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Abstract 15 

We studied the learning capacities and anticipatory behaviour in a “sit-and-wait” predatory 16 

fish, the Atlantic halibut, Hippoglossus hippoglossus. In Experiment 1 two groups of halibut 17 

received series of light flashes (conditioned stimulus, CS) that started before delivery of food 18 

(unconditioned stimulus, US) and persisted until after food delivery, i.e. delay conditioning. 19 

Control groups received unpaired CS and US presentations. The anticipatory behaviour of 20 

delay conditioned halibut consisted mainly of take-offs towards the surface shortly after onset 21 

of the CS. In Experiment 2 six groups of halibut were trained in three trace conditioning 22 

procedures: Two groups with 20 s, two groups with 60 s and two groups with 120 s trace 23 

interval. Learning was evident in the 20 and 60 s trace groups and in one of the 120 s trace 24 

groups. In contrast to delay conditioning the anticipatory behaviour of trace conditioned 25 

halibut was characterised by subtle movements near the tank floor with orientation towards 26 

the CS. The cautious responses of halibut after trace conditioning differed markedly from 27 

what is observed in other fish species and are suggested to reflect a “sit-and-wait” foraging 28 

strategy that requires the predator to remain undetected until the prey is within lunging range.  29 

 30 

Key words: Flatfish; Foraging; Pavlovian conditioning; Response systems 31 

32 
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1. Introduction 33 

 The past decade has seen a wealth of studies on fish learning (Brown et al., 2006). 34 

However, studies on the mechanisms involved in learning are scanty. For studies of fish 35 

ecology it is crucial that we gain more insight into the learning capacity and constraints in 36 

different species. One context in which learning plays an important role is foraging (Croy and 37 

Hughes, 1991; Warburton, 2006). A type of learning that has a significant impact on the 38 

ability to recognize and respond to prey is Pavlovian (classical) conditioning (Lieberman, 39 

2000), i.e. associations between initially neutral cues (conditioned stimulus, CS) and 40 

biologically relevant stimuli such as food (unconditioned stimulus, US). For fish, stimuli that 41 

announce a greater probability of encountering food could involve visual features of the prey 42 

itself or cues that occur together with prey, e.g. sounds or odours. Such cues may increase 43 

attention and preparedness to attack, and thus increase capture success. The anticipatory 44 

behaviour, i.e. the form and timing of the response, may be expected to reflect the 45 

informational value of the cue (e.g. type of prey, temporal and spatial relationship between 46 

cue and prey encounter), but also the foraging strategy of the predator. 47 

Cues and prey encounter often overlap in time, i.e. the cue persists until the prey is 48 

detected and caught (delay conditioning). In other occasions the cue may disappear before the 49 

prey is detected (trace conditioning), for instance prey-induced movements of vegetation or 50 

sediment. Most of the experimental works on Pavlovian learning in fish have used delay 51 

conditioning, and it has long been known that fish rapidly learn to associate different cues 52 

with rewards (Bull, 1928). Little, however, is known about the abilities of trace conditioning 53 

in fishes. In a recent study we found that groups of Atlantic cod, Gadus morhua, could be 54 

conditioned to associate a light signal in the feeding area with a food reward at trace intervals 55 

as long as 120 s (Nilsson et al., 2008a), demonstrating that some fish have excellent capacities 56 

for trace conditioning. 57 
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Once an association between a CS and a rewarding US has been formed, the CS alone 58 

elicits a response. The response often reflects stimulus substitution, where subjects direct their 59 

behaviour to the CS, e.g. by approaching it or even trying to catch or ingest it (Brown and 60 

Jenkins, 1968; Purdy et al., 1999), a behaviour referred to as sign-tracking (Hearst and 61 

Jenkins, 1974). For instance, archer fish, Toxotes chatareus, respond to a CS light above the 62 

surface by squirting water at it when it is paired with fruit flies delivered on the surface 63 

(Waxman and McCleave, 1978). Cod always approached the CS light, which was located on 64 

the opposite side of the feeding site in a 3 m tank, before they gathered in the feeding area 65 

prior to food arrival (Nilsson et al., 2008b). A hunting cod generally orients to and approaches 66 

prey upon detection (Brawn, 1969; Steingrund and Fernö, 1997). Sign-tracking may thus lead 67 

to efficient responses to cue signals for cod and other species with similar foraging strategies. 68 

