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ABSTRACT 

The spatia1 distribution of eggs and larvae is a function of the pro- 

perties of the ambient water, i.e. the density, current and turbulent 

diffusion, and of the physical properties of the eggs, i.e. the buoy- 

ancy and dimension. The study of the vertical distribution is the 

first step to understanding the horizontal transport of eggs and 

larvae. Two models for the vertical distribution of eggs are applied 

to demonstrate how the physical and biological conditions influence 

the vertical distribution for the three main categories of eggs, here 

defined as pelagic, bathypelagic and bottom eggs. In particular, the 

physical conditions affecting the distribution of bathypelagic eggs 

are studied. The wind induced turbulence is the most important ambient 

factor for the vertical distribution of pelagic eggs and larvae. It 

contributes to mixing the buoyant eggs and larvae through the wind 

mixed layer. The vertical spreading of bathypelagic eggs depends 

mainly on the buoyancy distribution of the eggs. It is demonstrated 

from the model results that non-adhesive demersal eggs will be partly 

mixed into the water column. This mechanism contributes to the 

horizontal transport of demersal eggs. 



The s p a t i a 1  d i s t r i b u t i o n  of eggs and l a rvae  i s  influenced by a s e t  of 

b io log ica l  and physical  processes, which together  con t r ibu te  t o  de ter -  

mine the  f a t e  of the  year  c l a s s .  The importance of the  d i s t r i b u t i o n  

and t r anspor t  of the  e a r l y  s tages  f o r  recruitment of f i s h  s tocks  has 

been pointed out  by many authors: It has been suggested t h a t  unfavor- 

ab le  d r i f t  of eggs and larvae  beyond the  appropriate d i s t r i b u t i o n a l  

a r e a  w i l l  cause permanent l o s s  from the  population (Hjor t ,  1914). On 

the  o the r  hand i t  has been shown t h a t  anomalous t r anspor t  from one 

region t o  another may t r a n s f e r  r e c r u i t s  from one s tock t o  another. 

This was described by Hansen and Buch (1986) who found t h a t  export  of 

cod l a rvae  from the  Iceland t o  the  Greenland a rea  increased the  

Greenland cod stock.  The importance of l a r v a l  r e t en t ion  within speci-  

f i c  geographical regions during c r i t i c a l  periods has been out l ined by 

I l e s  and S i n c l a i r  (1982). Considering the  l a r g e  v e r t i c a l  va r i a t ions  of 

the  hor izonta l  flow f i e l d ,  i t  is  evident  t h a t  the  v e r t i c a l  d i s t r i b u -  

t i o n  of eggs and larvae  i s  important f o r  t h e i r  hor izonta l  t ranspor t  

and spreading and t h e i r  f a t e  with respect  t o  su rv iva l .  Cushing (1982) 

gave an example of how the  v e r t i c a l  d i s t r i b u t i o n  i t s e l f  d i r e c t l y  

influenced the  recruitment: The r i s i n g  halocl ine  i n  the  B a l t i c  brought 

up cod eggs and larvae  c lose r  t o  the  productive l aye r s  where t h e i r  

food is produced. Consequently, one important s t e p  towards 

understanding the  recruitment processes i s  t o  descr ibe  and understand 

the  v e r t i c a l  d i s t r i b u t i o n  of eggs and larvae .  This paper demonstrates 

how the  physical  proper t ies  of eggs and the  ambient physical  forces  

influence the  v e r t i c a l  d i s t r i b u t i o n .  Two models f o r  the  v e r t i c a l  

d i s t r i b u t i o n  of eggs (Sundby, 1983; Westgård, 1989) a r e  applied t o  

demonstrate the  three  main types of v e r t i c a l  d i s t r i b u t i o n :  pe lag ic ,  

bathypelagic and bottom d i s t r i b u t i o n s .  The physical  condit ions f o r  

each type of d i s t r i b u t i o n  a r e  analysed. 

RESULTS AND DISCUSSION 

Basic Equation 

The v e r t i c a l  processes which influence d i s t r i b u t i o n  of eggs, a r e  here 

s tud ied ,  and i t  i s  assumed t h a t  a l l  hor izonta l  gradients  a r e  zero.  The 

bas ic  equation is then reduced t o  the  v e r t i c a l  component of the  

d i f fus ion  equation: 



where 

C ( z , t )  i s  the  concentrat ion of eggs i n  numbers per  u n i t  volume 

w ( z , t )  i s  the  v e r t i c a l  ve loc i ty  of the  eggs 

K ( z , t )  i s  the  v e r t i c a l  eddy d i f f u s i v i t y  c o e f f i c i e n t  

S ( z , t )  i s  the  spawning production of eggs 

M(z , t )  is the  egg morta l i ty  

z  is the  v e r t i c a l  component, p o s i t i v e  towards increas ing depth 

t is time. 

