass-balanced models like Ecopath

with Ecosim (EwE, [16,17]). Physiological constraints are set by

the maximum rates of ingestion by individual organisms of a given

species, where this upper limit (i.e., the maximum consumption
over biomass ratio) is termed satiation. In addition, the maximum

growth and mortality rates of a population are limited as a

function of the species’ lifespan, where populations of short-lived

species fluctuate at potentially higher rates than populations of

long-lived species. The relationship between life span and

population growth and mortality rates has both theoretical and

empirical support [18,19].

The result is a mass balance model in which 1) trophic flows are

drawn randomly for all species, 2) ingestion never exceeds

satiation, and 3) the rate of biomass variation is bounded. These

principles are identical to those of the MMM. We complemented

the principle that the minimum biomass attainable by a

population is greater than zero and corresponds to a ‘refuge’

biomass below which the species is no longer accessible to

predators.

We present below the mathematical formulation of the model

dynamic equation and constraints, as well as the definition of the

model input parameters and how these can be related to

ecologically meaningful quantities.

Entities, state variables, and scales
The structuring elements of the model are trophospecies and

trophic interactions, which together constitute a food-web

topology. A trophospecies represents an ensemble of organisms

Non-Deterministic Modelling of Food-Web Dynamics
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that share the same set of trophic interactions. All individuals in a

trophospecies may not belong to the same taxonomic species; in

the following text, we use the word species to mean trophospecies.

Trophic interactions indicate the possible transfer of mass between

two species. Contrary to food-web structure models, which are

concerned with how food-webs assemble and how their structure

can evolve with speciation and extinctions, the food-web topology

of the NDND is fixed and provided as input data. The indices,

variables, parameters, constraints, and master equation of the

NDND are summarised in Appendix S1, alongside the original

formulation of the MMM and their equivalence in the Ecopath

with Ecosim framework (EwE, [17]).

State variables. The following variables are required to fully

define the state of the system at any time: biomass of individual

species i (Bi), trophic fluxes, i.e. biomass flux from species i to

species j (Fij), and import (Ii) and export (Ei) of biomass of

individual species i in or out of the system.

Input parameters consist of the following:

– assimilation efficiency (ci): the proportion of biomass

ingested by species i that can contribute to growth,

reproduction, and maintenance (0,ci,1),

– satiation (si): the maximum consumption rate by species i,
expressed as a proportion of the current biomass of species i
(si.0),

– inertia (ri): the minimum and maximum rates of biomass

change are set respectively to {riBi and zriBi (ri.0),

– metabolic and other losses (mi): The quantity mi represents

the rate of biomass loss through metabolism, e.g. locomotion

and maintenance, and ‘other’ mortality (mortality other

than the predation explicitly represented in the model) (mi.

0),

– Refuge biomass (bi): the irreducible biomass of a species

(bi.0).

Scales
The temporal resolution of the model is annual, i.e. each time-

step in a simulation is one year. The spatial scale is a large ‘self

contained’ ecosystem. The ecological scale is a ‘food-web’,

typically from primary producers to top predators. In the present

study, we have applied the model to the simplified Benguela

ecosystem as defined in Mullon et al. [12].

Process overview and scheduling
The NDND model represents variations in the biomass of

individual species as the result of import, export, and trophic

interaction terms. The food-web dynamics is fully defined by the

equation that describes variation in the biomass of individual

species. This master equation, in continuous time, is:

dBi

dt
~ci

X
j

FjizIi{
X

j

Fij{Ei{miBi ð1Þ

For simulation purpose, the NDND operates in discrete time

steps, with one-year time intervals. Assuming that trophic flows,

imports, and exports are constant during the integration period,

the discretised form of the master equation can be derived (details

of this derivation are presented in Appendix S2):

Bi,tz1~e({mi )Bi,tz
1{e({mi )
� �

mi

ci
X

j

Fji,tzIi{
X

j

Fij,t{Ei

" #
ð2Þ

In equation 2, the term
P

j

Fji,t represents the total biomass of

prey species consumed by species i between two consecutive time

steps; the term
P

j

Fij,t represents the total biomass of species i

consumed by its predators during the same period.

