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Abstract

Different populations of Atlantic herring are regarded as forming a metapopulation, but we know little about the dynamics
of the connectivity and degree of interbreeding between the populations. Based on data from three periods between 1962
and 2011, we identified the presence of two components of herring in a small semi-enclosed coastal marine ecosystem
based on different somatic growth patterns and mean vertebrae sum (VS). The two components were interpreted as
belonging to a resident herring population and the migratory, oceanic Norwegian spring spawning (NSS) herring
population, and they co-occurred during spawning. In the 1960s, resident herring characterized by slow growth and low VS
co-occurred with rapid growth, high VS oceanic NSS herring. Similar slow-growing resident and rapid-growing NSS herring
were found in the 1970–80s, but both populations now had low VS suggesting similar origins. Finally, in the 2000s both
populations showed rapid growth. The changes coincided with the NSS herring going from a state of high abundance and
oceanic distribution to a collapse in the late 1960s that resulted in a coastal distribution closer to resident herring
populations, before full recovery and resumption of the migratory, oceanic pattern in the 1990s. During all three periods,
NSS herring were only present in the local system up to an age of about five years, but the synchronous spawning of the
populations supports mixed spawning and interbreeding. During the investigation period both longevity, length at age
(growth) and length-at-first maturity increased markedly for the resident herring, which then became more similar to the
NSS herring. Genetic and/or cultural factors are believed to be the main causes of the observed changes in life history traits,
although some effect of changes in environmental factors cannot be excluded. Our study suggests that relationships
among populations in a metapopulation can be highly dynamic.
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Introduction

A metapopulation is defined as a set of populations with variable

but moderate interbreeding [1,2]. Atlantic herring is composed of

several populations characterized by different life-history traits [3–

5], but the gene flow between the different populations is believed

to be sufficient to define them as belonging to the same

metapopulation [6]. Several studies have shown that different

herring populations occur together during the feeding season [7–

9], but spatial overlap during the spawning period is obviously a

prerequisite for interbreeding in a metapopulation.

In addition to the geographically widespread, migratory,

oceanic Norwegian spring spawning (NSS) herring, a number of

spatially segregated local populations of Atlantic herring exist

along the Norwegian coast [10–14]. Local populations are highly

dependent upon local processes, but are also influenced by

external replenishment [15]. The semi-enclosed coastal marine

ecosystem in Lindåspollene in south-western Norway harbours a

resident herring population (LP herring) [12]. Herring of a

different origin have been observed in the system [12], and

Johannessen et al. [16] even reported that the same pre-spawning

school contained both LP herring and another component with a

similar maturation pattern.

To identify different components of herring with similar

external appearance is challenging. Molecular methods are

typically employed to obtain a ‘‘snapshot’’ of the contemporary

genetic composition, but cannot for instance be used on lost

historic material. The otolith appearance was utilised to separate

different components in an earlier study in Lindåspollene [16], but

a closer examination has shown that this analysis does not allow

for correct classification of young herring. The growth pattern and

the vertebrae sum (VS) have traditionally been used to separate

different populations of herring [3,5,17]. VS are primarily

determined by environmental factors during embryogenesis [18]

and should therefore make it possible to distinguish the

geographical origin of different components by statistical compar-

isons of average VS. The local populations, including that in

Lindåspollene, have generally lower VS than NSS herring

[14,17,19]. They have also evolved different life-history traits

than the oceanic NSS herring and are generally characterized by

slower growth, a shorter life span and higher relative fecundity

[11,12,14,17,19–21].
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There are several related factors that could influence connec-