To solve  the  equation,  the  v e r t i c a l  ve loc i ty  of the  eggs, w ( z , t ) ,  and 

the  v e r t i c a l  eddy d i f f u s i v i t y  c o e f f i c i e n t ,  K ( z , t ) ,  must be known. The 

v e r t i c a l  ve loc i ty  i s  expressed w = f ( d , A e , v ) ,  where d  is  the  diameter 

of the  egg, Ae i s  the  d i f ference  i n  dens i ty  (buoyancy) between the  

egg, e e ,  and the  ambient water,  ew, and v is the  molecular v i scos i ty  

of the  water.  Hence, the  two physical  p roper t i e s  of  the  eggs, the  

buoyancy and the  diameter a r e  key parameters t o  model the  v e r t i c a l  

d i s t r i b u t i o n .  

I n  the  following sec t ions  i t  w i l l  be shown t h a t  changes of the  buoy- 

ancy, Ae = s w  -@e, r e s u l t s  i n  the  most pronounced changes t o  the  

so lu t ions  of the  bas ic  equation (1). For t h i s  reason i t  i s  useful  t o  

c l a s s i f y  eggs i n t o  th ree  main groups (See Figure 1):  

In  t h i s  paper group A w i l l  be defined a s  "pelagic" eggs, group B as 

"bathypelagic" suid group C a s  "bottom" eggs, Since there  a r e  few 

descr ip t ions  of the  v e r t i c a l  d i s t r i b u t i o n  of eggs i n  r e l a t i o n  t o  t h e i r  

buoyancy, much of the  l i t e r a t u r e  is not  cons i s t en t  i n  t h i s  quest ion.  

It seems t h a t  eggs a r e  o f t en  c a l l e d  "pelagic" i f  they a r e  found i n  the 

water column and "demersal" i f  they a r e  found on the  bottom. However, 

the  so lu t ion  t o  equation (1) w i l l  show t h a t  a l l  the  th ree  groups, 

defined above, a r e  found i n  the  water column. Even demersal eggs, 

given they a r e  non-adhesive, w i l l  be mixed i n t o  the  water column. In  

addi t ion  t o  the  th ree  main types of eggs i n  Figure 1 ,  there  a r e  a l s o  



mlxed types,  I n  p a r t i c u l a r ,  species  with a buoymey distribution 

between pelagic  and bathypelagie have been reported by Coombs e t  a l ,  -- 
(1985) a 

Figure 1. Buoyancy d i s t r i b u t i o n  of three  ca tegor ies  of eggs (upper 
p a r t  of the  f igure )  i n  r e l a t i o n  t o  the  s a l i n i t y  p r o f i l e  (lower p a r t  of 
the  f i g u r e ) .  A :  pelagic eggs, B: bathypelagic eggs, C:  bottom eggs. 

Egg buoyancy 

The general  knowledge of f i s h  eggs' buoyancy has increased 

s u b s t a n t i a l l y  during recent  years ,  i n  p a r t i c u l a r  a f t e r  the  dens i ty  

gradient  column was introduced by Coombs (1981). This instrument 

enables us t o  measure the  s p e c i f i c  gravi ty  of individual  eggs with a 

high accurracy and resolu t ion .  The physiological  causes of buoyancy i n  

marine f i s h  eggs have been studied by Craik and Harvey (1987). 

Pelagic  eggs have a s p e c i f i c  densi ty which i s  lower than the  dens i ty  

of the  upper mixed l aye r  of the  sea.  Hence they tend t o  r i s e  towards 

the  surface .  Only a small f r a c t i o n  of such eggs, however, is found a t  

the  very surface ,  because the  turbulent  forces  of the  mixed l aye r  

counteract  the  buoyant forces  of the eggs. Depending on the  magnitude 

of the  counteract ing forces  the  eggs w i l l  be more o r  less concentrated 

towards the  surface .  Examples of eggs with such d i s t r i b u t i o n s  a r e  the  