Cue-induced anticipatory responses in fishes have been studied little, and not much is known 69 

about learning capacities and anticipatory responses in fish with other foraging strategies, 70 

such as “sit-and-wait”.  71 

In “sit-and-wait” ambush strategies, an immediate approach response (sign-tracking) to 72 

food-announcing cues may not be adaptive, for at least two reasons. First, rapid approaches 73 

could frighten away prey that is out of lunge range. Secondly, the place where a cue is 74 

detected may not be the same as where the prey is caught. As a successful “sit-and-wait” 75 

ambush requires attack at a suitable distance and angle, cues should be expected to induce 76 

increased attention and adjustments of body posture and position rather than release 77 

immediate attack-like responses. The spatial and temporal relationship between the cue and 78 

the associated prey should then determine the form and timing of the response, i.e. which 79 

behavioural components that are involved in the response and at which stimuli these are 80 

directed, as well as when to respond. In fact, the “sit-and-wait” predator domestic cat, Felis 81 

silvestris catus, becomes hypoactive while the rat, Rattus norvegicus, that applies a “search 82 
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behaviour”, becomes hyperactive in the same appetitive conditioning procedure with the 83 

different anticipatory responses reflecting their foraging strategies (van den Bos et al., 2003). 84 

Flatfish are “sit-and-wait” ambush predators (Gibson, 2005), famous for their unusual 85 

morphology and excellent camouflage, but little is known about their learning abilities. We 86 

studied the capacity for associative learning and anticipatory behaviour in the Atlantic halibut, 87 

Hippoglossus hippoglossus. Halibut is the largest flatfish species and may reach a weight of 88 

>300 kg and ages of over 50 years (Haug, 1990). Small individuals live quite localized on 89 

sandy bottoms at moderate depths (20-60 m) and feed mainly on benthic crustaceans, while 90 

fish become more important prey as the halibut grow (Haug, 1990). Prey detection relies both 91 

on vision and olfaction (de Groot, 1969; Yacoob and Browman, 2007). When the distance to 92 

the prey is short enough prey are captured in a rapid lunge with simultaneous opening of the 93 

mouth and protrusion of the jaws, with the prey being sucked into the mouth (Gibson, 2005).  94 

With a feeding strategy that relies on camouflage, ambush and surprise, we hypothesised 95 

that halibut should not react to reward-associated cues by immediate approach responses or 96 

sign-tracking, but rather prepare an attack by more subtle responses. In Experiment 1 we used 97 

delay conditioning to study learning and anticipatory response with overlapping CS-US 98 

presentations and a relatively short CS-US interval. In Experiment 2 we used trace 99 

conditioning with three different trace intervals to examine whether halibut have the capacity 100 

of trace conditioning, and if so, whether the anticipatory behaviour is expressed differently 101 

than during delay conditioning.  102 
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2. Experiment 1 – delay conditioning 103 

2.1. Methods 104 

2.1.1. Experimental setup 105 

Four circular1 m diameter tanks of black plastic were used for the experiment. To facilitate 106 

a smooth water exchange and removal of uneaten food and faeces by the exchanged water, the 107 

tank floor was kept plain without substrates or other structural features. The tanks were filled 108 

with 60 cm seawater (≈450 L) at 12° C and 90% O2 saturation, and continuously illuminated 109 

by underwater fluorescence tubes (33 lux). The water was exchanged at a rate of 10 L min-1. 110 

A video camera hung above each tank. A cover with a 60 cm diameter hole was placed over 111 

each tank to prevent escape of fish from the tanks and to avoid direct light from the 112 

fluorescence tubes on the recordings. The field of view of the camera thus did not cover the 113 

upper sides of the tanks (Fig. 1). A 3 W light-bulb was placed on the floor of the tank about 114 

10 cm from the wall opposite to the illumination. Food was delivered at the surface from a 115 

feeder. Uneaten food was removed through the drain within a few minutes. 116 

2.1.2. Fish and food 117 

Four groups of 20 one year old halibut, hatched in captivity from eggs from wild-caught 118 

parents, were measured for length (15 ± 1.0 cm, mean ± S.D.) and allowed to recover in the 119 

experimental tanks for 9 days in advance of the experiment. When lying on the black tank 120 

floor halibut attained a skin pattern of white spots and a darker brown colour than when 121 

swimming off the floor, reflecting an attempt to camouflage. Halibut have low motivation to 122 

eat common formulated food (Kristiansen et al., 2004), and a pilot conditioning experiment 123 

revealed that formulated food often fails to induce immediate feeding response and is thus not 124 

appropriate as reward (own unpublished observations). Shrimp, Pandalus borealis, induces 125 

strong feeding behaviour in juvenile halibut (Yacoob and Browman, 2007), and boiled and 126 
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chopped-up shrimp was used as reward in the experiment. On the first introduction of shrimp 127 

halibut did not respond immediately at the sight of shrimp, but a strong response similar to 128 

that reported by Yacoob and Browman (2007) occurred after around 10 s and first feed intake 129 

after around 15 s. This indicates that they mainly responded to the olfactory cue. In order to 130 

facilitate familiarity with this food and ensure that halibut also responded to the sight of 131 

shrimp, they were fed shrimp instead of formulated food the last three days before the start of 132 

the experiment. On the last feeding sessions before the start of the experiment the time to first 133 

feed intake was reduced to around 7 s. At delivery, the shrimp spread out on the surface, and 134 

sank at a rate of about 6 cm s-1 following the slow clockwise flow in the tank.  135 