tivity among populations; the population size could influence the

migration patterns that in turn could determine to what extent

different populations interact. Changes in distribution range and

use of spawning locations have been reported for several herring

stocks in the North Atlantic following fisheries-induced population

collapses [22]. The spawning stock of NSS herring dropped from

more than 10 million tonnes in the 1940–50s to near extinction in

the early 1970s [23] and rose again to full recovery in the late

1980s [24]. During this period the migration pattern changed

from oceanic to coastal and back to oceanic [25]. In the 1950s,

NSS herring had feeding and wintering grounds in the Norwegian

Sea, and spawned off the western Norwegian coast. After the stock

collapse, the remaining herring stayed along the coast throughout

the year [26,27]. After 1986, feeding migrations into the

Norwegian Sea resumed [27], and spawning and overwintering

areas gradually expanded northwards [26]. Hence, after the

collapse, but prior to the recovery, the majority of NSS herring

grew up along the coast and not in the traditional nursery areas in

the Barents Sea [25]. Prior to the collapse, NSS larvae hatched

from offshore banks and drifted into the fjords [25,26], whereas

the demersal spawning occurred further inshore after the collapse

[25–28]. This distributional shift brought NSS herring closer to

the resident populations along the coast [25], possibly increasing

the likelihood of interbreeding. In addition, this opened up for

transmission of culturally mediated migration patterns [29–32].

The earlier study of the population structure in Lindåspollene

[16] was primarily based on data from only one year, and

historical samples are crucial to an understanding of metapopu-

lation dynamics [33]. There exists a long time series of data (1962–

2011) on growth pattern and VS of herring in Lindåspollene in a

period extending from pre-collapse to post-recovery of NSS

herring with the potential to separate LP herring and any NSS

herring occurring in Lindåspollene in a period of extremely

variable abundance and distribution of the NSS herring.

We investigated the overlap in time and space between LP

herring and immigrants from the migratory NSS herring as well as

possible changes in life history traits in LP herring. We evaluated

the potential for interbreeding by examining the co-occurrence of

LP and NSS herring and the degree of synchronization of the

maturation stages. We present the most plausible explanations for

our observations, although other interpretations cannot be

excluded.

Materials and Methods

Ethics statement
Most of the fish caught were dead when collected from the

gillnets, with the few fish still alive being killed by a blow to the

head and bending the neck to confirm death. Permission to catch

wild fish and killing them by this method was given by the

Directorate of Fisheries (Fiskeridirektoratet, Reguleringsseksjonen)

and the County Governor of Hordaland.

The Lindåspollene ecosystem
Lindåspollene is a small (,7 km2) semi-enclosed ecosystem in

south-western Norway comprising three 60–90 m deep basins (see

[12]), with a main sill (7.5 m wide, 3.5 m deep) connecting to the

outside fjord. The resident LP herring generally occur in two of

the basins and play a key role in the system [12]. They are largely

protected from harvesting [34].

The environment within the basins differs from that of the

outside fjord (440 m deep with a sill at 20 m), in particular with

regard to oxygen levels [12,35]. There is low zooplankton biomass

in the basins and a dominance of small copepods compared to the

outside fjord [36,37,38–40], which may be due to generally poor

oxygen conditions and limited inflow due to the shallow sill [41].

There are large annual variations in temperature but no long-term

trends over the course of the study period [12,35,42]. No data are

available for an adequate comparison of other environmental

conditions in the course of the study period including abundance

of potential herring prey. In the outside fjord, unlike in other

studied Norwegian fjords, mesopelagic fish are lacking, and crown

jellyfish, Periphylla periphylla, occur in high concentrations

[43,44]. As jellyfish are inefficient consumers of large zooplankton

[44], this may have resulted in good feeding conditions for herring

that migrated out of Lindåspollene. The development of the

abundance of jellyfish and mesopelagic fish over our study period

is not well documented. Fishermen observed jellyfish in varying

amounts as early as in the late 1940s, and the first scientific study

in the outside fjord reported high concentration of jellyfish in the

early 1970s [45,43].

Biological sampling
Gillnet samples of herring were obtained from 1962 to 2011 in

the three periods 1962–1964 (P1), 1970–1982 (P2) and 2005–2011

(P3) (see Table 1), where P1 coincides with the period prior to the

eventual collapse of the NSS herring (year classes (YCs)

represented: 1950–60s), P2 with the period during the collapse

(YCs represented: 1960–1970s) and P3 with the period after the

recovery (YCs represented: 1990s–2000s). Length and weight were

recorded for nearly all fish and age for the majority of the fish.

