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ABSTRACT 12 

Changes in size and age at maturation of many exploited fish stocks have been investigated 13 

and the influences of environmental factors and exploitation have often been inferred, but not 14 

explicitly investigated. Here we determine probabilistic maturation reaction norms (PMRNs) 15 

for Barents Sea haddock (Melanogrammus aeglefinus) using generalized linear models 16 

(GLM) and mixed effect models (GLMMs), which account for the correlation among samples 17 

within a tow station, and investigate the effects of fishing mortality, environmental factors 18 

(NAO, water temperature, and salinity), and potential density dependence or species 19 

interaction effects. We found little evidence of a consistent trend in maturation tendencies for 20 

Barents Sea haddock for cohorts 1983–2003, ages 4–6 years. Female haddock matured at 21 

larger lengths for a given age than males, but overall patterns were similar for both sexes. The 22 

GLMM approach gave consistently higher PMRN midpoint estimates than the GLM 23 
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approach, which indicated that PMRNs that do not account for correlations within the data 24 

may bias estimates. Environmental factors, rather than exploitation, density dependence, or 25 

species interactions, were responsible for the observed changes in size and age at maturation 26 

in Barents Sea haddock during the late 1980s through early 2000s. Little evidence of 27 

fisheries-induced evolution was found in these fish over the time period investigated. The lack 28 

of a significant temporal trend in maturation may be due to several challenges in estimating 29 

representative population parameters for this stock, the trait change being in a period of stasis 30 

or reversal, or adaptation by the fish to higher exploitation in the past resulting in negligible 31 

evolutionary selection during the study period when exploitation has been more moderate. 32 

  33 

Keywords: Barents Sea, haddock, life history, maturation, Melanogrammus aeglefinus, 34 

probabilistic maturation reaction norms 35 
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1. Introduction 37 

Harvesting of wild populations is not random selection. Humans are capable of generating 38 

relatively rapid phenotypic changes within harvested populations by targeting individuals of 39 

certain sizes, age classes, or behaviours (Hendry et al., 2008; Darimont et al., 2009). 40 

Concentrated and high selection pressure on individuals can result in genetic changes in the 41 

population if the selected phenotype has a partial genetic basis (Miller, 1957; Ricker, 1981; 42 

Nelson and Soulé, 1987; Rijnsdorp, 1993a; Law, 2000). Life history traits that have a partial 43 

genetic basis and have been shown to evolve under selective pressures include age and size at 44 

maturation (Silliman, 1975; Reznick et al., 1990; Reznick and Ghalambor, 2005), 45 

reproductive effort (Rijnsdorp et al., 2005), growth (Conover and Munch, 2002; Conover et 46 
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al., 2005; Neuheimer and Taggart, 2010), and fecundity (Thomas et al., 2009). Traits also 47 

evolve in response to changing environmental conditions, which include density dependent 48 

growth responses resulting from changes in intraspecific or interspecific competition, 49 

oceanographic conditions, and changes in prey availability or type (Stokes et al., 1993). 50 

Pinpointing whether trait change is a result of phenotypic plasticity or genetic evolution must 51 

either depend on molecular genetic analysis or common-garden experiments, which are 52 

relatively rare, or weaker approaches, such as regression or reaction norm methods 53 

(Dieckmann and Heino, 2007). 54 

Probabilistic maturation reaction norms (PMRNs) have been suggested as a method to 55 

disentangle the effects of phenotypic plasticity from genetic effects on maturation (Heino et 56 

al., 2002b). By describing the probability of becoming mature as a function of age and size, 57 

PMRNs are thought to remove the main effects of varying mortality and juvenile growth rates 58 

(Dieckmann and Heino, 2007). However, the PMRN approach has limitations. Reaction 59 

norms for age and length at maturation do not account for factors other than growth-related 60 

phenotypic plasticity in maturation (Dieckmann and Heino, 2007; Uusi-Heikkilä et al., 2011), 61 

nor do they disentangle all effects of growth variability on maturation, neither in theory 62 

(Heino and Dieckmann, 2008) nor in practice (Morita and Fukuwaka, 2006; Morita et al., 63 

2009). When possible, other variables should be included in the maturation reaction norm 64 

estimation, and some work has investigated higher-dimensional reaction norms, which 65 

included the effects of condition and temperature on the maturation process (Baulier et al., 66 

2006; Grift et al., 2007; Mollet et al., 2007; Vainikka et al., 2009a). Yet imperfect 67 

disentanglement does not make the PMRN approach invalid. PMRNs remove the plastic 68 

effects of varying average juvenile somatic growth rates from the description of the 69 

maturation schedule (Dieckmann and Heino, 2007), and this is already an improvement over 70 

indices that are sensitive to growth variability, such as maturity ogives. Often unaccounted 71 
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effects, such as condition and water temperature, can be seen as contributing “mere” noise to 72 

estimation. However, when unaccounted effects show trends, they may introduce spurious 73 

trends to PMRNs or mask true trends (Dieckmann and Heino, 2007; Heino and Dieckmann, 74 