Contrary to standard food-web models, the trophic flows are

not defined by a deterministic equation. Instead, they are drawn

from the set of possible flows which satisfy the following

constraints:

-flows are possible (i.e. species j is a predator of species i),

-flows are positive:

Fijw0, ð3Þ

-resulting biomasses are not below ‘refuge level’:

Bi§bi, ð4Þ

-change in biomass is constrained by inertia:

e{ri Bi,tƒBi,tz1{Ii,tzEi,tƒeri Bi,t, ð5Þ

-total food intake is limited by satiation:

X
j

FjiƒsiBi ð6Þ

At each time step, a vector of random flows ( F
!

), which satisfies

all the above constraints, is drawn. Solving the multiple constraints

equation is a complex computational problem and the solution

employed here is presented in details in Subbey et al. (Subbey S,

Planque B, Lindstrøm U, submitted. Exploring stochasticity and

imprecise knowledge based on linear inequality constraints. SIAM

Journal on Scientific Computing).

Design concepts
The main design concept of the model is a food-web topology

(species and their trophic links) dynamically modelled by the

combination of chance and necessity; chance being modelled by a

stochastic process (the random drawing of trophic flows) and

Non-Deterministic Modelling of Food-Web Dynamics
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necessity being expressed by the limited set of physical, physio-

logical and life-history constraints outlined above.

Emergence
There are several emerging properties that can be expected

from the model, several of which were explored with the MMM.

These include:

– Temporal dynamics of individual species, e.g. temporal

autocorrelation, quasi-cycles, abrupt shifts,

– Temporal dynamics of integrated food-web properties, e.g.

total biomass, total trophic flows, total assimilation efficien-

cy, mean trophic level,

– Diet fraction, i.e. the percentage of various prey consumed

by a predator,

– Stock-recruitment relationships,

– Trophic regulations, e.g. top-down vs bottom-up controls

measured as the temporal correlation between biomass of

predators and prey,

– Predator-prey functional responses.

Many of the above quantities can be derived from field or

experimental data and therefore constitute an ensemble of criteria

against which model results can be evaluated. The above list is not

exhaustive and creative researchers will surely find other ways to

describe additional emerging properties of the system.

Adaptation, individual level properties, and collectives
Adaptation is not included in the model design. The topology of

the food-web and model parameters are set and the model does

not include adaptive mechanism by which these might change.

The structuring elements of the model are trophospecies and

properties at the level of individual organisms are irrelevant, as are

collectives.

Interactions
The only interactions in this model are trophic interactions, i.e.

flow of biomass between predator and prey species.

Stochasticity
Randomness is central to the NDND model since the key

elements, i.e. the trophic flows between species, are drawn

randomly from a set of possible flows. In essence the model is

tychastic [20], i.e. it is concerned with the subset of all possible

transitions from one time step to the next. In practice, the

simulations are stochastic, i.e. only one combination of trophic

flows is drawn from the set of possible ones.

Initialisation and input parameter values
The structure of the food-web (i.e. the food-web topology

defined by the list of species and possible links between them) must

be set. In addition, NDND requires initial values for individual

species biomass (Bi,t0), and the five species-specific parameters (ci,

si, ri, mi and bi).

Figure 1. Fifty simulations of the NDND for the Benguela ecosystem, using initial biomass, input parameters and food-web
topology as in the original MMM paper. The black thick lines show biomass trajectories for an individual simulation. The grey areas indicate the
ranges of biomass values covered by the 50 simulations.
doi:10.1371/journal.pone.0108243.g001
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Input data
Species-specific data is required for import (Ii) and export (Ei) to

express flows to and from the model domain. These can be

invariant over time or variable at each time step.