Meristic analyses (vertebrae sum, VS) were conducted throughout

the period but with a low effort in the 1970s.

Herring were sampled with 25 m-long by 4 m-deep gillnets of

mesh size 26 mm. The exceptions were 1979–1980 and 2005–

2011 when mesh sizes ranged from 21 to 31 mm and 19–36 mm,

respectively. Samples were taken throughout the year but mainly

in February-April. The nets were set at the surface mainly within

1000 m from the overwintering and spawning areas of herring

[42], based on local knowledge of fish distribution and/or acoustic

recordings. The nets were usually set in series of three at 17:00-

19:00 local time and hauled the next day (09:00-12:00). When

catches were large, subsamples of up to 200 herring were analysed

(see Table 1).

Herring were measured for total length (L, to the nearest 0.5 cm

below, from the anterior head to the end of the caudal fin in

natural position), total body weight (W, to the nearest gram), age,

maturity stage and VS onboard the vessel, or were frozen

immediately after capture and later measured in the laboratory.

Age was determined by experienced age readers from scales until

1982 and thereafter mainly from otoliths. Eight maturity stages

were distinguished based on macroscopic visual inspection of the

gonads; 1–2, immature; 3–5 maturing or pre-spawning; 6,

spawning/running; 7, spent; and 8, resting stage [46]. VS, the

total number of vertebrae in the backbone including the urostyle,

were recorded by experienced readers [46,47]. Fulton’s condition

factor K [48] was calculated on the basis of autumn samples

(September-November) after the feeding period as: K = 100?W/L3

for fish in the length range 27–31 cm, which was common for all

periods.

Data analyses
We compared basic life history parameters (age, length, age and

length at first maturity, and condition factor) of herring between

the three sampling periods. In cases where the life history

parameters were normally distributed (length, weight and condi-

tion factor), a regular ANOVA with a Tukey HSD post-hoc test
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was employed to compare periods. In the case of age, the non-

parametric Kruskal-Wallis test was used. The herring sampled

during the three periods contained YC from five different decades

(1950s, 1960s, 1970s, 1990s and 2000s) for which growth

measured as length-at-age and VS could be compared indepen-

dently of annual variability in sampling effort. In order to

investigate length-at-age patterns at the start and end of the study

period, the von Bertalanffy growth function (VBGF) [49] was fitted

to length-at-age data from the YCs of the 1950 and 2000 decades

using the FSA package in R. All statistics were performed using R

version 3.0.0 (R Development Core Team 2013, http://www.

rproject.org).

Results

Year class strength and longevity
In the two first sampling periods P1 and P2 (1960s and 1970–

80s) the samples consisted of herring aged only up to about 10

years (Fig. 1). There were then some predominant YCs, for

instance the 1969 YC that was found in the samples from age 2

(1971) to age 12 (1981). In the third sampling period P3 (from

2005) no single, predominant YC could be clearly followed over

time, and from 2007 the age range became wider, and older

herring (up to 20 years) were more frequent.

Variations in life history traits over time
There were significant increases in age, length, weight and

condition factor from P1 to P3 (p,0.001, Table 2). Notably, mean

age and weight approximately doubled from the 1960s to the

2000s.

Age at first maturity did not change over the 50 years (Fig. 2A);

in all periods the herring started to mature at age 2 and close to

100% had matured by age 3. In accordance with the increasing

size over time, the length at first maturity increased from a

situation where close to 100% were maturing at the length of 22–

25 cm in the 1960s and 1970s to a situation where less than 20%

were maturing at this length in the 2000s (Fig. 2B).

Figure 3 provides the length-at-age as a proxy for growth for the

YCs of the 1950s, 1960s, 1970s, 1990s and 2000s. There was an

increased length-at-age with decadal period (ANOVA of age

groups 6–9, age groups represented in data from all decades, p,

0.001, Fig. 4), with the main increase taking place between the

1970s and the 1990s. Different mesh sizes were used in the 1960s

and the 2000s, but net selectivity did not explain the observed rise

in length in the 2000s. When the lengths of 2–12 year-old herring

(age groups present in the catches from both periods) only caught

with 26 mm mesh size were compared between the two sampling

periods, there was still a marked difference in length (1960s: mean

25.9 cm62.2, 2000s: 30.9 cm62.6 (p,0.001).