2008). As with any other statistical tool, results from PMRN analyses must be interpreted 75 

critically. 76 

PMRNs have been used to investigate changes in size and age at maturation for many 77 

commercial fish stocks (e.g., Heino and Dieckmann, 2008; Wang et al., 2008; Pardoe et al., 78 

2009; Vainikka et al., 2009a; Vainikka et al., 2009b; van Walraven et al., 2010; Swain, 2011), 79 

and the general concession has been that an important factor for the observed changes is 80 

exploitation. Furthermore, fishing pressure explained the observed changes in life history 81 

traits for the majority of the 37 fish stocks investigated by (Sharpe and Hendry, 2009). Most 82 

PMRN studies assessing changes in size and age at maturation have not explicitly evaluated 83 

the contribution of environmental factors, although there are a few exceptions (e.g., Heino et 84 

al., 2002c; Mollet et al., 2007; Pardoe et al., 2009; van Walraven et al., 2010). 85 

Changes in PMRNs have been or currently are being investigated for two of the main 86 

commercial species in the Barents Sea, Northeast Arctic cod (Gadus morhua; Heino et al., 87 

2002c) and capelin (Mallotus villosus; L. Baulier, in prep.). Haddock (Melanogrammus 88 

aeglefinus) is the second most important commercial groundfish species in the Barents Sea. 89 

Stock dynamics are characterized by large cyclic fluctuations (Olsen et al., 2010) and strong 90 

recruitment pulses, thought to be partially linked to water temperatures (ICES, 2008). The 91 

exploitation rate of haddock has been variable, with a peak catch of 322,000 t occurring in 92 

1973; catches in the last decade have been in the range of 150,000 – 200,000 t (ICES, 2010). 93 

Haddock is currently classified as “harvested sustainably”, although unreported discarding is 94 

thought to be an issue (ICES, 2010). The main spawning grounds are located to the west and 95 
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south of the Barents Sea, along the Norwegian shelf edge (Solemdal et al., 1989), and mature 96 

fish typically migrate from the central and eastern areas of the Barents Sea. Spawning is 97 

between March and June, with most fish spawning at the end of April (ICES, 2010). Age at 98 

50% maturity in haddock has fluctuated since 1980, but does not show a consistent trend 99 

(ICES, 2010). 100 

Here we investigate whether Barents Sea haddock show evidence of changing age and size at 101 

maturation between 1981–2009. The stock has been exploited at a higher rate for several 102 

decades prior to investigation (ICES, 2010). We use PMRNs to analyze temporal trends in 103 

maturation tendency, where the reaction norm method describes the probability that an 104 

immature fish will mature during a given time interval and at a certain size and age (Heino et 105 

al., 2002b). Since the approach accounts for most of the effects of phenotypic plasticity in 106 

growth, we investigate secondary factors, usually not included in PMRN analyses, that might 107 

explain any observed trends; these included the effects of fishing mortality, environmental 108 

factors from three areas of the Barents Sea (water temperature and salinity), the North 109 

Atlantic Oscillation (NAO) index, and potential density dependence or species interaction 110 

effects. We use both generalized linear models and generalized linear mixed models. 111 

Generalized linear models are the method typically employed in PMRN analyses because of 112 

their ease of use; however, generalized linear mixed models naturally allow accounting for 113 

correlations within the data, which can lead to incorrect statistical conclusions if ignored 114 

(Smith et al., 2009). We used mixed models to incorporate the knowledge that size, age, and 115 

maturation status of fish sampled from the same station in a given year are likely highly 116 

correlated and to investigate if ignoring such correlation led to large differences in maturation 117 

estimates and trends. 118 

2. Methods 119 
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Data were collected by the Institute of Marine Research (Bergen, Norway) during the winter 120 

Barents Sea research surveys (late January–early March), in 1981–2009. Immature and 121 

mature fish were identified based on the maturation status of their gonads. All fish of 122 

maturation stage 1, without evidence of spawning zones on otoliths, were considered 123 

immature. Newly matured fish (recruit spawner) and repeat spawners were differentiated on 124 

the basis of otolith patterns, or the number of spawning zones apparent on the otolith; this is 125 

similar to the procedure used for determining cod (Rollefsen, 1933) and halibut 126 

(Hippoglossus hippoglossus; Devold, 1938) recruit spawners. Fish were retained in the 127 

analysis if the otolith readability scores were 1 (zones counted and measured with certainty) 128 

or 2 (zones may be counted, but not measured). 129 

Analyses were restricted to ages where first-time spawning fish appeared in the data. Data 130 

were restricted to cohorts 1983–2003 and ages 4–6 for both sexes on account of too few data 131 

for recruit spawners from other cohorts and ages. Approximately 3,000 recruit spawner and 132 

