SERIE B 1981 Nr. 6

FISKEN og HAVET

RAPPORTER OG MELDINGER FRA FISKERIDIREKTORATETS HAVFORSKNINGSINSTITUTT - BERGEN SERIE B 1981 Nr. 6 Begrenset distribusjon varierende etter innhold (Limited distribution)

ECHO SOUNDER MEASUREMENTS OF BACKSCATTERING CROSS SECTIONS OF ELASTIC SPHERES

Ву

KENNETH G. FOOTE

Institute of Marine Research

5011 Bergen, Norway

Redaktør

ERLING BRATBERG

Desember 1981

ABSTRACT

FOOTE, K.G. 1981. Echo sounder measurements of backscattering cross sections of elastic spheres. <u>Fisken og Havet Ser. B,</u> <u>1981</u> (6): 1-107.

Acoustic backscattering by solid elastic spheres has a history of experimental and theoretical investigation, but little application. In order to facilitate the precision calibration of sonars, echo sounders, and echo integrators, the present study aims to provide sufficient new experimental data to test a necessary extension of theory which avoids the limitations of continuous-wave ensonification and infinitely-narrow-bandwidth reception. The gathered data thus include the following parameters for each echo sounder: the duration and center frequency of the transmitted, pulsed sinusoidal signal, and the frequency response function of the receiver. Other essential data reported here are the diameter, density, and material composition of each sphere, and the medium hydrography, or temperature and salinity. Annexed periferal data include the individual sphere suspensions and received echo waveforms.

The backscattering cross sections of twenty nine spheres were measured with each of the echo sounders whose respective nominal operating frequencies were 38, 49.5, 70, and 120 kHz. The same nominal pulse duration of 0.6 ms was used. Sphere diameters varied from 35 to 130 mm. The characteristic product of wavenumber and sphere radius thus spanned the range from 3 to 34. No assumptions were made about the equipment calibration other than that it remained constant over the duration of the experiment. The measurements are thus purely relative, but consistent for each echo sounder. Conversion factors allowing expression of the measurements in absolute units are provided by reference to theory.

INTRODUCTION

Calibration of hydroacoustic equipment is generally problematical. In the case of transducers, for instance, there appear at times to be as many techniques as there are experimenters or users. URICK (1975) gave twenty seven references on the subject. The number today is much larger as is evident from inspection of recent indexes of the Journal of the Acoustical Society of America and from bibliographies compiled for the same journal by WHITE and TEAS (1976-81).

The current problem of interest, and motivation for the study reported here, that of calibrating echo sounders and echo integrators for use in fisheries research, is no less troublesome or intriguing. Some popular solutions are the following: conventional calibration by hydrophone (PETTERSEN 1969, FORBES and NAKKEN 1972, BODHOLT et al. 1979), simultaneous counting and integration of single fish echoes from a sufficiently dispersed aggregation (MIDTTUN and NAKKEN 1971), integration of the echo from an encaged aggregation of fish suspended in the echo sounder beam (JOHANNESSEN and LOSSE 1977), and measurement of a stationary, passive target with presumed known target strength, e.g., ping pong ball (WELSBY and HUDSON 1972, TRAYNOR and EHRENBERG 1979, FORBES et al. 1980, TRAYNOR and NELSON 1981) or metal sphere (WALLACE et al. 1975, TRAYNOR and EHRENBERG 1979). These methods display a diversity like those of transducer calibration, and similarly express a latent dissatisfaction with available methods or need for highly specific techniques.

The present study springs from several sources. The first is the experience of the instrumentation group at the Institute of Marine Research with the hydrophone method, which has proved unreliable. The second is the long-standing desire of the acoustics group at the Institute to know what the absolute calibration of the equipment is, independently of fish behaviour. Such considerations restrict choice of the calibration method to that of a simple target with presumed known acoustic backscattering cross section. Given the success of the instrumentation group in

obtaining consistent, if relative results with metal spheres in exercises conducted along with conventional hydrophone calibrations since 1979, it was natural to investigate similar targets. The fact of distant colleagues' complaints about ping pong balls, including suspicions voiced in the literature (TRAYNOR and EHRENBERG 1979), precluded consideration of these and other non-robust targets. The existence of a rudimentary theory for scattering by elastic spheres (FARAN 1951, HICKLING 1962), moreover, and possibility of forming the target of glass or plastic led to the general investigation of elastic spheres as calibration targets.

6

General aims of the overall calibration study, the so-called Calibration Sphere Project, may be phrased through these questions: What is the target strength of an elastic sphere as observed by an echo sounder? What is the best material and sphere size for calibration of a given echo sounder? How should the sphere be suspended in the echo sounder beam? What methodology is most efficient for calibrating echo sounders and echo integrators by elastic spheres?

A shortcoming with theory that was recognized at the outset of the study was its formal limitation to the idealized conditions of continuous-wave ensonification of the target or infinitelynarrowband reception of the echo (URICK 1975, CLAY and MEDWIN 1977). Extension of theory to the general case of transient ensonification of an elastic sphere and reception of the echo by an intrinsically wideband receiver, which characterize ordinary uses of echo sounders and sonars, thus constituted a first step in the study. Confirmation of the expanded theory and exploration of different candidate materials for the calibration sphere was the goal of the first experiment of the project.

The success of the experiment may justify the somewhat inclusive presentation of its data here. At the least, such detailed documentation establishes a solid foundation for the further exercise of theory, as in solving the dual problem of specifying the best material and sphere size. As a second experiment has

Table 1. Description of machined copper spheres used as acoustic targets. Parenthetical quantities are estimates.

line diam. Suspension 0°36 0.36 0.36 0.36 0.36 0.58 0.36 0.36 0.36 0.36 0.36 0.36 (uuu) Line diam. None: hole through None: hole through 0,19 0.19 0.19 0.19 0.19 0.58 0.19 0.19 0.19 0,19 (um) Net bag 19 mm mesh Handmade Type knob knob With c, 2.6 g, 6 mm With central 2.0 mm With central 3.5 mm With c. l.l g, 4 mm high, 2mm diameter high, 2.5 mm diam. Other description cylindrical knob cylindrical knob diameter bore diameter bore Mass (g) 200.7 197.6 199.4 299.4 580.2 586.0 587.4) 584.8 (200.6) 201.5) 427.2 1015.2 Computed 39.99 45.02 35.00 34.99 49.86 50.02 49.99 60.08 34.98 Diameter (mm) Nominal 32 32 45 50 50 50 60 35 35 40 cu50c+ CU35C+ cu35c-CU35B-CU50A CU50B CU35B CU35A cu50c CU40 CU45 cu60 Name

already been conducted, with both confirmation of the target strengths of new, theoretically optimal spheres and elucidation of a rather simple calibration methodology, the present report also prefaces and supplements other reports, e.g., FOOTE <u>et al</u>. (1981) and FOOTE (1982), describing attainment of the project goal: straightforward absolute calibration of echo sounders and echo integrators.

MATERIALS AND METHODS

The measurements were made from an instrumented raft anchored near the end of a narrow, sheltered fjord called Kvalsvaagen, near Skogsvaag on the island of Sotra, west of Bergen. Under ordinary conditions the raft acted as an essentially stable platform. The water column, including measurement volume immediately beneath the raft, was completely isolated by a sprat seine with 10 mm-mesh size. This was held to the soft mud bottom at uniform depth of 15 m both by the weight of an extra 5 m-length of seine and by lead weights attached to the bottom edge. All but the smallest fish, larvae, plankton, and other extraneous scatterers were thereby excluded from the measurement region. The tidal range of 0.75 m produced only an immeasurable current.

Nearby shore power - 5 kw of 50 Hz, three-phase alternating current - was carried to the raft by underwater cable. This was distributed in two networks, with regulation of the mains voltage of that network supplying the echo sounders and echo integrator.

The acoustic backscattering cross sections of twenty five spheres, the subjects of the experiment, were measured. Several of these were used in different forms, e.g., with and without protuberances and diametral bores, producing a total of twenty nine different scattering entities. These are divided into three groups for ease of description in Tables 1-3.

The copper spheres are described in Table 1. The copper was

Table 2. Description of non-copper machined spheres used as acoustic targets. Parenthetical

quantities are estimates.

				·	Computed	Net b	ag	Suspension
		Diamet(er (mm)		density		Line diam.	line diam.
Name	Material	Nominal	Computed	Mass (g)	(g/cm^3)	Type	(mm)	(um)
STL60A	Acid-fast steel	160	60.01	0°006	7。954	Handmade	0°29	0.58
STL60B	Acid-fast steel	60	60.03	897.3	7.922	Handmade	0.55	0.57
661LS	Acid-fast steel	66	98,92	4027	7°946	Handmade	1.00	1.00
AS130	Axle steel	130	130°0	1006	7.825	Handmade	1.20	1,20
RS130	Stainless steel	130	130.0	8951	7.781	Handmade	1.20	l.20
ss130	Acid-fast steel	130	130.0	(0140)	7.945	Handmade	(1.20)	l。20
AL60	Aluminum	60	60.02	306.6	2.708	19 mm mesh	0°19	0°36
BRS60T	Ferromanganese	٤U	00 09	1 970	282	19 mm mesh	0.19	0°57
BRS60	bronze	00	00.00		0 • 0	Handmade	0°58	0.61
NY L60	Duralin	60	59°99	161.6	l.430	19 mm mesh	0.19	0.36
ZN60	Zinc	60	59,95	760.4	6,740	Handmade	0,56	0°58

obtained from P. Ericksen A/S in Bergen. It is electrical-grade, at least 99.9 per cent pure, with possible admixture of silver. It satisfies the Norwegian materials standards NS 16010 or 16011, which conform to the International Standards Organization ISO Cu-ETP/Cu-FRHC and Cu-OF, respectively. The density of the copper was obtained by measurement of a cylinder machined from the source bar of several spheres. This yielded 8.942 ± 0.002 g/cm³. The mean sphere diameters shown in Table 1 were computed from this value and measurements of the mass. Agreement of computed and directly measured diameters was excellent; the computations effectively served to determine the averages of such measurements. Deviations from sphericity exceeded 0.03 mm only in two cases, for spheres CU40 and CU50A, for which the greatest deviations were about 0.05 mm.

Other machined spheres are described in Table 2. The percentage alloying composition of the acid-fast steel is 17.5 Cr, 12.5 Ni, and 2.7 Mo, with a maximum carbon content of 0.06. This meets the Swedish standard SIS 2343 and U.S. standard AISI 316, with nominal density of 7.9 g/cm³. The exact compositions of the two other steels are unknown. The brass is actually ferromanganese bronze with percentage analysis: 60 Cu, 35.3 Zn, 0.5 Pb, 1 Sn, 0.4 Al, 0.8 Fe, 2 Mn. Both the stainless and acid-fast steels and brass were chosen for their resistance to corrosion. The sphere designated NYL60 was machined from Dupont Duralin. The diameters of all spheres in Table 2 were determined by averaging several measurements with a micrometer. The material density was computed from corresponding measurements of mass and diameter.

Ball bearings used as target spheres are described in Table 3. These were obtained from the Swedish Ball Bearing Company, or Svensk Kulelager Fabrikk. The material composition is steel, but this was not the same for all the spheres, although precise quantitative differences are not known.

Each sphere, with a single exception, was enmeshed in fine seine or a specially constructed net bag woven of monofilament nylon. In the exceptional case, that of the sphere designated HOFFN2,

ne parenthetical
Ë.
targets
acoustic
as
used
bearings
ball
steel
of
Description
'n
Table

quantity is an estimate.

				Compu ted		Net	ag S	uspension
	Diamet	er (mm)		density			ine diam. l	ine diam.
Name	Nominal	Measured	Mass (g)	(g/cm ³)	Other description	Type	(mm)	(um)
SKF1.5	38,1	38.10	225°9	797 . 7		Handmade	0.36	0.36
SKF2A	50.8	50.80	535.5	7.801		3.5 mm mesh	n 0.37	0.36
SKF2B	50.8	50,80	535.5	7.801		19 mm mesh	0°19	0.36
HOFFN2	50.8	50.62	525.4	1	Annealed, with central	None: line	through bore	0.36
					2.5 mm diameter bore	knotted on	underside	
SKF2.5	63.5	63.50	1046.5	7.806		Handmade	0.65	(0,60)
CMP2.5	Unknown	60,10	904.3	I.	Scarred, with brass-	Handmade	0.57	0.57
					plugged, central 15 mm			
					bore			

G

the sphere was hung by a single line passed through the bore and knotted on the underside. The type of wrapping and thickness of constituent line are shown with corresponding sphere in Tables 1-3. Also shown there is the thickness of line used in suspending the sphere. Typical examples of net bags with enmeshed spheres are shown in Fig. 1.

The spheres were generally kept in buckets half-filled with a solution of ordinary household detergent and fresh water mixed in the approximate proportion of 1 to 25. The use of a separate suspension line for each sphere allowed the transfer from soapy bath to water column beneath the measurement well to be made without direct handling of the sphere. The wetted surface was thus maintained.

Under measurement the target sphere was suspended at 2.5 m depth on the nearly common geometric and acoustic axes of four transducers. These were arranged in a tight cluster on a stabilized frame suspended at 11.5 m depth, within the raft-isolating seine and directly beneath the measurement well, looking upwards toward the surface. The geometry of measurement, sans seine, is shown in Fig. 2.

The basic hydroacoustic equipment consisted of four pairs of Simrad echo sounders and transducers. The echo sounders were the EK-38, EK-50, EY-M, and EK-120. At each nominal center or operating frequency, respectively 38, 49.5, 70, and 120 kHz, the corresponding transducer had a full-beamwidth of approximately 20 deg. Because of their rather dense clustering on the suspended frame and use of a 9 m-range, the beam patterns were nearly coincidental and constant in the vicinity of the target sphere. Possible detrimental coupling effects between adjacent active and passive transducers were not observed, at least for the transmit pulse duration of 0.6 ms. This was nominally the same for each echo sounder throughout the measurements. Circuitry effecting time-varied gain in the receiving halves of each echo sounder was bypassed. The 3 kHz-bandwidth filters of the EK-38 and EK-120 echo sounders,

(b) BRS60

(c) NYL60

(d) STL99

Fig. 1. Examples of net bags with enmeshed spheres. Dimensions are indicated only approximately owing to parallax.

the two units having several filters, were selected.

Fig. 2. Side-view of the measurement configuration, showing one of four clustered transducers with its approximate beam pattern.

The echo sounders were triggered pairwise by signals generated in a specially-built electronics unit whose timing was controlled either discretely by an external clock, e.g., time-code generator, or continuously by internal clock. Pulse repetition frequencies from 54 to 594 pulses per minute per echo sounder were available. Given the 9 m active range and ensonification geometry, the nominal rate of 200 ppm per echo sounder was used.

Echoes were processed first by the receiving units of the individual echo sounders less time-varied-gain functions. The calibrated output signal of each echo sounder was further processed by the Simrad QD digital echo integrator. This computed the energy contained in the echo from a specified range interval, stored the value, and periodically, according to

0

programmed instruction, computed the various statistics of the echo energy. These included the mean, standard deviation, and coefficient of variation. Computations were performed both for the immediately preceding series of ensonifications and cumulatively for all ensonifications from the start of a particular sequence. Results, which were discriminated by echo sounder, were rapidly printed out through the input/output link of a Silent 700 typewriter terminal.

Typical parameters of the data collection process were 500 pings per printout series and from two to ten printout series per sequence. Typical measurement sequences contained, therefore, from 1000 to 5000 pings per echo sounder and lasted roughly from five to 25 minutes. The frequent tabulation of data statistics facilitated monitoring of the overall measurement and data gathering processes. Inspection of the coefficient of variation, for instance, allowed immediate gauging of the quality of data, essentially concurrently with their collection. Comparison of current data statistics with those of earlier measurement sequences on the same sphere effected a stronger test of data goodness.

Use of a four-channel oscilloscope to monitor the calibrated output signals was always helpful in resolving or anticipating problems with the data gathering. Additional use of a two-channel strip chart recorder to display the echo energy from each of the two alternately triggered echo sounders was similarly expedient in trouble-shooting. Experience gained in an earlier, unrelated experiment with fish, but with the identical equipment employed in the present investigation proved the value of both devices for detecting such problems as interference caused by extraneous biological scatterers and the occasional influx of air bubbles entrained by breaking waves in the outer fjord and transported to the measurement site by tidal currents.

The configuration of acoustic and electronics instrumentation described here is summarized in Fig. 3.

Fig. 3. Equipment configuration.

Measurements on the same spheres were made repeatedly over a two-week period. These were subsequently collected and combined, if judged valid. The criterion of validity generally consisted in the freedom of observations from the recorded or likely presence of extraneous scatterers near the target sphere, and the sufficiency of preparation of the sphere surface by washing in a detergent solution.

Because of the number of spheres and frequency-diversity of measurements, no attempt was made to extract absolute measures of backscattering cross sections from the digital echo integrator. Instead, the measurements were considered to express the backscattering cross section in relative units. By means of the confirmed, extended acoustical theory mentioned in the Introduction, relative numbers given in QD-units in the data tabulations below may be converted to absolute backscattering cross sections by the scaling factors listed in Table 4. These were derived by comparing theoretical calculations and the measurements of the mean 35 mm copper sphere.

	Conversion factor
Echo sounder	(cm ² /QD-unit)
EK-38	0.383
EK- 50	0.512
EY-M	0.591
EK-120	0.920

Table 4. Conversion factors for expressing relative measurements of backscattering cross section in absolute units.

The pulse lengths and center frequencies of the transmitted signals were measured several times in the course of the experiment. The averages of these are shown in Table 5. Variations did not exceed several per cent and are consequently not recorded here. The magnitudes of the frequency response functions were measured at the conclusion of the measurements. The phase parts for the EK-38, EY-M, and EK-120 echo sounders were measured later in the Simrad laboratory, but without transducer-loading. The effect of loading on the phase function was assumed to be simple translation in frequency by the difference in measured frequencies of greatest sensitivity with and without loading. In the absence of measurements, the phase function for the EK-50 echo sounder was assumed to be identical to that of the EK-38 after appropriate frequency-shifting. The composite, field-measured magnitudes and frequency-shifted, laboratory-measured or simulated phases of the four frequency response functions are shown in Figs. 4-7.

Table 5. Pulse durations and center frequencies of transmitted signals.

Echo	Pulse dur	ation (ms)	Center freque	ency (kHz)
sounder	Nominal	Measured	Nominal	Measured
EK-38	0.6	0.75	38.0	38.0
EK-50	0.6	0.58	49.5	49.6
EY-M	0.6	0.62	70.0	68.4
EK-120	0.6	0,69	120.0	120.4

Fig. 5. Frequency response function of the receiver of the EK-50 echo sounder.

Fig. 6. Frequency response function of the receiver of the EY-M echo sounder.

Fig. 7. Frequency response function of the receiver of the EK-120 echo sounder.

The local hydrography was measured before and after the experiment. Interpolation of the pairs of measurements performed at the 2.5 m-depth of sphere suspension specifies a mean temperature of 13° C and mean salinity of 29 ppt. This combination implies a medium density of 1.022 g/cm³ and sound speed of 1493 m/s, according to DIETRICH (1952) and DEL GROSSO (1974), respectively.

STATISTICAL ANALYSES

The above description of the data analysis is mostly complete, but brief. It is supplemented here by further discussion and several equations which may indicate at a glance just how the data were condensed.

The fundamental quantity or unit of measurement is the energy contained in the total echo from the target sphere. This is defined as that clearly distinguishable part of the echo lying above the noise level. It was measured in relative units by selection of a sufficiently broad range interval for echo integration. Background noise was due primarily to two sources: small biological scatterers in the main lobes of the echo sounder beams and the lines supporting the transducer frame in the sidelobe regions. The integrated reverberation intensity or noise energy was seldom more than one per cent of the energy contained in the echo from a target sphere. When the reverberation level was higher, for instance, when breaking waves entrained air and forced the bubbles down into the integration region of the sphere echo, measurements were suspended until the return of more favorable conditions. In a single exceptional case of strong acoustic resonance, that of the 45 mm copper sphere when measured with the EK-120 echo sounder, the noise and signal contributions were comparable. For this case the noise energy was subtracted from the total echo energy in calculating the echo energy due to the sphere. The noise energy was otherwise considered negligible and was not subtracted from the measured total echo energy.

Because of the conduct of measurements in sequences, which were generally repeated at least several times in the course of the experiment, it is convenient to denote a single measurement of echo energy as ε_{ij} , where the i-index denotes the sequence number and the j-index, the order of measurement within the i-th sequence. As the number of measurements in any one sequence was never less than 500 and as little credence is attached to isolated single measurements in experimental acoustics, the measurements were combined during their gathering. The only quantities preserved by the programmable digital echo integrator at the end of a particular sequence were the two lowest-order statistical moments and the number of measurements. For the i-th sequence of measurements on a given sphere with a given echo sounder the average echo energy is

$$E_{i} = \frac{1}{n} \sum_{\substack{j=1 \\ i j=1}}^{n} \varepsilon_{ij} , \qquad (1)$$

where n_i is the number of measurements in the sequence. The standard deviation S_i is naturally given through the estimated variance

$$S_{i}^{2} = \frac{1}{n_{i}-1} \sum_{j=1}^{n_{i}} (\varepsilon_{ij} - E_{i})^{2} , \qquad (2)$$

which is computed by the form

$$S_{i}^{2} = \frac{1}{n_{i}-1} \begin{pmatrix} n_{i} & \varepsilon_{ij}^{2} - n_{i} & \varepsilon_{ij}^{2} \\ j=1 & \varepsilon_{ij}^{2} - n_{i} & \varepsilon_{ij}^{2} \end{pmatrix} .$$
(3)

The coefficient of variation for the same sequence is expressed as a percentage, hence

$$V_{i} = 100 \frac{S_{i}}{E_{i}}$$
 (4)

Repeated measurement sequences on the same sphere with the same echo sounder were later summarized through cumulative statistics. These are computed in each of two ways, as the measurement sequences were regarded as independent or as the individual measurements were regarded as independent.