Occurrence of different herring components
A visual inspection of the length-at-age plots in Figure 3 strongly

suggest that two growth modes were present in young herring (,6

years) in the decades 1950–1970. In contrast, at ages $6 years the

fast growing mode was hardly observed. In order to compare

length-at-age at the start and end of the study period, two growth

Table 1. Summary information of herring samples from Lindåspollene 1962–2011, with sampling month, total number of fish
analysed (Total n), number of gillnet settings (n settings; referring to single gillnets from 2008 onwards and series of attached
gillnets prior to 2008), number of fish sampled for age determination (Age) and VS.

Year Month Total n n settings Age VS

1962 11 350 3 304 346

1963 3, 9–12 425 8 402 410

1964 1–7 809 14 747 478

1970 10–11 129 3 125 128

1971 1–11 978 13 925 566

1972 1,3–5, 8, 10–11 569 8 526 146

1973 1–3, 7, 9–10 266 8 258 50

1974 1–4 405 7 396 2

1975 3, 4 150 2 147 2

1977 3, 4, 9 751 9 652 2

1978 3, 4 340 7 331 2

1979 4, 9, 12 309 4 294 2

1980 3–5, 9–11 554 8 464 231

1981 3, 9 356 4 351 251

1982 1, 3 331 3 324 324

2005 2, 9 292 3 284 180

2006 2, 3, 10 351 4 325 89

2007 1–4 336 14 329 329

2008 1–4, 10–11 749 60 729 10

2009 1–4, 9 1035 75 875 92

2010 2–4, 8–10 1564 72 673 668

2011 4, 9 910 21 870 846

doi:10.1371/journal.pone.0102462.t001
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curves were fitted with the VBGF (see Materials and Methods).

The first was based on mean length-at-age for each age group in

the 1950s YCs (red superimposed curve in Fig. 3), but excluding

the rapid-growing mode of the 2–5 year-olds. The second was

based on mean length-at-age for each age group in the 2000s YCs

(green curve). The two growth curves clearly differed. The green

curve of the 2000s had a steeper increase (k = 0.49 versus 0.22),

indicating a faster growth rate of young fish, and reached the

asymptote at a higher level (L‘2000YCs = 329 versus

L‘1950YCs = 310) than the red curve of the 1950s, indicating

increased maximum length. The red slow-growing curve fitted to

the 1950s YCs corresponds to a slow growth pattern expected of

resident herring, while the green curve fitted to the 2000s YCs is

more similar to the NSS growth pattern. Notably, the young

herring in the 1950s–1970s with rapid growth displayed growth

patterns that fitted better with growth of the 2000s YCs (Fig. 3).

The connectivity between the two components changed with

fish age. The proportion of fast growers decreased with age for the

young herring from 0.59 for 2-year-olds to 0.12 for 5-year-olds

(Table 3). Furthermore, the decrease was steeper during P1 than

P2, indicating that the rapid-growing fish remained for longer in

the system during P2.

In order to determine whether there was any difference in VS

between rapid- and slow-growing fish indicating different areas of

origin, VS was compared between fish with length-at-age closest to

the VBGF fitted to the 1950s (slow-growers, red curve in Fig. 3)

and the 2000s (fast-growers, green curve in Fig. 3). Comparisons

were made for young (2–5 years old) herring for all decades for

which data were available (not the 1990s). Figure 5 shows that fast-

Figure 1. Annual age distribution. Percentages (%) by number in catches of all herring sampled 1962–2011.
doi:10.1371/journal.pone.0102462.g001

Table 2. Age, length, weight and condition factor (CF) of herring ($2 year old) in the different sampling periods.