10,300 immature fish measurements were used in the analyses (Table A.1).  133 

The survey is thought to disproportionately target the immature fraction of the stock as mature 134 

fish are beginning to migrate to spawning areas at this time (Aglen et al., 2005). Therefore the 135 

proportions of immature and maturing fish in the survey data may not reflect the true 136 

proportions in the population. In this scenario, the length at maturation estimate will be biased 137 

high because the distribution is skewed towards immature fish. To account for potential biases 138 

in sampling, immature fish were down-weighted by the ratio of the proportion of maturing 139 

fish estimated from the ICES maturity ogive for the joint Russian-Norwegian winter survey 140 

combined with the Russian autumn survey (ICES, 2009) to that estimated only from the 141 

winter survey data. The ogives estimated from the combined autumn and winter survey data 142 
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are believed to better represent the proportions of immature and mature fish. The proportion 143 

of maturing fish m(a) was estimated from the maturity ogive o(a) at age a and a-1 as:  144 

( ) ( ) ( )
( )11

1

−−
−−=

ao

aoao
am        (1) 145 

(Barot et al., 2004). If data from the Barents Sea winter survey were representative of the 146 

stock, then the ratio would equal one and no weighting would occur.  147 

The amount of area surveyed was standardized from 1981–1993, after which it was expanded 148 

and the amount of coverage depended on ice extent, Norwegian access to the Russian EEZ (or 149 

vice versa), or Russian involvement in the survey (coverage of Russian waters by Russian 150 

vessels; details in Aglen et al., 2005). To account for the changing survey area, the ratio of 151 

area covered in a particular year to the maximum area surveyed (all years; ICES, 2009) was 152 

used to weight the proportions of maturing fish. Maximum area was from the 1995 survey. 153 

The effects of weighting the data were tested in a sensitivity analysis by 1) ignoring the 154 

potential unrepresentative sampling of juvenile relative to mature fish, 2) ignoring the change 155 

in areal extent of the survey, and 3) removing both forms of weighting. Weighting terms that 156 

accounted for these factors were removed sequentially from the final model and the effects on 157 

model fits, residual deviance, the random intercept term, and PMRN midpoints were 158 

investigated. The sensitivity analysis was only performed on the generalized linear mixed 159 

model. 160 

2.1 Probabilistic maturation reaction norm method  161 

The direct method of estimating PMRNs developed by (Heino et al., 2002b) was adapted for 162 

use with generalized linear mixed models (GLMMs). A GLMM with a binomial error 163 

distribution and logit link function, a random intercept term, data weights as defined above, 164 
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and the Laplace approximation of likelihood were used (Bates and Maechler, 2010). The 165 

Laplace approximation allows the use of likelihood-based inference (Bolker et al., 2009), 166 

which was necessary for determining model choice. Likelihood ratio tests are adequate for 167 

testing fixed effects (model selection) in GLMMs when the ratio of the total sample size to 168 

the number of fixed-effect levels being tested is large (Pinheiro and Bates, 2000) and the 169 

number of random-effect levels are large (Demidenko, 2004; Bolker et al., 2009). The full 170 

mixed model with all possible interactions and a random intercept was the base model. The 171 

random intercept term was a unique station + year identifier; stations are pre-defined for the 172 

bottom trawl survey in the Barents Sea (see Aglen et al., 2008) for details and station 173 

placement). Haddock distribution appears to be based on size and/or age and distributions are 174 

relatively consistent over time (Aglen et al., 2000; Aglen et al., 2005; Aglen et al., 2008). The 175 

random intercept term implies that the probability of a fish becoming mature at a given station 176 

in a given year is correlated with other fish of the same size and age at that station and time, 177 

and indicates that increasing the number of samples within a station provides less new 178 

information than sample size would normally signify. This correlation has been shown to be 179 

positive for maturity ogives (Korsbrekke, 1999) and other parameters (Pennington and 180 

Vølstad, 1994). Model fits, standard errors of parameter estimates, and residual plots were 181 

also used to assess models. 182 

PMRNs were also estimated with generalized linear models (GLM) for comparison with 183 

GLMM models. GLMs treat each fish as an independent sample and any correlations between 184 

samples within a station are ignored; this is how data are typically treated when estimating 185 

probabilistic maturation reaction norms. Data were under-dispersed for GLM models, thus a 186 

quasibinomial error distribution with logit link function was used. The quasi-AIC (QAIC) was 187 

estimated as Deviance/Dispersion + (2 * (df + 1)) where df is the number of degrees of 188 

freedom (Burnham and Anderson, 2002).  189 
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For all models, length was included as a continuous variable, while age and cohort were first 190 

fit as factors and then as continuous variables. Once a model using only length, age, cohort, 191 

and interaction terms was chosen, other explanatory factors were added. Likelihood ratio tests 192 

were again used to compare models with additional explanatory terms. Models were also 193 