2.1.3. Procedures 136 

For two groups each feeding was announced by a series of light flashes (conditioned 137 

stimulus, CS; 1 s on: 1 s off) from the light-bulb. The CS had a duration of 20 s and started 10 138 

s before delivery of shrimp (unconditioned stimulus, US), i.e. 10 s overlapping with the US 139 

(delay conditioning). In two unpaired control groups shrimp was delivered one hour after CS 140 

presentation. The scheduled procedure was 6 trials per day with 2-hours intertrial intervals. 141 

Due to a few deviations from the planned schedule, with for instance the CS bulb not 142 

working, the average number of trials per day was 5.6 (range 4 – 6). The fish received these 143 

schedules for 5 days. On days 6 – 8, when a response had been acquired in the delay groups, 144 

the duration of the CS was increased to 40 s (starting 30 s before food delivery in the delay 145 

procedure) in order to provide longer observation times of the anticipatory behaviour. The 146 

trials were recorded on DVD for subsequent analysis. 147 

2.1.4. Behavioural analysis 148 

Halibut usually spend most of the time lying motionless on the bottom. Our prediction was 149 

that anticipatory behaviour induced by the CS would make the halibut change position more 150 
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often. For all trials on the first 5 days of the experiment, the position of the snout of each fish 151 

was registered on the video image immediately before the CS, and the number of fish that 152 

remained in position 10 s later (i.e. immediately before food delivery in the delay groups) was 153 

recorded. To estimate the baseline level of motion the same procedure was made for a 10-s 154 

interval immediately before the CS (pre-CS). While this analysis did not give any details of 155 

how and when the halibut responded, the form and temporal distribution of responses were 156 

studied in more detail in all trials on the last day of the experiment (day 8), when the CS 157 

duration had been extended. A time period starting 20 s before and ending 30 s after the onset 158 

of the light flashes (i.e. at food delivery in the delay groups) was divided into 5-s intervals, 159 

and the number of fish lying motionless at the end of each 5-s interval was recorded. We also 160 

registered how many times the following three behavioural patterns were initiated in each 5-s 161 

interval: Take-off: Lift from the bottom and swim in the water column for more than 10 s; 162 

Bottom-swim: Moving more than three body lengths along the bottom; Reposition: A small 163 

move, less than three body lengths, usually straight forward or a turn.  164 

Whether fish approached the CS (sign-tracked) was determined on the basis of analyses of 165 

days 6 – 8. The image of the tank on the screen was divided into four equal 90° sectors, with 166 

the CS light bulb in the centre of one sector (CS sector), and the number of fish on or 167 

immediately above the floor in the CS sector was recorded 5 s before and 10 s after the onset 168 

of the CS. In order to determine whether fish directed their attention towards the CS without 169 

approaching it, the number of fish on or immediately above the floor with their heads directed 170 

± 45° towards the CS light bulb was recorded on the same images. 171 

2.1.5. Statistics 172 

The data resulting from the video analysis were categorical variables that indicated the 173 

frequency of different behaviours. As it was difficult to confirm or transform these variables 174 
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into a normal distribution, nonparametric statistical methods were used. An anticipatory 175 

response to the CS should lead to fewer fish maintaining their positions on the tank floor 176 

during the CS-US interval as compared to before the CS, i.e. a change from the pre-CS level. 177 

Kendall tau rank correlation was used to test if there was a correlation between the magnitude 178 

of the change and trial number, indicating learning. Wilcoxon signed rank test was used to 179 

compare the number of fish in the CS sector and the number of fish oriented towards the CS 180 

bulb before and during the CS. For the observations on the last day of number of motionless 181 

fish, take-offs, bottom-swims and repositions in 5-s intervals, an aligned ranks test for 182 

randomized complete blocks (Stokes et al., 2000) was used. In short, each procedure was 183 

divided into four periods, pre-CS, first third, second third and last third of the CS-US interval, 184 

and the test identified if there were significant effects from these periods for each behavioural 185 

pattern. The test was first performed using the entire dataset, and if an effect was found the 186 

test was performed on each of the three CS-US periods at a time to detect differences from 187 

pre-CS levels. All tests were performed separately for each replicate group. All tests were 188 

two-tailed and the level of significance was set at 0.05. 189 

2.2. Results 190 

2.2.1. Response acquisition 191 

There was little response in the delay groups to the CS on the first day (Fig. 2a). On the 192 

subsequent days the number of fish remaining motionless on the floor decreased during the 193 