Parameters P1 (1960s) P2 (1970–80s) P3 (2000s)

Age 4.461.7 (2–13) 5.462.3 (2–15) 8.464.2 (2–20)

n (Age) 1453 4789 4137

Length (cm) 25.962.2 (19.5–33.5) 27.262.7 (17.5–35.0) 31.362.4 (22.0–44.7)

n (Length) 1584 5059 5152

Weight (g) 134637 (55–275) 166653 (35–415) 256662 (81–602)

n (Weight) 1579 4797 5119

CF 0.7860.08 (0.51–1.22) 0.8660.11 (0.35–1.23) 0.9160.13 (0.28–1.22)

n (CF) 264 595 146

Values are given as mean 6 SD (min-max). n indicates the number of fish sampled in the different parameters. For CF, values refer to herring in the common length
range 27–31 cm for September - November.
doi:10.1371/journal.pone.0102462.t002
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growing young herring in the 1950 and 1960 YCs had higher VS

(t-test, p,0.001) than slow-growing fish of the same YCs. This

indicates that these two groups of young herring originated from

different areas and thus represent different populations, presum-

ably NSS and LP herring. On the other hand, for young herring of

the 1970 YCs, the VS of the rapid and slow growing components

overlapped (t-test, p = 0.93), indicating that they originated from

the same area. The 2000 YCs showed the same tendency as the

1950 and 1960 YCs, with higher VS for fast-growers than slow-

growers (p = 0.08), but the presence of two growth modes was not

clear among the young herring for the 2000 YCs so this method of

comparing different growth modes is less adequate. For the older

fish (6–11 years old) VS was in general similar to VS of the slow-

growing young herring (about 56.6, Fig. 5) indicating a dominance

of resident herring of local origin.

Figure 2. Maturity oogives. Percentages (%) of herring in stages 3–8 at (A) age and (B) length for periods P1, P2 and P3.
doi:10.1371/journal.pone.0102462.g002

Figure 3. Length-at-age. Histograms averaged for herring YCs of the 1950s, 1960s, 1970s, 1990s and 2000s. A von Bertalanffy growth curve is fitted
for the 1950s (red) and for the 2000s (green), and the dotted curve marks the midpoint between the two fitted curves.
doi:10.1371/journal.pone.0102462.g003
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Figure 4. Average length-at-age. Mean 6 SE of YCs of the decades 1950s to 2000s.
doi:10.1371/journal.pone.0102462.g004

Table 3. Proportion of rapid growers for herring in age groups 2–5, in the sampling periods P1 (1960s) and P2 (1970–1980s).

Age Prop fast total Prop fast P1 N Prop fast P2 N

2 0.59 0.74 223 0.52 476

3 0.52 0.56 245 0.50 634

4 0.26 0.19 342 0.30 582

5 0.12 0.04 391 0.14 1199

The two growth modes were not easily distinguishable during the sampling period P3.
doi:10.1371/journal.pone.0102462.t003
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Overlap in spawning time between different
components of herring

A prerequisite for the existence of a metapopulation is that there

is an overlap in timing of spawning between populations. To

investigate the overlap between the two components identified, all

fish in maturity stage 6 (spawning) were extracted from the data

from P1 and P2 (Fig. 6, P3 excluded due to less certain

discrimination of the components). Most samples contained

herring from both components. Since the proportion of the

rapid-growing component was usually lower, and most samples

therefore only contained a limited number of this component, an

additional comparison was made, including only stations at which

at least 10 fish from both components were present in stage 6. In

the four cases that fulfilled these criteria, the overlap was close to

complete. The findings strongly suggest that spawning among the

components was synchronized.

A small part of the data set could be used to resolve the

temporal development of maturation on a finer scale. Between

November 1963 and April 1964, the herring were sampled

throughout the maturation period. Figure 7A shows that YCs

1959, 1960 and 1961 (3–5 years old spawners where two

components should be present) had similar maturation patterns,

with a large majority of the fish from all YCs in stage 6

(‘spawning’) or 7 (‘spent’) in April. There was no falling trend in

length during the maturation period (Fig. 7B), as would have been

expected if the fast-growing NSS herring left before spawning. The

finding that the 1959 YC, despite being the oldest, generally had a

smaller length and lower VS than the other YCs (Figure 7B, C)

supports the idea that fast-growing NSS herring disappear from

the area at a certain age.

