Brage IMR Havforskningsinstituttets institusjonelle arkiv

Dette er forfatters siste versjon av den fagfellevurderte artikkelen, vanligvis omtalt som postprint. I Brage IMR er denne artikkelen ikke publisert med forlagets layout fordi forlaget ikke tillater dette. Du finner lenke til forlagets versjon i Brage-posten. Det anbefales at referanser til artikkelen hentes fra forlagets side.
Ved lenking til artikkelen skal det lenkes til post i Brage IMR, ikke direkte til pdf-fil.

Brage IMR -
 Institutional repository of the Institute of Marine Research

This is the author's last version of the article after peer review and is not the publisher's version, usually referred to as postprint. You will find a link to the publisher's version in Brage IMR. It is recommended that you obtain the references from the publisher's site.
Linking to the article should be to the Brage-record, not directly to the pdf-file.
Long-term changes in the total egg production of Norwegian spring-spawning herring Clupea harengus (L.) implications of variations in population structure and condition factor

Hilkka O.N. Ndjaula ${ }^{\text {a,b,* }}$, Richard D.M. Nash ${ }^{\text {b }}$, Aril Slotte ${ }^{\text {b }}$, Arne Johannessen ${ }^{\text {a }}$, Olav Sigurd Kjesbu ${ }^{\text {b }}$

${ }^{a}$ Department of Biology, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway
${ }^{b}$ Institute of Marine Research, P.O. Box 1870 Nordnes, 5817 Bergen, Norway
*Corresponding author. Marine Research Institute, Zoology Department, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa Tel: +27216503613; fax: +27216504988. E-mail address: hilkka.ndjaula@uct.ac.za

Abstract

The reproductive potential of Norwegian spring-spawning herring (Clupea harengus) was estimated in terms of total egg production (TEP) for the period 1935-2005, using a model where spawning stock numbers (SSN)-, weight- and length-at-age were combined with fecundity-weight relationships. In general, the modelled TEP was closely related to SSN. However, larger positive and negative deviations from this relationship were found in periods with high SSN in combination with increasing proportions of either recruit or repeat spawners and condition factor (K) below 0.73 or above 0.8 . When relating the current estimated TEP to similar type of figures based on earlier data (including fecundity observations in 1951-1983), deviations were less pronounced, but they still tended to occur in periods of high SSN. These results suggest that at stable high stock levels, the population structure of the stock and its condition in terms of K, can have implications for the reproductive output. Hence, quantification of the reproductive potential as TEP has the potential to strengthen the stock-recruitment models, because it captures both the stock population structure and reproductive dynamics.

Keywords: Norwegian spring-spawning herring, Fecundity, Total egg production, Reproductive potential, Stock recovery

1. Introduction

The Norwegian spring-spawning (NSS) herring (Clupea harengus) stock is distributed in both the Norwegian and Barents Sea (Holst et al., 2004). Over the past century this commercially valuable stock has undergone substantial fluctuations in abundance and recruitment (Dragesund et al., 1997; Toresen and Østvedt, 2000; Nakken, 2008). In the 1940s the spawning stock was 10 to 16 million tonnes, but it then declined and collapsed in the late 1960s (ICES, 1999; Toresen and \emptyset stvedt, 2000, 2002). The lowest estimated spawning stock biomass (SSB) of a few thousand tonnes occurred in 1972, remaining extremely low throughout the 1970s. After implementation of very strict management regulations and a strong year-class in 1983,
the biomass increased, and by 1986, the SSB started recovering, with the current SSB between 8 and 10 million tonnes (ICES, 2007).

SSB has often been used as a proxy for the egg production of a fish population (Trippel, 1999). However, it has become apparent that other factors such as stock age or size structure and individual fish condition can have a considerable influence on the stock reproductive potential (SRP) and this in turn could contribute to the recruitment variability (Marshall et al., 1998, 2000; Trippel, 1998, 1999).

The estimation of SRP is generally undertaken by scaling up from individual level characteristics to population level. Therefore, information is needed on factors influencing the reproductive investment of each fish. Fecundity of NSS herring has been studied both experimentally and in the field, and condition factor was found to have a significant positive effect on oocyte production (Ma et al., 1998; Óskarsson et al., 2002; Kurita et al., 2003; González-Vasallo, 2006). This has also been noted in both marine and freshwater fish species for example, cod (Gadus morhua) (Kjesbu et al., 1991; Lambert and Dutil, 2000); haddock (Melanogrammus aeglefinus) (Hislop et al., 1978); winter flounder (Pseudopleuronectes americanus) (Tyler and Dunn, 1976), brown trout (Salmo trutta) (Bagenal, 1969) and rainbow trout (Oncorhynchus mykiss) (Bromage et al., 1991). Age composition of the population and spawning experience (recruit versus repeat spawners) can also influence oocyte production (Solemdal, 1997, Atlantic cod; Marshall et al., 1998, Northeast Arctic cod; Macchi et al., 2004, Argentine hake (Merluccius hubbsi); Óskarsson and Taggart, 2006, Icelandic summer-spawning herring; Marteinsdottir and Begg, 2002, Atlantic cod). Changes in age and size at sexual maturation as reported in Baltic cod (Cardinale and Modin, 1999) and in the same herring stock as present (Engelhard and Heino, 2004) could also alter the reproductive potential of the stock. The NSS herring stock showed spatio-temporal segregation of early and delayed maturation individuals, both in the Norwegian and Barents Sea (Devold, 1963; Dragesund et al., 1980, 1997; Toresen and \emptyset stvedt, 2000; Engelhard and Heino, 2004).

