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Abstract: The effective sampling volume of trawl and acoustics is an important parameter in fish abundance estimation
surveys. This paper presents a method to compute the probability of a fish being available to the bottom trawl and the
probability of it being seen on the echo sounder, given its initial position relative to the vessel path. These probabilities
are then related to the calculation of the effective observational volume for trawl and acoustics, the two main tools of
measuring abundance of Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus). As an example, the
computation is carried out for a typical vertical distribution in the Barents Sea. Our model is based on an Ornstein–
Uhlenbeck model for the fish swimming trajectories, and its parameters are estimated using observations of swimming tra-
jectories for individual fish, recorded by a split-beam echo sounder. The model itself constitutes a general method to trans-
late observations on behaviour of individual fish to probability maps. The results indicate a typical fishing height of 20 m
for the bottom trawl, but it is also shown that there is a relatively low probability of catching by the trawl what you see
on the echo sounder, even for fish positioned directly in the trawl path. This is because of strong lateral movements of the
fish.

Résumé : Le volume effectivement échantillonné est une variable importante dans les inventaires d’abondance des pois-
sons faits par chalutage ou par acoustique. Notre travail présente une méthode pour calculer la probabilité qu’un poisson
soit accessible au chalut de fond et qu’il soit visible sur l’échosondeur, étant donné sa position initiale relative à la trajec-
toire du navire. Ces probabilités peuvent ensuite être reliées au calcul du volume effectif obtenu par chalutage ou acous-
tique, les deux outils principaux pour mesurer l’abondance de la morue franche (Gadus morhua) et l’aiglefin
(Melanogrammus aeglefinus). Le calcul d’une répartition verticale typique de la mer de Barents est donné en exemple.
Notre modèle se base sur le modèle d’Ornstein–Uhlenbeck des trajectoires de nage des poissons et les paramètres sont es-
timés à partir d’observations de trajectoires de nage de poissons individuels enregistrées par un échosondeur à faisceau di-
visé. Le modèle lui-même représente une méthode générale pour traduire des observations faites sur un seul poisson
individuel en cartes de probabilité. Nos résultats indiquent que la hauteur moyenne typique de pêche d’un chalut de fond
est de 20 m, mais aussi qu’il y a une probabilité relativement faible de capture par le chalut des poissons visibles à l’écho-
sondeur, même pour les poissons placés directement dans la trajectoire du chalut; cela s’explique par l’importance des dé-
placements latéraux des poissons.

[Traduit par la Rédaction]

Introduction
Two problems in fish survey methodology that have been

subject to intense research are (i) absolute abundance esti-
mation (Løland et al. 2007) and (ii) relating bottom trawl
and acoustic estimates (Aglen 1996; Hjellvik et al. 2003,
2007). To arrive at an estimate of absolute abundance from
trawl catches, the effective catching volume and the gear se-
lection are needed. Moreover, to combine acoustics and
trawl data, one has to take into account that these data
come from two different parts of the water column, with no
clear separation between the two.

For both problems, understanding vessel-induced fish be-
haviour is essential. A fish may end up not being registered
by the trawl or acoustics even though it was initially posi-
tioned where unchanged behaviour would lead to its capture
or detection. On the other hand, there is a herding effect
such that the bottom trawl may capture fish that were posi-
tioned above the trawl headline when the vessel passed and
the acoustic estimates were recorded. That the vessel and
(or) gear initiates a fish reaction has been acknowledged for
a long time (Okonski 1969). It may start before the vessel
arrives and is combined with a stronger response just after
propeller passage (Ona and Godø 1990; Nunnallee 1991).
De Robertis and Wilson (2006) reported significantly higher
average backscatter from the vessel-mounted echo sounder
when free-running than during trawling, indicating increased
vessel avoidance during trawling, but opposite results were
found by Hjellvik et al. (2007). Similar studies have been
carried out for the acoustic estimate separately. Olsen et al.
(1983) showed that fish reacted to an approaching surveying
vessel. Vabø et al. (2002) reported a strong response in At-
lantic herring (Clupea harengus), whereas Fernandes et al.
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(2000a) reported no reaction. The latter was attributed to a
silent vessel design (Fernandes et al. 2000b), but this has
later been questioned (Ona et al. 2007).

The previous reports are based on measuring changes in
fish density by a small boat or stationary transducer as the
vessel passes. As opposed to those investigations, Hande-
gard et al. (2003) and Handegard and Tjøstheim (2005)
used observations from a free-floating buoy equipped with a
split-beam echo sounder to track and analyze the behaviour
of individual gadoid fish (mainly Atlantic cod (Gadus mo-
rhua), saithe (i.e., pollock, Pollachius virens), and haddock
(Melanogrammus aeglefinus)), and they were able to de-
scribe the avoidance reactions in terms of average velocity
changes, both vertically and horizontally. In the present
study, we are more ambitious, and we are seeking to charac-
terize distributional changes, i.e., take into account the vari-
ability in the response, not only the mean response.

Dickson (1993a) provided a framework for evaluating the
capture efficiency of trawls, and the model was parameter-
ized for the Barents Sea survey condition using various
sources of data (Dickson 1993b). However, there were no
data for estimating the parameters for the model before the
arrival of the trawl doors. We believe that our results can
be used to fill this gap.

Typical questions that can be asked about availability are
as follows: What proportion of the fish outside the acoustic
dead zone are available for the trawl? Given a fish located
at a certain position relative to the course line of the ap-
proaching vessel, what is the probability of it being ob-
served by the echo sounder? How far in the horizontal and
vertical directions does the catching capability of the trawl
extend? Is it easier to catch fish at a certain horizontal dis-
tance from the trawl than a fish at the same vertical distance
from the trawl? Answers to these questions will have impli-
cations both for acoustic and trawl surveys. But we also
think that these are problems of independent interest because
the reaction pattern of the fish tells something about its
sensing apparatus and associated behaviour.

We will use a modelling approach based on the Ornstein–
Uhlenbeck (OU) diffusion process to attack the above prob-
lems, and we will use the same data as in Handegard and
Tjøstheim (2005). Finally, we put our results in perspective
by presenting them in terms of parameters for Dickson’s
model.

Materials and methods
The fish-capture process of the bottom trawl is a truly

four-dimensional process, with three spatial and one tempo-
ral dimension. Traditionally, one-dimensional properties like
fishing heights (Aglen 1996; Aglen et al. 1999; Hjellvik et
al. 2003) and effective path widths (Engås and Godø 1989;
Ramm and Xiao 1995) have been investigated. Effective
path width is a measure of how far to the side of the centre
of the trawl fish are caught, it being governed by sweeping
and herding effects, trawl selection, etc. The fishing height
determines how far up in the water column the trawl catches
fish by downward herding. This results in a rectangular in-
terpretation of the fishing volume, since path width com-
bined with trawl height defines a rectangle.