Discussion

This is the first documentation of a long-term dynamic

relationship between populations in a pelagic fish species during

reproduction. We have found that a component of Atlantic

herring inferred to belong to the resident LP herring population

co-occurred in its coastal fjord home range with a herring

component assumed to belong to the much larger population of

Norwegian spring spawning (NSS) herring. The components

remained together during spawning, with synchronised matura-

tion states. Over a period of 50 years the resident herring

underwent substantial changes in several life-history traits,

including length-at-age, length at first maturity and longevity.

The observed connectivity and mixed spawning between the

components may be the drivers of the changes in life-history traits

in the initially slow growing and relatively short-lived resident

herring.

Herring components in Lindåspollene
VS are primarily determined by the environmental conditions

during the embryonic stages [18,50,51] and thus have the

potential to distinguish components of the herring that display

different distribution and migration patterns. A central assumption

in the interpretation of the data was that herring of coastal origin

have lower VS than oceanic herring. A low VS and small size are

characteristics of resident herring populations on the Norwegian

coast [14,19], and the component with slow growth and low VS in

Lindåspollene in the 1960s and the 1970–1980s was thus classified

as belonging to the resident Lindås (LP) herring population.

Oceanic NSS herring are characterized by rapid growth and high

VS ([10,11,17,21], and young fish with these characteristics in the

1960s (P1) and 2000s (P3) were thus classified as belonging to the

oceanic NSS population.

Classifying the herring components with different characteristics

than the ones described above, is not a straightforward process. In

Figure 5. VS of young (2–5 years old) and older (6–11 years old) herring. Mean VS 6 SE of YCs of the decades 1950s to 2000s. Individuals
with length-at-age closest to the 1950s slow-growing curve shown in red and the ones closest to the 2000s fast-growing curve shown in green.
Sample size is given for the different components.
doi:10.1371/journal.pone.0102462.g005
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the 1970–1980s (P2) the rapid-growth component also had low

VS. The population of NSS herring had by then nearly collapsed,

and the remaining NSS herring stayed close to the coast

throughout the year [23,52,53]. Spawning occurred more inshore

than on the traditional spawning grounds on the large banks, with

the vast majority of the progeny hatching in coastal areas [25].

The low VS suggests that NSS herring then utilised similar

spawning areas as the resident populations [54]. We therefore

assume that this component is NSS herring of coastal origin. In the

2000s, when the population of NSS herring had recovered, VS

again increased in rapidly growing young fish (Figure 5). The

decrease and subsequent increase in VS in young fish are in

synchrony with the decline and rise of the oceanic NSS herring. In

older fish, VS were generally low, supporting the notion that

relatively few old oceanic NSS herring were present. Interestingly,

the slow-growing component of the young fish with low VS had

now been strongly reduced and a fast-growing component with

low VS dominated. This component is interpreted as resident fast-

growing herring. The greatest increase in length-at-age took place

from the 1970s to 1990s YCs. Most herring in Lindåspollene in the

2000s (P3) were thus presumably rapid-growing oceanic NSS

herring and resident herring (Figures 3 and 5). Any remaining old

NSS herring of coastal origin could not be distinguished from fast-

growing resident herring, but genetic analyses have demonstrated

Figure 6. Timing of spawning in fast and slow growers. Number of fast (white) and slow growers (black) in stage 6 (spawning stage) as a
function of yearday, all stations in P1 and P2 are included. For the sake of clarity, there is a cut-off on the y-axis at 30 individuals.
doi:10.1371/journal.pone.0102462.g006
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that herring in Lindåspollene in the 2000s differ from NSS herring

(Christophe Pampoulie, Marine Research Institute Iceland,

unpublished observations). In the future, genetic analyses can be

used to investigate the rate and extent of genetic change due to

interbreeding.