It has been suggested that total egg production (TEP), rather than SSB, is a better measure of reproductive potential when predicting recruitment (Marshall et al., 2003), as it will account for variations in egg production as a result of fish condition, stock composition, environmental and ecological factors. The dynamics of NSS herring
reproductive output with regard to its population composition (recruit and repeat spawners abundance), structure (size and age) and condition factor have, however, not been investigated up to now. Our objective is therefore to explore the impacts of the stock structure and fish condition factor on TEP. This investigation is a contribution toward an understanding of causes for variability in recruitment, as it adds more insight to stock-recruitment relationship by incorporation of inter-annual variability in the condition of individual fish, and the size structure of the population on TEP.

The main objective is to link our knowledge of reproductive biology with stock dynamics to improve our understanding of variability in SRP, which will ultimately lead to a better understanding of processes affecting recruitment. More specifically, in this study we explored short and long-term impacts of stock fluctuations in NSS herring on perceived stock productivity, by examining total egg production at different periods and for different fish condition factors.

2. Materials and methods

2.1. Study area and data collection

Fishery samples caught using different gear (drift nets, beach-seines, purse-seines and trawls) and Institute of Marine Research (IMR) samples caught using research vessels were taken from NSS spawning grounds ($58^{\circ} \mathrm{N}$ to $70^{\circ} \mathrm{N}$) from 1935 to 2005. Samples of 100-200 herring per trawl station were regularly collected during the spawning months from January to March along the Norwegian coast. The latitudinal range of data may have some effect on the fish condition factor data, as condition factor may vary with latitudes (Slotte, 1999) and the sampling coverage may vary inter-annually. For each fish, standard morphometric measurements were taken: total length (TL, measured to the nearest 0.5 cm), whole body weight (W , measured to the nearest 1 gram), sex, maturity stage, as recommended in Anon. (1962), and scales were sampled for age reading. The herring included in the present analyses were all staged as maturing, i.e., in a pre-spawning state. Spawning and spent individuals were excluded from the analyses as this would have biased length weight relationships.

2.2. Total egg production (TEP) estimation

Input data for TEP estimation was taken from the ICES (2006) report. These data were annual spawning stock biomass (SSB) and annual spawning stock numbers (SSN) at age. Because we needed to have the data distributed over length rather than age to get the numbers at length, with their associated weight for the purposes of estimating oocyte production from the fecundity models, the total abundance was redistributed over length. The conversion of SSB and SSN per age to length was undertaken by using the total numbers at age and then applying the length-at-age proportions given for that year in order to re-distribute the total number at age into length classes. SSN were therefore assigned to the observed proportions of 1 cm size classes in the annually derived length-age keys of mature fish on the spawning grounds. Finally, SSN by length was summed over all age groups by year, of which 50% were assumed to be females based on a relatively stable female to male ratio of 1:1 as we observed in the raw data over the whole study period to give female spawning stock number (FSSN). The annual mean weight at length was calculated using the raw data from the spawning grounds. Annual TEP was then estimated as the sum of the number of eggs produced by spawning females in each size class multiplied by their average fecundity, which was estimated from the fecundity-weight relationship given by Óskarsson et al. (2002):
$\mathrm{TEP}_{y}=\sum_{x=i}^{j} F_{x} F S S N_{x}$,
where y is year, x is size (length in cm) ranging from i to $j, \mathrm{~F}$ is average fecundity (number of vitellogenic oocytes per female) and FSSN is female spawning stock numbers. This method is similar to the approach used by Marshall et al. (1998). By using annual length frequencies and the year-specific length-weight relationships we were able to both utilise the fecundity-weight relationship and incorporate the effect of variable condition into the analyses (see Marshall et al. 1998). The reasoning is that fish at a given length at the onset of maturation that were heavier were in a better condition. How we obtained the parameters used in the above equation is explained in the next section.

Since we have calculated TEP from SSN, which is derived from SSB, and used the same fecundity formula in every case, we needed to investigate and verify how our modelled TEP compares with TEP estimations based on annual fecundity counts. The estimated TEP (1951-1983) from Serebryakov (1990) were compared directly with our estimates of TEP. In the case of Seliverstova (1990) fecundity at age data available for the period 1954-1975 were multiplying by the assumed number of females at age for the same years (ICES, 2006). Where fecundity data were missing for an age class a linear interpolation was used between the adjacent younger and older age classes. A further comparison was made of the annual TEP for the whole time series by replacing the equation we used from Óskarsson et al. (2002) (see above) with the weight related fecundity of Baxter (1959).