North Sea p l a i c e  eggs (Pommeranz, 1973). the  North Sea mackerel eggs 

( Iversen ,  1973; Coombs, 1981) and North-east a r c t i c  cod eggs (Solemdal 

and Sundby, 1981). The v e r t i c a l  d i s t r i b u t i o n s  of these  species  were 



Bathypelagic eggs have a higher s p e c i f i c  dens i ty  than the  dens i ty  of 

the  upper mixed l a y e r  of the  sea ,  but  lower than the  dens i ty  of the  

bottom laye r .  Hence they a r e  d i s t r i b u t e d  a t  mid-depths and q u i t e  

f requent ly  i n  the  pycnocline. Examples of species  having t h i s  type of 

egg d i s t r i b u t i o n s  a r e  P a c i f i c  ha l ibu t  (Hippoglossus s t e n o l e p i s )  

(Thompson and van Cleve, 1936). the  B a l t i c  cod ( K h d l e r ,  1949) and the  

At lan t i c  ha l ibu t  (Hippoglossus hippoglossus L . )  found i n  Norwegian 

f j o r d s  and coas ta l  waters (Haug e t  a l . ,  1984, 1986). Kendall and K i m  

(1989) demonstrated how the  bathypelagic eggs from the  walleye pollock 

(Theragra chalcogramma) s u b s t a n t i a l l y  changed t h e i r  v e r t i c a l  

d i s t r i b u t i o n  mainly due t o  changes i n  the  buoyancy during the  

development. 

Bottom eggs have a s p e c i f i c  dens i ty  which i s  higher than the  dens i ty  

of the  bottom laye r .  In  p r i n c i p l e ,  demersal eggs i s  one kind of bottom 

eggs. However, i t  is  e s s e n t i a l  t o  d i s t ingu i sh  between adhesive and 

non-adhesive eggs. With respect  t o  the  na ture  of the  v e r t i c a l  forces 

a c t i n g  on the  eggs, there  i s  no d i f ference  between non-adhesive 

demersal eggs and pelagic eggs. Non-adhesive demersal eggs, unless 

they a r e  buried i n  the  sea  bed, w i l l  be more o r  less mixed i n t o  the  

water column depending on the  magnitude of the  bottom turbulent  

mixing. One species having non-adhesive demersal eggs i s  the  sa f f ron  

cod (Eleginus g r a c i l i s )  i n  the  north-east  P a c i f i c  Ocean (Dunn and 

Matarese, 1986). Even adbesive eggs may bre& loose from each o ther  

and the  sea  bed and be mixed i n t o  the  bottom laye r s  and transported 

away. This has been reported f o r  the  Barents Sea capel in  eggs (Bakke 

and B j ~ r k e ,  1973). 

The dens i ty  d i s t r i b u t i o n  of an egg population can o f t en  be described 

by a Gaussian d i s t r i b u t i o n  function.  The eggs  from the  North-east 

a r c t i c  cod a r e  neu t ra l ly  buoyant a t  an average s a l i n i t y  of 31.0 and 

the  standard deviat ion is  0.55 (Solemdal and Sundby, 1981). Eggs from 

the  At lan t i c  ha l ibu t  a r e  neu t ra l ly  buoyant a t  an average s a l i n i t y  of 

34.2 with a standard deviat ion of 0.52 (Haug et  a l . ,  1986). The 

buoyancy of s p r a t  eggs of f  the  southern coast  of Great B r i t a i n  ranged 

over about 8 s a l i n i t y  u n i t s  during the  end of the  egg s t age  (Coombs - e t  

a l . ,  1985). Consequently, it  i s  expected t h a t  the re  i s  a l a r g e  

d i f ference  of the  v e r t i c a l  d i s t r i b u t i o n  of the  heavies t  and the  

l i g h t e s t  f r ac t ions  of an egg population. I n  Figure 1 the  neu t ra l  



buoyancy distributions of three different egg population ase drawn 

together with a vertical salinity profile, Distribution A, which is 

consistent with the eggs of North-east arctic cod, will appear as 

pelagic eggs. Distribution B, which is identical with the Atlantic 

halibut eggs, will appear as bathypelagic eggs and distribution C will 

appear as bottom eggs. The latter is a hypothetic distribution, since 

no reports of quantitative density measurements of non-adhesive bottom 

eggs are available. 

There are, however, examples of species which is a mixture of the main 

types described above. Coombs et al., 1985 investigated buoyancy and 

vertical distribution of eggs from sprat (Sprattus sprattus) and 

pilchard (Sardina pilchardus) off the south coast of Great Britain. 