The proportion of the component classified as NSS herring in

Lindåspollene diminished markedly with age, with the proportion

of five-year-old NSS herring only a fifth of the proportion of two-

year-olds (Table 3). The NSS herring thus seem to enter the

system as young or at the larval stage and spawn one or a few

times with the resident herring. But why do they then leave the

area? Size may be a threshold trait that determines migratory

tactics [55], and herring above a certain size may migrate to more

productive habitats, as has been observed in salmonids [56,57]. In

the 2000s, resident herring of similar size as NSS herring remained

in the system, but a genetic influence (see [58]) and different

previous experience could result in different migration thresholds

in LP and NSS herring. The decrease in proportion of NSS

herring with age was strongest in P1, suggesting that NSS herring

stayed longer in the system during P2 than P1. The chance of

interbreeding between the resident and NSS herring could thus be

higher during P2.

Interbreeding between NSS and LP herring
So do fish classified as NSS herring actually spawn with fish

classified as LP herring? In the 1963–1964 data, no decrease in

size during the course of the maturation period was observed, and

the larger NSS herring thus seem to stay in Lindåspollene

throughout spawning. Most importantly, young NSS and LP

herring at maturation stage 6 (spawning), were caught together in

the same gillnet settings. This stage of maturity typically lasts only

for a day or so (Olav Kjesbu, Institute of Marine Research, pers.

comm.). In addition, echosounder recordings and data from

acoustic tags during spawning in Lindåspollene provide no

evidence that herring split into groups according to origin

[59,60]. Altogether, the evidence strongly indicates that LP

herring and NSS herring interbreed in Lindåspollene.

Changes in life-history traits in LP herring
We have clearly demonstrated that several life-history traits in

LP herring changed over time, with the mean age and weight of

this component rising by almost 100% from the 1960s (P1) to the

2000s (P3), but it is not straightforward to explain these changes.

There is no information available to suggest that changes have

taken place in relevant environmental conditions in Lindåspollene.

The marked changes in life-history traits could be a consequence

of phenotypic plasticity, genetic responses or a combination of the

two [61]. Herring is a flexible species with a high level of

adaptability as a basic trait [62]. The genetic structure of life-

history traits and high genetic diversity may provide a flexible

species with large phenotypic plasticity and/or a large potential for

rapid evolutionary changes [62,63].

The heritability of life-history traits is quite large [64], and

interbreeding with NSS herring might well have changed

genetically determined life-history traits in LP herring from slow

growth and short life-span to faster growth and a longer life. Fish

have limited energetic resources and there are trade-offs between

somatic growth, survival and reproduction [65–67]. Rapid growth

is crucial for the highly migrating NSS herring as the energy costs

of swimming decrease as size increases [29]. For the more

stationary LP herring large size is probably less critical. The trade-

off between growth and reproduction is generally strong in herring

[68,69]. LP herring should thus be expected to have invested more

in reproduction when they were small early in the study period,

and unpublished observations from the 1970s in fact indicate a

high reproductive effort (RE). We would therefore expect that the

RE of LP herring in the 2000s was similar to NSS herring, as both

LP and NSS herring then had fast growth. However, RE was

found to be considerably higher in LP than NSS herring also in the

2000s [20]. What is genetically determined is not a set value but a

reaction norm [70], and by migrating to more productive outside

waters (see below), LP herring could obtain more resources with

low energy costs and thereby combine rapid growth and longevity

with high RE.

McQuinn [6] argued that the structure of herring populations is

of a behavioural rather than genetic nature. Although there are

few data on movements of LP and NSS herring in and out of

Lindåspollene, it is reasonable to assume that a change in feeding

migration patterns was involved in the increased growth of LP

herring. Migration patterns in herring are presumably maintained

by local traditions [29–32], and pre-spawning LP herring have

aggregated in a particular area in Lindåspollene for several

decades [12,59,71]. By social transmission of migration patterns

(see also [72]), NSS herring may have triggered a change in LP

herring to migrating to more productive outside waters, leading in

time to increased growth. As there is a genetic basis for migratory

behaviour [73,74], interbreeding with migratory NSS herring may

also have increased the tendency of LP herring to migrate. All in

all, it is reasonable to assume that interactions between genetic

factors that influence both growth potential and migratory

tendency, and changes in migration traditions, are involved in

the change of life- traits in LP herring.