In this paper, the process is treated in a three-dimensional

setting: depth (z), athwartship direction (y), and time (t). Let
x(t) = [y(t), z(t)] be a vector that describes the coordinates of
a fish at time t in the y–z plane. The behaviour along the
vessel path (x) is ignored because of the large difference in
vessel speed and alongship fish velocity (cf. Discussion).
The behaviour described by our model is thus the projection
of three-dimensional swimming velocities onto a two-
dimensional y–z plane perpendicular to the vessel path,
where the y–z plane is fixed in space. The centre of the
buoy echo beam lies in this plane, and the observations
from this are used to estimate the parameters of the model.
The vessel and gear pass this plane, where the change in
behaviour measured in terms of velocity changes for indi-
vidual fish can be observed (see Fig. 1). A List of symbols
is given at the end of the paper.

Data and tracking method
This section presents a brief overview of the data and the

tracking method. A detailed description of the experimental
design, species composition, geographical area, and analysis
of the data can be found in Handegard and Tjøstheim
(2005).

A free-floating buoy containing a Simrad EK60 echo
sounder was placed in the path of the vessel, and single fish
were detected and tracked as the vessel and gear approached
and passed the buoy. The data set consisted of 54 vessel–
buoy passings, recorded during trawling using R/V G.O.
Sars (built in 1970) over two time periods (March 2001 and
April 2002). A brief overview of the observed behavioural
pattern is given (Fig. 2).

A crucial part of the analysis is the tracking algorithm.
We have used an algorithm designed for a moving platform
(Handegard et al. 2005). A brief resumé of the tracking
method is given in the following. Single fish targets are de-
tected using the Simrad single echo detection algorithm, and
the single echoes are combined into tracks. The transducer
platform tilt–roll–heave is estimated from the common
movement of the fish within the beam (Handegard et al.
2005, see their figure 5). Then a second run is performed to
compensate for the estimated platform movement. The
tracking parameters are set equal to ‘‘case 1’’ in Handegard
et al. (2005, their table V).

After the single fish echoes have been associated to
tracks, several algorithms can be used to estimate the fish
trajectories. We have chosen more than one smoothing algo-
rithm to get an estimate of the sensitivity to various alterna-
tives. The algorithms we have used are Kalman smoothing,
nonparametric splines with cross validation and parametric
splines with four different levels of smoothing. These meth-
ods are described as the KS, SNP, and SP methods, respec-
tively, in Handegard et al. (2005). The smoothing parameter
‘‘spar’’ for the parametric spline is set to 0.3, 0.5, 0.7, and
0.9, resulting in a total of six different algorithms or levels
of smoothing (cf. Fig. 3). Although the estimated velocities
may be biased (Handegard and Tjøstheim 2005, their section
4.1.), we assume here that they reflect true displacement ve-
locities.

The buoy, vessel, and gear are positioned using the
buoy’s and vessel’s global positioning system (GPS) and
the Simrad ITI trawl positioning system (Engås et al. 2000)
for the trawl. All pings in a track are positioned relative to
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the vessel using the athwartship position (y) and vertical po-
sition (z). The projection of a track onto the y–z plane re-
sults in a curve, such as in Fig. 3. Each position in a track
is also associated with a time t measured on a time scale
whose origin is the time when the vessel passes the buoy.
Time points before vessel passage are negative on the time
scale. The fish behaviour is assumed to be symmetric
around the alongship direction of the vessel, i.e., the ath-
wartship position y is multiplied with sign(y), where ‘‘sign’’
is the signum function, which equals 1 if y is positive and
–1 if negative. Note that we use the raw data, not the data
corrected for water currents as in Handegard and Tjøstheim
(2005). The reason is that in the previous work we wanted
to detect changes in behaviour, whereas here we would
like to estimate how a fish moves relative to the trawl
path, including the effect of currents.

The result of the above data processing is that each track
is described in terms of athwartship position (y) and depth
(z), relative to the vessel, and the time (t) before or after
vessel–buoy passing. All tracks from all passings are com-
piled into a single data set, and this data set is used to esti-
mate the model parameters. This results in more than 20 000
tracks of individual fish to estimate the parameters in the
model.

Modelling individual trajectories
Let the stochastic variable Xt = (Yt, Zt) be the position of

an individual at time t. The first component (Yt) measures
athwartship position, the second (Zt) measures depth. The
change in position (velocity) is modelled as the sum of a
stochastic and a deterministic term:

Fig. 2. A typical reaction pattern as reported in Handegard and
Tjøstheim (2005). The background image is the echogram from the
buoy at one buoy–vessel passing. Tracking individuals showed that
the fish responded as early as 15 min before the vessel arrived, with
increased diving (I). At vessel passing, there was a weak herding in
front of the vessel combined with a stronger diving and herding to-
wards the vessel track (II). The strongest response was observed as
swimming away from the trawl warps, both by diving and horizon-
tal avoidance (III). The diagonal line represents the position of the
warps. Vertical lines above the trawl are noise from the trawl sen-
sors. The cone represents the vessel-mounted echo sounder.

Fig. 3. Example of a track projected onto the y–z plane. The figure
shows the same track with different smoothing estimators. The
curve at the top is the smoothing spline estimator, SP, with spar
equal to 0.3, followed by the SP with spar equal to 0.5, 0.7, and
0.9. The fifth curve is the smoothing spline with cross validataion,
SNP, and the last curve is the Kalman smoothing estimator, KS.
The curves are cumulatively shifted 1 m downwards to distinguish
one from the other.

Fig. 1. Schematic overview of the model. The size of the rectangular y–z plane corresponds to the axes in Figs. 6, 7, and 9. The position of
the trawl, warps, and vessel are shown. The x axis shows estimated distances computed from the time t before or after vessel passing as-
suming a constant vessel speed v: x = vt. The dots depict simulated (2D) individual fish, with the plus sign as the starting position. The
objective of the paper is to develop and use this simulation model. To view the video, see the HTML Web version of this paper at cjfas.nrc.
ca.
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ð1Þ dXt

dt
¼ Ut þmðz; tÞ

The deterministic term m(z,t) is the mean velocity for all
individuals at a given depth z and time t. It is the average
response to the vessel estimated using all vessel passings
and was analysed in considerable detail in Handegard and
Tjøstheim (2005). We have chosen to let m be independent
of y; see explanation below. The stochastic term Ut repre-
sents the individual random deviation from the mean. Note
that changes in velocity for a single individual are autocor-
related along its path, and consequently a simple Wiener
process cannot be used to describe Ut. We have chosen to
use the OU process (see Cox and Miller (1970, pp. 225–
228)) to model this behaviour, i.e.

ð2Þ dUt ¼ �Bðz; tÞUt dt þ Sðz; tÞ dZðtÞ

where Z(t) is a two-dimensional Wiener process with zero
mean, cov[Zi(t), Zj(s)] = 0 for i = j, and cov[Zi(t), Zi(s)] =
min(t,s) for two time points t and s, and i, j [ {1,2}. More-
over

ð3Þ Bðz; tÞ ¼ b11ðz; tÞ b12ðz; tÞ
b12ðz; tÞ b22ðz; tÞ

� �
and

ð4Þ Sðz; tÞ ¼ s11ðz; tÞ s12ðz; tÞ
s12ðz; tÞ s22ðz; tÞ

� �
are parameters to be estimated from the data (see next sec-
tion).