These eggs were a mixture of pelagic and bathypelagic eggs. In 

addition, the specific gravity of the eggs changed through 

development, and the ambient salinity varied through spawning season. 

This will result in a variety of possible vertical distributions, 

partly with peak concentrations in the surface, and partly in the 

pycnocline. 

Vertical eddy diffusivity'coefficient 

The other parameter which influences the vertical distribution of eggs 

is the vertical eddy diffusivity coefficient. Depending on the depth, 

wind velocity, stratification, tida1 energy and bottom stress it 

varies over approximately 5 orders of magnitude, It is largest in the 

mixed layer and decreases to a minimum in the pycnocline due to the 

stratification which reduces the vertical transport of turbulent 

energy, A slight increase occurs below the pycnocline due to the 

weaker stratification followed by a pronounced increase in the bottom 

layer due to bottom friction. Figure 2 shows qualitatively how the 

vertical eddy diffusivity coefficient may vary through a water column. 

Estimates of the mixed layer eddy viscosity coefficient are difficult 

partly due to the great problems of resolving wave motion from 

turbulence. Sverdrup et al. (1942) derived estimates of the eddy 

viscosity coefficient from the Ekman theory. Sundby (1983) estimated 

over-all eddy diffusivity coefficients for the mixed layer from a 

model on the vertical distribution of pelagic eggs. Thorpe (1984) made 

estimates of the eddy diffusivity coefficient in the surface layers 

based on a model for the vertical distribution of air bubbles in the 



s e a ,  ALthough t h e i r  r e s u l t s  t o  same ex ten t  d i f f e r ,  i t  may be concluded 
2 - 1  t h a t  the  eddy d i f f u s i v i t y  c o e f f l c i e n t  ranges from about 10 cm s a t  

3 2 -1  wind speed near  zero t o  about 10 cm s a t  wind speed of 

approximately 20 ms- l . 

Figure 2. Ranges of tpe -pe r t i ca1  d i s t r i b u t i o n  of the  eddy d i f f u s i v i t y  
c o e f f i c i e n t ,  K ,  i n  cm s ( r i g h t  p a r t )  f o r  a hydrographic p r o f i l e  
( l e f t  p a r t )  i d e n t i c a l  with the  p r o f i l e  i n  Figure 1. 

I n  the  pycnocline the  eddy d i f f u s i v i t y  c o e f f i c i e n t  is inverse ly  re-  

l a t e d  t o  the  s t r a t i f i c a t i o n  and d i r e c t l y  dependent on the  energy in- ,  

put .  However, the  funct ional  r e l a t ionsh ip  t o  those parametres i s  sti l l  

unknown. Several  authors have estimated the  v e r t i c a l  eddy d i f f u s i v i t y  

i n  d i f f e r e n t  f j o r d s  and coas ta l  waters e .g .  Gade (1970) f o r  Oslofjord- 

en,  Kullenberg (1971) f o r  shallow coas ta l  waters,  Svensson (1980) f o r  

a Swedish f j o r d  and Buch (1982) f o r  two-layered Scandinavian f j o r d s .  

Gargett (1984) reviewed the  l i t e r a t u r e  on the  v e r t i c a l  d i f f u s i v i t y  

c o e f f i c i e n t  i n  s t r a t i f i e d  systems. Depending on t h e  degree of 

s t r a t i f i c a t i o n ,  the  eddy d i f f u s i v i t y  c o e f f i c i e n t  ranges from 0.5 x 
2 -1 2 -1 cm s t o  about 1 - 4 cm s . 

The bottom turbulence, which normally extends severa l  meters above the  

bottom, i s  mainly dependent on the  boundary l a y e r  ve loc i ty  and the  

bottom roughness . Bowden (1962) reported values from severa l  authors . 
I n  areas  of s t rong  t i d a 1  mixing the  eddy d i f f u s i v i t y  c o e f f i c i e n t  may 

2 -1  2 -1 
exceed 100 cm s , although 1 cm s is more common above the  sea  bed 

i n  deep oceanic areas .  



If the terms spawning production, S(z,t), and mortality, M(z,t), are 

neglected in equation (l), and stationary conditions are considered, 

the diffusion equation reduces to: 

Equation (2) applies to the fraction eggs which has reached the steady 

state distribution after being spawned at some depth. We assume the 

buoyancy distributions shown in Figure 1 and a variation of the eddy 

diffusivity coefficient as shown in Figure 2 and apply the models for 

the vertical distribution (Sundby, 1983; ~estgård,l989). The three 

categories of eggs, pelagic (A), bathypelagic (B) and bottom eggs (C), 

will appear as shown in Figures 3a and 3b. 