assessed using standard errors of parameter estimates and residual plots.  194 

2.2 Randomization tests and confidence intervals 195 

Randomizations were used to investigate if the observed differences for sex, cohort, and age 196 

in the maturation reaction norms were real (Barot et al., 2004). For example, the hypothesis 197 

that males and females had different PMRNs was tested by creating a new data set, where sex 198 

values were randomly assigned to individuals within each cohort and age. Within the new, 199 

randomized datasets, the probability of maturing was modelled using GLMs, with a 200 

quasibinomial error structure and logit link, and included length as a continuous variable and 201 

data weights (as defined above). The randomization procedure was repeated 1000 times and 202 

the likelihood ratio F statistic, testing the sex effect, was collected. The effect was considered 203 

significant if less than 5% of the randomizations led to a higher value of the test statistic than 204 

that computed from the original data. A similar procedure was also used to test whether 205 

cohorts or ages had different reaction norms. GLMs, and not GLMMs, were used because 206 

while both models gave similar results, GLMs took much less time to run (minutes per model 207 

as opposed to days). 208 

Confidence intervals for the length at 50% probability of maturing (Lp50) were also estimated 209 

with bootstrapping and randomization approaches. Tows were randomly resampled within a 210 

year to recreate a new data set from which reaction norm estimates were derived. This process 211 

was repeated to obtain 1000 estimates of the reaction norm, and the distribution of the 212 

endpoints was then used to derive the 95% confidence intervals (Manly, 1991). 213 
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2.3 Explanatory factors  214 

Environmental data were extracted from databases at the Institute of Marine Research and 215 

were chosen to represent habitat of haddock lifestages and their food (Olsen et al., 2010). 216 

Oceanographic data from the Fugløya-Bear Island transect (70°30' N, 20°30' E – 74°15' N, 217 

19°10' E, 0–200 m) provided an estimate of temperature and salinity from the influx of 218 

Atlantic water and are considered representative of the western Barents Sea (Stiansen et al., 219 

2005). Water temperature from the Vardø-North section (31°13' E, 76°30' N – Vardø) was 220 

used to represent the central part of the Barents Sea (Ingvaldsen et al., 2006), while data from 221 

the Kola transect (33°00' E, 77°30' N – 72°30' N, 0–200 m) provided an indicator of thermal 222 

and salinity conditions for the southern and eastern Barents Sea (Bochkov, 1982). The North 223 

Atlantic Oscillation (NAO) winter index was used as a measure of the strength of large-scale 224 

atmospheric circulation (www.cgd.ucar.edu/cas/jhurrell/indices.html). Positive anomalies 225 

appear to be related to northward shifts of the Gulf Stream, more frequent and intense storms 226 

in the vicinity of the Norwegian Sea (Hurrell and Deser, 2009), and greater inflow of warmer 227 

water into the Barents Sea (Hurrell and Dickson, 2004). The total estimated biomass of cod, 228 

haddock, capelin and ratio of capelin to cod biomass were used to represent potential species 229 

interactions. Capelin and cod were included because capelin is the primary fish prey of 230 

haddock, while cod are known to include a proportion of small haddock in their diet, 231 

especially in years of low capelin biomass (Stiansen et al., 2005; Olsen et al., 2010). The ratio 232 

of capelin to cod biomass was used as an indicator of higher predation upon haddock. The 233 

direct effect of fishing on reaction norms was tested by including fishing mortality (F, year-1), 234 

which was a proxy for the strength of selection imposed by the fishery. Haddock are regulated 235 

by a TAC, minimum bottom trawl mesh size of 135 mm (125 mm in the Russian EEZ), 236 

sorting grids since 1997, and a minimum size limit of 44 cm (39 cm in the Russian EEZ; 237 

ICES, 2010). Trawls with a mesh range of 135–140 mm have a 50% retention of haddock of 238 
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47–53 cm average length and have a selection range, i.e., the length range over which 239 

retention increases from 25% to 75%, of 38–66 cm (Halliday et al., 1999; Huse et al., 2000). 240 

Because regulations have remained fairly static over the time period of the study, we assumed 241 

that size selection should have been similar from year to year.  242 

The “decision” to mature occurs long before the process of spawning begins (Wright, 2007). 243 

The maturation process has been suggested to take up to three years for North Sea plaice 244 

(Rijnsdorp, 1993b; Grift et al., 2003) and one year for North Sea haddock (Tobin et al., 2010). 245 

Because the length of time between “deciding” to mature and spawning is unknown for 246 

Barents Sea haddock, the effect of explanatory variables one and two years before first 247 

spawning was tested. For fishing mortality, the effect seven years before first spawning was 248 

also included (lag = 7); this is the generation time for Barents Sea haddock, approximated 249 

using the method of (Froese and Binohlan, 2000) and data from ICES (2010). All explanatory 250 

factors were standardized to a mean of zero and a standard deviation of one, thereby creating 251 

unit-less indices, rescaled around zero (Fig. 1). Correlations between explanatory factors were 252 

tested to ensure highly correlated factors were not included in the same model.  253 