2.3. Fecundity (F) estimation

To estimate TEP of the stock it was necessary to choose an appropriate equation that best describes fecundity-length or fecundity-weight relationship of individuals, an important parameter in the TEP equation. Although there have been a number of studies on the fecundity of NSS herring (Baxter, 1959; Lyamin 1966; Seliverstova, 1990; Serebryakov, 1990; Krysov et al., 1995; Belikov et al., 1996; Ma et al., 1998; Óskarsson et al., 2002; Kurita et al., 2003; González-Vasallo, 2006), the results from Óskarsson et al. (2002) were assumed to be the most appropriate because their equation for potential fecundity was based on most recent field samples from January 1998. Their equation was $\mathrm{F}=224.3 \times \mathrm{W}-8883 \quad\left(r^{2}=0.796 ; n=47\right)$, where F is fecundity and W is total body weight (g). However, it should, be noted that the fish size distribution used to determine the fecundity relationship in the work by Óskarsson et al. (2002) did not fully cover the same length and weight range as our data. Another appropriate study on NSS herring fecundity by Baxter (1959) gave both fecundity-length and fecundity-weight relationships and it was used together with that of Óskarsson et al (2002). Results of Ma et al. (1998) and González-Vasallo (2006) were based on laboratory studies and gave significantly higher relative fecundities than the other studies. The study of Kurita et al. (2003) was more concerned with atresia (resorption of oocytes) and does not give a formal equation for length or weight and fecundity. Seliverstova (1990) reported fecundity by age class rather than
with a general formula incorporating length and weight and Serebryakov (1990) reported the TEP with no fecundity formula given.

2.4. Stock structure and composition

Using the age based database, the age structure of this spawning stock was estimated for the period 1935 to 2005 by calculating the Shannon age diversity index (see Marteinsdottir and Thorarinsson, 1998 and reference therein). This index is independent of stock size, and describes both the number of cohorts contributing to the egg production and the evenness of the numbers of individuals across cohorts.

Studies on gonad development have demonstrated that length at 50% maturity in NSS herring is relatively stable at $29-30 \mathrm{~cm}$ for both males and females, after which all herring are repeat spawners (\emptyset stvedt, 1964; Toresen, 1986, 2001; Slotte, 1998, 1999; Óskarsson et al., 2002; Kurita et al., 2003; Engelhard and Heino, 2004). Hence, a length of 32 cm was used in the present study as a threshold between recruit ($\langle 32 \mathrm{~cm}$) and repeat $(\geq 32 \mathrm{~cm})$ spawners, and it was assumed to be applicable for the whole time series under consideration.

2.5. Condition factor

The stock well-being or fitness (Bolger and Connolly, 1989) was determined as the weighted (by numbers in each length class) condition factor averaged over the 1 cm size classes each year. In this study, we used both Fulton's condition factor $\left(\mathrm{K}_{\mathrm{F}}\right)$ and relative condition factor (K_{R}) (both referred to in Ricker, 1975). Fulton's condition factor assumes isometric growth: $\mathrm{K}_{\mathrm{F}}=100 \times \mathrm{W} / \mathrm{TL}^{3}$, where W is the total weight (g) and TL is total length (cm). Relative condition factor relates the realised weight to the expected (theoretical) weight calculated from the length-weight relationship, thus $\mathrm{K}_{\mathrm{R}}=\mathrm{W}_{\mathrm{R}} / \mathrm{W}_{\mathrm{TH}}$, where W_{R} is realised weight in grams and W_{TH} is theoretical weight in grams.

At the population level, the average K values indicate the overall 'state' of the population's 'health'. It should be noted, however, that the condition factor of fish is influenced by the development stage of its reproductive organs (Le Cren, 1951) and
might also be length-dependent (Scott et al., 2006). Consequently, variability might be generated by individual gonad development or inter-annual variation in spawning time. The information in the database came from a number of months around spawning time; hence inter-annual variations in spawning time should not have any dramatic effect at a population scale perspective. Samples were analysed fresh on board the vessel, and therefore we assume that there were no significant effects from handling. However, to test for the possible effect of inter-annual variability, monthly average condition factor for each size class was analysed for significant differences between years. Relationships between K_{F} and K_{R} were then analysed using a continuous wavelet transform (CWT) (see Subbey et al., 2008). The wavelet approach allows a scale-to-scale comparison of the two K approaches, to see if they are in agreement. Periodicities in the condition data were analysed using Single Series Fourier Analyses in STATISTICA.

3. Results

3.1. Population structure

Spawning stock size in biomass and in numbers as estimated by VPA indicated a decline from above 15×10^{6} tonnes or 50×10^{9} fish in 1944 and 1945 to below $20 \times$ 10^{3} tonnes or 10×10^{6} fish in 1972, and again above 8×10^{6} tonnes or 40×10^{9} fish in 1997 (data from ICES, 2006, Fig. 1a). Then it has been kept at around the level of 1997. Strong recruitment to the spawning stock was evident as a significant increase in number of fish below 32 cm (Fig. 1b), with relative peaks visible during 1944, 1956, 1965, 1977, 1988, 1997 and 2004. Overall, the spawning stock was dominated (above 90%) by repeat spawners ($\geq 32 \mathrm{~cm}$), but in the years 1943-1944, 1965-1966, 1973, 1976-1977, 1986-1989, 1996-1998 and 2003-2004 the recruit spawners were most abundant (i.e. > 50% of the SSN) (Fig. 1b). The age structure as characterised by age diversity (H) showed relatively large variations (Fig. 1b). Age diversity was relatively high from 1935 to the early 1950s. From then onward, through the period of stock collapse in the mid 1970s, age diversity declined. Age diversity showed a fairly rapid increase through the late 1970s to mid 1980s even though there was not a major increase in abundance. This was primarily due to an increase in number of age classes and a more even spread of ages within the stock, as the stock recovered. Large year
classes tended to make the age structure less even across year classes and this was reflected in the periodic 'dips' in the value of H. By the early 1990s to the present the age diversity returned to a relatively high level but not to the levels seen prior to the onset of the stock collapse.