Figure 3a shows the distribution for a situation of low eddy diffusi- 

vity coefficients in the water column, corresponding to the lower 

range of eddy diffusivity profile in Figure 2. The value of the mixed 
2 - 1  layer is 75 cm s corresponding to wind speed of O ms-l (according to 

Sundby (1983)). In the pycnocline the minimum eddy diffusivity 
2 - 1  coefficient is 0.01 cm s , and the value of the bottom layer is 6 

2 - 1  cm s . 

Figure 3b shows the distribution for a situation of high eddy 

diffusivity coefficient, corresponding to the higher range of eddy 

diffusivity profi'le in Figure 2. The mixed layer eddy diffusivity 
2 -1 coefficient is 585 cm s corresponding to wind speed of 15 øs-' 

(according to Sundby (1983)). The minimum value of the pycnocline is 
2 - 1  0.5 cm s , and the value for the bottom layer coefficient is 90 

2 - 1  cm s . 

Figures 3a and 3b show that the vertical distribution of pelagic eggs 

(A) is very sensitive to variations in the wind induced turbulence, as 

also demonstrated by Sundby (1983). The figures also show that varying 

bottom turbulence levels influences the vertical distribution of 

bottom eggs (C). However, the vertical distribution of bathypelagic 

eggs (B) confined to the pycnocline is rather insensitive to 

variations in the pycnocline turbulence. The pycnocline eddy 

diffusivity coefficient is increased by a factor of 50 from Figures 3a 

to 3b, but the vertical spreading is not substantially changed. 



Consequently, the vertical spreading in the pycnocline dependc mainly 

on the density distribution of the eggs and the density profile, and 

not very much on the level of turbulence. 

Figure 3 a. Vertical distribution of pelagic (A), bathypelagic (B) and 
bottom eggs (C) during low turbulence (See numerical values in the 
text). The neutral buoyancy distributions, salinity profile and eddy 
diffusion profile as shown in Figures 1 and 2. 

Figure 3 b. Vertical distribution of pelagic (A), bathypelagic (B) and 
bottom eggs (C) during high turbulence (See numerical values in the 
text). The neutral buoyancy distributions, salinity profile and eddy 
diffusion profile as shown in Figures 1 and 2. 

To show this we solve the diffusion equation for eggs of a given 

density in a linear pycnocline. The eddy diffusivity coefficient can 



tben be considered as constant with respect to depth, In a binear 

pycnocline, e ( z )  = k z + b, the vertical velocity, w(%), varies line- 

arly within the Stokes regime. The vertical velocity may therefore be 

written: 

where m is a constant, and zA is the level where Ae(z) = O, i.e. the 

level of neutral buoyancy of the egg. Equation (3) is inserted into 
equation (2 )  : 

The solution to equation (4) is: 

where CA is the concentration of eggs at the depth of neutral buoyan- 

cy, z A .  According to eq. (5) the eggs are vertically distributed as a 
normal distribution, where the standard deviation: 

When the velocity of the eggs is confined within the Stokes regime, 

the Stokes equation for the terminal velocity is valid and the 

expression for m becomes: 

where d is the diameter of the egg and N is the Brunt-Vaisala 

frequency. The value of the molecular viscosity, v, is tabulated by 
o 

Riley and Skirrow (1975) (e.g. at 5 C and salinity 30 the molecular 
-1 -1 

viscosity is 0.016 gcm s ) .  

We take, as an example, the vertical distribution of Atlantic halibut 

in the pycnocline of northern Norway fjords described by Haug et al. 

(1986). where the squared ~runt-vaisgl& frequency, N * ,  ranged from 

O. ~ X I O - ~  to 2. OXIO-~ s - ~  . From the above mentioned literature on the 
influence of stratificati~n cn the turbulence, the eddy diffusivity 



2 - 1  coef f i c i en t  range f ron 0-1 t o  0,5  cm s . When these  valuec a r e  in- 

s e r t e d  i n t o  eq,  6 and 7 ,  the  standard devia t ion ,  a, of the  v e r t i e a l  

spreading of one buoyancy group of ha l ibu t  eggs w i l l  range from 0.4 t o  

1 .6  meters. According t o  Haug -- e t  a l .  (1986) the  o lde r  eggs (which 

d e f i n i t e l y  have come t o  a s teady s t a t e  v e r t i c a l  d i s t r i b u t i o n )  extend 

over a 150 - 250 m water column. Consequently the  l a r g e  v e r t i c a l  

spreading of h a l i b u t  eggs i n  the  water column is due t o  the  n e u t r a l  

buoyancy d i s t r i b u t i o n  of the  eggs alone and not  the  due t o  the  

v e r t i c a l  turbulence.  