Case 1. Independent measurement sequences. In this case the average echo energy from a given sphere and echo sounder is computed from the equally weighted averages of each appropriate, valid measurement sequence. Thus

$$Ave_{l}(E) = \frac{1}{m} \sum_{i=1}^{m} E_{i} , \qquad (5)$$

where m is the number of valid measurement sequences. The standard deviation $SD_1(E)$ is computed similarly, viz.

$$SD_{1}^{2}(E) = \frac{1}{m-1} \sum_{i=1}^{m} \left[E_{i} - Ave_{1}(E) \right]$$
 (6)

Case 2. Independent measurements. The individual measurements are weighted equally here, hence the statistics of each measurement sequence are weighted in proportion to the constituent number of measurements. Thus

$$Ave_{2}(E) = \frac{\prod_{i=1}^{m} \sum_{j=1}^{n_{i}} \varepsilon_{ij}}{\prod_{i=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \frac{1}{m}}$$
(7)

and

$$SD_{2}^{2}(E) = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n_{i}} \left[\varepsilon_{ij} - Ave_{2}(E) \right]^{2}}{\sum_{i=1}^{m} n_{i} - 1}$$
(8)

$$SD_{2}^{2}(E) = \frac{\sum_{i=1}^{m} \left[(n_{i}-1)S_{i}^{2} + n_{i}E_{i}^{2} \right] - \sum_{i=1}^{m} n_{i}Ave_{2}^{2}(E)}{\sum_{i=1}^{m} n_{i} - 1}$$
(9)

The percentage coefficients of variation are computed for each of the two cases after the definition in Eq. (4).

SYNONYMY OF ENERGY AND BACKSCATTERING CROSS SECTION

Determination of the echo energy in linear, if relative units, allows its direct comparison for different spheres. This is further facilitated by the constancy of conditions of measurement throughout the experiment. For this reason, the measurements also specify the backscattering cross section in relative, but linear units. Expressions of energy and backscattering cross section in units of the QD digital echo integrator, called QD-units, are therefore equivalent and permit their synonymous use in this report.

The proportionality of echo energy and backscattering cross section is also evident from the definition of backscattering cross section as an echo sounder-observable quantity. According to the extension of theory mentioned in the Introduction, which is described briefly in FOOTE <u>et al</u>. (1981) and fully in FOOTE (1982), the backscattering cross section is defined operationally, in terms of physically realizable operations. Thus, for ensonification of a target by a transient signal and observation of the echo by an echo sounder or other physical device with non-infinitesimal bandwidth, the backscattering cross section is essentially the ratio of echo energy to energy density of incident signal as it would be observed by the same device. In terms of the Fourier spectrum $S(\omega)$ of incident signal, frequency response function or filter characteristic $H(\omega)$ of the receiver, and scattering amplitude $F(\omega)$ of the target, the backscattering cross section σ is (FOOTE <u>et al.</u>, FOOTE 1982)

$$\sigma = 4\pi \frac{\int_{0}^{\infty} |S(\omega)F(\omega)H(\omega)|^{2}d\omega}{\int_{0}^{\infty} |S(\omega)H(\omega)|^{2}d\omega} , \qquad (10)$$

where the integration is performed over the entire range of the frequency ω . The numerator, hence σ , is proportional to the energy contained in the echo as observed by the receiving half of the echo sounder. For constant conditions of observation, including fixed geometry, the energy ratio of echoes from two spheres are equal to the ratio of their backscattering cross sections. Symbolically,

$$\frac{(\text{Energy})_{1}}{(\text{Energy})_{2}} = \frac{\sigma_{1}^{\sigma}}{\sigma_{2}^{\sigma}} |\text{SF}_{1}H|^{2}d\omega} = \frac{\sigma_{1}}{\sigma_{2}}, \quad (11)$$

where F_1 and F_2 are the respective backscattering amplitudes of the two targets.

ACOUSTIC MEASUREMENTS

Measurements of echo energy or backscattering cross section comprise the principal acoustic data. Summaries of each measurement sequence for each sphere are presented in Tables 6-34. The data are given uniformily in the arbitrary, but linear units of the QD echo integrator. The validity of individual measurement sequences is, for averaging purposes, indicated by the weight parameter WT, which is assigned according to the criteria described in Materials and Methods. In short, WT=1 indicates acceptance of the data, while WT=0 describes their rejection. Statistical summaries of valid sequences are presented at the bottom of each table. The computations follow each of the two schemes described in Statistical Analyses, with the preferred scheme of independent, equally weighted measurement sequences placed first. The measurement sequences of reverberation energy or equivalent backscattering cross section are presented in Table 35, but without statistical summary owing to the understandably biased sampling evident from the comments.

The several statistical analyses are performed on the data of Tables 6-34 and rearranged in Tables 36-39 according to the echo sounder of measurement. The final three lines of each of these tables describe the results of averaging valid measurements of each of three sets of nominally identical spheres. These are the integral 35 mm copper spheres CU35A and CU35B; integral 50 mm copper spheres CU50A, CU50B, and CU50C; and the two 60 mm acid-fast steel spheres STL60A and STL60B.

Relative and absolute measures of backscattering cross sections are presented in Tables 40-43 for each of the four echo sounders. The relative measures are extracted from the collations of Tables 36-39 by referring the measurements to corresponding averages of the two integral 35 mm copper spheres. The absolute measures, denoted SB(CM**2), are derived from these by application of the conversion factors given in Table 4. The backscattering cross sections are also expressed relative to the respective geometric cross sections under the heading SB/SGEOM. The target strength describes the absolute backscattering cross section in units of decibels according to the definition (URICK 1975)

$$TS = 10 \log \frac{\sigma}{4\pi} , \qquad (12)$$

where σ is given in units of square meters.

To put the various measurement sequences of Tables 6-35 in context, the entire time-history of measurements is presented in Table 44. This is expressed in an alternative, more selective manner in Figs. 8-27. These are composed of five sets of four figures each, which are generally distinguished by type of sphere and echo sounder. Measurements of the integral copper spheres are presented in Figs. 8-11. The remaining copper spheres with three integral copper spheres, CU35A, CU35B, and CU50C, included for reference, are reported in Figs. 12-15. Measurements of the steel spheres are presented in Figs. 16-19; the 60 mm-diameter spheres, in Figs. 20-23; and the ball bearings with single copper reference sphere, CU35A, in Figs. 24-27. The standard error of the mean is not shown in any of the figures because it is generally so small as to lie within the symbol.

Waveforms of received echoes as displayed on a monitoring oscilloscope or CRT were photographed. Representative examples for various spheres are presented in Figs. 28-49. Representative transmit signals of the four echo sounders are presented in These differ from the previous CRT photographs in Fig. 50. several respects: they were taken outside of the actual measurement period of the project, in fact, six weeks before the first sphere measurements were made; a different unit of the 38 kHz echo sounder was used; and the scale size of the figures is different. The poorer quality of the transmit signals photographed during the sphere measurements precluded their use here, but direct comparisons of corresponding signals was favorable. Except for the exact pulse lengths, cf. Table 5, the features of corresponding waveforms are identical.

CRITIQUE

Collection of the various kinds of data presented here was motivated by the definition of backscattering cross section as an echo sounder-observable quantity. This definition was formulated at the outset of the study and is described briefly in Eq. (9). As a consequence, at least four different kinds of data are required to understand echo sounder observations of target strength. These are enumerated here for the case of elastic spheres.

- Sphere characterization. The diameter, density, and material elasticity are fundamental quantities in the idealized model of monochromatic or single-frequency scattering by elastic spheres. This work, which is developed in FARAN (1951) and HICKLING (1962) and emended in minor degree by GOODMAN and STERN (1962), among others, is one of the building blocks of the extended theory.
- 2. Medium characteristics. The density and sound speed are additional essential ingredients in the basic model for acoustic scattering by elastic spheres. Each quantity may be derived directly from the hydrography, or temperature and salinity, through such well-known references as DIETRICH (1952) and DEL GROSSO (1974), for example.
- 3. Transmit signal. Because reception of the echo is accomplished by an intrinsically broadband receiver, the spectral content of the pressure field incident on the sphere is generally important. In the case of a simple pulsed sinusoid and ordinary non-dispersive conditions, the spectrum is determined completely by the pulse length and center frequency, if the effects of rise-time and ringing of the transducer can be neglected.
- Receiver characteristics. The frequency response function describes the frequency selectivity of the receiver. This allows determination of the effect of pre-detection signal processing on the echo waveform.

Since the theory of acoustic scattering by elastic spheres does not refer to the manner of support or suspension of the sphere, this was noted in Tables 1-3 for each sphere. A number of measurements performed in the course of the present study and in other studies demonstrate the acoustic negligibility of the large-mesh, net bag-suspension method used here, whether handmade or formed of fine seine.

Inspection of Table 5 and Figs. 4-7 shows a definite mismatch of

corresponding transmitting and receiving halves of several echo sounders. The fact of the receiver frequency response functions having been measured incompletely and then under difficult or doubtful conditions is significant for two reasons: the functions in Figs. 4-7 are approximations, and measurements of the backscattering cross sections are not necessarily representative of those expected under nominal operating conditions. This last caveat also applies to discrepancies in the actual pulse length and center frequency of the transmitted signals from their nominal values, cf. Table. 5.

The specified values of temperature and salinity, thence density and sound speed, are similarly nominal, but in the sense of not having remained constant, but having varied over the two-week duration of the measurements. The variations were small, however, but still impose a limitation on the ultimate possible agreement of theory and experiment.

Notwithstanding the several cautionary remarks, the present data are consistent. Computations performed subsequently to the experiment have shown an excellent agreement with experiment in the important case of the integral copper spheres, whose elasticity is known best of all the investigated materials. More recent experiments and several calibration exercises in which some of the same spheres of this study were used have also confirmed the measurements and shown their consistency with theory when allowance is made for the precise conditions of observation. Results of the various studies have been presented in part in FOOTE <u>et al</u>. (1981) and FOOTE (1982), and are being elaborated or pursued in other reports under preparation.

ACKNOWLEDGEMENT

It is a pleasure to acknowledge the steadfast assistance of E. Ona, University of Bergen, and R. Pedersen, Institute of Marine Research, during the conduct of the measurements. H.P. Knudsen, Institute of Marine Research, is thanked for

ensuring the integrity of the electronics. R. Brede, Ø. Laaveg, and S. Johannessen, Simrad, are thanked for, among other things, their contribution of precision spheres to the investigation. The constant interest and encouragement of the instigator of the project, G. Vestnes, Institute of Marine Research, is gratefully acknowledged.

REFERENCES

- BODHOLT, H., BREDE, R., and NIELSEN, R.L. 1979. Calibration of hydroacoustic instruments. Simrad report H172: 92 p.
- CLAY, C.S. and MEDWIN, H. 1977. <u>Acoustical Oceanography:</u> Principles and Applications. 544 p. Wiley, New York.
- DEL GROSSO, V.A. 1974. New equation for the speed of sound in natural waters (with comparison to other equations). J. Acoust. Soc. Am., 56: 1084-1091.
- DIETRICH, G. 1952. Ozeanographie. Physikalische Eigenschaften des Meerwassers: Allgemeiner Teil. Pp. 426-441 in Vol. 3, Landolt-Börnstein Zahlenwerte und Funkionen, 6th ed. Springer-Verlag, Berlin.
- FARAN, J.J. 1951. Sound scattering by solid cylinders and spheres. J. Acoust. Soc. Am., 23: 405-418.
- FOOTE, K.G., KNUDSEN, H.P., VESTNES, G., BREDE, R., and NIELSEN, R.L. 1981. Improved calibration of hydroacoustic equipment with copper spheres. <u>Coun. Meet. int. Coun.</u> <u>Explor. Sea</u>, 1981 (B:20): 1-18. [Mimeo.]
- FOOTE, K.G. 1982. Optimizing copper spheres for precision calibration of hydroacoustic equipment. J. Acoust. Soc. Am. (To appear.)

FORBES, S.T. and NAKKEN, O. 1972. Manual of methods for

fisheries resource survey and appraisal. Part 2. The use of acoustic instruments for fish detection and abundance estimation. FAO Man. Fish. Sci., (5): 1-138.

- FORBES, S.T., SIMMONDS, E.J., and EDWARDS, J.I. 1980. Progress in target strength measurements on live gadoids. <u>Coun. Meet.</u> int. Coun. Explor. Sea, 1980 (B:20): 1-6. [Mimeo.]
- GOODMAN, R.R. and STERN, R. 1962. Reflection and transmission of sound by elastic spherical shells. J. Acoust. Soc. Am., 34: 338-344.
- HICKLING, R. 1962. Analysis of echoes from a solid elastic sphere in water. J. Acoust. Soc. Am., 34: 1582-1592.
- JOHANNESSON, K.A. and LOSSE, G.F. 1977. Methodology of acoustic estimations of fish abundance in some UNDP/FAO resource survey projects. <u>Rapp. P.-v. Réun. Cons. int. Explor. Mer</u>, <u>170</u>: 296-318.
- MIDTTUN, L. and NAKKEN, O. 1971. On acoustic identification, sizing and abundance estimation of fish. <u>FiskDir. Skr. Ser.</u> <u>HavUnders.</u>, 16: 36-48.
- PETTERSEN, P. 1969. Calibration of hydroacoustic instruments. Tech. Rep. ICES/FAO Acoust. Training Course, Svolvær, Norway, 2-15 March 1969. FAO Fish. Rep., 78: 49-56.
- TRAYNOR, J.J. and EHRENBERG, J.E. 1979. Evaluation of the dual beam acoustic fish target strength measurement method. J. Fish. Res. Board Can., 36: 1065-1071.
- TRAYNOR, J. and NELSON, M. 1981. Calibration of a computerized echo integrator and dual beam target strength measurement system. Pp. 395-424 in SUOMALA, J.B., ed. <u>Meeting on</u> <u>hydroacoustical methods for the estimation of marine fish</u> <u>populations, 25-29 June 1979</u>. II: Contributed papers, discussion, and comments. The Charles Stark Draper

0

Laboratory, Inc., Cambridge, Mass. 964 p.

- URICK, R.J. 1975. <u>Principles of Underwater Sound</u>, 2nd ed. McGraw-Hill, New York. 384 p.
- WALLACE, R.H., HILLERY, H.V., BARNARD, G.R., MARKS, B.M., and MCKINNEY, C.M. 1975. Experimental investigation of several passive sonar targets. J. Acoust. Soc. Am., 57: 862-869.
- WELSBY, V.G. and HUDSON, J.E. 1972. Standard small targets for calibrating underwater sonars. J. Sound Vib., 20: 399-406.
- WHITE, F.E. and TEAS, D.C. Eds. 1976. References to contemporary papers on acoustics. J. Acoust. Soc. Am., 59, Suppl. No. 2: R1-R320.
- WHITE, F.E. and TEAS, D.C. Eds. 1977. References to contemporary papers on acoustics. <u>J. Acoust. Soc. Am., 61</u>, Suppl. No. 2: Rl-R283.
- WHITE, F.E. and TEAS, D.C. Eds. 1978. References to contemporary papers on acoustics. J. Acoust. Soc. Am., 64, Suppl. No. 2: Rl-R414.
- WHITE, F.E. and TEAS, D.C. Eds. 1979. References to contemporary papers on acoustics. J. Acoust. Soc. Am., 65, Suppl. No. 2: R1-R175.
- WHITE, F.E. and TEAS, D.C. Eds. 1980. References to contemporary papers on acoustics. J. Acoust. Soc. Am., 67, Suppl. No. 2: R1-R351.
- WHITE, F.E. and TEAS, D.C. Eds. 1981. References to contemporary papers on acoustics. J. Acoust. Soc. Am., 69, Suppl. No. 2: R1-R383.

TABLES OF CALIBRATION SPHERE DATA AND THEIR STATISTICS

TAB	LE 6. M	ÆASURE	MENTS O	F ECI	HO ENER	GY I.	N QD-UN	ITS	FOR SPH	ERE	CU35A	())•
				 28	L FV_	CHU - FO	SUUNDER FY-	M	FK_1	20			
NO	<u> በ ለ ሞ</u> ም	TTME	5 5	20 V	F	v	E E	V	E	v	NPING	WT	COMMENT
1	190980	1552	ب با	v	42.5	12	-	•	41.1	12	1000	1	
Ż	190980	1558	30.4	18			31.7	10			500	1	
3	190980	1812	•		46.3	6			39.8	10	500	1	
4	190980	1815	30.0	11			34.6	6			500	1	
5	210980	1303			43.4	6		•	32.2	9	500	1	
6	210980	1306	30.7	13		~	31.9	8		~	500	1	
7	210980	1801	<u> </u>		41.1	6	20.2	0	29.7	1	500	1	
8	210980	1804	28.5	14	10 6	5	29.3	ō	211 11	7	500	1	
10	230980	1341	20 7	12	42.0	2	32 8	7	24.4	1	500	1	
10	230900	1500	30.1	10			31.4	7			500	1	
12	230900	1503		.0	42.8	5	J	1	37.3	7	500	1	
13	260980	1324	30.1	21		-	34.4	14			500	1	
14	260980	1327	-		47.1	9			47.7	11	1000	1	
15	260980	1412			45.5	8			41.9	11	500	1	
16	260980	1415	30.0	19		-	34.1	14		4 4	500	1	
17	260980	1440	20 7	~~	42.3	7	22 11	15	43.3		500	1	
18	260980	1443	30.1	23	116 2	10	33.4	15	16 7	15	500	1	
19	200900	1559	22.2	26	40.5	12	37 0	22	40.1	5	500	ò	
20	200900	1005	20 0	10			32.7	ور			500	1	
22	300980	1011	29.0	10	44.9	7	112	,	41.6	11	500	1	
23	300980	1401	28.6	19		•	31.7	14			500	1	
24	300980	1404		-	42.2	8			33.7	13	500	1	
	NO	(E/I/)		11		12		11		12			
	AVE	(E/I/)	29	.9	43	•9	32	.5	39	•1			
	SD	(E/I/)		.8	2	.0	1	.0	5	• (
		(E/1/)	66	2	70	00	55	2 00:	70	00			
		5/1J/) 5/TI/)	22		70 111	. 0			20	. q			
		E/TJ/)	29 11	• 7		.2	ےر ج	.8	7	.1			
	V(I	E/IJ/)	Т	16		10		12	•	18			

DOX TH OD UNTER FOR SOURCE (1254 (1) ____

TABLE 7. MEASUREMENTS OF ECHO ENERGY IN QD-UNITS FOR SPHERE CU35B (2).

			00.000 000 000 000 000 000	COMPARENT CARDO CIDAR O									
			EK-	38	EK-	50	EY-	М	EK-1	20			
NO	DATE	TIME	Ε	V	Ε	V	Ε	V	Ε	V	NPING	WT	COMMENT
1	190980	1602	31.2	12			34.1	8			1000	1	
2	190980	1607			45.6	6			43.5	10	500	1	
3	210980	1310	30.9	10			30.6	7			500	1	
4	210980	1313			44.0	б			33.1	9	500	1	
5	230980	1349	31.4	12			32.9	10			500	1	
6	230980	1352			45.2	6			38.5	8	500	1	
7	230980	1508			44.2	4			36.7	10	500	1	
8	230980	1511	31.6	12			31.4	7			1500	1	
	NO(E/I/)		4		4		4		4			
	AVE(E/I/)	31	.3	44	.7	32	.2	37	•9			
	SD(E/I/)		•3		.8	1	.6	4	•3			
	V	E/I/)		1		2		5		11			
	NO(E.	/IJ/)	35	00	20	00	35	00	20	00			
	AVE(E	/IJ/)	31	.4	44	•7	32	•3	37	•9			
	SD(E	/IJ/)	3	•7	2	.6	2	.9	5	.2			
	V(E	/IJ/)		12		6		9		14			

TABLE 8. MEASUREMENTS OF ECHO ENERGY IN QD-UNITS FCR SPHERE CU35B-(3).