3.2. Condition factor

Generally, condition variation was significant within sizes (Student t-test, $\mathrm{p}<0.001$, $\mathrm{n}=149689$) and between sizes (Chi-square, $\chi^{2}=157.48, \mathrm{p}<0.001, \mathrm{n}=149689$), with more variation observed among fish that were less than 28 cm (Fig. 2). Both K_{F} and K_{R} oscillated (Fig. 3) over time, and a continuous wavelet transform showed that there was considerable similarity in fluctuations in the two measures at a wide range of inter-annual scales with the minimum correlation coefficient (r) being approximately 0.998. This indicates that the two measures of K are in agreement and therefore any possible influence of gonad maturation did not change the condition dynamics. When the data were pooled over a 5 year moving average it appeared there was a cyclical pattern in the data (Fig. 3). Overall, the two dominant periodicities in both condition indices were 23.3 and 17.5 years for K_{F} and K_{R}, respectively (single series Fourier Analyses) (see Fig. 3). Herring reached high average conditions during the late 1950s $\left(K_{F}=0.85\right)$, late 1970s $\left(K_{F}=0.86\right)$ and mid 1990s $\left(K_{F}=0.84\right)$. The lowest average K_{F} was observed in 1945, while the highest was observed in 1956 and 1972. During the periods toward the mid 1940s and late 1990s when abundance was at its highest (Fig. 1), there was a decrease in condition factor (Fig. 3), however, there was no significant correlation between $S S N$ and mean condition factor $\left(K_{F}\right)\left(r^{2}=0.07 ; \mathrm{P}>0.05\right)$ (Fig. 4).

3.3. Fecundity

While fecundity estimates used here are based on a fecundity-weight relationship, Fig. 5 illustrates the potential variability in fecundity-at-length due to variability in weight-at-length or condition of the fish. The highest variation in the estimated fecundity was found among the biggest fish, possibly due to the fact that there is a tendency of more weight variation among larger fish.

3.4. Long-term TEP

Estimated TEP for the full time series 1935-2005 followed the SSN trend closely (Fig. 6a), but the residuals in the TEP-SSN relationships (Fig. 6b) were related to changes in proportion of recruit spawners and condition (Fig. 6c). Typically, larger deviations from this relationship were found in periods with high SSN in combination with increasing proportions of either recruit or repeat spawners and decreasing or increasing condition factor (K). Deviations were positive when the stock comprised of above 80% of repeat spawners and K_{F} above 0.8 , and they were negative when the stock was dominated by recruit spawners (repeat spawners less than 40%, Fig. 6c) and K_{F} below 0.73 .

3.5. TEP comparisons with published data sets

There existed only a few data to compare with our length-based estimate of TEP. Data from Seliverstova (1990) and Serebryakov (1990) on inter-annual variations in TEP indicate that similar levels of TEP are estimated using either Óskarsson et al.'s (2002) model or the different annually varying fecundity relationships (Fig. 7). In addition whilst there are some differences in the absolute level, especially at higher TEPs the linear regressions between different TEP estimates are highly significant ($r^{2}>0.92, p$ $\ll 0.05$). The use of Baxter's (1959) fecundity relationship essentially provides the same perspective as using Óskarsson et al.'s (2002) relationship (Fig. 7).

Although linear relationships between different TEP estimated were highly significant (Fig. 8 a,b), the residual plots from both predictors (Fig. $8 \mathrm{c}, \mathrm{d}$) showed that there were systematic deviations between the fitted curves over time, with greater differences in the 1950s, the time when the stock abundance was relatively high, and less in the 1970s, the time when the stock abundance was also decreasing substantially. Similarly, residuals against predicted values indicated that deviations were greatest during times of high predicted egg production (Fig. 8 e ,f).

4. Discussion

In the present study, the TEP of NSS herring was estimated for the period 1935-2005 using data on population abundance and structure combined with published relationships between length, weight and fecundity. Over this 70 year period, the TEP fluctuated considerably, closely following the SSB or SSN. Residual analyses
demonstrated that positive variations in TEP that were not attributed to SSB or SSN, occurred in periods of high abundance in combination with high K_{F} and high proportions of repeat spawners. On the other hand, negative residuals are observed when a period of high abundance had fish with low K_{F} and dominated by recruit spawners. In the same periods systematic deviations were also found between the estimated TEP and previous TEP estimates (Seliverstova, 1990). This is likely to be a result of intra-annual variations in potential and relative potential fecundity in the order of $35-55 \%$ (Óskarsson et al., 2002), which may be a result of variation in condition factor or the composition of the stock.

The average K values should not be regarded as absolute because it is likely that intraannual variation is influenced by gonad development, as energy reserves decline with gonad maturation (Kennedy et al., 2010). However this effect was considered minimal at the inter-annual scale because there was no statistical difference between K_{F} and K_{R}. Nevertheless, the fact that K_{F} and K_{R} indices showed similar dynamics indicates our use of Fulton's K as a reliable proxy for this stock's condition status. Patterns of changes in condition factor for the entire period could be indicating differences in allocation of energy to growth and reproduction between recruit and repeat spawners (Óskarsson et al., 2002; Engelhard and Heino, 2006). Although we have observed that most of the time K_{F} of the population was above 0.75 , other studies (Óskarsson et al., 2002; Kennedy et al., 2010) have observed that atresia increases markedly when K_{F} is less than 0.7. In this regard, the long term dynamics of the state of the stock measured in condition factor would still be appropriate at the population level.