The v e r t i c a l  d i s t r i b u t i o n  of eggs with a dens i ty  higher than the  bot- 

tom water l a y e r ,  here  defined a s  bottom eggs ( d i s t r i b u t i o n  C i n  Figs. 

3a,  3 b ) ,  has the  inverse  d i s t r i b u t i o n  of t h a t  of pe lagic  eggs. Since 

the  bottom turbulence general ly i s  much lower than the  turbulence i n  

the  upper mixed l a y e r ,  the  bottom eggs w i l l  be more concentrated 

towards the  boundary than the  pelagic  eggs. For low l e v e l s  of bottom 

turbulence (Fig .  3 a ) ,  l e s s  than 3 % of the  eggs a r e  mixed more than 3 
m above the  s e a  bed. However, i n  shallow regions where the  t i d a 1  

induced bottom turbulence i s  high, and where the  mixed l a y e r  may even 

extend t o  the  bottom, the  bottom turbulence c o e f f i c i e n t  may exceed 100 
2 -1 

cm s , and the  eggs w i l l  be d i s t r i b u t e d  a s  C i n  Figure 3b. Here 40 % 
of the  eggs are more than 3 m above the  sea  bed. 

Development of s teady s t a t e  egg p r o f i l e s  

In  the  previous sec t ion  d i s t r i b u t i o n s  based on balance between the  

buoyancy force  of the  eggs and the  v e r t i c a l  turbulence forces  were 

s tud ied ,  i . e .  when 6C/6t = O (steady s t a t e ) .  The t i m e  i t  takes t o  

reach steady s t a t e  d i s t r i b u t i o n ,  depends on the  spawning depth, the  

buoyancy and the  turbulence. Figure 4 i l l u s t r a t e s  how the  mixed l aye r  

turbulence influence the  time t o  reach the  steady s t a t e  p r o f i l e  f o r  

pe lagic  cod eggs spawned a t  120 m depth. The buoyancy d i s t r i b u t i o n  of 

these  eggs equals those of the  cod eggs shown i n  Figure 1. The f igure  

shows the  concentrat ion p r o f i l e  f o r  every 6 th  hour a f t e r  spawning near 

the  bottom. It takes 48 hours t o  reach the  steady s t a t e  d i s t r i b u t i o n  

during calm wind condit ions,  while i t  takes only 30 hours t o  reach 

steady s t a t e  a t  wind speed of 15 m / s .  It can a l s o  be shown t h a t  there  

a r e  l a r g e  va r i a t ions  i n  the  time t o  reach steady s t a t e  f o r  the  heavy 

f r a c t i o n  and the  l i g h t  f r ac t ion  of the  eggs. While the  buoyancy of 

pe lagic  eggs i s  constant a s  they r i s e  through the  mixed l a y e r ,  the  

buoyancy of bathypelagic eggs decreases a s  they move toward the  depth 
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Figure 4. Development of the vertical profile of pelagic eggs (A) from 
an initial distribution, i.e. spawning near the bottom, to steady 
state for two events of mixed layer turbulence. Upper partllwind 
velocity, W = O ms-l. Lower part: wind velocity, W = 15 ms . 

of equilibrium. It implies that the vertical velocity also decreases, 

and it takes a relatively long time to reach steady state for 

bathypelagic eggs. 

CONCLUSION 

The vertical distribution of pelagic eggs is mainly influenced by the 

wind induced mixing. The buoyancy distribution determines the vertical 

distribution of bathypelagic eggs, while the vertical spreading in the 

pycnocline of these eggs is essential insensitive to vertical mixing. 

Model results show that non-adhesive demersal eggs partly will be 

found in the water column. This will contribute to advection of demer- 

sal eggs. The time it takes to reach a steady state vertical egg 

distribution depends on the spawning depth, buoyancy distribution of 

the eggs and the vertical mixing. 
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