CS compared to pre-CS level, and the magnitude of the decrease was correlated with trial 194 

number (Group 1: τ = -0.37, p < 0.01; Group 2: τ = -0.57, p < 0.001). In the control groups 195 

there was no significant correlations (Group 1: τ = -0.06, p > 0.05; Group 2: τ = 0.23, p > 196 

0.05), and the change from pre-CS level to CS was generally small (Fig. 2b).  197 
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2.2.2. Form of the response 198 

In the delay groups the effect of period (pre-CS, first third, second third and last third of 199 

the CS-US interval) on the number of motionless fish was significant, with the number of 200 

motionless fish lower than pre-CS level throughout the CS in both groups (Table 1, Fig. 3a). 201 

Take-off was the main response, and most take-offs occured during the first seconds after the 202 

onset of the CS (Table 1, Fig. 3a). The take-off response was especially dominant in Group 2, 203 

in which most of the fish swam near the surface after take-off. Group 1 also responded with 204 

bottom-swim, which occurred more often throughout the CS than pre-CS (Table 1, Fig. 3a). 205 

The rate of repositions during the CS did not differ from pre-CS level (Table 1, Fig. 3a).  206 

In contrast to in the delay groups, the number of motionless fish in the control groups 207 

increased slightly throughout the CS (Table 1, Fig. 3b). None of the three behavioural patterns 208 

occured at a higher rate during the CS than pre-CS (Table 1, Fig. 3b). 209 

2.2.3. Sign-tracking 210 

The delay groups did not sign-track by moving to the CS. The number of fish in the CS 211 

sector was low during the CS in both groups and did not differ from pre-CS level in Group 1 212 

(T+ = 34.5, p > 0.05), while the number decreased in Group 2 (T+ = 113, p < 0.01, Fig. 4a). 213 

However, the number of fish directed towards the CS light bulb slightly increased during the 214 

CS in Group 1 (T+ = 9, p < 0.01, Fig. 4c), while there was no difference in Group 2 (T+ = 48, 215 

p > 0.05).  216 

In the control groups the number of fish in the CS sector was slightly higher during the CS 217 

than pre-CS in Group 2 (T+ = 0, p < 0.05), but not significantly so in Group 1(T+ = 0, p > 218 

0.05, Fig. 4b). The average increase in the CS sector (25% of the tank floor) was 0.39 and 219 

0.44 fish for Group 1 and 2, respectively, and is thus in accordance with the total increase on 220 

the tank floor of 1.33 and 1.83 (see Fig. 3b). The number of fish directed towards the CS light 221 
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bulb during the CS did not change from pre-CS level (Group 1: T+ = 2, p > 0.05; Group 2: T+ 222 

= 10, p > 0.05, Fig. 4d).  223 

3. Experiment 2 – trace conditioning 224 

Experiment 1 demonstrated that halibut can rapidly become conditioned when trained with 225 

overlapping CS-US presentations. Contrary to our hypothesis that anticipatory behaviour 226 

would be characterized by subtle movements, the main response was to lift from the bottom 227 

and swim actively in the water column, more similar to an ongoing attack of prey than an 228 

attempt to prepare for a future attack. An explanation for this could be that the halibut were 229 

trained with overlapping CS-US presentations and a relatively short CS-US interval, a CS-US 230 

relationship resembling situations where the reward is or will soon be within range. Then 231 

there would be little time and little reason to avoid being detected by the prey.  232 

In a situation in which a “sit-and-wait” predator gets a cue about the presence of a prey 233 

before the prey is available for attack, e.g. out of a halibut’s vision or lunge range, a more 234 

cautious behaviour may be crucial to come within range without alarming the prey. Trace 235 

conditioning, in which the CS is terminated before the presentation of the US, would resemble 236 

such a situation. In Experiment 2 we therefore trained groups of halibut at three different trace 237 

interval durations, 20, 60, and 120 s, in order to study if a) the anticipatory behaviour of 238 

halibut is expressed differently during trace conditioning than delay conditioning, b) halibut 239 

has the capacity to be trace conditioned at long trace intervals and if the anticipatory 240 

behaviour is affected by the duration of the interval.   241 

3.1. Methods 242 

The CS duration was 10 s, and the offset of the CS was separated from the US with a trace 243 

interval of 20 s, 60 s, or 120 s with two replicate groups of 20 halibut for each trace duration. 244 

The CS-US interval (the CS and the trace interval) was thus 30 s or more, giving sufficient 245 
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time to analyse anticipatory responses. The length of the fish was 18.7 ± 1.1 cm (mean ± 246 