There has been variation in maturity at age and length over the years (Dragesund et al., 1980; Engelhard and Heino, 2004). Although these changes in maturity at length were relatively small, there were significant differences between year classes before, during and after the collapse (Engelhard and Heino, 2004). The year classes after the collapse (1986-2000) indicated that the stock is regaining characteristics (weight at length, and size and length at maturity) similar to those before the collapse period (1935-1968). The ICES data on age at maturity may not be accurate, because Engelhard and Heino (2004) suggested variation in spawning age that differs from that reported by in the ICES report. These changes could have led to differences in the
fecundity and productivity of the stock. In the view of the reproductive potential of recruit and repeat spawners (Slotte, 1998), changes in sexual maturation could also lead to recruitment variances when a bigger year class with early or delayed maturation is recruited. This seemed to be the case during the years that had a more skewed proportion of recruit and repeat spawners, because they correspond with the years of higher residuals. This suggests that detailed stock structure parameters are important for stock productivity and, hence, to be taken into account during assessments. Other factors like atresia (Kurita et al., 2003; Kennedy et al., 2010) and the skipped spawning (Engelhard and Heino, 2005) could also contribute to the TEP variation, but more research on these topics is required to draw any further conclusions.

The use of one weight-specific fecundity relationship to estimate TEP could have resulted in increased residuals during periods that had experienced a change in productivity due to differences in condition factors. However, the fecundity model from Óskarsson et al. (2002) was not significantly different from that of Baxter (1959), suggesting that fecundity-weight relationship in 1998 was similar to the one observed in the late 1950s. Nonetheless, levels of variations in fecundity under various conditions (González-Vasallo, 2006; Kennedy et al., 2010) can be significant, and it is therefore still advisable that fecundity and maturation schedules (maturity ogives) should be monitored frequently as there is the possibility they could change over short or long time periods. Maturation at a young but bigger size, as observed during the collapse period (Engelhard and Heino, 2005), is often associated with decline in population size (Toresen, 1990; Trippel, 1995), and could include genetic and phenotypic responses (Shin and Rochet, 1998; Olsen et al., 2004; Marshall and McAdam, 2007).

In this study we have not investigated genetic responses, but their role in changes of SRP should not be ignored. Similarly, we did not address the possibility that fecundity may increase with age for a given length or weight, or that there may be a negative effect of population cohort size on fecundity, as there is no unequivocal evidence for these phenomena in NSS herring. However, we examined the data given in Seliverstova (1990) and there was no clear trend in fecundity with age or abundance. During the time period of their investigation, mean weights were changing as was the
thermal regime, which probably confounded any potential patterns. The observed deviations between various TEPs indices illustrate other possible factors that could lead to potential different perceptions of stock productivity, as measured by total egg production. In this regard cohort based reproductive potential analyses should be considered since there are cohort effects on life history (Sæther, 1997; Beckerman et al., 2002), i.e., parental or inherited traits define individuals.

Clearly, depending on the year-specific condition factor (see e.g. Kennedy et al. 2010) and the structure of the population, total egg production of the stock can vary considerably, mostly at times of high stock abundance. For example, TEP in relation to SSN was overestimated at times when the stock was dominated by recruit spawners, and underestimated when the stock was dominated by repeat spawners. As a result, reference points derived from spawning stock biomass only, may not account for these year-specific variations and year-class structure differences. Not accounting for these factors and dynamics could lead to varying recruitment rates, and more so when coupled with environmental causes. If the egg production potential of the stock is not accounted for in stock assessments and the management, this in turn may impact on expectations for the recovery of the stock. Our work therefore suggests that quantifying the reproductive potential as TEP will contribute to understanding stockrecruitment dynamics because it captures both the population and reproductive dynamics of the stock.

Acknowledgements

This work was supported by the EU FP5 project RASER (Reproduction and Stock Evaluation for Recovery, no. 01825), the Norwegian Research Council project Ecosystem Dynamics and Fish Stocks (ECOFISH, no. 17356/i30) and the EU FP6 project UNCOVER (Understanding the Mechanisms of Stock Recovery, no. 022717). The first author would like to thank the Norwegian Quota program for the scholarship, the Department of Biology, University of Bergen and the Institute of Marine Research for this study opportunity. We are thankful to Elena Eriksen for Russian translations. This article was encouraged by discussions with and the terms of reference of the NAFO Working Group on Reproductive Potential and COST Action Fish Reproduction and Fisheries (FRESH, FA0601).

References

Anon., 1962. Recommendations adopted by the Herring Committee. Rapp. P.-v. Réun. Cons. Int. Explor. Mer 1, 71-73.
Bagenal, T.B., 1969. Relationship between egg size and fry survival in brown trout, Salmo trutta L. J. Fish Biol. 1, 349-353.