			EK-	-38	EK-	50	EY-	•M	EK-1	20			
NO	DATE	TIME	Ε	V	Е	V	Ε	V	Е	V	NPING	WT	COMMENT
1	260980	1333	1= 0	20	58.3	6	76 0	4.11	41.8	10	500	1	TILT 20
2 3	200900	1337	15.0	30 28			30.0 35 7	14			500	1	TTLT 10
4	260980	1422	11.0	20	57.5	5)•(ر ı	44.8	11	500	1	TTLT 10
5	260980	1426			38.4	é			37.7	10	500	1	TILT 90
б	260980	1429	38.6	19	-		25.4	21			500	1	TILT 90
7	260980	1433	23.4	-22			37.0	13			500	1	TILT O
8	260980	1436	<u>- 0 -</u>		56.6	6		01	42.1	11	500	1	TILT O
9 10	200900	1447	30.3	23	38.6	б	25.9	21	20 E	11	500	1	TILI 90
11	260980	1606	41.4	33	JU.C	0	28.7	35	29.2	11	500	1	TTLT 90
12	260980	1609			41.4	17	2011	<i>2</i> .2	42.5	16	500	1	TILT 90
13	300980	1015			55.9	б			41.4	9	500	1	TILT 5
14	300980	1018	24.9	10	50.0	~	35.9	7	20 5	0	500	1	TILT 5
15 16	300980	1031	0 00	20	59.0	D	25 10	R	39.5	8	500	1	TILT 45
17	300980	1034	39.9	8			24.3	g			500	1	TTLT 90
18	300980	1042	5545	Ū	39.2	5		,	34.7	8	500	1	TILT 90
19	300980	1218			37.5	б			31.4	10	500	1	TILT 90
20	300980	1221	38.5	14			24.4	10			500	1	TILT 90
21	300980	1220	29.9	17	57 S	0	35.9	ð	2/1 0	10	500	1	TILI U
23	300900	1344	28.5	17	01.0	9	36.7	11	24.0	12	500	1	TTLT O
24	300980	1347	2019	• 1	56.1	6	50.1	•••	29.8	15	500	1	TILT O
25	300980	1353			36.7	6			30.1	15	500	1	TILT 90
26	300980	1357	35.1	13			24.3	13			500	1	TILT 90
	NO(と/ 1/) 〒 / T /)	20	13	hQ	13	21	13	27	13			
	SD(E/T/)	20	.1	40 Q	.8	יכ ה	.7	יכ 5	.1			
	V(E/I/)		38		20	2	18	2	14			
	NO(E	/IJ/)	65	00	650	00	65	00	65	00			
	AVE(E	/IJ/)	28	.9	48	•7	31	.2	37	.6			
	SD(E	//)	12	.3	10	.U	7	.2	6	•5			
	V (E.	/ 14/ /		44	6	⊆		<u>ح</u> ک		11			

34

0

,

TABLE 9. MEASUREMENTS OF ECHO ENERGY IN QD-UNITS FOR SPHERE CU35C+(4).

					F	CHO	SOUNDER						
			EK-	38	EK-	50	EY-N	Ŋ	EK-1	20			
NO	DATE	TIME	Ε	V	E	V	Ε	V	Ε	V	NPING	WT	COMMENT
1	230980	1521	32.4	12			59.6	9			1000	1	
2	230980	1526	-		38.5	6			34.2	11	500	1	
3	230980	1713	31.6	14	-		58.2	8			1000	1	
4	230980	1721	2		38.4	6			33.7	10	1000	1	
5	230980	1729	31.9	12	-		61.0	6			1000	1	
-	NO(E/I/)	4	3		2		3		2			
	AVE(E/I/)	32	.0	38	.4	59.	.б	33	.9			
	SD(E/I/)	_	.4		.1	1.	• 4		•4			
	VČ	E/I/)		1		0		2		1			
	NO (E	/IJ/)	30	00	15	00	300	00	15	00			
	AVE (E	/IJ/)	32	.0	38	.4	59.	.6	33	•9			
	SD(E	/IJ/)	4	.1	2	•3	4.	.8	3	•5			
	V(E	/IJ/)		13		б		8		10			

TABLE 10. MEASUREMENTS OF ECHO ENERGY IN QD-UNITS FOR SPHERE CU35C-(5).

						CUD	SOONDEN							
			EK-	38	EK-	50	EY-	М	EK-1	20				
NO	DATE	TIME	E	v	Ε	V	Ε	V	E	V	NPING	WT	COMME	NT
1	260980	1341	30.5	41			33.0	25			500	1	TILT	10
2	260980	1344			43.1	6			45.6	9	500	1	TILT	10
2	300980	1023	29.4	12		-	32.4	9	-	-	500	1	TILT	10
Ц	300980	1027			47.4	6	2	-	42.2	9	500	1	TILT	10
5	300980	1046			40.7	6			36.5	12	500	1	TILT	90
6	300980	1050	26.3	15			29.7	12	•		500	1	TILT	90
Ŭ	NO	E/T/)	2015	ີ		3		3		3				
	AVE	F/T/)	28	.7	43	.7	31	.7	41	.4				
	SD(F/T/)	2	2	, j	4	1	.8	4	.6				
		r/r/)	L	8	2	8		6		11				
	NOCE		15	nñ	15	nñ	15	00	15	00				
	NU(E.	/ / / / / / / / / / / / / / / / / /	22	7	ני בוו	7	21	7	Ц1	.4				
	AVELE	/ _U/ /	20		ر ب د	• 1	، ر ح	• 1	- 1	• न २				
	SD(E	/ [] /)	Č	.0	3	.0	2	10	2	10				
	V(E	/IJ/)		28		9		١ŏ		13				

TABLE 11. MEASUREMENTS OF ECHO ENERGY IN QD-UNITS FOR SPHERE CU40 (6).

						ULU I	JOONDEN						
			EK-	38	EK-	50	EY-	М	EK-1	20			
NO	DATE	TIME	Ε	V	E	V	Ε	V	E	V	NPING	WT	COMMENT
1	190980	1611			30.4	16			8.94	25	1000	0	JELLYFISH
2	190980	1618	37.8	17			58.6	7			1000	1	
3	210980	1318			29.6	8			7.78	15	500	1	
4	210980	1321	39.7	11			55.7	5			500	1	
5	230980	1356			30.1	6			8.58	11	500	1	
6	230980	1359	39.4	11			58.1	б			500	1	
7	300980	1141	35.4	13			56.3	7			500	1	
8	300980	1145			28.8	6			9.49	15	500	1	
	NO (E/I/)		4		3		4		3			
	AVE(E/I/)	38	.1	29	•5	57	.2	8.	62			
	SD(E/I/)	2	.0		•7	1	•4	•	86			
	V(E/I/)		5		2		2		10			
	NO(E	/IJ/)	25	00	15	00	25	00	15	00			
	AVE(E	/IJ/)	38	.0	29	•5	57	•5	8.	62			
	SD(E	/IJ/)	5	•5	2	.1	3	•9	1.	38			
	V(E	/IJ/)		15		7		7		16			

TABL	E 12.	MEASUF	EMENTS	OF	ECHO	ENER	GY IN	QD-UN	ITS	FOR SPI	HERE	CU45	(7)。
			F	K-38	3	EK-	50 50	EY-	М	EK-	120			
NO 1	DAT	E TIME	E 81	بر – ۱	V 11	E	V	E 27.3	 V 11	E	V	NPING	WT 1	COMMENT
2	19098) 1625) 1628	0.4.	ſ		63.4 64 5	5 1	2, •)		•59 •48	48 49	500 500	1	
4	21098	0 1325	89.	5	10			24.9	10	.40	15	500	1	
5	21098 21098) 1328) 1521				61.4	5			.40	45 45	500	1	
7 8	21098 21098	0 1545 0 1602	86.	3	9	60.8	6	23.3	11	•39	47	3000 1000	1 1	
9 10	21098	0 1608 0 1649				61.5 59.9	6 5			.40	50 52	5000 5000	1	
11	23098	0 1403	90.	0	9	5J 1	י א	25.5	12	51	112	500	1	
13	23098) 1407) 1854				61.2	7		4.9	.46	51	14000	1	
14 15	230981 230981	D 2011 D 2016	89.	2 .	12	60.3	8	25.2	13	.48	53	500	1	
16 17	30098	0 1128 0 1131	84.	8	9	62.0	5	24.1	11	.42	44	500 500	1 1	
	N	O(E/I/)		0-7 -	5	61	11	25	6		11 //6			
	AV SI	D(E/I/)		2.6	5	1	•5	1	.4		.06			
	NO	V(E/I/) (E/IJ/)		4000	3	3150	200	40	5 00	31	13			
	AVE	(E/IJ/)		87.1	1	61	.2	24	.8		.44			
	SD V	(E/IJ/) (E/IJ/)		9.2	2 1	3	•9 6	వ	. I 13		•22 51			

,

TABLE 13. MEASUREMENTS OF ECHO ENERGY IN QD-UNITS FOR SPHERE CU50A (8).

			EK - 38		EK-50		EY-M		EK-120				
NO	DATE	TIME	Ε	V	E	V	E	V	E	V	NPING	WT	COMMENT
1	190980	1637	111.0	6			108.0	4			500	1	
2	190980	1641			84.2	4			23.4	11	500	1	
3	190980	1644			83.5	3			23.3	8	500	1	
4	190980	1717			82.0	4		_	36.9	9	500	1	
5	190980	1721	113.0	7	0		108.0	3			500	1	
6	190980	1724			81.7	4			37.6	11	500	1	
7	210980	1340	101 0	~	76.6	5		~	33.1	8	500	1	
8	210980	1343	126.0	1			104.0	3			500]	
9	230980	1425	111.0	7	~~~~	1.	105.0	5		~	500	1	
10	230980	1428			77.7	4			45.3	0	500	1	
11	200900	1348	117 0	0	19.0	0	1411 0		42.0		500	4	
12	200900	1304	115.0	9			104.0				500	1	
1)	200900	1150	115.0	1	75 0	c	104.0	2	20 E	0	500	1	
1-+	NO(E/I/)		6		12.9 2		6		20.2	کم	500	I	
			11/1 8		80 1		107 2		2/1 1				
	SD(F/T/)		57		3.2		3 8		8 1				
	V(E/T/)		2.1		J.L 4		<u></u>		24				
	NO(E/TJ/)		ຈັດດຸວ		4000		3000		4000				
	AVE(E/IJ/)		114.8		80.1		107.2		34.1				
	SD(E/IJ/)		9.8		4.6		6.2		8.3				
	V(E/IJ/)		9		6		6		24				

O
TABL	E 14.	MEADURE	MENIS OI		10 ENERG	71 L			POR DI	سلالات			/ •
				28	E(FK_P	CHO	SOUNDER	 1		20			
NO		TTME	C	50 V	r F	JU W		' V	E	v	NPING	WT	COMMENT
1	100090	16/18	نا	v	82 1	Ц		v	13.8	13	500	1	
2	190900	1652	06 3	7		т	122.0	2			500	1	
2	190900	1703	90.5	1	82 5	4		-	12.8	14	500	1	
<u>с</u> Л	190900	1706	80 JI	7	02.0		121.0	٦			500	1	
4	100080	1727	09.4	l	83.9	4	12110	2	13.7	12	500	1	
6	210080	1247	117.0	8	0	•	116.0	4			500	1	
7	210900	1350	111.0	0	77.3	5	,		15.7	11	500	1	
8	230980	1437			77.6	4			15.4	11	500	1	
ğ	230980	1441	122.0	5	1111		114.0	4			500	1	
10	260980	1356	119.0	10			122.0	8			500	1	
11	260980	1400			81.9	4			19.5	15	500	1	
12	300980	1203			75.5	5			14.2	14	500	1	
13	300980	1206	109.0	б			113.0	4			500	1	
-	NO	(E/I/)		6		7		6		7			
	AVE	(E/I/)	108	•8	80	•3	118	•0	15	•0			
	SD	(E/I/)	13	•3	3	•4	4	.1	2	.2			
	V	(E/I/)		12		4		4		15			
	NO(E/IJ/)	30	00	350	00	300	00	. 35	00			
	AVE(E/IJ/)	108	•8	80	•3	118	•0	15	.0			
	SD(E/IJ/)	14	.6	4	.6	6	.6	2	.9			
	V(E/IJ/)		13		6		6		19			

TABLE	15.	MEASUREMENTS	OF	ECHO	ENERGY	IN	QD-	-UNITS	FOR	SPHERE	CU50C+(10).
			10-986 alto 4		FCHO) S(DUNI	DER			

							OCOMPEN						
			EK-	38	EK-	50	EY-1	М	EK-17	20			
NO	DATE	TIME	E	V	Ε	V	Ε	V	Ε	V	NPING	WT	COMMENT
1	190980	1655	81.2	8			143.0	4			500	1	
2	190980	1659			87.4	4			33.0	7	500	1	
3	190980	1710	81.3	6			141.0	3			500	1	
4	190980	1713			87.6	4			34.1	8	500	1	
5	210980	1354			81.5	4			33.5	6	500	1	
6	210980	1357	83.4	5	-		135.0	2			- 500	1	
7	230980	1445	84.5	8			135.0	5			- 500	1	
8	230980	1449			83.5	4			35.6	7	500	1	
-	NO(E/I/)		4	_	4		4		4			
	AVE(E/I/)	82	.6	85	.0	138	•5	34	.0			
	SD(E/I/)	1	.6	3	.0	4	.1	1	.1			
	V(E/I/)		2		4		3		3			
	NO(E	/IJ/)	20	00	20	00	20	00	20	00			
	AVE(E	/IJ/)	82	.6	85	.0	138	•5	34	.0			
	SD(E	/IJ/)	5	.8	4	• 3	6	.2	2	•6			
	V(E	/IJ/)		7		5		4		8			

TABLE 14. MEASUREMENTS OF ECHO ENERGY IN QD-UNITS FOR SPHERE CU50B (9).

	CAOUNE	MENID 0	r Eu					FOR DI	فسل الخ يسا		(1 1	/ •
			و باجد همه جسه میرد	E	CHO	SOUNDER		يتك تكد زبينه وبيه مصرجيته ويب				
		EK-	38	EK-	50	EY-	М	EK-1	20			
DATE	TIME	E	V	Ε	V	Ε	V	Ε	V	NPING	WT	COMMENT
260980	1404			82.8	5			29.3	12	500	1	
260980	1407	113.0	8		_	119.0	6			500	1	
260980	1454			78.8	6			22.6	16	500	1	
260980	1525			85.6	5			27.3	14	500	1	
260980	1529	120.0	10	- 2	-	132.0	9	-, •		1500	1	
300980	1148			72.9	4	- 3	•	17.5	10	500	1	
300980	1152	95.2	9			112.0	5			500	1	
300980	1210	117.0	6			112.0	6			500	1	
300980	1213	•		76.5	4			22.8	10	500	1	
NO(E/I/)		4		5		4		5			
AVE	E/I/)	111	.3	79	.3	118	.7	23	.9			
SD(E/I/)	11	.1	5	.Ō	9	.4	4	.6			
V	E/I/)		10	-	6	-	8		19			
NOCE	/IJ/)	30	00	25	00	30	00	25	0Ō			
AVE(E	/IJ/)	114	.2	79	.3	123	.2	23	.9			
SD(E	TJ/)	13	.6	5	9	13	.2	5	.2			
V(E	/IJ/)		12	2	7		11	-	22			
	DATE 260980 260980 260980 260980 260980 300980 300980 300980 300980 300980 MO(AVE(SD(V(AVE(E SD(E SD(E V(E)	DATE TIME 260980 1404 260980 1407 260980 1454 260980 1525 260980 1529 300980 1529 300980 1152 300980 1210 300980 1210 300980 1213 NO(E/I/) AVE(E/I/) SD(E/I/) V(E/I/) NO(E/IJ/) SD(E/IJ/) V(E/IJ/) V(E/IJ/)	EE 10. MEASOREMENTS 0 EK- DATE TIME E 260980 1404 260980 1407 113.0 260980 1454 260980 1525 260980 1529 120.0 300980 1152 95.2 300980 1210 117.0 300980 1213 NO(E/I/) AVE(E/I/) 111 SD(E/I/) 111 V(E/I/) NO(E/IJ/) 30 AVE(E/IJ/) 114 SD(E/IJ/) 13 V(E/IJ/) 13	EE 10. MEASOREMENTS OF EC EK-38 DATE TIME E V 260980 1404 260980 1407 113.0 8 260980 1454 260980 1525 260980 1529 120.0 10 300980 1152 95.2 9 300980 1210 117.0 6 300980 1213 NO(E/I/) 4 AVE(E/I/) 111.3 SD(E/I/) 111.3 SD(E/I/) 111.1 V(E/I/) 10 NO(E/IJ/) 3000 AVE(E/IJ/) 114.2 SD(E/IJ/) 13.6 V(E/IJ/) 12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							

TABLE 16 MEASUREMENTS OF ECHO ENERGY IN OD-UNITS FOR SPHERE CUSOC (11).

55

TABI	E 17.	MEASURE	MENTS C	F ECHO	ENER	GY 1	IN QD-UN	ITS	FOR SPHE	ERE	CUGO	(12	2).
				-1944 - 1946 - 1946 - 1946 - 1946	E	СНО	SOUNDER		در بدین بین اون بربی بزمن ملت گنو ه	-			
			EK-	38	EK-	50	EY-I	М	EK-12	20			
NO	DATE	E TIME	E	V	Ε	V	E	V	Ε	V	NPING	WT	COMMENT
1	230980) 1531			26.0	7			114.0	б	500	1	
2	230980) 1534	160.0	4			103.0	4			500	1	
3	230980) 1737	156.0	5			106.0	5			500	1	
4	230980) 1745			25.6	7			107.0	б	500	1	
5	300980) 1120			25.3	6			121.0	9	500	1	
6	300980) 1123	149.0	7			102.0	5			500	1	
7	300980) 1236			25.1	7			111.0	8	500	1	
8	300980) 1239	150.0	8			104.0	б			1500	1	
	NC)(E/I/)		4		4		4		4			
	AVE	E(E/I/)	153	.7	25	.5	103	•7	113.	.2			
	SI)(E/I/)	5	.2		.4	1	•7	5.	,9			
	V	/(E/I/)		3		2		2		5			
	NO (E/IJ/)	30	00	20	00	300	00	200	0			
	AVE(E/IJ/)	152	•5	25	•5	103	.8	113.	.2			
	SD(E/IJ/)	11	.1	1	.8	5	•7	9.	,9			
	V(E/IJ/)		7		7		б		9			

×.

TABLE 18. MEASUREMENTS OF ECHO ENERGY IN QD-UNITS FOR SPHERE STL60A(21).