S.D.) in the 20 s and 60 s trace procedure and 21.3 ± 1.4 cm in the 120 s trace procedure, 247 

which were carried out three weeks later than the 20 s and 60 s procedures. As learning was 248 

assumed to be slower with trace conditioning, which is more demanding than delay 249 

conditioning (Lieberman, 2000), the fish were trained for 12 days instead of 5 in Experiment 250 

1, with on average 5.8 trials per day. The setup, procedure and analyses were otherwise the 251 

same as in Experiment 1. 252 

3.2. Results 253 

3.2.1. Response acquisition 254 

20 s trace groups: With the exception of the first day the number of fish remaining 255 

motionless on the floor decreased during the CS-US interval compared to the pre-CS level, 256 

and on the last days very few fish remained motionless throughout the CS-US interval (Fig. 257 

5a). The magnitude of the change from pre-CS to the CS-US interval was correlated with trial 258 

number (Group 1: τ = -0.44, p < 0.001; Group 2: τ = -0.26, p < 0.01).  259 

60 s trace groups: The difference between the CS-US interval and pre-CS in number of fish 260 

remaining motionless was less pronounced and the response acquisition slower (Fig. 5b) than 261 

in the 20 s trace groups. Still, on the last days few fish remained motionless throughout the 262 

CS-US interval, and the magnitude of the change from pre-CS to the CS-US interval was 263 

correlated with trial number (Group 1: τ = -0.46, p < 0.001; Group 2: τ = -0.42, p < 0.001).  264 

120 s trace groups: The difference between the CS-US interval and pre-CS in number of 265 

fish remaining motionless was small in both groups throughout the experiment (Fig. 5c). In 266 

Group 1 the number of motionless fish was higher during the CS-US interval than pre-CS on 267 

the first days and lower on the last days (Fig. 5c), with a correlation between the magnitude of 268 

the change and trial number (τ = -0.35, p < 0.001). In Group 2 the number of motionless fish 269 
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was slightly higher during the CS-US interval throughout the experiment (Fig. 5c), and the 270 

magnitude of the change was not correlated with trial number (τ = 0.03, p > 0.05).  271 

3.2.2. Form of the response  272 

20 s trace groups: The number of motionless fish fell after the onset of the CS and 273 

remained lower throughout the CS-US interval (Table 2, Fig. 6a). The main response to the 274 

CS was repositions. The rate of repositions showed a peak in the first seconds following the 275 

onset of the CS, though it was higher than pre-CS level also later in the CS-US interval (Table 276 

2, Fig. 6a). Bottom-swims were less frequent than reposition, but more frequent than pre-CS 277 

level throughout the CS-US interval in Group 1, while the rate during the CS-US interval did 278 

not differ from pre-CS level in Group 2 (Table 2, Fig. 6a). Take-offs were relatively rare 279 

during the CS-US interval in both groups (Fig. 6a), but more frequent than pre-CS level in 280 

Group 1. In Group 2 there was no difference (Table 2). 281 

60 s trace groups: As in the 20 s trace groups, the number of motionless fish fell during the 282 

CS and was lower throughout the CS-US interval (Table 2, Fig. 6b). Also here the main 283 

response was repositions. In contrast to the 20 s trace groups, the occurrence of repositions 284 

had no clear peak at the onset of the CS but was more evenly distributed during the CS-US 285 

interval (Fig. 6b). The rate was higher than pre-CS level throughout the CS-US interval 286 

(Table 2). Bottom-swim occurred at a much lower rate than reposition but more often during 287 

the CS-US interval than pre-CS (Table 2, Fig. 6b). Take-offs were very rare and the rate did 288 

not differ from pre-CS level (Table 2, Fig. 6b). 289 

120 s trace groups: The number of motionless fish decreased slightly after the onset of the 290 

CS in Group 1 and was lower than pre-CS level in the first two thirds of the CS-US interval, 291 

while there was no difference in Group 2 (Table 2, Fig. 6b). The rate of repositions was 292 

somewhat elevated early in the CS-US interval in Group 1 (Fig. 6c), but the difference did not 293 
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reach significance (Table 2). Bottom-swim and take-off were rare in both groups (Fig. 6c) and 294 

their rates did not differ from the pre-CS levels (Table 2). 295 

3.2.3. Sign-tracking 296 

20 s trace groups: Sign-tracking by moving to the CS was not a major response. The 297 

number of fish in the CS sector during the CS was low in both groups and did not differ from 298 

pre-CS level in Group 1 (T+ = 31.5, p > 0.05), while it was slightly increased in Group 2 (T+ = 299 