Departure from the original MMM model
We have tried to keep the formulation of the NDND food-web

model as close as possible to the original formulation of the MMM.

There are however some differences. These are as follows:

– Discrete formulation of the master equation: In the MMM,

the main equation was presented for populations at

equilibrium (eq 2 in Mullon et al.) and can be used to

express the dynamics of the system in continuous time. The

continuous form of the master equation of the NDND

model is presented above (eq. 1) and is very close to the one

presented in the MMM (Appendix S1, but see below the

difference concerning the import term). In addition, we

provide the discrete form of the master equation, which is

necessary for iterative computation of the model (eq. 2). The

conversion of the continuous equation (eq. 1) into its discrete

analogue (eq. 2) is presented in Appendix S2.

– Refuge biomass (bi). This was not a feature of the MMM, in

which biomasses were only constrained to remain positive.

We found that this could lead to situations where a species

would reach extremely small biomass and therefore flows to

and from this species would be very small in comparison

with other flows. This could result in computational

problems due to scaling difficulties. Modelled biomass levels

could fall below the weight of a single individual, which is

biologically implausible. The combination of very low

biomass with bounded growth rates could also lead to

unrealistically long recovery times. The introduction of the

additional parameter b for refuge biomass in the NDND

solves these problems. It also introduces the possibility to

model actual refuge strategies for species which can become

inaccessible to predation at low densities. For the current

simulations, the refuge biomass levels were arbitrarily set to

1% of the starting biomass levels.

– Inertia: In the MMM, inertia was expressed in such way that

the maximum potential increase and decrease in species
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Figure 2. The food-web topology of the modelled Benguela
ecosystem. Arrows indicate a trophic relationship and point towards
predators. The primary production is set by a fixed annual import of
phytoplankton.
doi:10.1371/journal.pone.0108243.g002
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biomasses were equal. As a result species biomass could

decline at much faster rates than they could recover. For

example, in the MMM, zooplankton biomass could vary by

up to 85%. This implied that the population could decline

by 85% in one year, to reach 15% of its original biomass.

However, to grow back to its original biomass at a

maximum increase of 85% every year would require about

3 years (reaching 28% of the original biomass in year 1, 51%

in year 2 and <100% in year 3). We used an alternative

formulation for inertia to avoid such asymmetry between the

rate of biomass decline and recovery. Instead of setting

maximum biomass increase and decrease to be equal, it is

the minimum and maximum rates of biomass change that

are equal in the NDND (i.e. respectively {rb and zrb).

This is presented in more details in Appendix S3.

– Import and assimilation terms: In the MMM, the import

term I strictly referred to inflow of nutrients to autotroph

species (e.g. phytoplankton). For those species, the term c did

not refer to assimilation efficiency (as it did for other species),

but to conversion efficiency from nutrient to biomass. This

was confusing because the term c could refer to two different

biological processes: 1) conversion of nutrients into species

biomass through photosynthesis, when it is applied to I, and

2) assimilation efficiency of ingested food otherwise. We also

found this notation restrictive because it is only possible in

the MMM to use the term I for import to autotroph species,

but not to heterotroph or mixotroph species. In the NDND

model, I represents the direct import of biomass, either

through new production (autotrophs, mixotrophs) or

through migration and transport. In the case of production,

I represents the converted biomass and there is no longer

need for the conversion efficiency. In the present model, the

term c is only used to describe assimilation efficiency.

– Sampling: In the MMM, at each time step, the biomasses of

all species were randomly drawn from the set of possible

solutions that satisfied the model constraints using linear

programming. This approach can be viewed as the inverse

problem of determining a set of flows, which result in the

drawn biomasses. The approach in NDND, however,

involves solving the forward problem of determining an

ensemble of vectors of flows that satisfies a set of constraints

and the use of flows to determine future biomasses. Viewed

in terms of probabilities, the MMM approach considers all

possible future states (biomass vectors) to be equiprobable,

while in the current model, all possible transitions (flow

vectors) have equal probability.