			EK-	38	EK-5	50	EY-N	1	EK-12	20				-
NO	DATE	TIME	Е	V	E	V	E	V	E 111 8	₹ 20	NPING	UWT O	COMMEN	1
1	170980	1356	112 0	11	66.9	8	46.9	7	14.0	20	1000	õ	NH4-3	1356
2	170980	1407	112.0	1 1	81.0	4			17.1	12	500	0	NH4-3	1356
4	170980	1552	95.5	12		c	72.0	10	26.2	11	1000	ן 1		
5	170980	1558			91.3	о Ц			22.3	11	1000	1		
7	180980	1302	95.6	10	J U •J	•	69.3	6			1000	1		
8	180980	2122		_	92.0	5	674 4	F	24.7	12	500	1		
9	180980	2126	98.9	7			71.1	5 6			500	1		
10	190980	1430	95.2	0	97.2	3	12.1	·	26.0	11	500	1		
12	210980	1408		6	90.5	5	67 0	11	17.9	12	500	1		
13	210980	1412	96.4	0	91.8	б	0(.0	4	19.8	16	500	1		
15	230980	1606	93.4	7	5100	-	70.9	4	-		500	1		
16	230980	1835	93.0	9.	01 1	J1	70.8	6	20 0	12	500	1		
17	230980 NO(1838 F/T/)		7	91.4	7		7	20.9	7	500	•		
	AVE(E/I/)	95	.4	92	.1	70	•7	22	.5				
	SD(E/I/)	2	.0	2	•3	1	•0	3	•2 14				
•	V (NO (E	E/1/) /TJ/)	45	200	45	00	45	00	45	00				
	AVE (E	/IJ/)	95	•5	91	.8	70	•7	22	2.9				
	SD(E	/IJ/)	8	3.8 0	4	•9	5	.0	4	1.7				
ת איד	ענים דיים או	EVOIDE.	MENTS O	् जन्म	HO ENER	יד אר	N OD-UN	TTS I	FOR SPH	ERE	STL60E	3(22	2).	
IADI		CADUNE			E	CHO	SOUNDER							
110		TTME	EK-	38	EK-	50	EY-	M	EK-1 E	20 V	NPING	WT	COMMEN	IT
NU 1	170980	1340	Ľ,	v	113.0	17	цц.	•	1.51	46	1000	0	NH4-10)
2	170980	1346	86.3	12			43.4	9	2 116	77	1000	0	NH4-10) 1340
3	170980	1352			97.5	4			4.55	20	- 500	1	11114-10	
5	170980	1542	89.8	9	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	60.1	7			500	1		
б	170980	1545	00.0	6	93.5	5	61 7	6	4.93	22	500	1		
8	170980	1548	90.2	8			60.9	6			9000	1		
9	180980	1255	,		95.2	4	(~	3.90	23	1000	1		
10	180980	2131	93.8	6	076	Ц	63.3	6	4.39	20	500	1		
12	190980	2157			99.4	4			5.00	24	500	1		
13	190980	1447	95.9	7			63.6	6			500	1		
14 15	210980	1416 1410	94.1	6	93.5	5	59.2	4	3.18	24	500	1		
16	210980	1422			92.0	4		_	3.23	23	500	1		
17	230980	1555	92.0	9		11	61.0	7	2 75	20	500	1		
18 10	230980	1558			94.5	4			3.60	23	500	1		
20	230980	1846	88.9	9	2000		62.3	7		~	500	1		
	NO	E/I/)	01	8	QЛ	9	61	8 5	4	9 .06				
	AVE(SD(E/I/)	90	2.5	2	.3	1	.5		69				
	V	E/I/)		3		2	100	2	E	17				
	NO(E	E/IJ/) E/T.I/)	130	3.5	50 94	.8	61	.2	50 4.	.04				
	SD(H	E/IJ/)	5.	7.5	1	.6	3	3.8	1.	.12				
	V(E	E/IJ/)		8		5		6		28				2.0

TAB	LE 20. 1	MEASURE	MENTS C	OF EC	HO ENER	GY I	N QD-UN	ITS	FOR SPH	IERE	STL99	(23).
			FK-	.28	EK-	CHU 50	SOUNDER EY-1	4	F.K-1	20			
NO	DATE	TIME	E	V	E	v	E.	V	Ē	V	NPING	WT	COMMENT
1	170980	1644			252.0	5			267.0	9	1000	1	
2	170980	1649	207.0	10			352.0	6			500	1	
3	170980	2146	235.0	6			351.0	6			10000	1	
4	170980	2245			236.0	1			247.0	7	14000	1	
5	180980	1342	246.0	5			345.0	3			1000	1	×
6	180980	1348			237.0	3			250.0	6	1000	1	
7	180980	1825			222.0	5			221.0	6	500	1	
8	180980	1828	230.0	6			326.0	4			500	1	
9	190980	1050	235.0	6			355.0	4		_	500	1	
10	190980	1053			252.0	2			272.0	5	500	1	
11	190980	1057			252.0	2			249.0	4	500	1	4000 400140
12	190980	1104			251.0	2			259.0	4	500	0	1201.1BW10
13	190980	1108			249.0	3	272 0	~	616.0	3	500	0	12011.BW10
14	190980	1112	111.0	4			373.0	2			500	0	301.3BW3
15	190980	1101	111.0	D G			313.0	2			1000	0	
10	100080	1926	130.0	0			3(5.0	2			500	1	3011.BWI
10	100080	1920	244.0	2	2110 0	2	354.0	2	2511 0	5	1000	1	
10	210080	1009			249.0	2			106 0	27	500	1	
20	210900	1421	2/11 0	Л	234.0	2	2116 0	2	190.0	1	500	1	
20	210900	1710	241.0	4	3/16 0	3	240.0	J	350 0	Ц	5000	1	
22	210900	17/11	208 0	5	J-0.0	C	713 0	2	0.00	-7	1500	1	
22	210980	1824	290.0	2	244.0	3		Ĵ	188.0	6	1000	1	
24	210980	1830	230.0	7	L. 1 1	2	347.0	4	100.0	Ŭ	500	1	
25	230980	1610	238.0	4			366.0	3			500	1	
26	230980	1613	-3	·	240.0	3	J	2	220.0	5	500	1	
27	230980	2023			221.0	5			190.0	9	1000	1	
28	230980	2029	242.0	8		-	347.0	5	-	-	500	1	
	NO	(E/I/)		11		12	· ·	11		12			
	AVE	(E/I/)	240	.5	248	•7	382	.0	242	2.0			
	SD	(E/I/)	21	.8	32	•5	110	.2	41	1.9			
	V	(E/I/)		9		13		29		19			
	NO()	E/IJ/)	165	500	265	00	1650	00	265	500			
	AVE()	E/IJ/)	241	.0	258	.0	383.	.1	261	.7			
	SD()	E/IJ/)	23	8.8	43	•4	106	.2	49	9.0			
	V()	E/IJ/)		10		17	ć	28		19			

X

TAB	LE 21. M	EASUREI	MENTS OF	EC	HO ENERO	I YE	N QD-UN	ITS	FOR SPH	ERE	AS130	(24).
TAB NO 1 2 3 4 5 6 7 8 9 10 11 12 13	LE 21. M DATE 180980 180980 180980 180980 180980 190980 210980 210980 230980 230980 230980 230980 230980 00(AVE(SD(EASUREI TIME 2035 2040 2047 2157 2205 955 958 1443 1446 1626 1630 1808 1811 E/I/) E/I/)	MENTS OF EK-3 E 560.0 520.0 553.0 562.0 534.0 564.0 548. 17.	ECI 8 V 5 7 3 6 6 6 8 9	HO ENERO EK-9 121.0 129.0 132.0 130.0 114.0 134.0 121.0	10 10 10 10 10 10 10 10 10 10	N QD-UN SOUNDER E 499.0 507.0 507.0 459.0 466.0 494.0 488 21	111 7 9. 111 8 4 .7 .0	FOR SPH EK-1 399.0 396.0 594.0 438.0 302.0 357.0 361.0 424 88	ERE 20 V 14 5 5 12 13 5 7 6 2 3	AS130 NPING 1000 500 1500 1000 500 500 500 500 500	WT 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COMMENT SOAP-3
	V(NO(E AVE(E SD(E V(E	E/I/) /IJ/) /IJ/) /IJ/) /IJ/)	450 543 36	3)0 .7 .9 .7	450 127 10	4 .00 .8 .2 .8	45 493 45	4 •9 •9 9	45 441 94	21 .00 .8 .7 21	DS120	()5	- \
TAB	LE 22. M	EASURE	MENTS OF	EC	HO ENER	GY I CHO	N QD-UN SOUNDER		FOR SPH		r9120	(23))•
NO 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 15 6 7 8 9 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DATE 180980 180980 180980 180980 190980 190980 190980 190980 190980 190980 230980 230980 230980 230980 230980	TIME 1900 2023 2029 2145 2151 933 938 947 1027 1027 1030 1151 1207 1617 1621 1817 1822 2141	E 545.0 505.0 498.0 522.0 518.0 511.0 464.0 479.0	20 V 4 4 6 4 4 3 4 5	EA- E 295.0 261.0 323.0 329.0 312.0 315.0 452.0 306.0 338.0	v 7 34 6 5 38 37	E E 863.0 783.0 868.0 912.0 860.0 771.0 918.0 837.0	V 3 5 8 2 8 4 3 9	EA- E 45.2 67.7 98.3 77.0 119.0 146.0 71.1 108.0 67.2	29 12 24 30 22 6 12 12 30	NPING 14000 500 1000 500 1000 1500 1000 500 2000 3000 1000 500 500 500 500	WT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	JELLYFISH
17 18 19 20 21	230980 230980 230980 300980 300980 NO(AVE(SD(AVE(E SD(E SD(E V(E)	2141 2145 2148 1302 1310 E/I/) E/I/) E/I/) E/I/) C/IJ/) C/IJ/) C/IJ/)	452.0 499.0 499 27 1050 505 36	7 10 .3 .9 60 .2 .1 7	338.0 345.0 265.0 320 60 220 305 35	8.2 19 00.8 12	872.0 761.0 844 55 105 820 73	11 4 10 •5 •8 7 00 •3 •0 9	58.6 65.0 82 32 220 57 27	24 13 8 5 40 000 -8 48	500 500 3000 1500 2000	0 1 1 1 1	

TAB	LE 23. N	ÆASURE	MENTS O	F EC	HO ENERC	FX I	N QD-UN	ITS	FOR SPH	ERE	SS130	(26).
					E(CHO	SOUNDER			~~~			
NO	DATE	TIME	er-	30 V	E E	V	E E	M. V	er-I E	20 V	NPING	WT	COMMENT
1	180980	2059	084 0	-	366.0	4		-	517.0	4	2000	1	
2	180980	2110	271.0	5	281 0	2	957.0	3	563 0	Д	500	1	
С Ц	190980	1007			359.0	2 C			508.0	4	1500	1	
5	190980	1014	293.0	6		4446	830.0	2	20000		2000	1	
6	210980	1435	279.0	4			729.0	7			500	0	SOAP-5
7	210980	1439			349.0	4			412.0	7	500	1	
8	230980	1638	<u> </u>	6	303.0	0	826 0	7	415.0	0	1000	1	
9 10	230900	1826	202.0	0	365.0	5	020.0	1	444.0	7	500	1	
11	230980	1829	294.0	5	50,00	2	864.0	8		'	500	1	
12	300980	1249	279.0	5			830.0	5			500/	1	
13	300980	1253			359.0	2			391.0	11	500	1	
14 15	300980	1334	275 O	10	367.0	4	762 0	6	433.0	10	1000	0	TURNED 90
15	300980	1207	212.0	10	356.0	5	102.0	. 0	433.0	g	500	1	IONNED 90
17	300980	1412	302.0	6	55000	2	741.0	7		-	500	1	
18	300980	1735			355.0	б	_		456.0	7	500	1	
19	300980	1739	322.0	4			824.0	5			500	1	
20	300980	17/42	324.0	7	250 0	3	842.0	5	407 0	R	500	1	
2 1	NO((E/T/)		8		10		8	±21.0	10	500		
	AVE	(E/I/)	295	.9	360.	3	840	•5	463	.6			
	SDO	(E/I/)	19	•3	9.	.3	59	.2	55	.3			
		(E/I/)	65	7	750	3	65	γ	75	12			
	NO(E AVE(E	1/1J/) 7/TJ/)	202 CO	2	361	2	200 846	.7	480 480	.2			
	SD(H	E/IJ/)	23	.0	16.	.2	68	.0	55	.6			
	V(F	$\overline{z}/\overline{z}/$		8		4		8		12			

TAB	LE 24. ME	EASUREN	MENTS OF	FEC	HO ENER	GY II	N QD-UN	ITS	FOR SPH	ERE	AL60	(31).
			FK_	38	E(EK-	50	SOUNDER EY-	м	EK-1	20			
	DATE	TTME	F.	v	E	V	E	V	Ε	V	NPING	WT	COMMENT
1	170980	1258	-		121.0	13			5.78	40	1000	0	NH4-1
2	170980	1303	94.1	14			48.3	14			1000	0	NH4-1 1258
3	170980	1309			118.0	3		-	9.44	17	500	0	NH4-1 1250
4	170980	1313	91.5	10			48.6	9			500	1	NH4-1 1250
5	170980	1508	91.2	6			44.4	8		17	1000	1	
б	170980	1512	0 0	•	125.0	4			9.00	1 (1/1000	1	
7	180980	749	87.0	9			44.0	9 7			2000	1	
8	180980	915	80.0	o	122 0	2	40•(ſ	9.36	15	1000	1	
-9	180980	1035			100 0	12			8.66	51	1000	Ó	
10	180900	1450	2/1 1	27	109.0	16	17.5	48			1000	0	JELLYFISH
12	180900	11117	31.2	16			14.4	53			500	0	JELLYFISH
12	180980	1507	30.6	71			24.1	38			1000	0	JELLYFISH
14	180980	1802	36.9	52			27.4	32			500	0	
15	180980	1805	•		52.4	21			14.60	37	500	0	
16	180980	1832	40.5	30			29.9	26			2500	0	
17	180980	2318	63.0	34			28.3	29			500	1	
18	230980	1650	77.7	8		~	47.8	.(10.00	1 1	500	1	
19	230980	1654	01		123.0	9	117 0	Q	10.20	21	500	1	
20	230980	1759	84.5	1	1011 0	11	41.9	0	0 10	17	500	1	
21	230980	1802	60 0	20	124.0	4	5/1 0	17	2.72	11	500	1	
22	200980	1530	00.2	20	175 0	7	J+•0	11	8.42	35	500	Ó	
23	200900	1541			88.7	12			5.65	49	500	0	
24	200900	1110	48.4	36	0001		48.5	21			500	0	
26	300980	1113		50	164.0	10			6.61	32	500	0	
27	300980	1323	65.2	12			52.1	13			500	1	
28	300980	1327			125.0	10			8.19	34	500	0	
	NO(E/I/)		7		4		7		4			
	AVE(E/I/)	80).1	123	•5	48	3.2	9.	.05			
	SD(E/I/)	10).0	1	-3	-	3.0	•	, <u>30</u>			
	V(E/I/)	4.05	13	~~	1	1 0	1	20	100			
	NO (E	/IJ/)	185	00	3U			500) (58			
	AVE(E		85)•(121)•D	41	1.7	1	.68			
		L/LJ/)		7•1 11	L. L.	, <u>, ,</u>	-	10	1	17			
	V (L	1 1441		1 1		-				-			

TAB	LE 25.	MEASURE	MENTS C	P EC	HO ENER	UI I CUO	N QU-UN SOUMDED	TID	FUR SPR	ERE	DUDOO.	1(34	.)•
			EK-	.38	EK-	,CHU -50	SUUNDER EY-	M	EK-1	20			
NO	DATE	TIME	E	Ŭ V	E	V	E	V	E	V	NPING	WT	COMMENT
1	160980	1614			112.0	4			60.00	8	1000	1	
2	160980	1620	230.0	6			171.0	4			1000	1	
3	160980	1626			113.0	3			62.10	8	500	1	
4	160980	1656			114.0	4			59.20	7	500	1	
5	160980	1700	226.0	6		1.	170.0	4		10	2500	1	
6	160980	1819		-	111.0	4	156 0	_	35.50	12	1000	1	
1	160980	1825	226.0	5	100 0	h	150.0	5	20 10	10	1000	1	
0	160900	1030			109.0	2			0 52	1/1	1000	1	
9 10	1600900	2055	212 0	6	102.0	2	151 0	5	9.00	1-4	1000	1	
11	160900	2009	212.0	0	106.0	Ц		2	10.00	13	500	1	
12	160980	2118			107.0	4			13.60	14	1500	1	
13	160980	2126	212.0	6			149.0	6			1500	1	
14	160980	2202	186.0	11			159.0	13			500	0	DRIED
15	160980	2206			123.0	10			2.25	29	2000	0	DRIED
16	160980	2217	209.0	9			208.0	6		_	500	0	DRIED
17	160980	2229			119.0	4			7.22	18	500	1	
18	160980	2233	234.0	24		_	220.0	19	10 (0		500	1	
19	170980	1029	040 0	~	105:0	5	100 0	-	12.60	16	1000	1	
20	170980	1035	219.0	5	101 0	J1	109.0	2	12 /10	12	500	1	
21	170900	1041	212 0	E	104.0	4	185 0	6	12.40	10	500	1	
22	170900	1100	213.0	5	103.0	Ц	109.0	0	9.24	18	500	1	
24	170980	1249	209.0	13	,0,00	•	191.0	12	J• - .		500	1	
25	170980	1253	20,00		106.0	5	.,		16.00	13	500	1	
26	170980	1445	211.0	8		-	185.0	5		_	1000	1	
27	170980	1451			108.0	5			12.00	15	1000	1	
28	170980	1500			109.0	3			13.90	12	500	1	
29	170980	1503	220.0	. 7			190.0	6			500	1	
	NO	(E/I/)		11	4.00	15	4 pmg pmg	11		15			
	AVE	(E/I/)	219	-3	108	• (1///	•9	24.	38 24			
	SD	(E/L/)	ð	0.0	4	.4	21	•	20.	了! 8つ			
			110	4	110	<u>4</u>	110	00	110	00			
		E/IJ/)	210		108	5	170	1	22	75			
	SD(E/TJ/)	10	0	, UO 5	.0	22	1	19.	17			
	V(E/IJ/)		ģ	2	Ś		13		81			

E 25. MEASUREMENTS OF ECHO ENERGY IN QD-UNITS FOR SPHERE BRS60T(32).

TABL	E 26.	MEASUI	REMENTS	OF	ECH	IO ENER	GY I	IN QD-UN	ITS	FOR SPH	ERE	BRS60	(33).
			 7	K_3	8	E' EK-	50	EY-	M	EK-1	20			
NO	DATE	י דדא	ε ε		v	E	v	E	V	E	V	NPING	WT	COMMENT
1	170980	163	5 203.	0	7	-		186.0	3			500	1	
2	170980	163		•		102.0	4			12.2	13	500	1	
2	180980) 131	5 208.	0	5			179.0	3			1000	1	
4	180980	132	1		-	103.0	4			13.0	12	1000	1	
5	180980	180	, ,			106.0	5			14.1	17	500	1	
6	180980) 181	3 210.	0	8			182.0	5			500	1	
7	190980) 142	9			113.0	3			14.9	17	500	1	
8	190980) 143	2 212.	0	5			185.0	4			500	1	
9	190980) 154	3 211.	0	4			187.0	4		_	500	1	
10	190980) 154	7			110.0	3			14.9	18	500	1	
11	190980) 175	7			109.0	3			13.7	14	500	1	
12	190980) 180	0 208.	0	6			188.0	4			500	1	
13	210980) 145	8			102.0	4			12.7	12	500	1	
14	210980) 150	2 217.	0	5			168.0	3			500	1	
15	230980) 153	9 206.	0	6			173.0	4			500		
16	230980) 154	2			105.0	4			14.2	12	500	1	
17	260980) 155	2 204.	0	11			196.0	12		40	500	1	
18	260980) 155	5			110.0	4			15.7	18	500	4	
19	300980	D 110	2			101.0	6		_	13.2	16	500	1	
20	300980	0 110	6 198.	0	7			178.0	, 5		10	500	1	
	NC)(E/I/)	1	0		10	400	10	10				
	AVI	E(E/I/) 2	207.	7	106	•1	182	.2	1	1			
	SI	D(E/I/)	5.	3	4	••2	ð) . 	1	•			
	1	V(E/I/)		3		4	~~	4		0			
	NO	(E/IJ/)	550	0	55	00	55	00	22				
	AVE	(E/IJ/) 2	207.	1	105	Ö.Ö	101	. 9)•0)			
	SD	(E/IJ/)	14.	3	5	o.ŏ	12		6	17			
	V	(E/IJ/)		7		5		(11			

TABI	LE 27. M	EASUREI	MENTS OF	ECH	IO ENERO	IL II UN (N QD-UN SOUNDER	115	FOR SPHE	LKE	NILOU	(34		
			EK-	38	EK-9	50 50	EY-	M	EK-12	20				
NO	DATE	TIME	E	V	E	V	Ε	V	Ε	V	NPING	WT	COMMEN	IT
1	170980	1416			71.7	б			155.0	6	1500	0	NH4-5	a 11 a C
2	170980	1425	115.0	7	<i>.</i>	_	35.9	13	410.0	~	1000	0	NH4-5	1416
3	170980	1431			67.9	5			148.0	5	500	0	NH4-5	1410
4	170980	1605	100 0	0	62.2	8		10	146.0	5	1000	1		
5	170980	1611	109.0	8			24.5	10			500	1		
07	170980	1054	110.0	10	62.2	6	20.2	11	16/1 0	6	500	1		
(8	170080	1057			62 2	7			141.0	8	14000	1		
a	170900	2001			59.8	4			123.0	4	1000	1		
10	170980	2010	109.0	7	27.44	·	22.1	10			1000	1		
11	180980	1328		•	62.5	5			144.0	5	1000	1		
12	180980	1334	119.0	б			22.1	8			1000	1		
13	190980	924			68.2	4			169.0	6	500	1		
14	190980	928	112.0	7	4	-	29.4	8	40= 0		500	1		
15	190980	1041		~	67.3	3		0	185.0	4	500	4		
16	190980	1045	113.0	6			25.2	8			500	1		
17	190980	1132	112.0	8	70 0	E	24.5	9	10/1_0	6	500	1		
10	190980	1010			70.2	フル			180 0	5	500	1		
19	190900	1214	112 0	5	10.5	-	24.6	10	100.0		500	1		
20	190900	1346	112.0	5			22.1	10			500	1		
22	190900	1340		2	•0	0			172.0	б	1000	0	EK-50	OFF
23	190980	1415			71.0	4			165.0	5	500	0	MOVED	8CM E
24	190980	1418	105.0	6			21.6	9			500	0	MOVED	8CM E
25	190980	1422	111.0	7			22.8	8	_		500	1		
26	190980	1425			72.7	4			176.0	5	500	1		
27	190980	1451	113.0	5			21.2	9	176 0	_	500	1		
28	190980	1454			73.1	4			176.0	57	500	1		
29	190980	1534	100.0	~	71.2	4	21 6	. o	150.0	1	500	1		
30	190980	1539	109.0	2	71 0)1	21.0	0	1/10 0	5	500	1		
31 22	190900	1721	100 0	Л	11.2	4	21 7	7	177.0)	500	1		
22 DC	210080	1450	78 5	8			41.7	7			500	1		
21	210980	1454	10.0	Ŭ	72.9	4		,	155.0	5	500	1		
35	210980	1506	82.6	7	1 2		37.7	10			500	1		
36	210980	1509			70.6	4			151.0	5	500	1		
37	210980	1808	88.5	9			34.1	12			2000	1		
38	210980	1819			66.6	4			135.0	4	500	1		
39	230980	1547		-	73.3	5		~	172.0	4	500	1		
40	230980	1550	86.8	9			33.6	8			500	1		
	NO (E/I/)		17		17		17	100	17				
	AVE(E/I/)	105	• 1	68	•] ~	20	. ð	159	.ດ ຳ				
	SD(上/1/)	12	10	4	•) 7	C	1.3 77	19	。) 1つ				
		ビノエ/) ・/ T T /)	110	14	22E		115	22 00	225	00				
	NO(E AVF(F	/T.T/)	103	g	252 41	.२ .२	27	2	147	.6				
	SD(F	:/IJ/)	14	4	5	.5	-6	.6	17	.9				
	V(F	T_{J}		14		ġ.	-	24	• •	12				