5, p < 0.01, Fig. 7a). More common than CS approach was orienting towards the CS. The 300 

number of fish directed ± 45° towards the CS light bulb during the CS was higher than pre-CS 301 

level (Group 1: T+ = 1, p < 0.001; Group 2: T+ = 0, p < 0.001, Fig. 7d), although the majority 302 

of the fish was not directed towards the CS.  303 

60 s trace groups: The number of fish in the CS sector during the CS did not differ from 304 

pre-CS level (Group 1: T+ = 40.5, p > 0.05; Group 2: T+ = 23, p > 0.05, Fig. 7b). Similar to 305 

the 20 s trace groups, more fish were directed towards the CS bulb during the CS than pre-CS 306 

(Group 1: T+ = 0, p < 0.01; Group 2: T+ = 19.5, p < 0.05, Fig. 7e).  307 

120 s trace groups: The number of fish in the CS sector during the CS did not differ from 308 

pre-CS level (Group 1: T+ = 2.5, p > 0.05; Group 2: T+ = 7.5, p = p > 0.05, Fig. 7c). Slightly 309 

more fish were directed towards the CS bulb during the CS than pre-CS in Group 1 (T+ = 2.5, 310 

p < 0.05, Fig. 7f). There was no difference in Group 2 (T+ = 5, p > 0.05, Fig. 7f).  311 

4. Discussion 312 

This is the first study of anticipatory behaviour in a fish with a “sit-and-wait” foraging 313 

strategy. Atlantic halibut are clearly able to associate events separated by at least 60 s. 314 

Learning was most rapid during delay conditioning and slowest at the longest trace intervals. 315 

The form and temporal distribution of the anticipatory behaviour differed strikingly between 316 
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delay- and trace conditioning, with the fish in the delay procedure swimming towards the 317 

surface at the onset of the CS and very few fish remaining on the bottom during the CS-US 318 

interval, while in the trace procedure almost no fish left the bottom and at any time in the CS-319 

US interval many fish were lying motionless.  320 

The repositions of halibut in the long-trace procedures were so slight that when we first 321 

glanced at the videos we doubted that there were any conditioned responses in the 60 s and 322 

120 s trace groups. A preliminary analysis (not presented here), in which the numbers of fish 323 

lying motionless 5 s before onset of the CS and 1 s before US release were compared, 324 

supported this impression; no clear change from pre-CS to pre-US was detected in the 60 s 325 

and 120 s trace procedures. However, the more sensitive analyses of all movements 326 

throughout the CS-US interval revealed that this was not the case. For both 60 s trace groups 327 

the number of fish holding their position was lower during the CS-US interval than during an 328 

equally long pre-CS interval, and the magnitude of the difference increased with trial number. 329 

A similar pattern was seen in one 120 s trace group. This demonstrates the importance of in-330 

depth analysis of anticipatory behaviour when subtle responses can be expected.  331 

We trained halibut in groups, which might have influenced their behaviour. Since 332 

individuals could not be recognized, we do not know how many individuals actually 333 

responded to the CS, but the finding that few fish maintained their position throughout the 334 

CS-US interval suggests that most fish responded in the delay, 20 s and 60 s trace groups. In 335 

the 120 s trace group 1, more fish maintained their position, and here only some individuals 336 

may have learned. Some individuals may have responded to the behaviour of other 337 

individuals rather than to the CS, and social interactions (Brown and Laland, 2006) may have 338 

speeded up the learning process. However, halibut is a non-social species (Haug, 1990), and 339 

social behaviour presumably had a limited influence on their learning. In any case, social 340 

behaviour cannot explain that anticipatory responses were differently expressed in delay and 341 
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trace procedures, and that learning was slower during conditioning with long trace intervals. 342 

Individual halibut may, however, differ in their ability to learn. Kristiansen and Fernö (2007) 343 

suggested that feeding motivation of halibut depended on the coping style of the individuals 344 

and on how demanding the feeding method was. Longer trace intervals present the halibut 345 

with more difficult cognitive situations, and individuals with low coping ability may have 346 

changed to a “wait and see” coping strategy (reactive strategy), with fewer of them motivated 347 

to learn.  348 

In learning experiments the response rate often increases towards the time of the arrival of 349 

rewards (Gallistel and Gibbon, 2000), but this was not found in the present study. Responses 350 

were most often initiated early in the CS-US interval (delay and 20 s trace procedures) or had 351 

a relatively flat temporal distribution (60 s trace). Also in cod the response peak occurs well 352 

before the time of food release (Nilsson et al., 2008a, b). Cod approached the CS (sign-353 

tracked) immediately at its onset, whether the CS was located in the feeding area or on the 354 

opposite side of the tank, and regardless of whether they were trained in a delay or trace 355 

procedure. Moreover, cod gathered below the feeder waiting for food to arrive throughout a 356 

