Observing the behavioral response of herring exposed to mid-frequency sonar signals

Handegard¹, Nils Olav and Doksaeter¹, Lise and Godoe¹, Olav Rune and Kvadsheim², Petter H.

¹ Institute of Marine Research, Bergen, Norway
 ² Norwegian Defence Research Establishment, Horten, Norway

Outline

- The Norwegian Spring Spawning Herring
- The exposure sources
- The observation tools
- The experiments methods and results
- Concluding remarks

Norwegian Spring Spawning Herring (NSS)

- One of the largest fish stocks in the world.
- Important fishery resource in Norway.
- Yearly distribution spread over entire Norwegian Sea and coast, overlapping with the operation areas of the frigates.
- How the herring react to a sound disturbance may vary between season and site.

Mid-frequency sonar and fish hearing

- Mid-frequency naval sonars: 1-10 kHz.
- Hearing generalist fishes (e.g salmon, cod): < 500Hz.
- Hearing specialists, e.g herring; up to 4 kHz.
- Lower frequency range well within hearing range of herring (*Clupea harengus*).
- Potential effects: reduced hearing, masking or behavioral effects.

Outline

- The Norwegian Spring Spawning Herring
- The exposure sources
- The observation tools
- The experiments methods and results
- Concluding remarks

SOCRATES (Sonar CalibRAtion and TESting)

- Sonar source used for operational experiments for the Royal Netherlands Navy (RNLN).
- Two free flooded transducers; 1-2 kHz and 6-7 kHz (190 and 214 dB re 1µPa max power, respectively).

Nansen frigate sonar

- Combined active/passive towed array sonar (CAPTAS mk 2, Thales Underwater Systems) towed from a Fritjof Nansen class mutipurpose frigate operated by the Royal Norwegian Navy.
- Signaltypes:1-1.6 kHz hyperbolic frequency modulated up-sweep (FM) and a 1 kHz weighted continuous wave signal (CW).
- Transmitted source level was 215 dB_{rms} re 1µPa at 1m, maximum level is classified information.

Sonar sources

Underwater speaker

- Killer whale feeding sounds played back from an underwater speaker, Lubell Labs model LL916.
- Frequency responce of 21 Hz to 200 kHz, with a high pass filter of frequencies below 800 Hz.

- The sound played back included pulsed calls, whistles and tail slaps from feeding killer whales.
- Source level of the played back sounds were 150-160 dB_{RMS} (re 1µPa @ 1 m), similar to described levels of feeding killer wha

Outline

- The Norwegian Spring Spawning Herring
- The exposure sources
- The observation tools
- The experiments methods and results
 Concluding remarks

Echosounders

- Simrad EK60, Frequency 38kHz, 120kHz and 333kHz
- Narrow beam

Simrad ES38DD

- Analysed in Matlab
- Results
 - Vertical distribution
 - Density by echo integration
- Example from Ona et al 2007.

Omnidirectional sonar

- Simrad SH80, frequency 116kHz, Tilt +10 to -60 deg
- Analysis by Large Scale Survey system (Patel et al, in prep)
- Results
 - position
 - Relative density estimate

Outline

- The Norwegian Spring Spawning Herring
- The exposure sources
- The observation tools
- The experiments methods and results
 Concluding remarks

The experiments

- Stationary herring layers in fjord area
 - Exposure: SOCRATES source , killer whale playback
 - Method: Bottom mounted echo sounder
- Dynamic schools of herring in open ocean
 - Exposure : SOCRATES source, killer whale playback
 - Method: Sonar
- Controlled net pen experiments over a seasonal cycle
 - Exposure : Nansen class frigate, ring transducer, outboard engine, impulse
 - Method: Echosounder and video

Stationary herring layers in fjord area

- Overwintering herring distributed in stationary layers in a sheltered fjord.
 - Randomized block design of three exposure types:

1) Silent (control)

- 2) LFAS (1-2 kHz)
- 3) MFAS (6-7 kHz)
- Source ship approached gradually from 1 nmi distance.
- Herring reactions measured as density (s_v) and median depth of herring layer.

Reactions to sonar transmission

- Echogram similar for all transmission types.
- Downwards reaction around vessel passage.
- Likely caused by avoidance of vessel or towed body source.

Reactions to killer whale playback

Killer whale playback

- Strong immediate response.
- Significantly different from control
- Verify non-avoidance of sonar transmission.

Dynamic schools of herring in open ocean

- Migrating herring schools in deep, oceanic waters.
- Same block design as for echosounder experiment.
- Source ship passes with transmitting source while herring school is monitored from fishing vessel.
- Herring reactions measured as school density (s_a) and depth of the school, revealing changes in school dynamics and vertical movement in response to sonar transmission.

Reactions to sonar transmission and killer whale playback

- No significant differences between sonar transmission and control.
- Killer whale playback induced a vertical movement and change in school density, typical avoidance reactions.

Net pen experiments

- Wild herring were caputed and transferred to net pens.
- Held in captivity throughout a year in an aquaculture facility.

- During experiments, herring were transferred to a smaller pen and towed to experimental location.
- Experiments conducted at different times of the year, corresponding to overwintering, spawning and feeding periods of herring.

Net pen experiments

- Net pen towed from station to middle of fjord by fishing vessel.
- Frigate passed the herring net pen in a 2 nmi transect.
- Blockdesign with 4 types of exposure:
 - FM continous (1-2 kHz)
 - FM sudden (1-2 kHz)

- CW
- Control

Net pen monitoring

- Horizontal and vertical echosounder recording horisontal and vertical movements within the pen.
- Videocamera to monitor small scale reactions.
- Controlled and monitored onboard fishing vessel.

Reactions to sonar transmission

Sonar continous

Exposure increase gradually (FM+CW)

Sonar sudden Start exposure at max level (FM)

Start Passing Stop 10 20

Depth (m)

Control

Passage with frigate without sonar exposure

LowFreq 2009

Positive control experiments

Engine noise and impulse

- Outbound engine, 30 sec
- Hit net fence with stick;
 "dunk"

Results

Immediate downward movement of herring, significant change in vertical structure compared to sonar transmission and control.

Exposure inside net pen

Outline

- The Norwegian Spring Spawning Herring
- The exposure sources
- The observation tools
- The experiments methods and results
- Concluding remarks

Summary

- No observed behavioural change in herring exposed to the sonar sources
- Stronger reaction to vessel noise
- Reaction initiated during killer whale playback
- The impulse (maybe not suprisingly) seem to be a very important measure

Further reading

- Fjord experiment:
 - Doksæter et al. Behavioural responses of herring (Clupea harengus) to 1-2 and 6-7 kHz sonar signals and killer whale feeding sounds *The Journal of the Acoustical Society of America,* 2009, 125, 554-564
- Open ocean experiment
 - Doksæter et al. In prep.
- Net pen experiment
 - Doksæter et al. Submitted to JASA.