Baxter, I.G., 1959. Fecundities of winter spring and summer-autumn herring spawners. J. Cons Int. Explor. Mer 25, 73-80.
Beckerman, A.P., Benton, T.G., Ranta, E., Kaitala, V., Lundberg, P., 2002. Population dynamic consequences of delayed life-history effects. TREE 17, 263-269.
Belikov, S.V., Krysov, A.I., Seliverstova, E.I., Tereshchenko, E.S., 1996. Reproductive capacity of Norwegian spring-spawning herring during period of stock rebuilding. ICES CM 1996/H: 34.
Blanchard, J.L., Frank, K.T., Simon, J.E., 2003. Effects of condition on fecundity and total egg production of eastern Scotian Shelf haddock. Can. J. Fish. Aquat. Sci., 60, 321-332.
Bolger, T., Connolly, P.L., 1989. The selection of suitable indices for the measurement and analysis of fish condition. J. Fish Biol. 34, 171-182.
Bromage, N.R., Jones, J., Randall, C., Thrush, M., Springate, J., Duston, J., Barker, G., 1991. Broodstock management, fecundity, egg quality and the timing of egg production in the rainbow trout (Oncorhynchus mykiss). Aquaculture 100, 141-166.
Cardinale, M., Modin, J., 1999. Changes in size-at-maturity of Baltic cod (Gadus morhua) during a period of large variations in stock size and environmental conditions. Fish. Res. 41, 282-295.
Devold, F., 1963. The life history of the Atlanto-Scandian herring. Rapp. P.-v. Réun. Cons. Int. Explor. Mer 154, 98-108.
Dragesund, O., Hamre, J., Ulltang, Ø., 1980. Biology and population dynamics of the Norwegian spring-spawning herring. Rapp. P.-v. Réun. Cons. Int. Explor. Mer 177, 43-71.
Dragesund, O., Johannessen, A., Ulltang, Ø., 1997. Variation in migration and abundance of Norwegian spring spawning herring (Clupea harengus L.). Sarsia 82, 97-105.

Engelhard, G.H., Heino, M., 2004. Maturity changes in Norwegian spring-spawning herring before, during, and after a major population collapse. Fish. Res. 66, 299310.

Engelhard, G.H., Heino, M., 2005. Scale analysis suggests frequent skipping of the second reproductive season in Atlantic herring. Biol. Lett. 1, 172-175.
Engelhard, G.H., Heino, M., 2006. Climate change and condition of herring (Clupea harengus) explain long-term trends in extent of skipped reproduction. Oecologia 149, 593-603.
González-Vasallo, B.D., 2006. Regulatory reproductive mechanisms and somatic growth in Atlantic herring (Clupea harengus L.). M.Sc. thesis, Department of Biology, University of Bergen, Bergen, Norway.

Hislop, J.R.G., Robb, A.P., Gauld, J.A., 1978. Observations on effects of feeding level on growth and reproduction in haddock, Melanogrammus aeglefinus (L.), in captivity. J. Fish Biol., 13, 85-98.

Holst, J.C., Røttingen, I., Melle, W. 2004. The herring. In: H.R. Skjoldal, R. Sætre, A. Færnö, O.A. Misund, I. Røttingen (eds.) The Norwegian Ecosystem. Tapir Academic Press, Trondheim, Norway. pp 203-226.
ICES, 1999. Report of the northern pelagic and blue whiting fisheries Working Group. ICES CM 1999/ACFM:18.
ICES, 2006. Report of the northern pelagic and blue whiting fisheries Working Group (WGNPBW). ICES CM 2006/ACFM:34. 294pp.
ICES, 2007. Report of the northern pelagic and blue whiting fisheries Working Group (WGNPBW). ICES CM 2007/ACFM:29. 226pp.
Kennedy, J., Skjæraasen, J.E., Nash, R.D.M., Thorsen, A., Slotte, A., Hansen, T., Kjesbu, O.S., 2010. Do capital breeders like Atlantic herring (Clupea harengus L.) exhibit sensitive periods of nutritional control on ovary development and fecundity regulation? Can. J. Fish. Aquat. Sci. 67, 16-27.
Kjesbu, O.S., Klungsøyr, J., Kryvi, H., Witthames, P.R., Greer Walker, M.G., 1991. Fecundity, atresia, and egg size of captive Atlantic cod (Gadus morhua) in relation to proximate body composition. Can. J. Fish. Aquat. Sci. 48, 2333-2343.
Kjesbu, O.S., Witthames, P.R., Solemdal, P., Greer Walker, M., 1998. Temporal variations in the fecundity of Arcto-Norwegian cod (Gadus morhua) in response to natural changes in food and temperature. J. Sea Res. 40, 303-321.

Klibansky, N., Juanes. F., 2008. Procedures for efficiently producing high-quality fecundity data on a small budget. Fish. Res. 89, 84-89.
Krysov, A. I., Seliverstova, E. I., Tereshchenko, E. S., 1995. Stock status and dynamics of Norwegian spring-spawning herring fecundity in 80-S. In: T. Monstad (ed.). Proceedings of the Fourth Soviet-Norwegian Symposium, Bergen, 12-16 June 1989. Institute of Marine Research, Bergen. pp. 264-271.

Kurita, Y., Meier, S., Kjesbu, O.S., 2003. Oocyte growth and fecundity regulation by atresia of Atlantic herring (Clupea harengus) in relation to body condition throughout the maturation cycle. J. Sea Res. 49, 203-219.
Lambert, Y., Dutil, J.-D., 2000. Energetic consequences of reproduction in Atlantic cod (Gadus morhua) in relation to spawning level of somatic energy reserves. Can. J. Fish. Aquat. Sci. 57, 815-825.