DUEDE NVI 60 (211) 0 -

TABL	E 28.	MEASURE	MENTS C	F EC	HO ENER	GY I	N QD-UN	ITS	FOR SPH	ERE	zngo	(35).
				~~~~	E(	CHO	SOUNDER	••••••••					
NO		י הידערי	EK-	•38	EK-	50 W	5 5	M V	EK-1 5	20 V	NPTNC	WT	COMMENT
NO 1	DA18	. 11ME	上 101 0	15	Ľ	V	<u>г</u> И8 о	12	E.	v	1000	0	NH4-5
2	170080	1222	101.0	15	120 0	11	40.9	C I	6.56	10	1000	õ	NH4-5 1317
2	170900	1328	12/1 0	٩	120.0	7	53.5	10	0.00	()	500	õ	NH4-5 1317
<u>с</u> Л	170900	1510	124.0	2	01 0	5	رەرر	10	7.75	19	1000	1	
4	170900	1524	143.0	7	J <b>⊣</b> •J		54.3	7		. ,	2000	1	
6	170980	1535		I	92.9	4		•	8.84	16	500	1	
7	180980	1046			90.4	4			8.46	16	500	1	
8	180980	1050	144.0	5		-	.0	0			500	0	EY-M OFF
9	180980	1105		-	87.9	5			8.15	16	2000	1	
10	180980	1115	137.0	8			45.6	б			1000	1	
11	180980	1355			91.9	4			8.51	16	1000	1	
12	180980	1401	144.0	6			49.2	6			1000	1	
13	180980	1407			92.8	4			8.96	16	1500	1	
14	180980	) 1416	144.0	7			48.2	6			500	1	
15	190980	1408	145.0	11		_	52.5	12	40.70	~~	500	1	
16	190980	) 1411			91.9	7		0	13.70	20	500		DESOUVED
17	190980	1738	96.1	12	<u></u>	2	40.3	8		4.11	500	1	RESUAKED
18	190980	) 1742	110 0		93.3	ک		10	9.94	14	500	1	
19	190980	1805	148.0	5	102.0	11	35 • (	10	10.20	16	500	1	
20	190900	1701			02.0	2		•	7 32	21	500	1	
21	220900	1705	1/17 0	6	74.0	ر	51 7	6			500	1	
22	220200	1750	141.0	Ŭ.	89.7	4	) • ا ل	0	6.94	18	500	1	
24	230980	) 1754	144.0	7	0.7•1		51.9	б			500	1	
25	230980	2034	141.0	Ġ			48.5	8			500	1	
26	230980	2038		-	89.7	5			8.79	15	500	1	
27	260980	) 1545			104.0	5			7.36	29	500	1	
28	260980	) 1548	148.0	9			55.2	12			500	1	
29	260980	) 1702	142.0	18		_	38.7	26			500	1	
30	260980	) 1705			99.9	6			11.50	26	500	1	
31	260980	) 1708	143.0	10			49.4	11	. *		500	1	
32	300980	) 1055	152.0	11		~	48.8	9	0 70	~~	500	1	
33	300980	) 1058		40	95.2	6		17	8.70	20	500	I	
	NC	$\mathcal{L}(\mathcal{L}/\mathcal{L})$	4 11 1	13	07	15	11 0	15	0	15			
	AVE		144	1.j	93	•9	40 5	7	9.	76			
	IC. I	$\mathcal{N} \subseteq \mathcal{I} \subset \mathcal{I}$	2	)•( 2	4	.0 5	5	12	1.	20			
		(C/L/)	or		110		an	00	110	00			
		(E/TJ/)	うC 1位:	2.8	22	_0	90 40	3	8.	81			
	SD	(E/TJ/)	12		ر م	.1	6	9	2.	19			
	V	(E/IJ/)	16	9	Ŭ	7	0	14		25			

IADI	_E 29• M	EAOUNEI			no ener		SOUNDER						, -
			EK-	38	EK-	50	EY-	М	EK-1	20			
NO	DATE	TIME	E	v	E	V	Ε	V	E	V	NPING	WT	COMMENT
1	160980	2239	19.3	26			5.47	16			500	1	
2	160980	2242			28.9	46			26.1	27	500	0	
3	170980	913	22.1	23			6.99	44			2500	0	
4	170980	927			25.4	9			21.5	13	1000	1	
5	170980	933	20.2	12			6.13	18			500	1	
6	170980	1015	19.7	16		-	5.95	21			1000	1	
7	170980	1020			22.8	8			19.0	10	1000	1	
8	170980	1814		~-	24.0	9	< = >	11 -4	23.1	10	1000		FTCU
9	170980	1820	19.7	35	<u>.</u>	•	6.53	41			1000	1	LTOU
10	170980	1828		4.0	24.1	9	6 00	10	24.1	11	1000	1	
11	170980	1833	19.0	18		11	0.02	19		Л	1000		
	NO(	E/1/)	10	4	01	4	F	4 90	21	4			
	AVE(	E/1/)	19	•5	24	•   • •	2.	20	21	• 7			
	SD(	と/1/)		•5	1	•   ]1	٩	<u>دع</u> ۲	2	10			
		ピノエノノ リアエノン	20	د ۵۵	10	00	30		<u>ل</u> ا	00			
	NULL	/ 1.J/ )	0ر 10	5	40 20	. 1		00 02	21	.q			
	AVE(E	/ LJ/ / / TT/ \	2	ייס ב	24	) ) )	). 1.	15	2,	.1			
	ວມ(E ນ(E	/ 10/ ) / T T / \	<u>ت</u>	18	ζ.	10	1 6	19	-	14			
	VL	/ 10/ /		10				1		• •			

TABLE 30. MEASUREMENTS OF ECHO ENERGY IN QD-UNITS FOR SPHERE SKF2A (42).

						SOUNDER							
			EK-	38	EK-	50	EY-	М	EK-1	20			
NO	DATE	TIME	Ε	V	E	V	Ε	V	Ε	V	NPING	WT	COMMENT
1	160980	1537			41.6	6		•	21.9	13	1000	1	
2	160980	1544	65.3	11			49.1	8			1000	1	
3	160980	1550			41.9	8			22.2	13	500	1	
4	160980	1714	61.2	11		_	46.3	10			1000	1	
5	160980	1720			40.9	6			23.0	12	1000	1	
6	160980	2029	62.7	12		_	36.1	11			2000	]	
7	160980	2042			40.1	7			10.7	17	1500	1	
8	170980	1105		0	35.6	5	26.2		22.9	13	1000	1	
9	170980	1111	63.1	8		-	36.9	11	01 7	4 15	1000	4	
10	170980	1117	C		37.1	5		10	21.1	14	1000	1	
11	170980	1801	61.1	13	10 1	0	51.5	10	<u></u>	11	1000	1	
12	170980	1807		~	40.1	~0		<del></del>	23.3	11	1000	1	
		E/L/)	60	2	20	6	114	2	20				
	AVE	ピ/エ/)	02	• (	۲C د	.0		• 1	ے ب لا	-0 5			
	SD(	E/1/) E/T/)	}	•1	6	А	0	• • 15	<u>ل</u> ـ	22			
			60	00	65	0	60	00	65	00			
	NU(L AVE(E	/1.1/)	62	7	20 20	7	<u>ц</u> о	ँ२	19	ğ			
		/ 10/ /	7	•1	2	•1 2	-0	• 2	ر ، ح	.7			
		/T.T/)	(	• 11	ر	- 2	0	17		29			
	V (Li	// /				<b>U</b>		11		- /			

TABLE 29. MEASUREMENTS OF ECHO ENERGY IN QD-UNITS FOR SPHERE SKF1.5(41).

•

TAB	LE 31. M	EASUREM	IENTS OF	FECH	IO ENERC	NL Y: P OUT	UNDER	LTS	FUR SPHI		SKFZD	(4)	)•
			FK_3	38	EK-5	50 50	EY-1	4	EK-12	20			
NO	DATE	TIME	E	V	E	Ŭ.	E	V	E	V	NPING	WT 1	COMMENT
1	160980	1557	55 5	٩	35.2	7	57.2	6	15.3	15	1000	1	
23	160980	1609	ر ور	5	35.9	7	5,02	•	16.4	12	500	1	
4	160980	1643	54.8	12		0	57.0	7	15 JI	1บ	1000	1	
5	160980	1650			34.9	7			15.8	14	1000	1	
7	160980	1808	55.2	11		0	55.3	10	15 0	<b>4</b> h	1000	1	
8	160980	1814			35.4	8			15.9	14	14000	1	
9 10	160980	2020	56.0	15	ر،رر	0	53.6	13			1000	1	
11	160980	2110		0	35.5	9	5/1 2	7	12.3	15	1000	1	
12 13	170980	930 944	00.5	0	35.2	6	04.0	ſ	15.3	11	1000	1	
14	170980	950	59.8	12	20.0	c	53.9	11	10 8	10	500	1	
15 16	170980	1047	55.6	q	30.9	o	51.2	10	12.0	14	500	1	
17	170980	1236	55.5	20			50.2	21	4 U C	10	500	1	
18	170980	1240	5/1 2	17	32.5	10	49.5	19	14.5	12	500	1	
20	170980	1333	52.5	12		_	50.2	8			500	1	
21	170980	1337			35.2	8			14.5	18 14	500	1	
22	170980	1430	54.5	12	22.0	2	50.9	8	•••	• •	500	1	
24	170980	1617	56.0	12	20 5	1 ~	51.2	8	15 0	15	500	1	
25 26	170980	1620 1624	52.1	13	32.5	15	49.0	7	19.0	L)	1500	1	
27	170980	1701	5_0		34.9	12			15.8	16	500	1	
28	170980	1705 1154	54.6	11	31.9	7	53.2	(	15.2	12	1000	1	
30	180980	1201	54.4	8	5.05	,	49.7	6			1000	1	
31	180980	1817	65.3	26	36 Q	a	54.7	10	15.7	21	500	1	
32 33	180980	2212			35.8	23			16.4	23	5000	0	FISH
34	180980	2250	60.0	24	26 8	5	53.4	17	17 7	<u>1</u> Ц	5000 500	0	FISH
35	190980	911	58.1	10	30.0	2	54.8	6	1 { ● {	14	1000	1	
37	190980	920	e '		36.2	6			17.7	15	500	1	
38 30	190980	1139 1144	56.3	10	35.0	D	51.9	6	10.2	10	1000	1	
<u>л</u>	100080	1356	2402		.0	0	_ 2		15.2	14	500	0	EK-50 OFF

SDUEDE SKEDE (13) -00 . .

TABLE 31. (CONTINUED)

41	190980	1359			34.2	б			15.4	15	500	1
42	190980	1403	56.1	8			51.2	6			500	1
43	190980	1828			34.8	5			14.6	15	500	1
44	190980	1831	54.9	9			51.8	6			500	1
45	210980	1255	55.3	10		_	50.8	10			500	1
46	210980	1259	au ao 14		33.6	9		~	14.7	14	500	1
47	210980	1401	55.1	7	20 5	~	48.4	6	411 0		500	1
48	210980	1404			32.5	5			14.2		500	4
49	210980	1513	<b>F7</b> 0	20	32.0	(	117 0	~7	12.1	15	500	1
50	210900	1510	51.9	20			4(.9	(			500	1
51	210900	1500	54.0	0	32 0	6	4(•)	5	13 7	12	500	1
52	210900	1753	54 3	8	2 • 7	0	<u>17</u> Ц	6	) • (, ا	L)	500	1
54	210980	1756	ل ۱۰۰	<b>v</b>	32.4	8	• • • •	Ŭ	13.2	16	500	1
55	230980	1453			32.7	7			14.3	15	500	1
56	230980	1456	55.1	6	0	•	48.9	5			500	1
57	300980	1750			30.6	9	-		13.6	16	500	1
58	300980	1756	51.6	8	_		48.0	б			500	1
	NO(	E/I/)		27	ć	28		27		28		
	AVE(	E/I/)	55	.8	34	. 1	51	•5	14	•9		
	SD(	E/I/)	2	•7	1	•7	2	.9	1	•3		
	)V	E/I/)		5		5	4.05	6		9		
	NO(E	/IJ/)	195	00	3000	00	195	00	300	00		
	AVE(E		55	.0	33	•×	52	.0	14	•1		
	SD(E	//)	1	•2	3.	.0	5	•4	2	•2 15		
	V(E	// )		13		У		10		15		

TABLE 32. MEASUREMENTS OF ECHO ENERGY IN QD-UNITS FOR SPHERE HOFFN2(44).

						<b>4000 (100 (400</b>							
			EK-	38	EK-	50	EY-	М	EK-1	20			
NO	DATE	TIME	E	V	Ε	V	E	V	Ε	V	NPING	WT	COMMENT
1	160980	1746			36.6	6			44.7	7	1000	1	
2	160980	1752	.44.9	11			49.3	8			1000	1	
3	160980	1758			36.3	7			49.0	9	500	1	
4	160980	1851	43.9	10			49.4	7			500	1	
5	160980	1854			34.7	6			47.0	8	500	1	
б	190980	1819	47.4	11			48.3	6			500	0	RESOAKED
7	190980	1822			35.9	8			45.4	11	1000	1	
	NO(	E/I/)		2		4		2		4			
	AVE()	E/I/)	44	.4	35	•9	49	•3	46	•5			
	SD()	E/I/)		.7		.8		, 1	1	•9			
	V()	E/I/)		2		2		0		4			
	NO(E	/IJ/)	15	00	30	00	150	00	30	00			
	AVE(E	/IJ/)	44	.6	36	.0	49	•3	46	.0			
	SD(E	/IJ/)	4	.8	2	.6	3	.8	4	•4			
	V(E	/IJ/)		11		7		8		10			

IAB	LE 33. M	LADURE	MENIS U		IO ENEIK	чо «	SOUNDER	 					, •
			FK-	38	EK-	50	EY-	м	EK-12	20			
NO	DATE	TIME	E	v	E	V	Ε	V	Ε	V	NPING	WT	COMMENT
1	160980	1730			86.8	4			61.9	7	1000	1	
2	160980	1736	99.3	10			91.3	10	a	م	1000	1	
3	160980	1742			87.7	4			64.7	6	500	1	
4	160980	1835			85.5	5	00.0	~	60.1	7	1000	1	
5	160980	1840	98.2	7	0	_	88.0	6		<b>-7</b>	1000	1	
6	160980	1846			85.6	5	06.7	0	00.4	1	1000	1	
7	160980	2138	99.9	11	077 6	11	00.3	0	65 2	7	500	1	
8	150980	2143	00 0	15	0(.0	4	81 7	10	0,02	ł	1000	1	
10	170080	955 1001	09.0	10	7L 2	Ц	01.1	10	56.3	9	1000	1	
10	170900	1007	88.0	8	1.00	,	82.7	б	J J	-	500	1	
12	180980	1122	100.0	5			78.7	5			1000	1	
13	180980	1129		-	81.0	4			56.4	9	1000	1	
14	190980	1459			86.2	4			58.4	8	4000	1	
15	190980	1520	101.0	7			83.0	б			1500	1	
16	190980	1529			86.8	4		_	55.9	7	500	1	
	NO(	E/I/)		7	0.1	9	011	7		9			
	AVE(	E/I/)	96	•0	84	.0	84	•5	59	•9			
	SD(	E/I/)	5	•4 6	4	•4 E	4	•ວ ຣ	S	•2 6			
		と/ 1/ )	70	0	100	00	70	00	100	าก			
	NU(E	./ LJ/ ) ·/ T T / )	07	5	84	6	84	.5	59	.1			
	AVE(E SD(F	/T.I/)	10	.1	5	.2	7	.5	5	.3			
	V(E	/IJ/)		10	2	6	1	9	-	9			

TABLE 33. MEASUREMENTS OF ECHO ENERGY IN QD-UNITS FOR SPHERE SKF2.5(45).

()

TABLE 34. MEASUREMENTS OF ECHO ENERGY IN QD-UNITS FOR SPHERE CMP2.5(46).

							COUNDER						
			EK-	38	EK-	50	EY-	М	EK-1	20			
NO	DATE	TIME	Ε	V	E	V	Ε	V	E	V	NPING	WT	COMMENT
1	160980	2149			107.0	11			43.4	16	1000	0	DRY
2	160980	2155	41.8	29			71.7	19			1000	0	DRY
3	160980	2221	19.5	25			68.4	11			500	1	
4	160980	2225	• •		105.0	5			30.1	13	500	1	
5	180980	1137			100.0	4			27.0	13	500	1	
6	180980	1142	17.0	17			64.1	5			1000	1	
7	180980	1148			100.0	5			29.1	10	1000	1	
8	180980	1420	16.8	17			64.6	5			1000	1	
9	180980	1427			103.0	4			30.3	9	1000	1	
-	NO(	E/I/)		3		4		3		4			
	AVE(	E/I/)	17	.8	102	.0	65	•7	29	.1			
	SD(	E/I/)	1	•5	2	.4	2	.4	1	•5			
	V(	E/I/)		8		2		4		5			
	NO(E	/IJ/)	25	00	30	00	25	00	30	00			
	AVE(E	/IJ/)	17	•4	101	.8	65	.2	29	•3			
	SD(E	/IJ/)	3	.5	5	.0	4	•.7	3	• 4			
	V(E	/IJ/)		20		5		7		11			

			ه هم واد وی می می می برو برو برو	ECHO S	SOUNDER	ک بنت وی کار دی غیر امو رو دو رو		
			EK-38	EK-50	EY-M	EK-120		
NO	DATE	TIME	EV	ΕV	E V	E V	NPING WT	COMMENT
1	160980	1631		.085 103		.120 102	1000 0	
2	160980	1636	.30 104		.11 120		1000 0	
ব	170980	1221	3.84 75		3.25 69		500 0	
й	170980	1225	2.83 66		3.62 62		500 0	
5	170980	1220	2:05 00	.055 109		.075 104	500 0	
6	170980	1233	3,24 57		2.16 52		500 0	
7	170980	1716	170 153		.048 132		500 0	
ģ	170980	1710		65 478		.41 648	500 0	
å	170900	1712		14 123		.13 231	1500 0	
7	170980	1751	000 221		068 180		1500 0	
10	180080	1501	22 10/1	· ···	12 207		500 0	JELLYFTSH
10	180980	16/17	12 0 7/1	(f)	27 8 25		500 0	FTSH
12	190900	1041	2 55 121	1	271 210		2000 0	د دارسه در معارضه د
15	190900	1750	2.22 124	16 106	2.11 210	2/1 01	2000 0	
14	100900	1/50	1 15 110	.10 100	61 208	•_)** 71	500 0	
15	190900	904	1.15 140		.01 200	116 E.II	500 0	
10	190980	907		.22 55		.40 54	500 0	זכז ז עכדכט
17	190980	1031	100 115	.039 120		.110 02	500 0	
18	190980	1034	.130 115		.054 201	110 07	500 0	
19	190980	1753	22 02	.047 135	411 76	.110 0/	500 0	
20	210980	1241	•33 82	A 11 (177	.14 (0	10 60	500 0	
21	210980	1245		.14 67	060 400	.10 02	1000 0	
22	210980	1251	.200 89		.062 109	000 100	500 0	
23	210980	1334		.028 115		.033 108	1000 0	
24	210980	1525		.037 130		.033 123	1000 0	
25	210980	1531	.1200 134		.0087 321		1000 0	
26	230980	1326	.330 86		.080 110		1000 0	
27	230980	1334		.12 77		.14 80	1000 0	
28	230980	1413		.039 121		.067 101	1000 0	
29	230980	1419	.140 123		.035 191		1000 0	
30	230980	2042		1.07 432		.49 761	1500 0	FISH
31	230980	2050	13.60 225		9.38 233		1500 0	FISH
32	230980	2058	16.9 230		14.9 206		5000 0	FISH
33	230980	2134		19.4 170		10.2 192	1000 0	FISH
34	260980	1654		.14 318		.46 354	500 0	
35	260980	1658	2.00 110		2.49 100		500 0	
36	260980	1729	214.0 244		176.0 132		1000 0	BUBBLES
37	260980	1735		.45 108		.37 87	1500 0	
38	300980	939	.65 138		.25 124		1500 0	WARMUP
39	300980	949		.057 82		.220 78	2000 0	
40	300980	959	.380 101		.085 147	•	1500 0	
Ц1	300980	1175		.040 111	- 1	.032 107	500 0	
12	2000200	1128	130 115		.037 155		500 0	
<u>л</u> х	200200	1725	.17 100		.18 146		500 0	
ч <u>э</u> ЦЦ	300980	1728		.042 131		.054 108	500 0	

## TABLE 35. MEASUREMENTS OF REVERBERATION IN QD-UNITS FROM THE SPHERE-INTEGRATION VOLUME.

TABLE 36. SUMMARY OF STATISTICS OF ECHO ENERGY FROM SPHERES MEASURED WITH THE EK-38 ECHO SOUNDER.