We have provided above an update of the original formulation

of the MMM and a detailed description of the model state

variables, input parameters, and constraints. We provide in the

supplementary material the correspondence between state vari-

ables and input parameters in the NDND model and their

formulation in the MMM as well as in the EwE context (Appendix

S1). The implementation of the model was done in Matlab.

Figure 3. Fifty simulations of the NDND for the Benguela ecosystem, using revised initial biomass, input parameters, and food-web
topology. The coloured lines show biomass trajectories for four individual simulations. The grey areas indicate the ranges of biomass values covered
by the 50 simulations.
doi:10.1371/journal.pone.0108243.g003

Non-Deterministic Modelling of Food-Web Dynamics

PLOS ONE | www.plosone.org 6 October 2014 | Volume 9 | Issue 10 | e108243



Results

Reproduction of the MMM simulations
We ran 50 simulations of the Benguela ecosystem dynamics

using the same set of parameters as in the MMM over a period of

100 years. The simulations produced time series of individual

species, but failed to convincingly reproduce the ecosystem

dynamics presented in the original study. In particular, the

modelled populations of zooplankton, hakes, birds, seals, and

whales declined to low or very low levels, whilst anchovy and

sardine populations reached levels about one to two orders of

magnitude greater than those simulated in the MMM or observed

in the wild. These features were consistently observed in the 50

simulations (Figure 1).

Parametrisation of the Benguela ecosystem model
Since the initial model configuration did not convincingly

produce patterns of variability similar to those of the MMM, we

explored if other model parameterisations could produce realistic

patterns similar to those presented in the original study. This was

done by trial and error, on the basis of the original food-web

modelling study by Shannon et al. [21]. We kept the original

values for the ‘other’ mortality coefficient (m and derived the

inertia coefficient (r) from the original values, following the

equations provided in appendices 1 and 3. The initial biomasses

were set by trial and error and the refuge biomasses (b) were set to

1% of the starting biomass values. The derivation of assimilation

efficiency coefficients in the MMM was unclear. Assimilation

efficiency is likely to vary within and between species because it

depends on food quality; generally, carnivores have higher

assimilation efficiencies than herbivores. This is now reflected in

the use of assimilation efficiency (c) derived from the work of

Yodzis and Innes [22]. The satiation coefficient was derived from

m and c to ensure that maximum feeding rates were greater than

the requirements for species maintenance under absence of

predation. These coefficients were then adjusted by trial-and-

error. Model parameters in the revised configuration are given in

Table 1. The topology of the food-web remained unchanged

except for anchovy, which was changed to only feed on

zooplankton (Figure 2), while it also fed on phytoplankton in the

MMM. This seemed unrealistic given that bite-feeding, rather

than filter-feeding, is the dominant or exclusive pattern of anchovy

feeding [23,24]. Despite the corrections above, the model structure

(topology) and parametrisation was not satisfactory because some

key components of the ecosystem were missing in comparison with

the original study of Shannon et al. For example, the MMM does

not include meso-pelagic or benthic species that play an important

role in the energy transfer of the Benguela system. In such a

situation, one should not expect that the food-web model could

represent realistic dynamics and biomass levels for all species

simultaneously. As in the original study, we ran 50 simulations of

the model with the revised structure and parameters. The outputs

are presented for years of simulation 101 to 200, to avoid patterns

eventually driven by initial biomass conditions.