Once the parameters are estimated, simulated fish trajec-
tories can be generated by integrating eqs. 1 and 2. We
have used a simple forward scheme for this task. This is
warranted by the relatively noisy data compared with the er-
rors introduced using a simple forward scheme. The position
at time step k + 1 is found using the position and velocity at
time step k, the velocities are updated at the new position
using eqs. 1 and 2, and the process is repeated. To initialize
the simulations, an initial velocity Ut0 ¼ u0 and an initial
position Xt0 ¼ x0 ¼ ðy0; z0Þ are used. The initial velocities
u0 are picked at random among tracks at t0 and close to x0.
The bottom and surface boundary are closed in the simula-
tions, i.e., for a simulated fish at the boundary, with a simu-
lated vertical velocity component that would bring the fish
across the boundary, the vertical component is set to zero.

Estimating B and S from data
The fact that the process is decomposed into a mean model

and a stochastic term (the OU process) has to be taken into
account when estimating the parameters. We can remove the
mean response by subtracting

R tþDt
t

mðz; sÞ ds from the fish
track positions. Let the vector process X0ðtÞ ¼ ½X01ðtÞ; X02ðtÞ�,
where X1 and X2 denote the y and z components, respectively,
consist of the residual positions X’(t + Dt) – X’(t) = X(t +
Dt) – X(t) –

R tþDt
t

mðz; sÞ ds. Note that t is the time for which
the parameters B and S are estimated, and Dt is the time dif-
ference between t and subsequent positions along the tracks
used in the estimation.

It is complicated to estimate the full B and S matrices as

a function of x = (y,z) and t, and consequently, we make
some simplifying assumptions. First, it has been found from
the data processing that correlation between the changes in
athwartship position X01ðt þDtÞ � X 01ðtÞ and depth
X02ðt þDtÞ � X02ðtÞ is weak (Appendix A), and we therefore
neglect it. As a consequence, the off-diagonal terms b12 and
s12 of B and S in eqs. 3 and 4, respectively, are set to zero.
The second simplifying assumption has to do with the poor
resolution of the data in the athwartship direction (y). The
tracks contain the athwartship position relative to the vessel,
but since the buoy was passed at similar distances in the
vessel–buoy experiments, the data are not resolved well in
this direction. We have therefore chosen not to let the pa-
rameters bii and sii vary as a function of y. Since our main
interest is in the region close to y = 0, this approximation
seems reasonable. These simplifications are further ad-
dressed in the Discussion. Finally, on the time scale of ves-
sel passing (20 min), the duration of each track is short
(typically 10 to 60 s). For each track at a given depth z and
time t, we assume that bii and sii are constant, or more pre-
cisely, for each track involved in the estimation of the pa-
rameters at a given z and t, we assume that B and S are
constant.

To estimate the parameters of the OU process, we use
EfX0ðt þDtÞ � X0ðtÞg ¼ 0 and that for a one-dimensional
OU process, here represented by X01ðtÞ, with constant param-
eters b11 and s11,

ð5Þ Ef½X 01ðt þDtÞ � X 01ðtÞ�2g ¼
s2

11

b3
11

fb11ðDtÞ � 1

þexp½�b11ðDtÞ�g
(Cox and Miller 1970, their eq. 106 on p. 228), and simi-
larly for X02ðtÞ. The left-hand side of eq. 5 can be estimated
from the observations by subtracting the integrated mean
term as already explained. The parameters sii and bii on the
right-hand side, representing the location–time (z,t), can
then be estimated from eq. 5 by least squares analysis (de-
tails are given in Appendix A).

The probability of getting what you see
Let Eeb be the event that a fish is within the echo beam of

the vessel when the centre of the vessel echo beam passes
our fixed model plane, and let the event Etr be the corre-
sponding event of being available for the bottom trawl, i.e.,
being between the trawl door spread (50 m) and below the
headline of the trawl (5 m) when the trawl doors pass the
model plane. Note that we only consider fish behaviour be-
fore the arrival of the trawl doors. This configuration corre-
sponds to the standard survey bottom trawl (Campelen 1800
shrimp trawl) used by the Institute of Marine Research
(Bergen, Norway). The times for which these events occur
are denoted t = teb = 0 min and t = ttr = 10 min, respectively.
Therefore, by definition, teb = 0, and ttr = 10 min is the approx-
imate time of trawl passage when trawling at 300 m depths.

If we initiate an individual fish, say, at t0 = –10 min and
Xt0 ¼ ðy0; z0Þ ¼ ð35;�280Þ, we can simulate its path and
determine for that individual whether the events Eeb or Etr
occur or not. When simulating several individuals for sev-
eral initial locations, we can estimate the probability that
these events occur as a function of t0 and x0.
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We have looked at two cases: one general case where
t0 = –10 min and a special case where we initialize our
model at t0 = teb = 0 min. The start time t0 = –10 min corre-
sponds to the time slightly after the vessel disturbs the fish,
and t0 = teb corresponds to the time when we observe the
fish on the echo sounder.

In the first case, we simulate N individuals starting at
Xt0 ¼ x0, and we calculate the fraction of these individuals
seen by the echo sounder (Eeb) and the fraction available to
the trawl (Etr). The probability is estimated by

ð6Þ bPfEebjXt0 ¼ x0g ¼ Neb=N

where N is the total number of simulated individuals, and Neb
is the number of individuals within the echo beam at t = teb.
Similarly,

ð7Þ bPfEtrjXt0 ¼ x0g ¼ Ntr=N

Here Ntr is the number of simulated fish below the head-
line height and between the door spread, resulting in the
probability of being available for the bottom trawl given the
initial position x0. The simulations are performed for several
x0 values to map the probabilities as a function of the initial
position.

The second case is the probability of being available for
the bottom trawl, given that the fish was seen on the echo
sounder. This has special relevance, since there have been
several attempts to find (or use) relations between the trawl
catch and acoustic registrations (Aglen 1996; Hjellvik et al.
2003, 2007). Let Eeb and Z0 = z0 be the events of being within
the beam and at a given initial depth z0 at time t0 = teb = 0. In
this case, the initial positions are taken to be evenly distrib-
uted across the echo beam at the given depth. The probability
of being available to the bottom trawl given that a fish was
seen on the sounder at depth z0 is estimated by

ð8Þ bPfEtrjEeb; Z0 ¼ z0g ¼ Ntr=Neb

where Neb is the total number of individuals, initially within
the echo beam at t0 = teb = 0 min and z0 m depth, and Ntr is
the number of these simulated individuals within the head-
line height and trawl door spread at trawl passing (ttr =
10 min). The simulations are then performed for several
start depths z0 to estimate the probability to catch what you
see as a function of depth.

Estimating the effective sampling volume
The parameters relating undisturbed biomass to trawl

availability in the Dickson (1993a) model are kh3 and kv3,
where kh3 is the proportion of the vertical profile under the
headline at the arrival of the trawl doors, and kv3 is the ef-
fect of horizontal behaviour. Dickson defines the fish be-
tween the doors and below the headline height as the
number of

ð9Þ encounters ¼ ybttowvrakh3kv3

(Dickson 1993a, his eq. 2), where yb is trawl door spread (in
our case yb = 50 m), v is towing speed, ttow is tow duration
time, and ra is (horizontal) area density. To interpret our re-
sults in the context of Dickson’s effective sampling volume,
we derive the number of encounters and the parameters kh3
and kv3 from our results.