3. Results 254 

3.1 Length-at-age 255 

Average size of immature and recruit-spawning haddock increased with age (Fig. 2). Recruit 256 

spawners were, on average, 4 cm larger than immature fish of the same age. Age 4 fish 257 

showed the largest size differences between immature and mature fish. All ages generally 258 

indicated a stable average size, but showed a sharp increase for cohorts in the mid- to late 259 

1980s, and a decrease in size in the early to mid 1990s. For cohorts from the 1980s, difference 260 

in size between immature and recruit spawning fish was less (e.g., age 4, both sexes) or 261 
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immature fish were larger than recruit spawners (e.g., age 6 males), which indicated sampling 262 

may not have been representative of the population. 263 

3.2 Maturation reaction norm 264 

The sample sizes of recruit spawners were too low to use the full model, which included age, 265 

year, cohort, and all the interaction terms (i.e., age × cohort + length × age + length × cohort 266 

+ length × age × cohort). GLM and GLMM models that best described the probability of 267 

maturing for haddock were the same for fish of each sex: 268 

 Males: logit( ) ( )cohortageccohortcageclengthccmaturation ×++++≅ 43210 , and 269 

 Females: logit( ) ( )agelengthccohortcageclengthccmaturation ×++++≅ 43210 , 270 

where length and age were fit as continuous variables, and cohort was included as a factor 271 

(i.e., a classifying variable). Including the age × cohort interaction was needed to detect age-272 

dependent temporal changes in the probability of being mature, while the length × age 273 

interaction in the female model allowed the width of the reaction norm to become age-274 

dependent and detected length-dependent changes in the probability of maturing. Although 275 

randomization tests showed that no significant differences between ages existed, adding age 276 

to the models improved the fit of the model and was necessary to allow for commonly 277 

observed differences between age-classes.  278 

The environmental terms that best described trends in the probability of maturing differed 279 

between sexes. The Vardø-North section temperature index two years before the maturation 280 

event explained the variation in males (GLMM and GLM results), while water temperature 281 

from the Fugløya-Bear Island section one year and salinity from the Kola section two years 282 

before the maturation event explained the variation in trends in females (GLMM results; 283 

Table 1). Water temperature had a positive effect on maturation whereas salinity had a 284 
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negative one (Table 1). The Kola section salinity-only model appeared to be the better GLM 285 

model for females (Table 1) and the plotted Lp50 estimates did not differ greatly from the two-286 

environmental term model (except for a few cohorts in age 5 and age 6; Fig. 3), indicating 287 

that a more complex model may not be necessary. Exploitation, species interactions, and 288 

density dependence did not explain the variation in estimates for either sex. The trend in Lp50 289 

estimates for both GLMM and GLM models were relatively similar, but GLM estimates were 290 

generally 1–3 cm smaller than GLMM estimates. In other words, not accounting for the 291 

similarity of fish within the same trawl haul meant that Lp50 was underestimated by as much 292 

as 8% for males and 4% for females.  293 

Females matured at a larger size for a given age than males. Females were, on average, 7.8 cm 294 

larger than males when they attained 50% probability of maturing at age 4, 10.3 cm larger at 295 

age 5, and 14.5 cm larger at age 6 when comparing midpoints from the GLMM approach. The 296 

size difference between the sexes at maturation was slightly greater when comparing the 297 

midpoints from the GLM approach: 10 cm for age 4, 11.9 cm for age 5, and 16.4 cm for age 298 

6.  299 

Estimates of reaction norm midpoints for males and females show a similar pattern; Lp50 300 

estimates were smaller for cohorts before 1985 (Fig. 3). After 1985, PMRN midpoints 301 

appeared to oscillate slightly, with lower values in the mid-1990s. A large amount of 302 

uncertainty was apparent. The 1987 and 1994 male cohorts were poorly estimated as a result 303 

of the low number of recruit spawners sampled (Table A.1). For both sexes at age 6, the 304 

models fit poorly for those cohorts where the size of immature fish was equal to or greater 305 

than the size of maturing fish. This could indicate that the sampling was not representative of 306 

the population’s true size structure. Result from t-tests indicated that the slightly increasing 307 
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trend in Lp50 estimates for both sexes and all ages was not significantly different from zero (p 308 

≥ 0.12 for all cases; Table A.2). 309 

3.3 Sensitivity tests 310 

Removing the down-weighting of immature fish (to account for potential oversampling of 311 

immature fish) and the weighting by survey area (to account for changes in the survey) 312 

resulted in poorer model fits, less residual deviance explained, and higher variances 313 

associated with the random intercept term (Table 1). Models without weights were 314 

exceptionally poor fits for both males and females and removal of weighting affected which 315 

explanatory terms improved the fit of the model. For example, removing all weighting from 316 

the female model resulted in no explanatory terms significantly improving the model. 317 