Lambert, Y., Yaragina, N.A., Kraus, G., Marteinsdottir, G., Wright, P.J., 2003. Using environmental and biological indices as proxies for egg and larval production of marine fish. J. Northwest Atl. Fish. Sci. 33, 115-159.
Le Cren, E.D., 1951. Length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). J. Anim. Ecol. 20, 201-219.
Lyamin, K.A., 1966. Fecundity of the spring race of Atlanto-Scandian herring. Trudy PINRO 17, 147-192 (In Russian).

Ma, Y., Kjesbu, O.S., Jørgensen, T., 1998. Effects of ration on the maturation and fecundity in captive Atlantic herring (Clupea harengus). Can. J. Fish. Aquat. Sci. 55, 900-908.
Macchi, G.J., Pajaro, M., Ehrlich, M., 2004. Seasonal egg production pattern of the Patagonian stock of Argentine hake (Merluccius hubbsi). Fish. Res. 67, 25-38.
Marshall, C.T., McAdam, B.J., 2007. Integrated perspectives on genetic and environmental effects on maturation can reduce the potential for errors of inference. Mar. Ecol. Prog. Ser. 335, 301-310.

Marshall, C.T., Kjesbu, O.S., Yaragina, N.A., Solemdal, P., Ulltang, Ø., 1998. Is spawner biomass a sensitive measure of the reproductive and recruitment potential of Northeast Arctic cod? Can. J. Fish. Aquat. Sci. 55, 1766-1783.
Marshall, C.T., Yaragina, N.A., Ådlandsvik, B., Dolgov, A.V., 2000. Reconstructing the stock-recruit relationship for Northeast Arctic cod using a bioenergetic index of reproductive potential. Can. J. Fish. Aquat. Sci. 57, 2433-2442.

Marshall, C.T., O’Brien, L., Tomkiewicz, J., Marteinsdottir, G., Morgan, M.J., Saborido-Rey, F., Köster, F.W., Blanchard, J.L., Secor, D.H., Kraus, G., Wright, P.J., Mukhina, N.V., Björnsson, H., 2003. Developing alternative indices of reproductive potential for use in fisheries management: case studies for stocks spanning an information gradient. J. Northwest Atl. Fish. Sci. 33, 161-190.

Marteinsdottir, G., Begg, G.A., 2002. Essential relationships incorporating the influence of age, size and condition on variables required for estimation of reproductive potential in Atlantic cod, Gadus morhua. Mar. Ecol. Prog. Ser. 235, 235-256.

Marteinsdottir, G., Thorarinsson, K., 1998. Improving the stock-recruitment relationship in Icelandic cod (Gadus morhua) by including age diversity of spawners. Can. J. Fish. Aquat. Sci. 55, 1372-1377.

Murua, H., Kraus, G., Saborido-Rey, F., Witthames, P. R., Thorsen, A., Junquera, S., 2003. Procedures to estimate fecundity of marine fish species in relation to their reproductive strategy. J. Northwest Atl. Fish. Sci. 33, 33-54.

Nakken, O. (Ed.), 2008. Norwegian Spring-Spawning Herring \& Northeast Arctic Cod. 100 Years of Research and Management. Tapir Academic Press, Trondheim. 177pp.

Olsen, E.M., Heino, M., Lilly, G.R., Morgan, M.J., Brattey, J., Ernande, B., Dieckmann, U., 2004. Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature 428, 932-935.
Óskarsson, G.J., Taggart, C.T., 2006. Fecundity variation in Icelandic summerspawning herring and implications for reproductive potential. ICES J. Mar. Sci., 63, 493-503.

Óskarsson, G.J., Kjesbu, O.S., Slotte, A. 2002. Predictions of realized fecundity and spawning time in Norwegian spring-spawning herring (Clupea harengus). J. Sea Res. 48, 59-79.Østvedt, O.J., 1964. Comparison between catch per unit effort in the Norwegian gill net and purse seine fishery for herring. Rapp. P.-v. Réun. Cons. Int. Explor. Mer 155, 90-93.

Ricker, W.E., 1975. Computation and Interpretation of Biological Statistics of Fish Populations. Bull. Fish. Res. Board Can. 191.

Rijnsdorp, A.D., 1991. Changes in fecundity of female North Sea plaice (Pleuronectes platessa L.) between three periods since 1900. ICES J. Mar. Sci. 48, 253-280.

Scott, B.E., Marteinsdottir, G., Wright, P., Kjesbu, O.S., 2006. Effects of population structure, condition and temporal dynamics of flexible life history traits on reproductive output in Atlantic cod (Gadus morhua). Ecol. Model. 191, 383-415.
Seliverstova, E.I., 1990. Spawning stock structure and population fecundity of the Atlanto-Scandian herring. In: T. Monstad (ed.). Proceedings of the Fourth SovietNorwegian Symposium, Bergen, 12-16 June 1989. Institute of Marine Research, Bergen. pp. 41-88.