The proportion of fish eventually under the headline and
within the door spread is dependent both on behaviour and
the undisturbed vertical density profile. Let

ð10Þ
Z 0

zd

f ðz0Þ dz0 þ pd ¼ 1

where f(z) is the vertical profile above the dead zone, zd is
the upper bound of the dead zone, and pd is the proportion
of fish in the dead zone. To be able to separate out the
acoustic vertical profile in the calculations, we define

ð11Þ gðz0Þ ¼
f ðz0Þ

1� pd

such that
R 0

zd
gðz0Þ dz0 ¼ 1. Here we use the mean vertical

profile from the buoy data, excluding the passings, resulting
in the scaled vertical profile g(z0) (Fig. 4). The proportion of
fish in the dead zone is unknown, and we include the para-
meter pd in the calculations to emphasize this. In the Dis-
cussion, various values of pd are used to examine the
implication of various proportions of fish in the dead zone.

The number of encounters using our approach is found by
integrating the undisturbed density multiplied with the prob-
ability to be available to the trawl, i.e.

ð12Þ Ntr;A ¼ rattowv ð1� pdÞ
Z

A

gðz0ÞPfEtrjXt0 ¼ x0g dx0 þ ybpdhd

� �

Fig. 4. The vertical profile from the buoy data fitted to the curve
g(z) = k1/(z’ + k2) + k3z’ + k4, where z’ = z + 300 is height above bot-
tom. The fitted parameters are k1 = 7.5 � 10–2, k2 = 1.6, k3 = –2.2 �
10–5, and k4 = 5.3 � 10–3. Negative values are set to zero. The grey
and black curves show the mean profiles from the 2001 and 2002
experiments, respectively.
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where A is the area above the dead zone and below the sur-
face, horizontally extending to infinity (in practice to where
PfEtrjXt0 ¼ x0g is zero), and hd is a parameter related to the
(unknown) behaviour in the fish that originally resided in
the dead zone. Note that we assume that the detected beha-

viour is applicable to the fish that originally resided outside
the dead zone, even if the reaction brings the fish into the
dead zone during approach and passage of the vessel. The
number of encounters for the hull-mounted echo sounder is

ð13Þ Neb;A ¼ rattowv ð1� pdÞ
Z

A

gðz0ÞPfEebjXt0 ¼ x0g dx0

� �

To get an idea of the implications of the observed behav-
iour in the presence of the vessel, we compute the numbers
of encounters for trawl and acoustics assuming undisturbed
fish and compare it with Ntr,A and Neb,A, respectively. Undis-
turbed encounters are computed by integrating the fish den-
sity within the trawl opening and echo beam at t0 = –10
min. It is assumed by stationarity that the density will re-
main the same at time ttr and teb and is calculated by

ð14Þ N0
tr;A ¼ rattowvyb ð1� pdÞ

Z zh

zd

gðz0Þ dz0 þ pd

� �
where zh is the headline height. Here we also assume statio-
narity for the fish in the dead zone by letting hd = 1.

By equating eq. 9 with eqs. 12 and 14, we get

ð15Þ kh3kv3 ¼
ð1� pdÞ

yb

Z
A

gðz0ÞP EtrjXt0 ¼ x0

� �
dx0

þpdhd

for the disturbed case and

ð16Þ kv3 ¼
Z zh

zd

ð1� pdÞgðz0Þ dz0 þ pd

for the undisturbed case, where kh3 = 1 by definition. These
are used as estimates for the catchability parameters in Dick-
son’s model. Note that both measures are dependent on pd.

Results

Parameter estimation
Obtaining the estimate of the mean component m(z,t) is

relatively straightforward. The result can be plotted directly
and is easily interpreted. This was done in Handegard and
Tjøstheim (2005). It is more difficult to interpret the esti-
mated parameters for the stochastic parts, B(z,t) and S(z,t).
To do this, we introduce a measure of the effective diffu-
sion. For a small time step Dt, it is seen by series expansion
of the exponential function in eq. 5 that the variance of the
increments X01ðt þDtÞ � X01ðtÞ is proportional to (Dt)2, but
as Dt ? ?, the variance is proportional to Dt, i.e.

ð17Þ lim
Dt!1

Ef½ðX01ðt þDtÞ � X01ðtÞ�2g

¼ lim
Dt!1

s2

b3
½bDt � 1þ expð�bDtÞ�

� �
¼ s2

b2
Dt

and similarly for X 02. Then s2/b2 represents a measure of
how quickly the probability density diffuses at large Dt. In
practice, this is valid for approximately Dt > 2 min (see Ap-
pendix A).

The parameter estimates themselves are obtained by fitting
the curve in eq. 5 to the empirical data (see Appendix A and
in particular Fig. A1). The estimates of m and the ratiosbs2
ii=
bb2

ii (effective diffusion) are shown as a function of time
and depth (Fig. 5). The gross features for m are the same as
in Handegard and Tjøstheim (2005, cf. their fig. 7). The ver-
tical component m2 is slightly negative around 10 min before
vessel passing. The strongest and sharpest response is related
to the trawl warps, where a strong avoidance is seen in front
of the warps. Note also that the vertical effective diffusion is
reduced when the magnitude of the mean component in-
creases, between 5 and 10 min after vessel passage, indicat-
ing a more directional movement. This movement was
attributed to a directional response away from the warps.
Note also that the horizontal diffusion is close to two orders
of magnitude higher than the vertical diffusion.

To evaluate the effect of the different levels of smoothing,

a table of the estimated mean effective diffusion bs2
ii=
bb2

ii is
given (Table 1) for the random movement in both the hori-
zontal (y) and vertical (z) directions. In the table Dtmax is the
maximum Dt used in the fitting of the curve in eq. 5 to em-
pirical data. For example, in Fig. A1 Dtmax = 60. It is seen
from the table that different levels of smoothing have little

impact of the estimated ratio bs2
ii=
bb2

ii.

Computing probabilities with the OU model
Here the results from the two case studies are presented.

In case 1, the objective is to map the probability for a fish
to be seen on the echo sounder and to be available for the
bottom trawl, given a starting position x0 at t0 = –10 min.
In case 2, we are interested in the probability that a fish is
available for the bottom trawl given that it was seen on the
echo sounder at depth z0 and t0 = teb. In both cases, an ex-
ample for one initial position x0 or z0 is given, before pre-
senting the result as a function of x0 or z0.