Accounting for differences in the amount of area surveyed each year appeared to be more 318 

important than compensating for the undersampling of maturing fish. However, both 319 

weighting terms were needed in the model, as seen in the higher remaining residual deviance 320 

and random intercept term variance (Table 1). A higher variance in the random intercept term 321 

indicated that the logistic curve estimated for each station had a vastly different intercept than 322 

the final weighted model. 323 

Maturation reaction norm midpoints were lower after accounting for potential sampling 324 

issues. Ignoring that immature fish were most likely overrepresented in the trawl hauls 325 

resulted in midpoints 3–5 cm larger, which was 5–12% larger than midpoints from the model 326 

including all forms of weighting. Removing the weighting by survey area increased PMRN 327 

midpoints by 1–4 cm (2–8%), while using no model weights resulted in maturation midpoints 328 

8–21% larger for fish of a given age. 329 

4. Discussion 330 
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We demonstrate that maturation tendencies of Barents Sea haddock vary sexually (i.e., 331 

females tend to mature at larger sizes for a given age than males), but show no specific trend 332 

over the past three decades. Maturation tendency is variable and appears to reflect, at a 333 

temporal lag, patterns in length at age. Increased length at first spawning has been reported in 334 

haddock following reduced growth and therefore smaller size at age, usually as a result of 335 

high abundance related to periodic strong recruitment pulses (Templeman et al., 1978; 336 

Kovtsova, 1993; Korsbrekke, 1999; Korsbrekke, 2003). This may be an indication that, while 337 

capturing most of the plastic effects of juvenile growth rate variations from the description of 338 

the maturation schedule (Dieckmann and Heino, 2007), not all effects of growth variability on 339 

maturation were removed by the PMRNs. 340 

The probabilistic maturation reaction norm approach has suggested evolution in maturation 341 

for numerous fish stocks (reviewed in Jørgensen et al., 2007; Heino and Dieckmann, 2008; 342 

Sharpe and Hendry, 2009). The majority of these studies have used only age and size to 343 

describe the maturation tendency. Here, we have included information on fishing mortality, 344 

environmental factors, and inter- and intraspecies interactions within the PMRN model to 345 

determine whether this information strengthens the explanatory power of these models. 346 

Important factors for determining maturation in haddock (beyond body length) were western 347 

Barents Sea temperature lagged one year (females), central Barents Sea temperature lagged 348 

two years (males) and south/eastern Barents Sea salinity lagged two years (females). Water 349 

temperature for the two regions was significantly correlated (r = 0.54, p < 0.001) and trends 350 

were similar (Fig. 1a), which may explain why different factors were important for males and 351 

females. When we tested the effect of swapping temperature factors for males and females, 352 

western Barents Sea water temperature lagged one year was highly significant for males (p < 353 

0.001) and central Barents sea temperature lagged two years was significantly related to 354 

trends in females (p = 0.01), but model fits were better in the final chosen models for each 355 
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sex. Temperature has been increasing in the Barents Sea, with some variability, throughout 356 

the period of interest; trends in salinity are similar to trends in temperature. Increased water 357 

temperature can be due to overall higher water temperatures or because there is an increased 358 

inflow of Atlantic water (Loeng et al., 1997), whereas increased salinity may be the result of 359 

greater ice formation and subsequent brine release (Schauer et al., 2002) or increased inflow 360 

of Atlantic water (Stiansen et al., 2005). Atlantic water volume flux has nearly doubled in the 361 

past decade and warmer, more saline water has spread further eastward in the Barents Sea 362 

(ICES, 2008). Increased inflow often results in increased nutrients and subsequent increased 363 

abundance of planktonic organisms (Ottersen and Stenseth, 2001; Stiansen et al., 2005). 364 

Changes in Atlantic inflow may also be reflected in current velocities and effect the transport 365 

of larvae and zooplankton (Loeng et al., 1997). Gjøsæter and Loeng (1987) postulated that 366 

current velocities and resultant transport played a role in large variations in growth of capelin 367 

when water temperatures within the region did not vary annually.   368 

Neither density dependent nor species interaction effects considered here accounted for 369 

significant variability in the PMRN estimates. Environmental conditions have been shown to 370 

override density dependent effects for species near the northern limit of their range (Ottersen 371 

and Loeng, 2000). This is in contrast to what Heino et al. (2002c) found for Northeast Arctic 372 

cod, where maturation in cod was influenced by feeding conditions (the amount of available 373 

prey and high intraspecific competition for that prey), and the findings of Korsbrekke (1999), 374 

who suggested that maturation in haddock was influenced by density dependence. The effect 375 

of fishing mortality on haddock maturation probabilities was explicitly tested within the 376 

reaction norms and was found not to contribute. Using fishing mortality as a proxy for 377 

selection pressure is not as robust as using a metric that describes the size-selectivity of the 378 

fishery. In years of high harvest rates, harvest rates for younger age classes were higher, 379 

indicating age selectivity may exist in the fishery. The relationship between haddock 380 