Serebryakov, V.P., 1990. Population fecundity and reproductive capacity of some food fishes in relation to year-class strength fluctuations. J. Cons. Int. Explor. Mer 47, 267-272.
Shin. Y.-J., Rochet. M.-J., 1998. A model for the phenotypic plasticity of North Sea herring growth in relation to trophic conditions. Aquat. Liv. Resour. 11, 315-324.
Skjæraasen, J.E., Nilsen, T., Kjesbu, O.S., 2006. Timing and determination of potential fecundity in Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 63, 310-320.

Slotte, A., 1998. Spawning migration of Norwegian spring spawning herring (Clupea harengus L.) in relation to population structure. Dr. Sci. thesis, Department of Fisheries and Marine Biology, University of Bergen, Bergen, Norway.
Slotte, A., 1999. Effects of fish length and condition on spawning migration in Norwegian spring spawning herring (Clupea harengus L.). Sarsia 84, 111-127.
Solemdal, P., 1997. Maternal effects - a link between the past and the future. J. Sea Res. 37, 213-227.
Subbey, S., Michalsen, K., Nilsen, G.K., 2008 A tool for analyzing information from data storage tags: the continuous wavelet transform (CWT). Rev. Fish Biol. Fish. 18, 301-312.

Sæther, B.E., 1997. Environmental stochasticity and population dynamics of large herbivores: a search for mechanisms. TREE 12, 143-149.

Toresen, R., 1986. Length and age at maturity of Norwegian spring spawning herring for the year classes 1959-61 and 1973-78. ICES CM 1986/H: 42.
Toresen, R., 1990. Long-term changes of growth and maturation in the Norwegian spring spawning herring. In: Monstad, T., (ed.), Biology and Fisheries of the Norwegian Spring Spawning Herring and Blue Whiting in the Northeast Atlantic. Institute of Marine Research, Bergen, Norway. pp. 89-106.

Toresen, R., 2001. Environmental influences on herring (Clupea harengus L.) abundance: an environmental approach for the understanding of herring stock fluctuations and its application in management. Dr. phil. thesis, University of Bergen, Bergen, Norway.

Toresen, R., Østvedt, O.J., 2000. Variation in abundance of Norwegian spring spawning herring (Clupea harengus, Clupeidae) throughout the 20th century and the influence of climatic fluctuations. Fish Fish. 1, 231-256.

Toresen, R., Østvedt, O.J., 2002. Stock structure of Norwegian spring-spawning herring: historical background and recent apprehension. ICES Mar. Sci. Symp. 215, 532-542.

Trippel, E.A., 1995. Age at maturity as a stress indicator in fisheries. Bioscience 45, 759-771.

Trippel, E.A., 1998. Egg size and viability and seasonal offspring production of young Atlantic cod. Trans. Am. Fish. Soc. 127, 339-359.

Trippel, E.A., 1999. Estimation of stock reproductive potential: history and challenges for Canadian Atlantic gadoid stock assessments. J. Northw. Atl. Fish. Sci. 25, 6181.

Tyler, A.V., Dunn, R.S., 1976. Ration, growth, measures of somatic and organ condition in relation to meal frequency in winter flounder (Pseudopleuronectes americanus), with hypotheses regarding population homeostasis. J. Fish. Res. Board Can. 33, 63-75.

Fig. 1. Norwegian spring-spawning herring population abundance and structure over the period 1935 to 2005. (a) annual spawning stock size in numbers (SSN, bars) and spawning stock biomass (SSB, line), (b) the stock structure per recruit ($<32 \mathrm{~cm}$, black bars) and repeat spawners ($\geq 32 \mathrm{~cm}$, grey bars) and Shannon age diversity index H (line).

Fig. 2. The variability (mean \pm range) in Fulton's condition factor $\left(\mathrm{K}_{\mathrm{F}}\right)$ and relative condition factor (K_{R}) over the range of length classes in Norwegian spring-spawning herring. Each data point represents the mean and standard deviation (SD) of observed fish at each length over time.

Fig. 3. Annual variations of the Norwegian spring-spawning herring K_{F} and K_{R} (mean ± 0.95 confidence limits) together with the weighted condition factor and a five years moving average.

Fig. 4. Relationship between K_{F} and SSN for Norwegian spring-spawning herring.

Fig. 5. The variability in fecundity over the range of mature length classes in Norwegian spring-spawning herring. Óskarsson et al. (2002) (open squares) and Baxter (1959) (filled squares). Fecundity relationship of Óskarsson et al. (2002) is a function of weight but transformed to length, using weight-length relationship. Each data point represents the mean and standard deviation (SD) of observed fish at each length over time.

Fig. 6. (a) annual TEP (solid line and dash-dotted line), SSB, (dashed line), and SSN (dotted line), (b) TEP against SSN residuals over time and (c) the relationship between the proportion of repeat spawners, K_{F} and the annual residuals from TEPSSN for the years corresponding to the residuals. Closed circles represent annual residuals at their corresponding annual proportions of repeat spawners and each open square represent average K_{F}.

Fig. 7. (a) total egg production over time as estimated by different authors (Óskarsson et al, solid line: Baxter, dash-dotted line; Serebryakov, dotted line and Seliverstova, mesh line)..

Fig. 8. Relationship between various TEP estimates (a, b) and the residuals by year (c , d) or TEP (e, f), between this study (based on the fecundity curve of Óskarsson et al. (2002)) and Seliverstova (1990) and Serebryakov (1990).

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5.

Figure 6.

Figure 7.

Figure 8.