60 s trace interval (Nilsson et al., 2008a).  357 

Cod are cruising predators that search actively for food and usually pursue or attack prey 358 

immediately upon detection (Brawn, 1969; Steingrund and Fernö, 1997). The immediate sign-359 

directed response thus reflects cod feeding strategy. The response of the “sit-and-wait” 360 

predator halibut was very different. With the exception of one 20 s trace group, the number of 361 

fish near the CS did not increase after the onset of the CS. In contrast to cruising predators, 362 

“sit-and-wait” ambush predators often attack prey later and at another location than where it 363 

was detected, i.e. when it has entered the lunge range of the predator. This may explain the 364 

absence of sign-tracking in halibut. In one delay group, all 20 s and 60 s trace groups and one 365 

120 s trace group, the number of fish oriented towards the light-bulb rose after the onset of the 366 
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CS. Cues can thus draw the attention of halibut, in spite of not evoking approach responses. 367 

Interestingly, in spite of the significant amount of attention paid to the CS, in all procedures 368 

most individuals did not orient themselves directly towards the stimulus. Flatfish eyes are 369 

independently mobile, giving a 360° angle of vision (Gibson, 2005), and halibut at the floor 370 

may have had visual contact with the CS even at an angle of more than 45°.  371 

While approach behaviour towards the CS was generally absent, take-off, i.e. an approach 372 

towards the surface, was the main response in the delay procedure. The surface was where 373 

food was delivered, and take-off may be seen as a goal-directed behaviour (Boakes, 1977). 374 

When the cue temporally overlapped with the reward, goal-directed responses were thus 375 

evoked immediately. In contrast, when there was a trace interval between the cue and the 376 

reward, few goal-directed approaches were observed, with the response almost exclusively 377 

consisting of subtle movements near the floor (repositions and bottom-swims). Furthermore, 378 

when the trace interval was long (60 s) these responses had a relatively flat temporal 379 

distribution during the CS-US interval. The anticipated time between cue and reward thus has 380 

an influence on the form and temporal distribution of the response. The immediate, goal-381 

directed response of the delay conditioned halibut could be seen as attack behaviour. The CS 382 

announced that food would be delivered within a few seconds (the CS-US delay was 10 s 383 

through most of the experiment), giving the fish little time and little reason to prepare 384 

themselves by reorientations on the floor. In contrast, in the trace procedures the CS 385 

announced food availability in a more distant future, with enough time to prepare and little 386 

reason for immediate approach. In a natural situation with live prey, conspicuous responses 387 

might frighten prey not yet within range and thus decrease the chances of successful capture. 388 

The differences in response pattern between halibut and cod, with cautious responses in trace 389 

conditioned halibut and immediate sign-tracking in cod, appears to be similar to the 390 

differences in anticipatory behaviour between the rat and the cat, with increased activity 391 
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during the CS-US interval in the former and decreased activity in the latter, in accordance 392 

with their respective feeding strategies (van den Bos et al., 2003). 393 

Under natural conditions, the time between cue and encounter will not always be the same, 394 

but rather differ from one occasion to another and between different prey types (e.g. free-395 

swimming fish versus bottom-dwelling invertebrates). Where specialized diets are involved, 396 

similar responses on all cues may be advantageous. For more diverse diets the time between 397 

cues and prey encounters is presumably highly variable, with appropriate form and timing of 398 

response difficult to achieve. Predators may either learn to respond differently to different 399 

cues, or choose an intermediate response. It would be interesting to train halibut in a 400 

procedure with a highly variable CS-US interval or to switch from a period with short-interval 401 

trials to long-interval trials and vice versa, in order to see how this species deals with more 402 

realistic temporal relationships. 403 
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Tables 468 

 469 

Table 1. P Probability levels given by the aligned ranks test for randomized complete blocks 470 

on the effect of period (pre-CS, 1st third, 2nd third and last third of the CS-US interval) on the 471 

number of motionless fish, take-offs, bottom-swims and repositions in the delay procedure 472 

and the control procedure. The column “Main effect” gives the probability level when the 473 

entire dataset (all four periods) was included. The columns “1st third”, “2nd third” and “Last 474 

third” gives the probability level when each of these periods was compared with pre-CS. *p < 475 

0.05; **p < 0.01; ***p < 0.001; n.s., not significant. Note that the effects on “Motionless” are 476 

due to a decrease in number of motionless fish during the CS-US interval in the delay 477 

procedure, while it is due to an increase in the control procedure. 478 

 479 

480 

Behaviour Procedure Replicate Main effect 1st third 2nd third Last third 

Motionless Delay 1 *** *** *** *** 
  2 *** *** *** *** 
 Control 1 *** ** *** *** 
  2 *** * *** *** 

Take-off Delay 1 * ** n.s. n.s. 
  2 *** ** n.s. n.s. 
 Control 1 n.s.    
  2 n.s.    
Bottom-
swim Delay 1 ** *** ** ** 
  2 n.s.    
 Control 1 n.s.    
  2 n.s.    