First we present the result for one initial position for case
1. We simulated N = 40 individuals with initial position x0 =
(35, –280), i.e., 35 m off the vessel path to starboard, at
280 m depth, and initial time t0 = –10 (Figs. 6 and 7). The
objective of these figures is to explain how the probabilities
PfEebjXt0 ¼ x0g and PfEtrjXt0 ¼ x0g are estimated using
eqs. 6 and 7 for a single initial position. The number of in-
dividuals within the echo beam at t = teb = 0 are counted
(Fig. 6) and divided by N = 40. Note that this estimated
probability may be different from the final estimated proba-
bilities because of the low numbers of realizations in this
example run. Similarly, the numbers of individuals below
the trawl headline and between the door spread are counted
at t = ttr = 10 min (Fig. 7).
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Repeating this procedure for a wide range of initial posi-
tions enable us to contour the probability as a function of x0.
The initial positions used were y0 from 0 to 100 m in steps
of 5 m and z0 from –300 to –250 m in steps of 5 m (all
combinations) for Etr and y0 from 0 to 100 m in steps of
5 m and z0 from –300 to 0 m in steps of 20 m for Eeb (all
combinations). For each initial position, we simulated N =
5000 individuals. This number gave fairly smooth contours.
The estimated probabilities bPfEebjXt0 ¼ x0g andbPfEtrjXt0 ¼ x0g are presented as a function of x0 (Fig. 8).
Note that the probabilities extend farther horizontally than
vertically for bPfEtrjXt0 ¼ x0g (Fig. 8b), indicating a higher
activity in the horizontal direction (consistent with Fig. 5
and Table 1) than in the vertical one.

In case 2 we are particularly interested in the probability that
a fish is available for the bottom trawl given that it was seen on
the echo sounder at depth z0 and t0 = 0. This corresponds to the

probability P{Etr | Eeb, Z0 = z0}, as estimated by eq. 8. Similar
to case 1, we first present an example from a small number of
particles. We simulated 40 individuals with initial time t0 =
teb = 0, initially located at depth z = –285 m inside the echo
beam (the event Eeb), approximated by four initial positions
evenly distributed across the echo beam at the given depth.
The particles that end up as available to the trawl at t = 10 min
are counted and used as an estimate for P{Etr | Eeb, Z0 = z0}
(Fig. 9). Again, note that this probability estimate will in gen-
eral be different from the final simulated probabilities because
of the low numbers of realizations in the example run.

Similar to case 1, we repeat the procedure, but now for
several different depths z0, from –300 to –250 m in uniform
steps of 5 m. The corresponding estimated probability of
being available to the bottom trawl, given it was registered

in the echo sounder, bPfEtrjEeb;Z0 ¼ z0g, is presented as a
function of z0 (Fig. 10). Note that the maximum probability

Fig. 5. The mean velocity of all tracks, bm1 (horizontal velocity) and bm2 (vertical velocity), where bm ¼ ðbm1; bm2Þ are shown in panels (a) and
(b), respectively, and the effective diffusion in the horizontal direction (bs2

11=
bb2

11) and in the vertical direction (bs2
22=
bb2

22), are shown in panels
(c) and (d), respectively. All parameters are resolved in depth (z) and time before (negative t) and after (positive t) vessel passing. ‘‘T’’ on
the x axes denotes trawl passage. The athwartship dependence (y) is ignored. A strong horizontal swimming away from the transducer is
seen after the passage of the vessel (I), and an initial weak diving (II) is followed by a strong diving when the trawl warps passes (III). The
effective diffusion is relatively stable, except for a strong signal in the horizontal diffusion just after trawl warp passage (IV), indicating a
less directional movement. The vertical diffusion (V) is stronger before and after trawl warp passing, indicating a directional movement
closer to the warps.
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is about 0.35, indicating that there is a relatively low proba-
bility to be available to the trawl if the fish initially is at the
bottom and seen by the echo sounder. This is attributed to
the large lateral displacement.

Estimating encounters
Based on the model, the typical vertical profile (Fig. 4),

and the assumed unknown proportion (pd) and behaviour (hd)
of fish in the dead zone, we express the number of encounters
for the trawl and echo sounder using eqs. 12 and 13 as

ð18Þ Ntr;A ¼ rattowv½ð1� pdÞ8:4þ 50 pdhd�

and the number of echo beam encounters as

ð19Þ Neb;A ¼ rattowvð1� pdÞ37

The numbers 8.4 and 37 are the numerical values of the in-
tegrals in eqs. 12 and 13, respectively, and 50 is the trawl
door spread.

Assuming no fish disturbance (eq. 14), we get the number
of trawl encounters

ð20Þ N0
tr;A ¼ rattowv 50½7:58ð1� pdÞ þ pd�

for the stationary case. Here, 7.58 and 50 are the numerical
values of the integral in eq. 14 and the trawl door spread,
respectively.

The parameters for Dickson’s trawl model are then esti-
mated as kv3kh3 = 0.17(1 – pd) + pdhd and kv3kh3 = 0.15 + pd
for the disturbed (eq. 15) and stationary (eq. 16) cases, re-
spectively.

Assuming pd = 0.2 (which is probably too high; O.R.
Godø, Institute of Marine Research, P.O. Box 1870,
Nordnes, 5817 Bergen, Norway, personal communication;
see also Hjellvik et al. 2004) and hd = 1 (stationary behav-
iour for the fish in the dead zone), we get Ntr,A = 16.8rattowv
and N0

tr;A ¼ 16:1rattowv for the disturbed and stationary
cases, respectively. Using the same assumptions, the Dick-

Table 1. The estimated effective diffusion in the horizontal

direction (bs2
11=
bb2

11) and in the vertical direction (bs2
22=
bb2

22) for
different levels of smoothing and different track lengths in
the estimation (Dtmax).

Dtmax = 40 Dtmax = 60 Dtmax = 100

Horizontal (bs2
11=
bb2

11)
SP spar = 0.3 1.201 1.434 1.555
SP spar = 0.5 1.304 1.523 1.514
SP spar = 0.7 1.633 1.814 1.635
SP spar = 0.9 2.123 2.076 1.712
SNP 1.399 1.583 1.515
KS 1.576 1.703 1.556

Vertical (bs2
22=
bb2

22)
SP spar = 0.3 0.057 0.053 0.043
SP spar = 0.5 0.060 0.053 0.039
SP spar = 0.7 0.067 0.055 0.037
SP spar = 0.9 0.067 0.055 0.034
SNP 0.061 0.053 0.038
KS 0.063 0.055 0.037

Note: SP, parametric splines with four different levels of smooth-
ing; SNP, nonparametric splines with cross validation; KS, Kalman
smoothing.

Fig. 6. The results when simulating 40 individuals starting at a sin-
gle initial position (^) at t0 = –10 min. The resulting particle posi-
tions (asterisks) at t = 0 min and the corresponding estimate ofbPfEebjXt0 ¼ x0g ¼ 0:32 are shown. The slanted vertical lines are
the outline of the echo beam (88 beam opening). To view the video,
see the HTML Web version of this paper at cjfas.nrc.ca.

Fig. 7. The results when simulating 40 individuals starting at a sin-
gle initial position (^) at t0 = –10 min. The resulting positions at
t = 10 min (asterisks) and the associated probability
PfEtrjXt0 ¼ x0g ¼ 0:17 are shown. The solid lines in the lower part
of the plot denote the doorspread (50 m) and headline height (5 m)
of the trawl. To view the video, see the HTML Web version of this
paper at cjfas.nrc.ca.

Fig. 8. The estimated probabilities bPfEeb j Xt0 ¼ x0g (panel a) andbPfEtr j Xt0 ¼ x0g (panel b) as a function of the initial position x0 =
(y0, z0). The diamond (^) show the initial position from the exam-
ple run in Figs. 6 and 7.
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son parameters are kv3kh3 = 0.34 and kv3kh3 = 0.32 for the
disturbed and stationary cases, respectively.