 17 

maturation and selection pressure warrants further investigation and is the next logical step, 381 

especially since exploitation was higher in the three decades prior to this study. However, we 382 

must reiterate that there is no temporal trend within the maturation reaction norm midpoints in 383 

the past twenty years, indicating that there is little evolution occurring. 384 

The motivation for using generalized linear mixed models, instead of the simpler generalized 385 

linear models, is that the former allow a natural way to account for within-sample correlations 386 

(Smith et al., 2009). Intra-sample correlations lead to effective sample sizes being lower than 387 

the nominal ones, and ignoring this can lead to incorrect statistical inference. In our study, 388 

however, the results from both approaches did not differ in any essential way: the temporal 389 

patterns were similar and the underlying trend was not significantly different from zero. The 390 

GLMM approach, however, did give consistently higher PMRN midpoint estimates than the 391 

GLM approach. Thus, PMRNs that do not account for correlations within the data or nested 392 

design may bias maturation reaction norm midpoints.  393 

Sampling of haddock in the Barents Sea may not be representative of the population. Large 394 

concentrations of mature haddock have been observed to often display pelagic behaviour 395 

during the winter survey (Aglen et al., 2005), which would result in more immature fish being 396 

captured. Mature fish also are often found high in the water column at night (Olsen et al., 397 

2010), which is long in the Barents Sea at the time of the survey. Since the survey operates 398 

over 24-hours, it is possible that there are some catchability issues between day and night 399 

sampling. Immature fish may be overrepresented in the catches also because mature haddock 400 

begin migrating to the spawning grounds at the time of the survey, although it has been noted 401 

that these are mainly the older, mature fish (age 7+; ICES, 2010) and not the ages used in this 402 

analysis. Sampling of maturing individuals for a given age class was relatively consistent, 403 

albeit low, in the analysis. The reaction norm method is considered insensitive to variability in 404 
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sampling intensity or gear size selectivity as long as the maturity proportions remain 405 

unchanged (Heino et al., 2002a; Wang et al., 2008). Given the behavioural changes of 406 

haddock with maturation and the movement of fish to the spawning ground around the time of 407 

sampling, it is possible that the maturity proportions were affected. We attempted to correct 408 

for this by applying a weighting factor to the numbers of immature fish based on the predicted 409 

probability of maturing estimated from maturity ogives. 410 

The changes in length at age of haddock in response to environmental conditions in this study 411 

are similar to that of Korsbrekke (1999, 2003), who restricted his analysis to the central 412 

region of the Barents Sea, an area consistently covered by the Norwegian Barents Sea 413 

groundfish survey in all years. We choose to use all available data and weight by the 414 

proportion of maximum survey area covered to downweight years of less coverage. Growth 415 

changes presented here were also similar to trends in growth data from the Lofoten survey 416 

(Korsbrekke, 2003), which surveys mainly the mature portion of the stock. This provides 417 

some evidence that the winter survey sampling may not be inconsistent with stock dynamics. 418 

Most studies investigating long-term trends in maturation reaction norms have revealed 419 

changes that are suggestive of fisheries-induced evolution (summarized in Heino and 420 

Dieckmann, 2008). Furthermore, other haddock stocks have shown changes suggestive of 421 

fisheries-induced evolution (Neuheimer and Taggart, 2010). That Barents Sea haddock is an 422 

exception to this pattern was unexpected. The lack of a clear trend might be because 423 

consistent maturation changes did not take place during the study period, the trait change is in 424 

a period of stasis or reversal, or that changes occurred, but we were unable to detect them. We 425 

did not have any a priori reasons to expect no maturation evolution in haddock. A possible 426 

explanation is that although no significant trend over time was detected in maturation reaction 427 

norms of Barents Sea haddock, strong selection may have been present earlier: fishing 428 
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mortality in the 1950s was approximately double that of recent years and has steadily declined 429 

(see Fig. 1e). In the thirty years prior to sampling, adaptation to fishing pressure may have 430 

occurred; such rapid adaptation to anthropogenic disturbances, over the time span of a few 431 

generations of the organism, has been increasingly reported (Kinnison and Hendry, 2001; 432 

Hendry et al., 2008; Darimont et al., 2009). Adaptation to past exploitation could have led to a 433 

situation in which selection during the study period was absent or too weak to cause 434 

significant evolutionary change. Variation and reversals in evolutionary trajectories is 435 

common in many contemporary evolution and paleontological studies (Hendry and Kinnison, 436 