Conclusions and Perspectives

We have presented new evidence that Atlantic herring form a

metapopulation, and for the first time have found evidence of

strong temporal dynamics between two herring populations.

However, although the data material is unique and our

explanations are plausible, we recognise that some questions

remain to be answered. The application of VS is useful in the lack

of more sophisticated identification methods such as genetic

analyses, but due to the large individual variation in VS also within

a single herring component, relatively large samples would be

needed to obtain a robust basis for comparison. Nor is it clear

whether most NSS herring initially enter Lindåspollene at the

larval stage or later, and there are few data on movements of LP

and NSS herring in and out of Lindåspollene. We have generally

strong evidence that NSS herring leave Lindåspollene after a

certain age and size, but this was more difficult to study in the

2000s with our methodology as LP and NSS herring were similar

in size. This demonstrates the limitations of using VS and growth

patterns to distinguish different components.

When NSS herring underwent a distributional shift after the

stock collapse, the connectivity with resident herring could have

led to changes in several life-history traits of the indigenous herring

by interbreeding and/or a culturally mediated migratory shift. A

metapopulation of herring could consist of populations that differ

genetically but that also possess cultural diversity, such as different

migration patterns, as an additional isolating mechanism. But

Figure 7. A-C. Monthly mean values of maturity stage, length and VS of herring. Values are given for the period November 1963 through
April 1964. Relative monthly proportions of maturity stages are given for each of the 1959–61 YCs.
doi:10.1371/journal.pone.0102462.g007

The Dynamics of a Metapopulation

PLOS ONE | www.plosone.org 11 July 2014 | Volume 9 | Issue 7 | e102462



migration routes can change. Historical records indicate that NSS

herring have undergone large fluctuations in abundance during

the past 500 years ([75] and references therein) causing changes in

migration patterns [23]. Our finding that LP herring became more

similar to NSS herring over the study period may suggest a cyclical

pattern with genetic differentiation of the resident population

during periods of weak connectivity resulting in slower growth and

shorter life span alternating with periods of strong connectivity

that reduce these differences.

Changes in migration patterns may be associated with a fishery-

induced collapse [26]. This study suggests that anthropogenic

influences such as a fishery should not be considered in isolation

for a single herring population. Exploitation of neighbouring

populations may alter the composition of the metapopulation in

ways that could challenge the integrity of the resident population,

and high rates of connectivity between populations could decrease

the productivity and stability of a population [76]. Further studies

of dynamic interchange between different populations of marine

species and the relative importance of genetic and cultural factors

behind the population structure are warranted, both from a basic

ecological and evolutionary perspective and as a basis for sound

management.
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Biocomplexity in a highly migratory marine fish, Atlantic herring. Proc Roy Soc
Ser B 273: 1459–1464.
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stock in Lindåspollene, western Norway. FiskDir Skr Ser HavUnders 16: 369–

404.

13. Jørstad KE, Pedersen SA (1986) Discrimination of herring populations in a

northern Norwegian fjord: genetic and biological aspects. ICES CM 1986/H:63.

14. Hognestad PT (1994) The Lake Rossfjord herring (Clupea harengus L.) and its
environment. ICES J Mar Sci 51: 281–292.

15. Kritzer JP, Sale PF (2004) Metapopulation ecology in the sea: from Levins’

model to marine ecology and fisheries science. Fish Fish 5: 131–140.

16. Johannessen A, Nøttestad L, Fernö A, Langård L, Skaret G (2009) Two
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36. Dahl O, Lie U (1981) Lindåspollene – et naturlig forskningsakvarium. Naturen
nr. 3 (in Norwegian).

37. Ellingsen E (1973) Kvalitative og kvantitative zooplanktonundersøkelser i
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