Figure 4. Autocorrelation series for a given run (time steps of the simulation on the X-axis; correlation coefficient on the Y-axis). An
estimation of the cycle duration is provided by the lag associated with positive peaks, or twice the lag with negative peaks.
doi:10.1371/journal.pone.0108243.g004
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Reproduction of pseudo-cycles
Individual simulations were uncorrelated, as expected, given the

stochastic nature of the model (Figure 3). For all species, the

simulated biomasses covered a large range, sometimes spanning

several orders of magnitude. Year-to-year and decadal variations

were evident from the simulations. As in the MMM, the model

appeared to produce series with pseudo-cycles. It was not as clear

in our simulations that these were predominantly seen at

intermediate trophic levels. We also performed an analysis of the

autocorrelation of the simulated abundance series (Figure 4). We

found that the autocorrelation functions could vary considerably

and that the cyclic patterns and trends could substantially differ

between the different simulations. The values of autocorrelation

coefficients averaged over the 50 runs indicated an increase in the

length of pseudo-cycles (or a dominance of trends) with increasing

life span, but not necessarily with trophic level (Figure 5). Like

Mullon et al., we conclude that, for a given species, the length of its

cycle is highly variable and that the pattern of pseudocycles of

irregular lengths can be related to the species life span.

Reproduction of other patterns of variability
In the MMM paper, other patterns of variability were

quantified by considering the variation and volatility of abundance

series. We followed the same approach. Variation was measured as

the ratio of interquartile range to the median of the series and

volatility was measured as the ratio between the range of observed

values in a given period and the value central to this period, which

represents the ratio of short- to long-term variation. We found that

variation and volatility had highest values for squid, sardine,

anchovy, and zooplankton (Figure 6). In our simulations, the

relationship between variation, volatility, and trophic levels was

not clearly apparent, although top predators (hakes, birds, seals,

Figure 5. Mean (central line) and SD (shadow area, mean ± SD) on each side of the central line of autocorrelations for a model
experiment of 50 runs (same axis as in Fig. 4).
doi:10.1371/journal.pone.0108243.g005

Figure 6. Variability patterns in the simulated ecosystem:
values of variation (red circles) and volatility (blue squares) as
a function of trophic level. Central points indicate median value and
error bars indicate the interquartile ranges for the 50 simulations.
doi:10.1371/journal.pone.0108243.g006
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and whales) displayed the lowest variability. Unlike Mullon et al.,

we cannot conclude that the indices of variation and volatility

indicated a dome-shaped pattern, with highest values at interme-

diate trophic levels, which was interpreted as a simple illustration

of a wasp-waisted system, sensu Bakun [25].

Reproduction of diet patterns
The list of prey species that determine the diet of a predator was

defined by the food-web topology (Figure 2). However, how the

proportions of various prey vary in time was determined by the

relative abundances of all prey and predators in the food-web and

by the stochastic process from which random trophic flows were

drawn at each time step. For some species (e.g. squid), diet

composition varied substantially from year-to-year, whilst for

others (e.g. seals), it remained relatively stable (Figure 7).

Interestingly, the diet of squid presented in the MMM was

dominated by zooplankton, with minor predation on sardine and

anchovy, but in our simulation, zooplankton was virtually absent

from squid diet, which was mainly composed of anchovy, sardine,

squid, and hakes in highly variable proportions. This variation in

diet between the two models illustrated how model configuration

and stochastic simulations can lead to a wide range of system

configurations.

Trophic functional relationships, which are formally excluded

from the model structure, can be investigated as emerging

properties. From the single simulation represented in Figure 8,

we observed three types of configurations: positive relationship

(e.g. hake feeding on anchovy), negative relationship (e.g. sardine

feeding on phytoplankton), and absence of relationships (e.g. birds

feeding on sardine). Even in the case of apparent relationships,

there was a large scattering of the simulated data, which reflected

diet variations that have been observed in the field through the

analysis of stomach contents of predators in relation to prey

abundance [26,27].