1999), and recent experimental work by Conover et al. (2009) suggests that harvested 437 

populations possess the ability to recover from the fisheries-induced evolution. The last 438 

scenario, that we were unable to detect a change that actually took place, could also apply 439 

because several challenges in estimating representative population parameters for this stock 440 

existed – primarily as a result of behavioural changes (and resultant gear selectivity issues) 441 

and emigration from the study area. Nevertheless, we conclude that the most parsimonious 442 

interpretation of our results from the Barents Sea haddock is that maturation in this population 443 

has not evolved during the study period. 444 

5. Conclusions 445 

Changes in maturation of Barents Sea haddock were investigated and multiple potential 446 

drivers examined included exploitation, water temperature, salinity, the North Atlantic 447 

Oscillation, species interactions, and density dependent effects. No significant temporal trends 448 

in maturation exist for the 1983–2003 cohorts, and we could not find evidence for 449 

exploitation driving changes in maturation. Instead, water temperature and salinity appeared 450 

to be the most important variables tested that explained the variation in maturation for both 451 

sexes, on top of the effects of age and length. Possible reasons for the lack of trend suggestive 452 
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of fisheries-induced evolution may be that we were unable to detect a change given the 453 

challenges in estimating sampling parameters, that adaptation to higher exploitation in the 454 

past resulted in negligible evolutionary selection during the study period when exploitation 455 

has been more moderate, or that change in the trait is in a period of stasis or reversal. 456 
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Legends 664 

Table 1 665 

Results of GLMM and GLM models and sensitivity tests (GLMM models only) for the direct 666 

PMRN method. The p-value is from the likelihood ratio test between the no environmental 667 

term model and the model including the environmental term, and coefficient expl. 1 and expl. 668 

2 refer to the coefficients for the environmental terms. Model term abbreviations are: L = 669 

length, A = age, C = cohort, A:C is the age×cohort interaction, L:A = length×age interaction 670 

term, VNT.2 = Vardø North water temperature lagged 2 years, FBT.1 = Fugløya-Bear Island 671 

water temperature lagged 1 year, and KS.2 is salinity from the Kola transect lagged 2 years. 672 

Fig. 1 673 

Standardized plots of explanatory variables used in the analysis: (a) water temperature from 674 

the Kola transect, Fugløya-Bear Island (FB) transect, and Vardø-North section (VN); (b) 675 

salinity from the Kola and Fugløya-Bear Island (FB) transect; (c) NAO index; (d) biomass of 676 

cod, capelin and haddock; and (e) capelin:cod biomass ratio, and haddock fishing mortality 677 

averaged for ages 3-7 and 3-11. 678 

Fig. 2 679 

Mean length and standard deviation of male and female haddock by age and cohort. Black 680 

circles represent mature fish, open (grey) circles are immature fish. 681 

Fig. 3 682 

Temporal trend in the reaction norm for size and age at maturation midpoints for male and 683 

female haddock. Black circles represent GLMM model estimates, grey circles are GLM 684 

estimates (open grey circles are the one-term GLM model). Vertical bars are the bootstrapped 685 

95% confidence intervals of the estimates.  686 



Table 1 

 

Model 

 

AIC/ QAIC Deviance 

Random 

effects: 
2
 p-value 

Coefficient 

Expl. 1 

Coefficient 

Expl. 2 

Males        

(1)  L + A + C + A:C GLMM 3398 3310 3.29    

(2)  L + A + C + A:C + VNT.2 GLMM 3390 3300 3.21 < 0.001 1.18  

(1)  L + A + C + A:C GLM 7079 3553 –    

(2)  L + A + C + A:C + VNT.2 GLM 6966 3534 – < 0.001 1.06  

Model (2) without down-weighting GLMM 3998 3908 9.56  1.36  

Model (2) without survey area weighting GLMM 4117 4027 12.47  1.47  

Model (2) without any weighting GLMM 4777 4687 29.20  2.00  

 

Females        

(3) L + A + C + L:A GLMM 2782 2732 3.31    

(4) L + A + C + L:A + FBT.1 GLMM 2773 2721 3.22 < 0.001 0.84  

(5) L + A + C + L:A + KS.2 GLMM 2768 2716 3.33 < 0.001  -0.67 

(6) L + A + C + L:A + FBT.1 + KS.2 GLMM 2758 2704 3.25 < 0.001 0.86 -0.68 

(3) L + A + C + L:A GLM 5402 2945 –    

(4) L + A + C + L:A + FBT.1 GLM 5505 2928 – < 0.001 0.67  

(5) L + A + C + L:A + KS.2 GLM 5266 2926 – < 0.001  -0.46 

(6) L + A + C + L:A + FBT.1 + KS.2 GLM 5333 2909 – < 0.001 0.68 -0.47 

Model (6) without down-weighting GLMM 3238 3184  7.92  0.97 -0.85 

Model (6) without survey area weighting GLMM 3436 3382 11.34  0.92 -0.92 

Model (6) without any weighting GLMM 4004 3950 23.46  1.00 -1.16 
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