							LINTTS)	
SDUEDE (NO)	A 175		17 17	 M		עס תפיז גב	V	N
CUDEA ( 1)	20 80	20	v c	11	20 80	1 88	16	5500
	27.07	.02	ン 1	11	29.09	2 60	10	3500
CUJDE (2)	28.07	11 05	28	10	28 01	12 20	12	6500
CU35B=(3)	20.91	11.05	30 1	2	20.91	12.29	12	2000
$CU_{22}C+(4)$	21.71	-40 	Q I	2	21.91	8 02	28	1500
	20.13	2.10	0		20.15		20	2500
	30.01	2 58	2	4	20.02	0 10	11	2000
	11/1 82	2.90	5	6	11/1 82	0 78	0	3000
CUSOR (0)	108 78	12 25	10	6	108 78	1/1 56	13	3000
CU50B(9)	82 60	1 62	2	<u>и</u>	82 60	5 85	7	2000
CU50C+(10)	111 30	11 11	10	<del>ч</del> Ц	114 20	13 58	12	3000
(1160) (12)	152 75	5 10	10	4	152 50	11.12	7	3000
STI 604(21)	Q5 43	1 96	2	7	95,46	8.79	ģ	4500
STL60B(22)	92,34	2.50	ີ້	8	93.48	7.45	8	13000
STL99 (23)	240.55	21.82	ğ	11	241.00	23.80	10	16500
AS130 (24)	548.83	17.87	, Y	6	543.67	36.91	7	4500
RS130 (25)	499.30	27.93	Ğ	10	505.24	36.05	7	10500
SS130 (26)	295.87	19.34	7	8	292.23	23.00	8	6500
AL60 (31)	80.09	10.04	13	7	85.68	9,08	11	18500
BRS60T(32)	219.27	8.62	4	11	219.91	19.90	9	11000
BRS60 (33)	207.70	5.31	3	10	207.73	14.32	7	5500
NYL60 (34)	105.08	12.38	12	17	103.87	14.35	14	11500
ZN60 (35)	144.46	3.73	3	13	143.78	12.87	9	9000
SKF1.5(41)	19.55	.52	3	4	19.48	3.54	18	3000
SKF2A (42)	62.68	1.71	3	5	62.68	7.19	11	6000
SKF2B (43)	55.77	2.74	5	27	55.64	7.25	13	19500
HOFFN2(44)	44.40	.71	2	2	44.57	4.78	11	1500
SKF2.5(45)	96.60	5.35	6	.7	97.53	10.08	10	7000
CMP2.5(46)	17.77	1.50	× 2	3	17.42.	3.53	20	2500
$CU_{35}$ (81)	30.26	•95	2	15	30.46	4.51	15	9000
(050) $(82)$	111.08	10.07	9	10	112.01	13.09		9000
SILDU (83)	93.18	2.70	3	15	93.99	(.00	ð	1/500

TABLE 37. SUMMARY OF STATISTICS OF ECHO ENERGY FROM SPHERES MEASURED WITH THE EK-50 ECHO SOUNDER.

		E/I/(QD-	-UNITS)		E	E/IJ/(QD	-UNITS)	
SPHERE(NO)	AVE	SD	V	М	AVE	SD	V	N
CU35A ( 1)	43.92	1.99	5	12	44.04	4.20	10	7000
CU35B (2)	44.75	•77	2	4	44.75	2.58	6	2000
CU35B-(3)	48.67	9.76	20	13	48.67	10.04	21	6500
CU35C+( 4)	38.45	.07	0	2	38.43	2.31	6	1500
CU35C-( 5)	43.73	3.39	8	3	43.73	3.82	9	1500
CU40 (6)	29.50	.66	2	3	29.50	2.06	7	1500
CU45 (7)	61.88	1.50	2	11	61.20	3.90	6	31500
CU50A ( 8)	80.07	3.19	4	8	80.07	4.63	6	4000
CU50B ( 9)	80.26	3.35	4	7	80.26	4.63	6	3500
CU50C+(10)	85.00	3.00	4	4	85.00	4.28	5	2000
CU50C (11)	79.32	5.02	б	5	79.32	5.94	7	2500
CU60 (12)	25.50	•39	2	4	25.50	1.76	7	2000
STL60A(21)	92.07	2.35	3	7	91.79	4.90	5	4500
STL60B(22)	94.79	2.32	2	9	94.83	4.59	5	5000
STL99 (23)	248.75	32.46	13	12	258.00	43.42	17	26500
AS130 (24)	127.83	5.56	4	6	127.78	10.18	8	4500
RS130 (25)	320.25	60.25	19	8	305.00	35.83	12	22000
SS130 (26)	360.30	9.27	3	10	361.27	16.19	4	7500
AL60 (31)	123,50	1.29	1	4	123,50	6.23	5	3000
BRS60T(32)	108.73	4.38	4	15	108.45	5.94	5	11000
BRS60 (33)	106.10	4.18	4	10	105.82	5.78	5	5500
NYL60 (34)	68.09	4.53	7	17	64.29	5.55	9	23500
ZN60 (35)	93.94	4.65	5	15	92.96	6.10	7	11000
SKF1.5(41)	24.07	1.06	4	4	24.07	2.31	10	4000
SKF2A (42)	39.61	2.37	6	7	39.67	3.35	8	6500
SKF2B (43)	34.06	1.71	5	28	33.76	2.96	9	30000
HOFFN2(44)	35.87	.83	2	4	36.00	2.50	1	3000
SKF2.5(45)	84.60	4.38	5	9	84.61	5.23	0	10000
CMP2.5(46)	102.00	2.45	2	4	101.83	5.00	5	3000
CU35 (81)	44.12	1.78	4	16	44.20	3.91	9	10000
CU50 (82)	79.95	3.57	4	20	79.95	5.00	Ö	10000
STL60 (83)	93.60	2.65	3	16	93.39	4.97	5	9500

TABLE 38. SUMMARY OF STATISTICS OF ECHO ENERGY FROM SPHERES MEASURED WITH THE EY-M ECHO SOUNDER.

~

		E/I/(QD.	-UNITS)		E	/IJ/(QD·	-UNITS)	
SPHERE(NO)	AVE	SD	V	М	AVE	SD	V	N
CU35A (1)	32.55	1.57	5	11	32.55	3.82	12	5500
CU35B (2)	32.25	1.56	5	4	32.27	2.85	9	3500
CU35B-(3)	31.24	5.66	18	13	31.24	7.20	23	6500
CU35C+( 4)	59.60	1.40	2	3	59.60	4.75	8	3000
CU35C-( 5)	31.70	1.76	б	3	31.70	5.64	18	1500
CU40 (6)	57.17	1.39	2	4	57.46	3.91	7	2500
CU45 (7)	25.05	1.36	5	б	24.85	3.13	13	4000
CU50A (8)	107.17	3.82	4	6	107.17	6.19	6	3000
CU50B (9)	118.00	4.15	4	6	118.00	6.62	6	3000
CU50C+(10)	138.50	4.12	3	4	138.50	6.21	4	2000
CU50C (11)	118.75	9.43	8	4	123.17	13.24	11	3000
CU60 (12)	103.75	1.71	2	4	103.83	5.72	6	3000
STL60A(21)	70.66	1.65	2	7	70.66	4.98	7	4500
STL60B(22)	61.51	1.52	2	8	61.18	3.83	6	13000
STL99 (23)	382.00	110.20	29	11	383.09	106.20	28	16500
AS130 (24)	488.67	20.98	4	6	493.89	45.87	9	4500
RS130 (25)	844.50	55.84	7	10	820.29	73.04	9	10500
SS130 (26)	840.50	59.21	7	8	846.69	08.05	10	19500
AL60 (31)	48.24	3.59	7	1	45.01	4.09	10	11000
BRS60T(32)	177.91	21.13	12	10	1/2.14	22.10	13	5500
BRS60 (33)	182.20	8.05	4	10	181.91	6 62	21	11500
NYL60 (34)	20.77	0.29	23	17	21.22	6.02	24 1/1	0000
ZN60 (35)	48.44	5.01		13	49.30	1 15	10	3000
SKF1.5(41)	5.09	.29	) 15	4 5	10 30	6 68	17	5000
SKFZA (42)	41.14 E1 116	0.09	15	2 27	51 00	5 40	10	19500
SAFZB(43)	21.40	2.07	0	21	71.33	3 70	8	1500
P(r) = (hr)	8/1 52	1. 26	5	7	84.55	7.55	ğ	7000
CMP2 = 5(45)	65 70	2 25	4	3	65.16	4.72	7	2500
CU35 (81)	32 UT	1.52	5	15	32,44	3,48	11	9000
(0, 1)	114.12	7.71	7	16	116.11	11.41	10	9000
STL60 (83)	65.78	4,96	8	15	63.62	5.86	9	17500
			2	-		-	-	-

TABLE 39. SUMMARY OF STATISTICS OF ECHO ENERGY FROM SPHERES MEASURED WITH THE EK-120 ECHO SOUNDER.

÷

		E/I/(QD-	-UNITS)	Min and and and and	E	/IJ/(QD-	-UNITS)	
SPHERE(NO)	AVE	SD	V	М	AVE	SD	V	N
CU35A (1)	39.12	5.71	15	12	39.87	7.10	18	7000
CU35B (2)	37.95	4.33	11	4	37.95	5.17	14	2000
CU35B-(3)	37.64	5.10	14	13	37.64	6.52	17	6500
CU35C+(4)	33.95	.35	1	2	33.87	3.51	10	1500
CU35C - (5)	41.43	4.60	11	3	41.43	5.56	13	1500
CU40 (6)	8.62	.86	10	3	8.62	1.38	16	1500
CU45 (7)	.46	.06	13	11	.44	.22	51	31500
CU50A (8)	34.09	8.13	24	8	34.09	8.25	24	4000
CU50B(9)	15.01	2.22	15	7	15.01	2.85	19	3500
CU50C+(10)	34.05	1.13	3	i,	34.05	2.59	8	2000
CU50C (11)	23.90	4.60	19	5	23.90	5.15	22	2500
CU60 (12)	113.25	5.91	5	4	113.25	9.87	9	2000
STL60A(21)	22.54	3.21	14	7	22.92	3.95	17	4500
STL60B(22)	4.06	.69	17	ġ	4.04	1.12	28	5000
STL99 (23)	242.00	44.86	19	12	261.74	49.04	19	26500
AS130 (24)	424.17	88.28	21	6	441.78	94.70	21	4500
RS130 (25)	82.49	32.84	40	8	57.90	27.81	48	22000
SS130 (26)	463.60	55.27	12	10	480.20	55.58	12	7500
AL60 (31)	9.65	.38	4	4	9.58	1.68	17	3000
BRS60T(32)	24.38	20.31	83	15	23.75	19.17	81	11000
BRS60 (33)	13.86	1.11	8	10	13.78	2.33	17	5500
NYL60 (34)	159.76	19.34	12	17	147.57	17.93	12	23500
ZN60 (35)	9.01	1.76	20	15	8.81	2.19	25	11000
SKF1.5(41)	21.92	2.22	10	4	21.92	3.11	14	4000
SKF2A (42)	20.81	4.50	22	7	19.86	5.69	29	6500
SKF2B (43)	14.91	1.33	9	28	14.67	2.20	15	30000
HOFFN2(44)	46.52	1.91	4	4	46.03	4.42	10	3000
SKF2.5(45)	59.92	3.52	б	9	59.14	5.25	9	10000
CMP2.5(46)	29.12	1.51	5	4	29.32	3.35	11	3000
CU35 (81)	38.82	5.28	14	16	39.44	6.77	17	9000
CU50 (82)	24.86	10.11	41	20	24.86	10.24	41	10000
STL60 (83)	12.15	9.70	80	16	12.99	9.84	. 76	9500

SPHERE (NO)	SB./SB. (.CU.3.5.)	SB. (.CM**.2.)	SB/SGEOM	TS(DB)
CU35A (1)	0.988	11.5	1.191	-40.4
CU35B (2)	1.034	12.0	1.246	-40.2
CU35B-(3)	0.956	11.1	1.152	-40.5
CU35C+( 4)	1.056	12.3	1.274	-40.1
CU35C-(5)	0.950	11.0	1.145	-40.6
CU 40 (6)	1.258	14.6	1.161	-39.3
CU45 (7)	2.886	33.5	2.105	-35.7
CU50A ( 8)	3.795	44.0	2.242	-34.6
CU50B ( 9)	3.595	41.7	2.124	-34.8
CU50C+(10)	2.730	31.7	1.613	-36.0
CU50C (11)	3.678	42.7	2.173	-34.7
CU60 (12)	5.081	58.9	2.085	-33.3
STL60A(21)	3.154	36.6	1.294	-35.4
STL60B(22)	3.051	35.4	1.252	-35.5
STL99 (23)	7.949	92.2	1.198	-31.3
AS130 (24)	18.137	210.4	1.585	-27.8
RS130 (25)	16.500	191.4	1.442	-28.2
SS130 (26)	9.778	113.4	0.855	-30.4
AL60 (31)	2.647	30.7	1.086	-36.1
BRS60T(32)	7.246	84.1	2.973	-31.7
BRS60 (33)	6.864	79.6	2.816	-32.0
NYL60 (34)	3.473	40.3	1.425	-34.9
ZN60 (35)	4.774	55.4	1.959	-33.6
SKF1.5(41)	0.646	7.5	0.657	-42.2
SKF2A (42)	2.071	24.0	1.185	-37.2
SKF2B (43)	1.843	21.4	1.055	-37.7
HOFFN2(44)	1.467	17.0	0.840	-38.7
SKF2.5(45)	3.192	37.0	1.169	-35.3
CMP2.5(46)	0.587	6.8	0.215	-42.7
CU35 (81)	1.000	11.6	1.206	-40.3
CU50 (82)	3.691	42.8	2.180	-34.7
S.TL6.0 (.8.3.)			1.271	

Table 40. Relative and absolute measures of backscattering cross sections SB observed with the EK-38 echo sounder.

SPHERE (NO)	SB/SB(CU35)	SB (CM**2)	SB/SGEOM	TS (DB)
CU35A ( 1)	0.995	22.5	2.338	-37.5
CU35B ( 2)	1.014	22.9	2.382	-37.4
CU35B-(3)	1.103	24.9	2.591	-37.0
CU35C+( 4)	0.871	19.7	2.047	-38.0
CU35C-(5)	0.991	22.4	2.328	-37.5
CU40 (6)	0.669	15.1	1.202	-39.2
CU45 (7)	1.402	31.7	1.993	-36.0
CU50A ( 8)	1.815	41.0	2.089	-34.9
CU50B ( 9)	1.819	41.1	2.094	-34.9
CU50C+(10)	1.926	43.5	2.217	-34.6
CU50C (11) ·	1.798	40.6	2.069	-34.9
CU60 (12)	0.578	13.1	0.462	-39.8
STL60A(21)	2.087	47.2	1.668	-34.3
STL60B(22)	2.148	48.5	1.717	-34.1
STL99 (23)	5.637	127.4	1.655	-29.9
AS130 (24)	2.897	65.5	0.493	-32.8
RS130 (25)	7.258	164.0	1.236	-28.8
SS130 (26)	8.165	184.5	1.390	-28.3
AL60 (31)	2.799	63.3	2.237	-33.0
BRS60T(32)	2.464	55.7	1.970	-33.5
BRS60 (33)	2.405	54.3	1.922	-33.6
NYL60 (34)	1.543	34.9	1.233	-35.6
ZN60 (35)	2.129	48.1	1.702	-34.2
SKF1.5(41)	0.546	12.3	1.082	-40.1
SKF2A (42)	0.898	20.3	1.001	-37.9
SKF2B (43)	0.772	17.4	0.861	-38.6
HOFFN2(44)	0.813	18.4	0.907	-38.3
SKF2.5(45)	1.917	43.3	1.368	-34.6
CMP2.5(46)	2.312	52.2	1.650	-33.8
CU35 (81)	1.000	22.6	2.349	-37.5
CU50 (82)	1.812	40.9	2.086	-34.9
STL60. (83.)	2.121		1.696	-34.2

Table 41. Relative and absolute measures of backscattering cross sections SB observed with the EK-50 echo sounder.

0

~

SPHERE (NO)	SB/SB (CU.3.5.)	SB (CM**2)	SB/SGEOM	TS(DB)
CU35A ( 1)	1.002	19.2	2.000	-38.1
CU35B ( 2)	0.993	19.1	1.982	-38.2
CU35B-(3)	0.962	18.5	1.920	-38.3
CU35C+( 4)	1.836	35.2	3.663	-35.5
CU35C-(5)	0.976	18.7	1.948	-38.3
CU40 (6)	1.761	33.8	2.691	-35.7
CU45 (7)	0.772	14.8	0.931	-39.3
CU50A ( 8)	3.301	63.4	3.228	-33.0
CU50B ( 9)	3.634	69.8	3.554	-32.6
CU50C+(10)	4.266	81.9	4.171	-31.9
CU50C (11)	3.658	70.2	3.577	-32.5
CU60 (12)	3.196	61.4	2.170	-33.1
STL60A(21)	2.176	41.8	1.478	-34.8
STL60B(22)	1.895	36.4	1.287	-35.4
STL99 (23)	11.766	225.9	2.935	-27.5
AS130 (24)	15.051	289.0	2.177	-26.4
RS130 (25)	26.011	499.4	3.763	-24.0
SS130 (26)	25.888	497.1	3.745	-24.0
AL60 (31)	1.486	28.5	1.009	-36.4
BRS60T(32)	5.480	105.2	3.721	-30.8
BRS60 (33)	5.612	107.7	3.811	-30.7
NYL60 (34)	0.825	15.8	0.560	-39.0
ZN60 (35)	1.492	28.6	1.013	-36.4
SKF1.5(41)	0.181	3.5	0.306	-45.6
SKF2A (42)	1.267	24.3	1.200	-37.1
SKF2B (43)	1.585	30.4	1.502	-36.2
HOFFN2(44)	1.520	29.2	1.440	-36.3
SKF2.5(45)	2.604	50.0	1.578	-34.0
CMP2.5(46)	2.024	38.9	1.227	-35.1
CU35 (81)	1.000	19.2	1.996	-38.2
CU50 (82)	3.515	67.5	3.437	-32.7
STL6.0 (.8.3.)		3.89		3.51

Table 42. Relative and absolute measures of backscattering cross sections SB observed with the EY-M echo sounder.

SPHERE (NO)	SB/SB (CU35)	SB (.CM**2.)	SB/SGEOM	T.S. (.DB)
CU35A ( 1)	1.008	36.0	3.738	-35.4
CU35B (2)	0.977	34.9	3.627	-35.6
CU35B-(3)	0.969	34.6	3.597	-35.6
CU35C+( 4)	0.874	31.2	3.245	-36.0
CU35C-(5)	1.067	38.1	3.960	-35.2
CU40 (6)	0.222	7.9	0.631	-42.0
CU45 (7)	0.012	0.4	0.027	-54.7
CU50A ( 8)	0.878	31.3	1.596	-36.0
CU50B ( 9)	0.387	13.8	0.703	-39.6
CU50C+(10)	0.877	31.3	1.595	-36.0
CU50C (11)	0.616	22.0	1.119	-37.6
CU60 (12)	2.917	104.1	3.683	-30.8
STL60A(21)	0.581	20.7	0.733	-37.8
STL60B(22)	0.105	3.7	0.132	-45.3
STL99 (23)	6.233	222.5	2.891	-27.5
AS130 (24)	10,925	390.0	2.938	-25.1
RS130 (25)	2.125	75.8	0.571	-32.2
SS130 (26)	11.941	426.3	3.212	-24.7
AL60 (31)	0.249	8.9	0.314	-41.5
BRS60T(32)	0.628	22.4	0.793	-37.5
BRS60 (33)	0.357	12.7 .	0.451	-39.9
NYL60 (34)	4.115	146.9	5.196	-29.3
ZN60 (35)	0.232	8.3	0.293	-41.8
SKF1.5(41)	0.565	20.2	1.768	-37.9
SKF2A (42)	0.536	19.1	0.944	-38.2
SKF2B (43)	0.384	13.7	0.676	-39.6
HOFFN2(44)	1.198	42.8	2.111	-34.7
SKF2.5(45)	1.543	55.1	1.740	-33.6
CMP2.5(46)	0.750	26.8	0.846	-36.7
CU35 (81)	1.000	35.7	3.711	-35.5
CU50 (82)	0.640	22.9	1.164	-37.4
STL60 (83)	0.313	11.2	0.395	-40.5

Table 43. Relative and absolute measures of backscattering cross sections SB observed with the EK-120 echo sounder.

TABLE 44. TIME HISTORY OF ACOUSTIC MEASUREMENTS OF SPHERES AND NOISE.