Reposition Delay 1 n.s.    
  2 n.s.    
 Control 1 n.s.    
  2 n.s.    
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Table 2. Probability levels given by the aligned ranks test for randomized complete blocks on 481 

the effect of period (pre-CS, 1st third, 2nd third and last third of the CS-US interval) on the 482 

number of motionless fish, take-offs, bottom-swims and repositions in the 20 s trace, 60 s 483 

trace and 120 s trace procedures. The column “Main effect” gives the probability level when 484 

the entire dataset (all four periods) was included. The columns “1st third”, “2nd third” and 485 

“Last third” gives the probability level when each of these periods was compared with pre-486 

CS. *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not significant. 487 

488 

Behaviour Procedure Replicate Main effect 1st third 2nd third Last third 

Motionless 20 s 1 *** *** *** *** 
  2 *** *** *** * 
 60 s 1 *** *** *** *** 
  2 *** *** *** *** 
 120 s 1 ** * * n.s. 
  2 n.s.    

Take-off 20 s 1 * * n.s. * 
  2 n.s.    
 60 s 1 n.s.    
  2 n.s.    
 120 s 1 n.s.    
  2 n.s.    
Bottom-
swim 20 s 1 ** * *** ** 
  2 n.s.    
 60 s 1 ** * ** n.s. 
  2 * n.s. * ** 
 120 s 1 n.s.    
  2 n.s.    

Reposition 20 s 1 ** *** * n.s. 
  2 ** ** n.s. * 
 60 s 1 *** *** *** *** 
  2 ** * *** ** 
 120 s 1 n.s.    
  2 n.s.    



24 
 

Figure legends 489 

 490 

Fig. 1. The experimental setup (side view). 491 

Fig. 2. Mean ± S.E. number of fish maintaining their positions on the floor of the tank during 492 

a 10-s period immediately before the onset of the CS (open circles) and throughout the first 10 493 

seconds of the CS (the CS-US interval in the delay procedure, filled circles) in a) the delay 494 

procedure, b) the control procedure. Left and right figures represent replicate groups. 495 

Fig. 3. Behaviour of groups of halibut in relation to time from onset of the CS. Triangles: 496 

number of fish lying motionless on the floor at the end of each 5-s interval (x-value is the first 497 

second of the interval, e.g. the interval “0” is 0-5 s from onset of the CS); filled circles: 498 

repositions; open circles: bottom-swims; squares: take-offs. Mean ± S.E. values based on the 499 

final six conditioning trials day 8. a) delay procedure, b) control procedure. Left and right 500 

figures represent replicate groups. 501 

Fig. 4. Sign-directed behaviour of halibut. Open bars: 5 s pre-CS; filled bars: 10 s after the 502 

onset of the CS. Number of fish in the CS sector in a) the delay procedure and b) the control 503 

procedure, and number of fish directed ± 45° towards the CS bulb in c) the delay procedure 504 

and d) the control procedure. Mean ± S.E. based on all (17 for the delay groups, 18 for the 505 

control groups) trials on days 6 – 8. 506 

Fig. 5. Mean ± S.E. number of fish maintaining their positions on the floor of the tank 507 

throughout the CS-US interval (filled circles) and through an equal-length period immediately 508 

before the onset of the CS (open circles) in a) the 20 s trace procedure, b) the 60 s trace 509 

procedure, and c) the 120 s trace procedure. Left and right figures represent replicate groups. 510 

Fig. 6. Behaviour of groups of halibut in relation to time from onset of the CS. Triangles: 511 

number of fish lying motionless on the floor at the end of each 5-s interval; filled circles: 512 
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repositions; open circles: bottom-swims; squares: take-offs. Mean ± S.E. values based on the 513 

final six conditioning trials. a) the 20 s trace procedure, b) the 60 s trace procedure, and c) the 514 

120 s trace procedure. 515 

Fig. 7. Sign-directed behaviour of trace conditioned halibut. Open bars: 5 s pre-CS; filled 516 

bars: 10 s after the onset of the CS. Number of fish in the CS sector in a) the 20 s trace 517 

procedure, b) the 60 s trace procedure and c) the 120 s trace procedure, and number of fish 518 

directed ± 45° towards the CS bulb in d) the 20 s trace procedure, e) the 60 s trace procedure 519 

and f) the 120 s trace procedure. Mean ± S.E. based on all trials on days 10 – 12 (16 trials for 520 

20 s trace group 1, 17 trials for all other groups). 521 

522 
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