Discussion
The discussion section has two main parts. In the first part

we discuss the method, including the choice of model, the
parameter estimation procedure, the simplifications, etc.
The data material and tracking method are not discussed in
detail, since they are quite thoroughly described in Hande-
gard and Tjøstheim (2005) and Handegard et al. (2005), re-
spectively. In the second part, the focus is on potential
applications, relating our work to catchability in general and
to the Barents Sea winter survey case in particular. This is
relevant for fish abundance estimation.

The choice of model, parameter estimation, and data
material

We have used the OU process to model the stochastic part
of the simulated fish trajectories, but there are other possibil-
ities. One alternative choice is the Wiener process, where it is
assumed that changes in the motion of the particles are inde-
pendent from one time step to the next. These types of mod-
els have successfully been used to fit tagging data for larger-
scale movement processes, see e.g., Sibert et al. (1999) or
Sparrevohn et al. (2002). Lévy flights are another class of
random-walk models whose step lengths are chosen from a
probability distribution with a power-law tail. These have
been used to model search patterns for, e.g., albatrosses (Vis-
wanathan et al. 1996), but the generality of the Lévy assump-
tion has recently been questioned (Edwards et al. 2007).

We have chosen the OU process, because the autocorrela-
tion curve from the OU process gives a much better data fit
than the corresponding curve for the Wiener process. The
reason for the better fit is that the fish trajectory has corre-
lated increments, and fitting a Wiener process that has non-
correlated increments does not work well. The OU model
implies that each fish (particle) has a mass (and inertia),
and consequently an along-track correlation. Moreover, the
OU approach assumes random impulses on the acceleration
instead of on the velocity.

Although the OU model seems to be the more appropriate
choice, the variance of the Wiener process and OU process
are both proportional to t – t0 for large values of t – t0, indi-
cating that for a long model run time, the trajectories could
be simulated by the less computationally demanding Wiener
process, giving approximately the same result. The parame-
ter estimation technique, however, would then have to be
adjusted to compensate for the along-track correlation.

A consequence of assuming a diffusion approximation as
represented by the OU model is that the fish will continue to
spread (diffuse) as t – t0 gets large. In some cases, the fish
has a preferred depth and location, and our model does not
capture this. The preferred depth could, for example, be
modelled by an advection term directed towards the pre-
ferred location. Another way to restrict the diffusion would
be to let the along-track autocorrelation curve be negative
for some values of t – t0 (Okubo 1986, his fig. 2). However,
we assume that these processes occur on a different time
scale than the buoy–vessel-passing time scale, and since the
data do not suggest another functional form of this curve,
we argue that the OU model is appropriate in our case.

In an earlier version of the paper, we computed a back-
ward-propagating solution using the Kolmogorov backward
formulation based on the diffusion equation for the density
(Cox and Miller 1970, sec. 5.6). Reformulating the problem
to a density model has the advantage that the result will be
independent of the number of individuals in the simulations.
Running the model backwards is also appealing because a
single model run would give us the probability map of avail-
ability to the trawl. The reason for abandoning this approach
was twofold. First, a density model requires solving numeri-
cally a set of partial differential equations, and in a few
cases divergence and instability occurred. When running the
model backwards, there is also the issue of boundary condi-
tions. Since the advection brings the fish towards the bot-
tom, a lot of density is held at the bottom channel when
running forward. When we run it backward, this density is
lifted off the bottom by the advection, giving room for the
diffusion to work. We have not studied this extensively, but
together with the above-mentioned concerns, we abandoned
the density model and chose the particle model based on the
stochastic differential eq. 2 instead. Another advantage with
the particle model is that more complex, individual-based
behaviour is simpler to include.

No dependence between individuals is assumed in this
model. This may be approximately true for species like At-
lantic cod and haddock, but is clearly not valid for schooling
pelagic species like, e.g., Atlantic herring and mackerel
(Scomber scombrus). Correlation between individuals can
easily be implemented in an individual-based model. The
simplest approach would be to separate the stochastic term,
Z(t) in eq. 2 into two separate terms: one for each individual
and one common for all individuals. More sophisticated ap-
proaches could also be thought of, where zones of attraction,
repulsion, and polarisation could be defined (Aoki 1982; Rey-
nolds 1987; Huth and Wissel 1992). Such an approach could

Fig. 9. Four initial positions, each containing five individuals
across the echo beam at t = 0, are shown as diamonds (^), with
the resulting particle positions at t = 10 min shown as asterisks (*),
and the associated estimated probabilitybPfEtrjEeb; Z t0 ¼ � 285g ¼ 0:2. To view the video, see the HTML
Web version of this paper at cjfas.nrc.ca.

Fig. 10. The estimated probability bPfEtrjEeb; Zt0 ¼ z0g as a func-
tion of z0.
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give an indication of the importance of schooling by estimat-
ing the degree of common movement as a value of a parame-
ter. Ideally, this should be estimated for different species, and
then simulations could be carried out to investigate the differ-
ence in catchability for these species. Since we lack the data
for such a study, and since demersals do not display strong
schooling behaviour, we have chosen not to implement it in
this paper.

The effective diffusion defined in eq. 17 is surprisingly
insensitive to the degree of smoothing. The reason for this
is that the effective diffusion is dependent on the speed and
the rate of directional change (along-track correlation) of the
individuals (Okubo 1986, his eq. III.12). If the smoothing is
low, the curved paths lead to high speed estimates, but low
along track correlation estimates, and vice versa. These ef-
fects cancel each other and explain the low dependence on
the strength of the smoothing operator.

The model is based on a projection of fish movement
onto the athwartship–depth plane, ignoring the alongship di-
mension. This is warranted by the large difference in vessel
speed (1.5 m�s–1) compared with the mean in the alongship
velocity component of the fish, which varies between 0 and
0.03 m�s–1 (Handegard and Tjøstheim 2005, their fig. 1a). If
we further assume that the diffusion along the alongship axis
varies slowly and that the fish density is fairly uniform, the
net number of fish that are brought in or out of the model
plane by diffusion is close to zero. A total model run time
of 20 min with a mean speed of 0.03 m�s–1 will transport
the fish 36 m. As a comparison, the vessel travels 1800 m
in the same time interval.

There are two reasons for ignoring the parameter depend-
ence on the athwartship coordinate y. First, the data is not
resolved well in y, and second, an assumed dependence had
neglible effect on the result. More precisely, we initially as-
sumed a Gaussian weight function on the parameters as a
function of y, but since the relevant processes occur close
to the trawl and vessel, reducing the vessel effect at a dis-
tance had virtually no influence on the final result.

A problem using acoustics, both for behavioural observa-
tions and echo integration, is the acoustic dead zone close to
the bottom (Ona and Mitson 1996). Defining catchability co-
efficients will be erroneous without addressing the dead zone
problem. We have circumvented this by including a unde-
tectable proportion pd of the fish population in the dead
zone. It is also worth noting that we do not consider altered
behaviour in the nondetectable portion of the water column,
although we do recognize that portions of the initially detect-
able fish swim into the dead zone. If the behaviour during
that process is dramatically changed, it will introduce a bias.