Reproduction of stock-recruitment relationships
We defined a proxy for recruitment, expressed as the variation

in population biomass corrected for losses due to metabolic

activities and other losses:Ri~Bi,tz1{e{mBi,t (note that this

recruitment equation is different from that used in the MMM

paper). The resulting stock-recruitment plots (Figure 9) displayed

noisy linear positive relationships. Here, the stock-recruitment

relationship emerged as a consequence of ecosystem functioning,

not as a causal principle. The simulated patterns mimicked

published data, although we saw no clear sign of density

dependence, unlike in the MMM and as is generally assumed in

fisheries stock recruitment models (e.g. Beverton–Holt and Ricker

funtions) [28].

Reproduction of interdecadal variations in trophic
interactions

Interactions between prey and predator in marine systems can

lead to apparent correlations between biomass time series. When

the correlation is negative, the relationship is generally described

as being top-down controlled (the predator controlling the

abundance of the prey), and when it is positive, the prey-predator

system is said to be bottom-up controlled (the prey controlling the

abundance of the predator) [29]. Although simplistic, this

description of the trophic controls between predator and prey is

easy to construct from field data. These trophic controls have been

shown to fluctuate at interdecadal time scales (see e.g. [30]). The

modelled dynamics highlighted the strong negative correlation

between sardine and phytoplankton over the 100 y simulation

period, indicating that the standing stock of phytoplankton was

controlled by grazing from sardine (Figure 10). The relationship

between hake and anchovy was also negative, but large

fluctuations appeared on a decadal time-scale, which occasionally

resulted in positive correlations) thereby mimicking interdecadal

fluctuations observed in real systems.

Discussion

Replicability of the original model
The original study of Mullon et al. used a novel non-

deterministic modelling approach to simulate the dynamics of

marine food-webs. In this way, the ‘null model’ could serve as a

reference for other deterministic models. Based on this approach,

Mullon et al. reached important conclusions regarding the

dynamics of food-webs when modelled with only few assumptions

and without explicit deterministic formulations of trophic func-

tional relationships. Here, we have tried to reproduce the original

model structure and dynamics and test whether the conclusions

reached in the original study were still valid in our replication.

Figure 7. Diet composition dynamics (one single run of 100
years) for all model compartments except phytoplankton. This
figure also shows the connectivity of the network and its variability in
time.
doi:10.1371/journal.pone.0108243.g007
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We found that when we used the input parameters from the

original model, we could not reproduce the food-web dynamics

presented in the original study. This is surprising given that the

equations of the two models are identical except for the constraints

on inertia and refuge biomass. Our revision of these equations

should have led to a more stable system with a lower probability of

rapid population collapse. It is not clear how input parameters and

starting biomasses presented in the MMM paper were derived

from the original modelling study of Shannon et al. [21], so we

went back to the original study to revise these values, using input

from other sources to document assimilation efficiencies [22].

Even with these revisions, we had to perform trial-and-error runs

until we could produce a ‘realistic’ set of simulations for the

Benguela pelagic food-web dynamics.

The major conclusions from the MMM paper concern the

reproduction of several ecosystem dynamic patterns: pseudo-

cycles, variation and volatility, diet, stock-recruitment relation-

ships, and correlations between species biomass series. For all of

these aspects, we reached similar conclusions, although these were

often not as strongly supported as suggested in the original study.

Figure 8. Simulated diet/abundance relationships. Captions indicate the name of predator species followed by the name of one of the major
prey species for a predator. The Y-axis represents the proportion of prey in the predator diet and the X-axis represents the abundance of the prey
species.
doi:10.1371/journal.pone.0108243.g008
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We found pseudo-cycles of various periods for the different species

in the food-web and that variation and volatility varied between

species and were lower for higher trophic levels. Noisy trophic

functional relationships emerged from our model simulations and

large year-to-year fluctuations in diet composition could happen

for intermediate predators with a range of potential prey.