		PING	1000	1000	500	1000		2000	0001	1000	200	1000	1000	1000	500	500	2500	1000	1000	1000	1000	500	1000	1000	500		0001				10001	1000	500	500	500	14000	1000
	0	N N	13	(	μ	5	(	<u>v</u> 0	α	Ċ	Ω	102			14	-			12	~	,	9	7		ο <del>;</del>	<b>†</b>	1	<u>+</u> (	4	10	2 -	-	7	•	8	12	
	EK-12	ഥ	21.9	(	22.2	5.4	1 24	10.4	0.00		62.1	.120 1			15.4	59.2			53°0	61.9		64.7	14.7		10.04	0.0	5	ט ה ה ה		11 68		•	60.4	, , ,	47.0	14.4	
	-	٨	c	ω		ļ	٥			4			120	2			4	10			10		¢	ω		(	10		L	S		ý	,	7	,	(	12
OUNDER	EY-N	ш		49.1		t	51.2			171.5				57.0			170.5	46.3			91.3			49.3		ר נ נ	55.3			<b>6.</b>		88.0	) • •	49.4	<b>X</b>		53 6
HO S	0	Ŋ	9	(	ω	~	t	- :	4		m	103			8	ħ			9	4		<b>4</b> '	9		~ ~	_	c	o =	1	ſ	പ	٦	Ъ	١	9	8	
EC	EK-5	ы	41.6		41.9	35.2		5. 9. 9. 9. 9.	112.2		112.7	.085			35.4	114.0			40.9	86.8		87.7	36.6		36.3	34.9	- L (	35°4	0.011	108 0			85.6		34.7	33.3	
	38	٨					σ			9			104	12			9	Ę			10			[		•	<del>~~</del>		L	ŋ		7	-	10	•		ц Ц
	K.																							с С													
	ш	ы		65.3		1	52.5			230.3			.30	54.8			226.4	61.2			99.3			44.6		1	55.2			. 077		08 2	1	43.9	, ,		RA O
	ι. Ι	NAME (CODE) E	SKF2A (42)	SKF2A (42) 65.3	SKF2A (42)	SKF2B (43)	SKF2B (43) 55.5	SKF2B (43)	BRS60T(32)	BRS60T(32) 230.3	BRS60T(32)	NOISE (99)	NOISE (99) .30	SKF2B (43) 54.8	SKF2B (43)	BRS60T(32)	BRS60T(32) 226.4	SKF2A (42) 61.2	SKF2A (42)	SKF2.5(45)	SKF2.5(45) 99.3	SKF2.5(45)	HOFFN2(44)	HOFFN2(44) 44.9	HOFFN2(44)	SKF2B (43)	SKF2B (43) 55.2	SKFZB (43)	BKSOUI(32)	BKS60T(32) 220.1	(7()100010 (7()100010	SKF2 5(15) 08 2	SKF2 G(4G)	HOFFN2(44) 43.9	HOFFN2(44)	SKF2B (43)	CLEAR (113) EA D
	ш	TIME NAME(CODE) E	1537 SKF2A (42)	1544 SKF2A (42) 65.3	1550 SKF2A (42)	1557 SKF2B (43)	1603 SKF2B (43) 55.5	1609 SKF2B (43)	1614 BRS60T(32)	1620 BRS60T(32) 230.3	1626 BRS60T(32)	1631 NOISE (99)	1636 NOISE (99) .30	1643 SKF2B (43) 54.8	1650 SKF2B (43)	1656 BRS60T(32)	1700 BRS60T(32) 226.4	1714 SKF2A (42) 61.2	1720 SKF2A (42)	1730 SKF2.5(45)	1736 SKF2.5(45) 99.3	1742 SKF2.5(45)	1746 HOFFN2(44)	1752 HOFFN2(44) 44.9	1758 HOFFN2(44)	1803 SKF2B (43)	1808 SKF2B (43) 55.2	1814 SKF2B (43)	1019 BKSOUL(32)	1825 BKS60T(32) 220.1	1030 BK2001(34) 1826 SVF3 E(16)	1810 SKF2 5(15) 08 2	1846 SKF2 5(45)	1851 HOFFN2(44) 43.9	1854 HOFFN2(44)	1901 SKF2B (43)	2020 SVF2R (112) EK 0
	Ē	DATE TIME NAME(CODE) E	160980 1537 SKF2A (42)	160980 1544 SKF2A (42) 65.3	160980 1550 SKF2A (42)	160980 1557 SKF2B (43)	160980 1603 SKF2B (43) 55.5	160980 1609 SKF2B (43)	160980 1614 BRS60T(32)	160980 1620 BRS60T(32) 230.3	160980 1626 BRS60T(32)	160980 1631 NOISE (99)	160980 1636 NOISE (99) .30	160980 1643 SKF2B (43) 54.8	160980 1650 SKF2B (43)	160980 1656 BRS60T(32)	160980 1700 BRS60T(32) 226.4	160980 1714 SKF2A (42) 61.2	160980 1720 SKF2A (42)	160980 1730 SKF2.5(45)	160980 1736 SKF2.5(45) 99.3	160980 1742 SKF2.5(45)	160980 1746 HOFFN2(44)	160980 1752 HOFFN2(44) 44.9	160980 1758 HOFFN2(44)	160980 1803 SKF2B (43)	160980 1808 SKF2B (43) 55.2	160980 1814 SKF2B (43)	100980 1019 BKS001(32)	160980 1825 BKS60T(32) 220.1	1600900 1030 BK2001 (22)	160080 1810 SKF2 5(15) 08 2	160080 1846 SKF2 5(45)	160980 1851 HOFFN2(44) 43.9	160980 1854 HOFFN2(44)	160980 1901 SKF2B (43)	160080 2020 SVE2B (112) E6 0

COMMENT

a

.

.

	2000	1500	1000	1000	500	1000	1500	1500	1000	500	1000	1000	500	2000	500	500	500	500	500	500	500	2500	1000	500	1000	1000	500	1000	1000	500	1000	1000	1000	1000	500	500	500	200	500
		17	14		ñ	<u>ъ</u>	14			2	16			29			Ę.	18			27		13			4000 4000		,	σ			<u>, 5</u>	16		13	2		(	18
		10.7	9.53		10.0	12.3	13.6			65.2	43.4			2.25			30.1	7.22			26.1		21.5			15.3			50.3			19.0	12.6		12.4	12.8			9.24
	11			ഹ				9	ω			19	3		9	~ <del>~</del>			<u>1</u> 0	16		ከከ		18	<u>}</u>		4	10	,	9	21			S			í 10	٥	
	36.1			150.9				149.3	86.3			7.17	158.7		207.8	68.4			219.8	5.47		6.99		6.13	54.3		53.9	81.7		82.7	5.95			188.6			51.2	184.8	
		~	ഹ		ħ	6	4			4				10			ഹ	4			46		6			9			4		(	ω	ഹ		4	9			ħ
		40.1	105.10		105.6	35.5	107.3			87.6	106.7			122.90			105.3	118.80			28.9		25.4			35.2			74.2			22.8	105.5		104.0	30.9			103.20
	12			9				9				29	~		6	52			24	20		ß		12	ω		12	<del>1</del> 5	,	ω.	16			£			<u></u> бі	Ω	
	62.7			212.5				211.8	99.9			41.8	185.8		209.5	19.5			234.1	19.30		22.10		20.20	60.5		59.8	89.8		88.0	19.70			218.6			55.6	212.8	
ED)	SKF2A (42)	SKF2A (42)	BRS60T(32)	BRS60T(32)	BRS60T(32)	SKF2B (43)	BRS60T(32)	BRS60T(32)	SKF2.5(45)	SKF2.5(45)	CMP2.5(46)	CMP2.5(46)	BRS60T(32)	BRS60T(32)	BRS60T(32)	CMP2.5(46)	CMP2.5(46)	BRS60T(32)	BRS60T(32)	SKF1.5(41)	SKF1.5(41)	SKF1.5(41)	SKF1.5(41)	SKF1.5(41)	SKF2B (43)	SKF2B (43)	SKF2B (43)	SKF2.5(45)	SKF2.5(45)	SKF2.5(45)	SKF1.5(41)	SKF1.5(41)	BRS60T(32)	BRS60T(32)	BRS60T(32)	SKF2B (43)	SKF2B (43)	BRS60T(32)	BRS60T(32)
ONTINU	2029	2042	2053	2059	2105	2110	2118	2126	2138	2143	2149	2155	2202	2206	2217	2221	2225	2229	2233	2239	2242	913	927	933	938	944	950	955	1001	1007	1015	1020	1029	1035	1041	1047	1050	1050	1100
E 44. (C	160980	160980	160980	160980	160980	160980	160980	160980	160980	160980	160980	160980	160980	160980	160980	160980	160980	160980	160980	160980	160980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	0860/.1	170980
TABL	37	38	39	0 <del>1</del> 0	41	42	43	다 다	45	46	μ7	48	49	50	5	52	23	54	52	50	57	28 28	59	60	61	62	63	64	62	66	67	68	69	20	71	72	13	ħ.	35

 $\dot{c}_{r_{\rm F}}$ 

DRY DRY DRIED DRIED DRIED

											1	1H4-1 1111 1 10F0	0C71 1-+HM	10171 1-HUN	144-1 1200 141-5	UHI E 1317				NH4-10	VH4-10 1340	NH4-10 1340	VH4-3	VH4-3 1356	NH4-3 1356	NH4-5	NH4-5 1416	NH4-5 1416									
	1000	1000	500	200 200	500	500	500	500	500	200	200 2000							200	500	1000	1000	500 N	1000	1000	500	1500	1000	200	200	200	1000	1000				1000	1000
	13		14		104			12		(	$\sum_{i=1}^{n}$	40	t.	-		10	2		18	110		27	20		12	9		പ	7		L	មិដ	N		54	<u> </u>	19
	22.9		21.7		.075 1			14.5			10.0	۵/.۲		y.44		K EK	00.0		14.5	1.51		2.46	14.8		17.1	154.9		148.0	15.1			12.0	13.9			ע. ניי זי	c).• ].
				69	1	52	21		6	<u>7</u>			1 T	C	ی رد م	2	01	ຼ	)		6			2			<del>1</del> 3		c	Σι	Ω		Ĺ	0 0	0		
		36.9		3.25		2.16	50.2		49.5	191.1			40.3		18.0	40.7		50.2 20.2			43.4			46.9			35.9		( ( 1	6.0 <u>6</u>	184.9			7.061	44.4		
	ഹ		£		601	N		10		I	ۍ د ا	13	ſ	n		=	Ŧ		œ	17	•	4	ω		7	9		ഹ	6		ı	ഹ	<b>m</b>		4	वा ।	പ
<b>10</b>	35.6		37.1		.055	k 1		32.5			100.4	121.10	010	110.10		110 70	119.10		35.2	113.30	)   	97.50	6.99		81.0	71.7		61.9	33.8			107.9	108.8			04.421	94.90
		ω		75	8	57	20		77	13		;	14	(	10	<u>0</u>	¢	י ע	!		12			11			2			20	α		t	<u>ب</u> ر	0		
		63.1		3.84 84 84		3.24	55.5		54.2	209.5			y4.1	1	91.5	100.4					86.3	I		111.9			114.9		1	5 <b>4</b> 5	211.3			<b>C.</b> 022	yı.z		
	(42)	(42)	(42)	(66)	(66)	(66)	(#3)	(#3)	(#3)	(32)	(32)	(31)			(31)			(cf) (Ef)	(113)	(22)	(22)	(22)	(12)	(21)	(21)	(34)	(34)	(34)	(#3)	(43)	(32)	(32)	(32)	(32)		(12)	(32)
(D)	SKF2A	<b>SKF2A</b>	SKF2A	NOISE	NOTSE	NOISE	SKF2B	<b>SKF2B</b>	SKF2B	BRS60T	BRS60T	AL60	AL60	ALOU	AL60	DON2	DON2	2NOU SKF2R	SKF2R	STL60B	STL60B	STL60B	<b>STL60A</b>	STL60A	STL60A	NYL60	NYL60	NYL60	SKF2B	SKF2B	BRS60T	BRS60T	BRS60T	BKS001	ALOU	ALOU	ZN60
IUNITINU	1105	1111	1117	1221 1225	1229	1233	1236	1240	1243	1249	1253	1258	1303	1309	1313			1333	1337	1340	1346	1352	1356	1401	1407	1416	1425	1431	1436	1439	1445	1451	1500	1503	1200	214	1519
3 44. (CC	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	086071	170980	1700001	1700001	170980 170980	170080	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	1/0980	170000	0860/1	170980
TABLI	76	77	78	62	3 2	82	83	84	85	86	87 2	88	68	06	56	У И	55	5 5 7	20	26	98	66	100	101	102	103	104	105	106	107	108	109	110	[]]		113	114

Ω.

	2000	200		200	500	1000	1000	1000	1000	500	500	1500	500	500	1000	500	500	500	500	1500	500	500	1500	1500	1000	1000	1000	1000	1000	1000	14000	1000	1000	10000	14000	14000	2000	1000
		10	2 V	22			<b>,</b>	S			<del>ر</del>			13	6			9	16			648	31			<del>, -</del>	10		<b>4.000</b>		ω	4			<u></u>			Ъ Г
		8.84	CC•+	4.93			26.2	146.5			15.0	-f		12.2	267.1			164.3	15.8			11.	с. С			23.3	23.1		24.1		140.9	123.0			246.7			9.36
	7		7		9	10			10	8		4	'n			9	darana darana			7	132			180	10			41		19			10	9		6	<b>~~</b>	
	54.3		60 1		61.7	72.0			24.5	51.2		49.0	185.9			352.4	26.2			53.2	.048			.068	37.3			6.53		6.02			22.1	350.9		44.8	46.7	
		ವ್ ಬ	n	Ś			9	8			5			4	ഹ			9	12			478	123			ω	6		σ		٢	4			<b>4</b> 4880			m
		92.90	00.66	93.50			91.3	62.2			32.5			102.2	251.6			63.2	34.9			.65	. 14			40.1	24.0		24.1		62.2	59.8			236,3			122.10
	2		Ċ	n	9	12			8	12		13	2			10	10			11	153			221	13			35		18			5	9		<i></i> б ч	9	
	142.7		80 B	0.00	90.2	95.5			109.2	56.0		52.1	202.9			207.3	109.8			54.6	.170			.990	61,1			19.70		19.00			109.2	235.0		87.0	86.8	
	(35)	(35)		(22)	(22)	(12)	(11)	(34)	(34)	(#3)	(#3)	(#3)	(33)	(33)	(23)	(53)	(34)	(34)	(#3)	(#3)	(66)	(66)	(66)	(66)	(42)	(42)	(11)	(11)	(11)	(41)	(34)	(34)	(34)	(53)	(23)	(31)	(31)	(31)
ED)	ZN60	ZN60	allounc	STL60B	STL60B	STL60A	STL60A	NYL60	NYL60	SKF2B	SKF2B	<b>SKF2B</b>	BRS60	BRS60	STL99	STL99	NYL60	NYL60	SKF2B	<b>SKF2B</b>	NOISE	NOISE	NOISE	NOISE	<b>SKF2A</b>	<b>SKF2A</b>	SKF1.5	SKF1.5	SKF1.5	SKF1.5	NYL60	NYL60	NYL60	STL99	STL99	AL60	AL60	AL60
ONTINU	1524	1535	15139	1545	1548	1552	1558	1605	1611	1617	1620	1624	1635	1639	1644	1649	1654	1657	1701	1705	1716	1719	1742	1751	1801	1807	1814	1820	1828	1833	1843	2001	2010	2146	2245	6h2	915	1035
E 44. (C	170980	170980	170080	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	170980	180980	180980	180980
TABL	115	10	- α - τ	110	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153

FISH

LE 44.	(CONT	<b>LINUE</b>	D) 7N60	(36)			00,40	1			8.46	16	500	
800 No			ZNGO	(SE)	144.5	ſ		-	0.	0		2	500	EY-M OFF
608	38 2	102	ZN60	(32)	•	1	87.90	ഹ	•	)	8.15	16	2000	
8091	80 11	115	ZN60 SKF2 5	(35) (45)	136.8	യ ഗ			45.6 78.7	ى ت			1000	
6081	808	129	SKF2.5	(45)	1 • •	١	81.0	ħ		ſ	56.4	6	1000	
1809	80 11	137	CMP2.5	(110)			100.5	4			27.0	13	500	
18091	80	142	CMP2.5	(110)	17.0	17		L	64.1	Ъ		( 7	1000	
1809		148 1511	CMP2.5 SKE2R	(40) (113)			2.001 2.1 0	7 L			- <u>6</u>	<u> </u>		
18091	80 12	50	SKF2B	(13)	54.4	8		-	7.0H	9		1	1000	
1809	80 12	210	STL60B	(22)	94.0	œ			6.09	9			0006	
1809	80 12	255	<b>STL60B</b>	(22)			95.20	4			3.90	53	1000	
18091	88	302	STL60A	(51)	L	( 1	90.3	4		,	22.3		1000	
1809	SC -	308	STLOUA	(12)	0° Ch	0			09.3	0			0001	
1809	80	35	BRS60	(33)	208.3	ഹ	- - -		179.2	m		•	1000	
1809	80 1:	321	BRS60	(33)			103.4	7			13.0	12	1000	
1809	80 15	328	NYL60	(34)			62.5	Ś			144.3	ഹ	1000	
1809 1809	80 20 20 20 20 20 20 20 20 20 20 20 20 20	334 2110	NYL60 STI 00	(34) (33)	118.7	ы С			22.1 345.4	ω r			1000	
1809	80 1:	348	STL99	) (%)	1	٦	236.6	ſ		ſ	250.1	9	1000	
1809	80 15	355	ZN60	(35)			91.90	) =*			8.51	16	1000	
1809	80 11	101	ZN60	(32)	144.3	9	•		49.2	9			1000	
1809	80 11	70f	ZN60	(35)			92.80	ħ			8.96	16	1500	
1809	80 11	416	ZN60	(32)	144.1	7			48.2	9			500	
1809	80 17	420	CMP2.5	(110)	16.8	17			64.6	ഹ			1000	
1809	80 11	427 1	CMP2.5	(91)			102.7	╡			30 <b>.</b> 3	ۍ ا	1000	
1809	80 80	130 1	AL60	(1) (1)			109.00	2			8.66	5	1000	
1809.	80 11 08	141	AL60	(31)	34.1	27			5.71	48			1000	JELLYFISH
1809	80	7.44	AL60	(11)	31.2	10			ול יר ול	53			005	JELLYFISH
1809	80 15 15	102	NOISE	(66)	.22	104			.12	207			500	JELLYFISH
1809	80	700	AL60		30.0	5			24.1	βü			1000	JELLYFISH
1809		7.4C	NUTSE	(66)	13.U	121			2.12 0.17	1 1 1			0000	HCTI
1800		200	NOTOF	(00)		5	16	106			311	01		
18091	308		AI 60	(12)	36.9	52		201	27.4	32	•		500	
1809	80 15	305	AL.60	(31)		) )	52.4	21		ľ	14.6	37	500	
1809	80 1	309	BRS60	(33)			106.3	2	,	1	14.1	17	500	
1809.	80 11	813	BRS60	(33)	210.4	ω			182.5	ۍ ک	1		500	

	500	500 500	500	14000	1000	500	1000	1000	500	2000		500	500	1000	500	1000	500	1500	1000	5000	5000		500	500	1000	500	500	500	1500	1000	500	1000	
		21		29	<b>N</b>	12	14		ιΩ :	す	77	<u>, 5</u>			20	24			ŝ	53			54	14		15	9		30	ג ר		12	
		221.1	í e.	45.2	i k	67.7	398.9		395.7	5.716	563 1	24.7			4.39	98.3			594.4	16.4			.46	17.71		17.71	169.1		77 U	) •		438.4	
	10		4	Ş	m			(		ſ	n		ഹ	9			ŝ	~				62 00	500		9		¢	ωα	0	2	6		
	54.7		325.6	(.)	863.0			498.7		064 0	2.106		71.1	63.3			783.0	507.2			53 <b>.</b> 4	20.3			54.8			29.4 06.7	0.100	912.4	507.1		
		പവ		L	,	m	ഹ	4	m =	4	~	പ			4	4			10	3			55	n N		9	ħ		Ś	>		9	•
		36.9 222.0		295.2	i N	261.3	121.3		128.6	300.0	380.0	92.0	,		97.60	322.9			132,1	35.8			.22	36.8		36.2	68.2		8 802			129.8	• •
,	26		9 Q	2	ħ		1	ഹ		ų	0		7	9			7	7		•	24	34 148	2		10		ľ	<u>-</u> 4	c	ħ	ſ		
	65.3		229.7 M0 5		544.9			559.6		C 14C	2.112		98.9	93.8			505.1	520.3			00°0	03.0			58.1			112.2 1001	4,70.1	522.4	553.1		
	(#3)	(#3) (23)	(23)	(52) (52)	(25)	(22)	(24)	(24)	(24)			(51)	(21)	(22)	(22)	(25)	(52)	(24)	(24)	(#3)	(#3)	(121) (90)	(66)	(#3)	(#3)	(#3)	(34)	(34) (35)	<u>)</u> ( ) ( )	(52)	(24)	(24)	~ ~ ~ ~
ED)	<b>SKF2B</b>	SKF2B STL99	STL99	RS130	RS130	RS130	AS130	AS130	AS130	22130	SS130	STL60A	STL60A	STL60B	STL60B	RS130	RS130	AS130	AS130	SKF2B	SKF2B	ALOU NOTSF	NOISE	<b>SKF2B</b>	<b>SKF2B</b>	SKF2B	NYL60	NYLOU	RS130	RS130	AS130	AS130	(())
ONTINU	1817	1820 1825	1828 1832	1900	2023	2029	2035	2040	2047	6607	2117	2122	2126	2131	2137	2145	2151	2157	2205	2212	2250	01122	206	911	915	920	924	976 022	0.20 0.85	547	955	958	
E 44. (C	180980	180980 180980	180980 180980	180980	180980	180980	180980	180980	180980	180080	180980	180980	180980	180980	180980	180980	180980	180980	180980	180980	180980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	
TABL	193	194 195	196 197	198	199	200	201	202	203	204	200	207	208	209	210	211	212	213	214	212	210	218	219	220	221	222	223	224 225	226	227	228	229	( (