Applications
We have been able, based on a model with parameters es-

timated from data, to compute a probability map describing
where the fish available to the trawl are coming from, and
we have estimated the probability that a fish detected by the
echo sounder at a given depth is available to the trawl. For a
discussion of the observed average reaction pattern, we refer
again to the discussion in Handegard and Tjøstheim (2005).

For the vertical profile depicted in Fig. 4, and with the as-
sumptions described in the Materials and methods section,
the ratio Ntr,A / Neb,A = [(1 – pd)8.4 + 50 pdhd]/[(1 – pd)37]

(from eqs. 18 and 19) indicates the relative efficiency be-
tween trawl and acoustic based on that vertical profile and
our model assumption.

In the extreme case of no fish in the acoustic dead zone,
the acoustic system encounters four times as many fish as
the trawl (pd = 0 yields Ntr,A / Neb,A = 0.23). If we postulate
the same numbers of encounters in both systems (Ntr,A =
Neb,A), we may equate eqs. 18 and 19 and solve for pd. As-
suming hd = 1, we get pd = 0.36. This means that 36% of the
fish must be found in the acoustic dead zone for the trawl to
encounter more fish than the acoustic system, which is unre-
alistic. Consequently, the acoustic system detects a larger
fraction of the stock. However, there is in general lower er-
ror residuals for trawl indices than the acoustic indices in
the Barents Sea compared with the assessment models
(ICES 2008, their fig. 3.5). Assuming that our results hold
true, these discrepancies are not caused by lower availability
to the acoustic system than to the trawl.

We have shown how observations of swimming trajecto-
ries can be used to determine parameters of trawl efficiency
models, using Dickson’s (1993a) model as an example. Us-
ing the vertical profile for the Barents Sea experiment, we
obtained kh3kv3 = 0.17(1 – pd) + pdhd. This is quite low un-
less there is a substantial part of the biomass in the dead
zone. Comparing this result with the undisturbed case, we
get kv3 = 0.15 + pd(kh3 = 1), i.e., quite similar for pd values
around 0.1. The catchability is quite similar for these two
situations, even if there is vertical herding when assuming
nonstationary fish. Consequently, horizontal behaviour is
important. We gain fish by vertical herding and lose fish
through horizontal escapement.

The typical fishing height predicted by our model is lower
than those of previous studies (Aglen 1996; Hjellvik et al.
2003). They rely on the correlation between the converted
catches to acoustic density and the cumulative echo energy
up to a certain height above bottom. The height above bottom
where the correlation peaked was taken as the typical fishing
height of the trawl. The peak varied between 10 and 50 m,
depending on species, day–night, year, etc., but the correla-
tion was generally low. Hjellvik et al. (2003) also tried to fit
a catchability function to the data, where the catchability de-
creases with depth above bottom (their fig. 6), but the fit was
generally poor. There may be several reasons for the discrep-
ancy between our results and theirs. First, the definitions are
different. They rely on correlations, whereas we rely on prob-
ability statements and simulations. Second, we use a different
data set. Third, we may lose fast-swimming fish in the track-
ing, resulting in an underestimate of the vertical advection
and consequently underestimate the fishing height.

If we use the typical vertical profile to initialize our
model at t = 0 (i.e., assume that the undisturbed vertical pro-
file is valid for vessel passage) and calculate the probability
for a fish being available to the trawl when seen on the
sounder, we getZ 0

z0¼�300

gðz0ÞbPfEtrjEeb; Z t0 ¼ z0g dz0Z 0

z0¼�300

gðz0Þ dz0

¼ 0:092

This number is low and may explain the low correlation be-
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tween catch and acoustics in the previous works. This effect
would be less pronounced if the horizontal distribution is
uniform. Then the correlation between trawl and acoustics
may increase, since you are not required to catch exactly
the fish you see.

In both of the above cases, vertical herding and horizontal
avoidance play a critical role. In the traditional approach, it
is (correctly) assumed that fish are herded downwards, but
the reduction of fish available due to horizontal movement
out of the trawl path is not recognized. This is consistent
with the increased efficiency of industrial pair trawling.

Perspectives
Our approach does not separate between different size

groups and species, which is especially important when us-
ing the survey data for relative indices of abundance. More-
over, we have not stratified our data on different years and
locations, etc. Initially this was tried, but with no clear-cut
results (Handegard 2004, paper IV). One explanation may
be that the available data set is too small and too noisy to
separate these effects from the general trend. The fish re-
sponse to the vessel and gear may be highly variable, de-
pendent on the fish motivation. The motivation may change
based on predator presence, prey availability, etc. (Pitcher
1993), causing further variability. This may result in differ-
ent reaction patterns between years and is named the
‘‘survey condition’’ in Godø and Wespestad (1993). Conse-
quently, investigating the variable effect is more important
than the mean effect when using the survey data as annual
indices of abundance. For estimates of absolute abundance,
however, the absolute observation volume is necessary to re-
late catch to density.

We have shown how the data from experiments can be
translated into parameters important for the survey. We
have also shown the implications of the observed reaction
pattern. To go from here to an estimate of absolute abun-
dance, the challenge is to design methods to continuously
monitor or evaluate the validity of the model results. In a
similar way that echo sounders are calibrated, the fish be-
haviour needs to be calibrated. This is not the main focus in
this paper, but it is hoped that our results could promote fur-
ther progress along the lines of absolute abundance estima-
tion. For a more thorough discussion of this point, we refer
to Handegard (2004, pp. 20–24).
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List of symbols

x = (y, z) model coordinates (upwards is positive z)
x alongship direction (not used in the model)

t time before or after vessel passing; negative
time is before passing

v vessel speed
Xtk ¼ ðY tk ; Z tk Þ ¼ ½X1ðtkÞ; X2ðtkÞ�; stochastic variable

of the fish position
X0tk ¼ ðY

0
tk
; Z 0tk Þ ¼ ½X

0
1ðtkÞ;X 02ðtkÞ�; stochastic variable

of the fish position without the mean drift
Ut individual random deviation from the mean

velocity
m = (m1, m2) the mean fish velocity (advection)

Z(t) two-dimensional (2D) Wiener process
B(z,t) Ornstein–Uhlenbeck (OU) parameter matrix

for the velocity correlation
bij elements of B

S(z,t) OU parameter for the random change in velo-
city

sij elements of S
k time step
t0 initial time

u0 the initial velocity for a track minus the mean
velocity

x0 = (y0, z0) the initial position for a track
Dt the time difference between two time steps in

an observed track
Eeb the event of being within Aeb at teb
Aeb the area defining the echo beam in the 2D

plane
teb the time when the vessel-mounted echosoun-

der is passing the 2D plane
Etr the event of being within Atr at ttr
Atr the area defining the trawl availability window

in the 2D plane
ttr the time when the trawl doors is passing the

2D plane
N number of simulated individuals for each run

Neb the number of simulated individuals satisfying
Eeb

Ntr the number of simulated individuals satifying
Etr

Neb,A echo beam encounters
Ntr,A trawl encounters

N0
tr;A nondisturbed trawl encounters
A the 2D model domain

P{event} the probability of an event to occurb hat symbol; indicates that the variable is esti-
mated from data