Simulations also indicated that noisy stock-recruitment relation-

ships were possible. We also found correlations between species

biomass series, which could either be stable or vary at interdecadal

time-scales. Despite differences between the original MMM and

the present model, we show that a non-deterministic model with a
minimum set of constraints can recreate important ecosystem

dynamical patterns. This result is crucial, in particular, because

deterministic models that require a large amount of assumptions

and input parameters generally fail to reproduce most of the

patterns described above. For example, EwE models, which

include explicit trophic functional responses and are fitted to

historical data, usually fail to produce realistic year-to-year

variability in population biomass when projected forward, but

instead generate smooth patterns over longer time scales (e.g.,

[31]). In addition, most food-web models, including EwE, are

highly sensitive to assumptions and data uncertainties regarding

trophic functional relationships [10,17,32], a problem that is

absent from the current modelling approach, in which such

relationships are not an input to the model but emerging

properties of the system.

Ecosystem variability
In several instances during our trial runs, the food-web state

could be trapped, i.e. it was not possible to find a combination of

trophic flows that would satisfy all constraints. Our simulations

also appeared more variable than in the original study. Since the

NDND has an additional constraint (refuge biomass) and the

constraint on inertia is stronger (see Appendix S3), the most

plausible explanation for the increased variability lies in the

method used to generate the random transition from one food-web

state to the next. There are fundamental differences in the two

approaches. The inverse problem of determining flows given

biomasses should, in principle, not result in a unique solution

(there may be an infinite combination of flow configurations for

the same observed biomass). The linear programming approach

adopted in MMM limits the solution space to flow values at the

vertices of the polytope defining the constraints. In the NDND

approach, however, the vertices are a subset of the solution space,

which also includes the interior points of the polytope. Hence,

sampling in the case of NDND is expected to show larger

variability than with the MMM. Further, by the nature of the

sampling procedure, it is possible to generate realisations, which

though mathematically right (i.e. satisfying the constraints on the

flow functions) are biologically implausible. Variability in the

model may exceed what is observed in the wild. If this is the case,

it would mean that the set of constraints currently used is

insufficient to restrict model variability within observable limits

Figure 9. Examples of stock-recruitment (S, R) relationships
using the variation from population biomass minus annual
metabolic losses to new population biomass as a proxy for
recruitment: Ri,t~Bi,tz1{e{mBi,t.
doi:10.1371/journal.pone.0108243.g009

Figure 10. Left: Biomass of predator versus biomass of prey over 100 y for sardine-phytoplankton (top) and hakes-anchovy
(bottom). Right: sliding correlations between predator and prey biomass. The correlation is calculated over a 20 y window. These highlight the
general relationship between prey and predator (top-down vs. bottom-up) and the interdecadal variations in trophic controls.
doi:10.1371/journal.pone.0108243.g010
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and additional constraints may be necessary. This would require

further investigation and comparisons with real systems.

Model complexity
The model configuration for the Benguela is a simple one, with

only nine trophospecies and 20 trophic links, so the computational

problem is both relatively simple (a polytope of 20 dimensions to

explore) and fast (,0.1 s per year of simulation). However, more

complex food-web models, such as those constructed in EwE

containing .50 species and several hundred links will likely lead to

computational challenges. For instance, the simplest case of

uniform sampling of a convex polytope in high dimensions leads

theoretically to what is termed an NP-hard problem (i.e.,

belonging to the class of problems that are, informally, "at least

as hard as the hardest problems in Non-deterministic Polynomial-

time", see e.g. [33]). Since the number of constraints is finite, a

complete characterization of the polytope could be argued to be

known. The problem therefore reduces to the task of finding fast

algorithms (usually deterministic) that perform exhaustive enu-

meration on a convex polytope. Unfortunately, deterministic

algorithms that perform can be infeasible in high dimensions since

the number of such vertices could scale exponentially with the

dimension [34]. An alternative approach to the deterministic

approach is to use stochastic algorithms (Monte Carlo based with

acceptance-rejection rules) to sample the polytope. However, even

the fastest of such algorithms is known to suffer scaling problems

(with respect to mixing time, see e.g. [35]) in high dimensions,

especially when the polytope is highly heterogeneous, as in the case

of our food-web model. Fortunately, to investigate the dynamics of

whole food-webs (i.e. rather than the dynamics of individual taxa),

such levels of food-web complexity are often not neccessary and an

approach based on the use of few, well defined trophospecies

groups might capture most the food-web properties [36].

Model improvements
The NDND framework is a potentially powerful framework to

investigate food-web dynamical patterns that are driven by a few

sets of constraints and can therefore be used as a reference model

against which more complicated models can be evaluated, as

originally suggested by Mullon et al. However, several develop-

ments appear necessary for such a model to become a general and

powerful tool in the study of ecosystem dynamics. Setting the

values of the model input parameters is a difficult task for which

there is yet no objective and transparent methodology. This is no

surprise, given the complexity of the task. It took nearly 20 years

before such method became available for Ecopath models [37].

Hopefully methods used for parameter optimization in Ecopath

can be reformulated for the NDND models, so that setting model

parameters will be less based on trial and error and more on

ecological theory and available field data. Using metabolic theory

of ecology [38] to estimate metabolic losses and maximum

consumption rates (satiation) and life-history theory to derive

growth rate (inertia) estimates will also make the model more

general and easier to parameterise.

The evaluation of model performance was not properly

addressed in the MMM and this limitation remains in the current

model. Since these are stochastic models which are not required to

fit data in the conventional way (i.e. by fitting time series of

biomass for example) there is, as of yet, no simple and accessible

methodology to evaluate model performance or to perform

sensitivity tests. Approaches to this problem may be rather

different from the conventional techniques favoured by ecological

modellers today (e.g., [39,40]) and would likely involve a pattern

oriented approach as advocated by Grimm and colleagues [41–43]

combined with dedicated statistical inference for stochastic models

[44] and hierarchical model evaluation techniques [45].

The original form of the MMM and the current form of the

NDND model are prototypes and clearly, these models do not

benefit from the experience of other species-based or size-based

ecosystem models [32]. In the present contribution and the

associated appendices, we have detailed as much as possible the

hypotheses, equations, and computational aspects of the NDND to

allow other researchers to test this approach and contribute to the

model development. This should allow for the use of the NDND as a

null model for comparison with other deterministic modelling

approaches.

In its current form, the NDND simulates the dynamics of simple

food-webs over annual time steps and in a single area. However,

the mathematical formulation and computation can readily allow

inclusion of spatialised food-webs (in a way similar to Ecospace or

GADGET models [46,47]), shorter simulation time-steps (seasons,

months, days), or the modelling of age-structured populations.

Conclusions

While randomness is generally considered a source of uncer-

tainty for deterministic models, the current study supports the

original conclusions of Mullon et al. that stochasticity can play a

structural and central role in shaping key features of food-webs. In

this, the NDND model shares similarities with models issued from

the ecological neutral theory, which can also reproduce ecological

patterns on the basis of few assumptions combined with

stochasticity [48]. We do not claim that real systems resemble

stochastic food-webs, but rather that the NDND approach can

improve our understanding by making simplifying assumptions

about complex systems.

The approach proposed by Mullon et al. [12], which combines

chance (randomness) and necessity (constraints), is unique in the

field of ecosystem modelling, although these two elements have

long been recognised as shaping biological systems [49]. Their

original conclusion, i.e. that observed patterns of ecosystem
variability may simply result from basic structural constraints
within which the ecosystem functions, is of great importance to

ecosystem modellers and those who may use model outputs as a

support for management decisions. These conclusions are

supported, to a large extent, by the current replication of the

model. However, model parameterisation and computational

aspects remain difficult and these need to be investigated further.

Hopefully, the present contribution will make this approach

available to a larger research community and will promote the use

of NDND as ‘null models of food-webs’ as originally advocated.
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