Dtmax the maximum Dt used in the curve fitting
yjk = (y1jk, y2jk) the position of track j at time tk

Ak the set of tracks j present at time tk
D lag in terms of time steps (integer)
si integrated mean movement
h the bandwidth parameter for the kernel

smoothing function
Fi estimate of Ef½X0iðtkþDÞ � X0iðtkÞ�2jX2 ¼ zg
zd upper bound of dead zone
zh head line height
yb trawl door spread

kh3kv3 parameters in the Dickson (1993a) model
hd dead zone behaviour
pd proportion of fish originally in dead zone

ttow tow time
ra horizontal area density

f(z0), g(z0) relative vertical profiles
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Appendix A. Estimating the model parameters based on tracking data
The data for each track is of the form yjk = (y1jk, y2jk), where y1 is the track position in the horizontal coordinate (y), y2 is

the coordinate in the vertical direction (z), j denotes track number, and k denotes the position at time step k along the track,
corresponding to the time step tk. Recall that we used Xtk ¼ ðY tk ; Z tkÞ ¼ ½X1ðtkÞ; X2ðtkÞ� for the vector process representing the
fish track including the drift term m, and X0tk ¼ ðY

0
tk
; Z 0tkÞ ¼ ½X

0
1ðtkÞ;X01ðtkÞ� for the process excluding the drift term. Each track

is, of course, not present in the coordinate system for all times tk. It is therefore useful to define Ak, the set of tracks j present
in ping k.

First we estimate the drift term m(z, t) = (m1, m2) of eq. 1 for each tk and depth z. For time step tk and depth z, we start by
introducing for i = 1, 2:

ðA1Þ bsiðtk; z;DÞ ¼
Z tkþD

tk

miðz; sÞ ds ¼

X
j2fAk[AkþDg

fðyij;kþD � yijkÞKhðz� y2jkÞgX
j2fAk[AkþDg

Khðz� y2jkÞ

as an estimate for the integrated mean movement in each dimension. Here K is a kernel smoothing function centered on z,
D represents the lag in terms of time steps (it is an integer, not to be confused with Dt), and Ak and Ak+D are the set of tracks
present in time steps tk and tk+D. We have used a Gaussian kernel function KðsÞ ¼ 1ffiffiffiffi

2p

p expð� 1
2
s2Þ and Kh(s) = h–1K(s/h),

where h is a bandwidth parameter that has been set to 35 m. Equation A1 then represents an estimate of E{Xi(tk+D) –
Xi(tk) | X2 = z}, which is an advection term for the mean movement of the individuals. The resulting estimate of the mean
motion bmiðz; tÞ ¼ bsiðtk; z; 1Þ=ðtkþ1 � tkÞ, as presented in eq. 1, is obtained by setting D = 1 and dividing eq. A1 by the time
difference tk+1 – tk.

The next step is to estimate the diffusion parameters sii and bii. As a first step, we estimate nonparametrically the left-hand
side Ef½X 0iðtkþDÞ � X0iðtkÞ�2jX2 ¼ zg of eq. 5, representing time tk and depth z, by

ðA2Þ Fiiðtk; z;DÞ ¼

X
j2fAk[AkþDg

f½yij;kþD � yijk �bsiðtk; z;DÞ�2Khðz� y2jkÞgX
j2fAk[AkþDg

Khðz� y2jkÞ

for i = 1,2, representing the athwartship and depth component with the estimated mean motion subtracted. The parameters Fii
are dependent on the time step lag D, and the form of this curve is the basis on which the models are chosen (see Fig. A1).
In the figure, the curves are presented by dividing F11 and F22 by (tk+D – tk). The curve seems to reach an asymptotic value
for larger time lags, which is consistent with eq. 17 when divided by Dt. For a Wiener process, the variance is proportional
to Dt. This would be a horizontal line in this plot and is not in agreement with our data.

We also estimated the covariance term Ef½X01ðtkþDÞ � X01ðtkÞ�½X02ðtkþDÞ � X02ðtkÞ�jX2 ¼ zg of the residual process X0t by

ðA3Þ F12ðtk; z;DÞ ¼

X
j2fAk[AkþDg

Y
i2f1;2g

	
yij;kþD � yijk �bsiðtk; z;DÞ


" #
Khðz� y2jkÞ

( )
X

j2fAk[AkþDg
Khðz� y2jkÞ

where P denotes product between the following terms. Based on the small magnitude of the estimated F12, the terms b12 and
s12 in eqs. 3 and 4, respectively, were neglected.

Outliers are removed before implementing the operations of eqs. A2 and A3. A difference D = yij,k+D – yijk is defined as an
outlier if D < q1 – 1.5 IQR or D > q3 + 1.5 IQR, where q1 and q3 are the first and third quartiles, respectively, and IQR = q3 –
q1 is the interquartile range in the distribution of D.

To estimate the OU parameters sii and bii for a given time tk and depth z, the estimates of Fii (eq. A2) are fitted to the
functional form of the variance term of the OU process (eq. 5) by minimizing

ðA4Þ min
fsii;biig

X
D

s2
ii

b3
ii

½biiðtkþD � tkÞ � 1þ exp½�biiðtkþD � tkÞ�� � Fiiðtk; z;DÞ
� �2

wiðtk;DÞ
( )

for different tk and z. Note that the parameters sii and bii depend on time and depth, but are assumed constant for each tk and
z. Here i = 1,2, Fii is taken from eq. A2, and wiðtk;DÞ ¼ N=SDjf½yij;kþD � yijk �bsðtk; z;DÞ�2g is a weight function, with N
being the number of tracks present in both bins Ak and Ak+D, and with SDj is the standard deviation taken as j varies for a
fixed i, D, and tk. The parameter estimates are found by minimizing eq. A4 using the Nelder–Mead simplex (direct search)
method (Lagarias et al. 1998) implemented in the Matlab (c) function fminsearch. Examples of the curve fitting are given in
Fig. A1. Note that the asymptotic value of the fitted curve is equivalent to the effective diffusion described in the Materials
and methods section.
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The resulting parameters as a function of depth and time
are further processed by first removing outliers (same defini-
tion as above). If the parameter estimation by fminsearch
fails for a time–depth pair, linear interpolation in time is
used as an estimatefor that pair. After the estimation, a run-
ning mean filter of ±3 min is applied to further smooth the
data in the time dimension.

The result of these procedures are the parameters m, sii,
and bii resolved in z (depth) and tk (time before or after
vessel–buoy passing), and the parameters are estimated for
all the different estimators or degrees of smoothing de-
scribed in the Materials and methods section.

Reference
Lagarias, J., Reeds, J.A., Wright, M.H., and Wright, P.E. 1998.

Convergence properties of the Nelder–Mead simplex method in
low dimensions. SIAM J. Optim. 9(1): 112–147. doi:10.1137/
S1052623496303470.

Fig. A1. An example of fitting curves for (a) F11 /Dt and
(b) F22 /Dt, where Dt = tk+D – tk. The example is taken for t = –1 s
and d = –260 m, and the corresponding parameter estimates arebs11 ¼ 0:061 and bb11 ¼ 0:1 for panel (a) and bs22 ¼ 0:062 andbb22 ¼ �0:018 for panel (b).
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