FISH FISH

		JELLYF LSH				120T_1BW10	120T1.BW10	38T.3BW3	38T.6BW1	38T1.BW1									EK-50 OFF	EK-50 OFF					MOVED BCM E	MOVED 8CM E									
	500	2000	500	500			500	500	500	1000	200			3000	1000	500	500	500	1000	500	500	500	500	500	005	200	500	500	500	500	500	500	500	500	500
	(			I	<del>-</del> م	4 4	• ~				ļ	o y	2		9	ഹ			9	14	<del>1</del> 5		4	50	ſ		ഹ	17			_	24			ഹ
	) 7 7	119.0				249.0	616.2					194.3 16.5	10.0		145.8	179.8			172.50	15.20	15.4		(	13.7	0.col		176.1	14.9			26.0	5.00			176.0
	8		8	4				2	2	2	σ		Y	o <del>4</del>	•		10	10				Q	12		•	σα	<b>&gt;</b>		ħ	9			9	б	
	859.7		25.2	355.0				372.6	372.6	374.6	24.5			6.1C			24.6	22.1				51.2	52.5			21.6			185.5	72.7			63.6	21.2	
	L	ഹന	)	(	N C	νn	ı m	ŀ			L	ഹം	2		ŝ	4			0	0	9		I		ব		ħ	Ś			m.	7			4
	( ( (	512.1 67.3	•		252.1		248.6					20.2			315.1	70.3			00.	<b>.</b> 00	34.2			91.9	0.17		72.7	113.5			97.2	99.40			73.1
	ħ		9	9				ħ	ý	9	∞		<b>C</b> t	<u></u> ~	١		ഹ	ഹ				ω	<del>~-</del>		`	9 2	-		പ	9			2	ഹ	
	517.7		112.6	235.5				111.0	110.6	129.9	112.4		C 7.1	510.7	•		112.0	112.5				56.1	144.8			105.3	) • •		212.1	95.2			95.9	112.6	
(	IS130 (25)	(GZ) 05130 (MT60 (34)	IYL60 (34)	TL99 (23)	TL99 (23)	TL99 (23)	TL99 (23)	TL99 (23)	TL99 (23)	TL99 (23)	IYL60 (34)	IYLOU (34)		Mrzb (43) 13130 (25)	IS130 (25)	IXL60 (34)	IXL60 (34)	IYL60 (34)	IXL60 (34)	KF2B (43)	KF2B (43)	KF2B (43)	(32) (32)	(35) (35)	IXT60 (34)	IYL60 (34) IVL60 (34)	IXL60 (34)	BRS60 (33)	3RS60 (33)	STL60A(21)	STL60A(21)	STL60B(22)	STL60B(22)	IXL60 (34)	IXL60 (34)
DNTINUEL	1027 F	1030 H 1041 N	1045 N	1050	1053	7011	1108 5	1112 5	1117 5	1121	1132 1132			1151 F	1207 F	1214 N	1217 N	1346 N	1349 N	1356 5	1359 5	1403 5	1408 2	1411 2	1415 N	1418 N	1425 N	1429 E	1432 E	1436 2	1439 5	1444 5	1447 5	1451 N	1454 N
44. (CC	190980	190980 190980	190980	190980	190980	190980 190980	190980	190980	190980	190980	190980	190980	100000	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980 190980	190980	190980	190980	190980	190980	190980	190980	190980	190980
TABLE	232	n n n	32	30	237	230		241	242	243	244	2#5 2#5		248	642	50	51	252	253	254	255	256	257	258	653	260 261	262	263	264	265	266	267	268	269	270

												JELLYFISH				JELLYFISH																			RESOAKED				
	1000	1500	500	500	200	200	500	1000	200	1000	500	1000	1000	200	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	200	500	500	500	500	200	500	200
	8		2	~		Ċ	18	2			10	52		Ċ	48	82			<b>7</b>	ω	13			٢	14			ω	σ		банас банас	<u>7</u>	ഹ			14	64	20	14
	58.4		55.9	156.4			14.9	۲, ۲,			43 <b>.</b> 5	8.94		Ĭ	.76	.170			23.4	23°3	13.8			33.0	12.8			34.1	36.9		37.6	3.7	148.7			9.94	64.	.110	13.1
	`	9		•	∞ -	4			<u>0</u>	ω			<u></u>				281	ন				$\sim$	ħ			m	m			ſ				٢	ω				
		83.0			21.6	187.5			31.7	34.1			58.6	27.3			.054	108.4				121.7	142.6			120.7	141.2			108.5				21.7	40.3				
	4		4	7			m ;	72			ý	10		;	Ś	126			ħ	m	ħ			4	ħ			7	Ħ		4	ħ	ħ			m :	<b>T</b> !	5	<b>m</b>
	86.2		86.8	71.2			109.7	42.5			45.6	30.40			63.40	.039	,		84.2	83.5	83.1			87.4	82.5			87.6	82.0		81.7	83.9	71.2			93.30	04.50	-047	108.7
		2			ഹ	ħ		(	18	12			11	~			115	9				٢	8			7	9			7				4	12				
		101.1			109.3	21.1			30.4	31.2			37.8	84.1			.130	111.5				96.3	81.2			89.4	81.3			112.6				109.0	96.1				
	45)	45)	45)	34)	34)	33)	33)	-	-	5	5	()	()	2	2	(66	(66	8)	8)	8)	6	6	10)	10)	6	6	10)	10)	8	8	8	6	34)	34)	35)	35)	<b>C</b>	(66)	33)
(D)	SKF2.5(	SKF2.5(	SKF2.5(	NYL60 (	NYL60 (	BRS60 (	BRS60 (	CU35A (	cu35A (	CU35B (	CU35B (	cu40 (	cu40 (	cu45 (	cu45 (	NOISE (	NOISE (	CU50A (	CU50A (	CU50A (	CU50B (	CU50B (	cU50C+(	cu50c+(	CU50B (	CU50B (	CU50C+(	cu50c+(	CU50A (	CU50A (	CU50A (	CU50B (	NYL60 (	NYL60 (	ZN60 (	ZN60	cu45 (	NOISE	BHS60 (
JUNITING	1459	1520	1529	1534	1539	1543	1547	1552	1558	1602	1607	1611	1618	1624	1628	1631	1634	1637	1641	1644	1648	1652	1655	1659	1703	1706	1710	1713	1717	1721	1724	1727	1731	1734	1738	1742	1749	1753	1.511
5 44. (C(	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980	190980
TABLI	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309

310 312 311 314 315 316 323

soap-5 soap-3

	500		500	500	500	500	500	500	500	500	500	500	500	1000	1000	500	500	3000	1000	5000	5000	5000	1500	500	500	500	500	2000	500	1000	500	1000	1000	500	500	500	500	5
		7	- 2			ഹ	2			ഹ	<u>ل</u>		45	123			3	μŢ		50	52	Ť			16	2		-	<b>-</b> ,	9			80	~			8	
		411.9	302.1			155.2	12.7			151.5	12.7		<b>.</b> 53	.033			13.7	.42		<b>.</b> 43	.42	350.3			13.2	29.7			135.3	188.3			.14	34.4			38°2	x x
	٩			биона. Анако	٢			m	10			L			321	ഹ			4000) 4000				m	9			ω	2		-	7	110			7	10		
	346.4	0.621		459.0	41 <b>.</b> 7			167.7	37.7			47.9			.0087	47 <b>.</b> 3			23.3				712.6	47.4			29.3	34.1			347.1	.080			32.8	32.9		
		4	10			4	ゴ			4	٢		ħ	130			9	9		9	ഹ	m			ω	9			4	m			77	ഹ			6	c
		349.4	114.0			72.9	102.2			70.6	32.6		61.40	.037			32.9	60.80		61.50	59.90	346.0			32.4	41.1			00.0	244.0			.12	42.6			45.2	
	7	Ţ		9	ω			ഹ	2			20			134	9			6				ഹ	ω			14	σ		l		86			12	12		
	241.5	C.212		562.4	78.5			216.6	82.6			57.9			.1200	54.6			86.3				298.2	54.3			28.5 28.5	88.5			230.2	.330			30.7	31.4		
	(53)		(54)	(24)	(34)	(34)	(33)	(33)	(34)	(34)	(#3)	(#3)	(2)	(66)	(66)	(#3)	(#3)	(2)	(2)	(2)	(2)	(53)	(23)	(#3)	(#3)	=		(34)	(34)	(S3)	(23)	(66)	(66)	<del>]</del>	<del>[</del> ]	( )	20	0
ED)	STL99	SS130	AS130	AS130	NYL60	NYL60	BRS60	BRS60	NYL60	NYL60	<b>SKF2B</b>	<b>SKF2B</b>	CU45	NOISE	NOISE	SKF2B	<b>SKF2B</b>	CU45	CU45	CU45	CU45	STL99	STL99	<b>SKF2B</b>	SKF2B	CU35A	CU35A	NYL60	NYL60	STL99	STL99	NOISE	NOISE	CU35A	CU35A	CU35B	CU35B	CUHU
ONTINU	1430	00011	1443	1446	1450	1454	1458	1502	1506	1509	1513	1516	1521	1525	1531	1538	1541	1545	1602	1608	1645	1712	1741	1753	1756	1801	1804	1808	1819	1824	1830	1326	1334	1341	1344	1349	1352	000
E 44. (C	210980	210980	210980	210980	210980	210980	210980	210980	210980	210980	210980	210980	210980	210980	210980	210980	210980	210980	210980	210980	210980	210980	210980	210980	210980	210980	210980	210980	210980	210980	210980	230980	230980	230980	230980	230980	230980	230900
TABL	349	3510	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	311	378	379	380	381	382	383	384	385	386	/0/ 70/

.

	200		1000	1000	205						200	200	500	500	1500	100	50(	50	50	200	20	200	200	ž Š	Ŋ Ŋ	Э С		n n		ð G	20 20	D C	D D C C C	D G G	001	Ξ Ω Ω	5 C
		511	<u>5</u>		`	9 ⁷			C	- L	<u>)</u>		7	10			11	9			12	4		0	52,4	10		. 1	ц Ч	2			ц,	٥		č	5
		58	.067			45.3	4°C1		2 70	0°01			37.3	36.7			34.2	113.9			14.2	171.9		1	<u>د) ، د</u>	19.8			220.3	7.1			356.6	415.3		( (	10.2
	ç v	N		191	ഹ		=	<b>t</b> 4	n		ഹ				2	6			ħ	4			œ	~		-	4	<b>m</b>		,	m	Ω		I	<u>ر</u> ر	~	
	58.1	<b>C· C</b> ¹		•035	104.7		L 177	1 14 °C	7.001		48.9	31.4			31.4	59.6			103.5	173.4			33.6	61.0			6°0).	305.9		¢	918.1	405.0			836.0	47.8	
		Ţ	121			4 -	7		4	4 1-	•		ഹ	4			9	2			4	ഹ			4	9			ന	ω		•	χ	9			σ
		611 10	. 620.			1.17	0.11			03.5 7 7 5			42.8	44.2			38.5	26.0			104.9	73.3			94 <b>.</b> 50	91.8			240.3	451.8			133.8	363.4			122.6
	<u>~</u> (	ע		123	~	*	L	٥u	0		9	10			12	12			4	9			6	6		i	<b>.</b> .	4			4	0		`	9	ω	
	39.4	0.06		.140	110.9			121.0	C• <del>1</del> 0		55.1	30.1			31.6	32.4			159.7	206.5			86.8	92.0			93.4	237.9			463.9	533.8		(	282.0	1.17	
	6	25	(66)	(66)	8	@ (	6	6				) <del>-</del>	=	(5)	( 2)	(†)	(†)	(12)	(12)	(33)	(33)	(34)	(34)	(22)	(22)	(21)	(21)	(53)	(53)	(52)	(22)	(54)	(24)	(50)	(26)	(31)	(31)
ED)	cu40	CU45	NOISE (	NOISE	CU50A	CU50A	CU50B (	CU50B		CU50C+1	SKF2B	CU35A	CU35A	CU35B	CU35B	cU35C+	cU35C+	cu60	cuéo	BRS60	BRS60	NYL60	NYL60	STL60B	STL60B	STL60A	STL60A	STL99	STL99	RS130	RS130	AS130	AS130	SS130	SS130	AL60	AL60
ONTINU	1359	1403	1413	1419	1425	1428	143/	1441	C++1	1449	1456	1500	1503	1508	1511	1521	1526	1531	1534	1539	1542	1547	1550	1555	1558	1602	1606	1610	1613	1617	1621	1626	1630	1638	1643	1650	1654
E 44. (C	230980	230980	230980 230980	230980	230980	230980	230980	230980	230900	230980	230980	230980	230980	230980	230980	230980	230980	230980	230980	230980	230980	230980	230980	230980	230980	230980	230980	230980	230980	230980	230980	230980	230980	230980	230980	230980	230980
<b>TABL</b>	388	880	0. € 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	392	393	394	565	962	27.0	862		101	402	403	104	105	106	LOt	f08	409	410	111	412	<del>1</del> 13	114	415	416	417	418	H19	ц20	421	422 122	423	424	425	426

FISH FISH FISH FISH 500 1500 500 500 5000 1000 500 3000 000 500 1000 500 1000 30 30 5 53 761 0 180 2 12 33 5 24 5 20.93.60 .49 190.4 .49 10.2 67.2 58.6 7,32 108.3 8.79 33.7 107.3 6.94 9.49 360.9 47.7 41.8 **ئ**ا 233 206 2 Q 600 8 4 ഹമ -14 14  $\circ \infty$ 9.4 14.9 872.0 36.8 494.3 836.7 864.3 70.8 25.2 347.5 48.5 34.4 106.5 51.9 47.9 62.3 51.758.2 61.0 ω 432 170 60 = mus S m 9 5 = 19.4 338.1 25.6 89.70 305.8 364.8 89.70 1.07 120.6 60.30 220.6 38.4 91.4 93.60 47.158.3 92.60 24.20 61.20 345.1 225 230 30 14 89 25 20 20 SO δ 2 5 13.6 15.8 564.1 478.8 293.8 452.0 88.9 89.2 30.1 147.3 31.6 31.9 143.8 84.5 93.0 242.0 141.5 RS130 (25) SS130 (26) SS130 (26) STL60A(21) STL60A(21) STL60B(22) STL60B(22) 525 23) 66 (66 (66 mm 32) 4) 12) (S3 35 35, 99 2 32 32 3 સિં ħ 3 24  $\sim$ ñ CU35C+( CU35B-( U35B-CU35C+( CU35C+( AS130 AS130 RS130 **RS130 RS130 CU35A CU35A RS130** NOISE NOISE NOISE STL99 STL99 VOLSE cu45 **ZN60** CU45 CU45 ZN60 ZN60 **ZN60 AL60 AL60** ZN60 **ZN60** 2060 cu60 TABLE 44. (CONTINUED) 1701 2145 2148 1826 1829 1835 1835 1844 1846 2016 2023 2029 2034 2038 2042 2042 1324 1327 729 745 750 759 802 808 1822 1854 2011 2058 2134 2141 333 721 1811 1817 751 ž 230980 230980 230980 230980 230980 230980 230980 230980 230980 230980 260980 260980 230980 230980 230980 260980 260980 230980 230980 230980 230980 230980 230980 230980 230980 4449 4571 4571 4571 4571 462 464 465 427 428 429 442 443 1446 1447 <del>1</del>61 430 432 433 434 435 436 139 440 444 445 **t**37 <del>1</del>38 441 5

202

TILT
	TILT 10	TILT 10								TILT 10	TILT 10	TILT 90	TILT 90	TILT 0	TILT 0			TILT 90	TILT 90												TILT 90	TILT 90						
	500	500 500			2005	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	1500	500	500	500	500	005	200	009	500	500	500	500	500	500	500	500	500
	(	1 رو	-		15	50	1	11				10			~ ·	<del>, -</del>			<u> </u>	10	14			35	29		0	2	5		,	10	64	354		1	20	
	L -	40.04 10.0	44.0		19.5	000		41.9			44.8	37.7			42.1	43.3			39.5	22.6	27.3		,	8.42	7.36			12.1	46.7			42.5	5.65	.46		1	11.5	
	25		Ľ	-a	2		9	•	14	13			5	<del>1</del> 3			<del>1</del> 5	21				б	17			2	N			£	35				100	26		1
	33.0		110 0	0.001			119.2		34.1	35.7			25.4	37.0			33.4	25.9				132.5	54.0			55.2	1			37.9	28.7			•	2.49	38.7		49.4
	,	0 V	<b>)</b> .		Π	- u	r	8			ŝ	9			9	7			9	9	ഹ			7	S			T	12			17	12	318			9	
	(	43.1	0.61		81.0	2 & 7 &	0.400	45.5			51.5	38.4			56.6	42.3			38.6	78.8	85.6			174.80	104.50			109.7	46.3			41.4	88.70	.14			99.9	
	41		¢	νÇ	2		8	)	19	28			19	22			33	53				10	20			ۍ ز	_			36	æ				110	18		10
	30.5			1.011	1.01		113.0		30.0	11.6			38.6	23.4			30.7	38.3				120.0	68.2		,	148.5	204.2			33.2	41.4				2.00	142.4		143.1
	2)	6	66	66	20		22	2	7	3	3	3)	3)	3	3	=	2	3)	3	(11)	(11)	(11)	(31)	(31)	(35)	(35)	(33)	(33)	E	<u> </u>	(3)	(3)	(31)	(66)	(66)	(32)	(35)	(35)
ED)	cu35c-(	CU35C-(	) AUCUU		CIIEOR (		CII50C	CU35A (	CU35A (	CU35B-(	cu35B-(	CU35B-(	CU35B-(	CU35B-(	CU35B-(	CU35A (	CU35A (	CU35B-(	CU35B-(	CU5OC (	CU50C (	CU50C	AL60	AL60	ZN60	ZN60	BRS60	BRS60	CU35A	CU35A	cu35B-	cu35B-	AL60	NOISE	NOISE	ZN60	ZN60	ZN60
IUNTINC	1341	1344	1340				1404	1412	1415	1419	1422	1426	1429	1433	1436	1440	1443	7447	1450	1454	1525	1529	1538	1541	1545	1548	1552	1555	1559	1603	1606	1609	1614	1654	1658	1702	1705	1708
5 44. (C	260980	260980	200980	260980	260080	000007	260980	260980	260980	260980	260980	260980	260980	260980	260980	260980	260980	260980	260980	260980	260980	260980	260980	260980	260980	260980	260980	260980	260980	260980	260980	260980	260980	260980	260980	260980	260980	260980
<b>TABL</b>	166	167		601			173		475	476	177	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503	504

 $\odot$ 

	BUBBLES	MARMID	TOLINIZIA				TILT 5	TILT 5	TILT 10	TILT 10	TILT 45	TILT 45	TILT 90	TILT 90	TILT 90	TILT 90																						
	1000	1500	000	1500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500
	ł	87	78	) -		11	6			6	ω			ω	12			20	16			32	6			44	107			ц С	0			6	14		1	10
	1	.37	066			41.6	41.4			42,2	39.5			34.7	36.5			8.70	13.2			6.61	120.6			.45	.032			9.49	17.5			30.5	14 2			22.8
	132	lict	1	147	9			٢	6			ω	6			12	6			ഹ	21			ŝ	/			155	حما			S	ഹ			<b>a</b> \	9	
	175.7	25		.085	32.7			35.9	32.4			35.10	24.3			29.7	48.8			178.1	48.5	•		101.9	24.1			.037	56.3			111.6	103.9			113.0		
	0	108	ß			7	Q			9	9			ഹ	9			9	9			10	9			ഹ	111			9	4			ഹ	ഹ			7
	-	.45	057	)		44.9	55.9			μ.γ.	59.0			39.2	40.7			95.20	101.0			164.50	25.3			62.00	040.			28.80	72.9			75.9	75.5		,	76.5
	244	138		101	10			10	12			20	ω			15	~			7	36			7	6			115	13	•		6	~			9	9	
	214.0	Υ Υ		.380	29.0			24.9	29.4			9.99	39.9			26,3	151.6			197.6	48.4			148.6	84.8			.130	35.4			95.2	115.4			108.7	117.2	
	(66)	66	(00)	66	0	2	<b>(</b> P)	3	2	(2)	(m)	(m)	(m	(m	(2)	(2)	(35)	(35)	(33)	(33)	(31)	(31)	(12)	(12)	( )	(2)	(66)	(66)	6	6	(11)	(11)	(8)	(8)	6)	6	(11)	(11)
[D)	NOISE	NOISE	NOTSE	NOISE	CU35A (	CU35A (	CU35B-(	cu35B-(	cu35c-(	cU35C-(	CU35B-(	CU35B-(	cu35B-(	CU35B-(	cU35C-(	cU35C-(	ZN60	ZN60	BRS60	BRS60	AL60	AL60	cu60	cuéo	cu45	CU45	NOISE	NOISE	CU40	CU40	cu5oc	cu50c	<b>CU50A</b>	CU50A	CU50B	CU50B	cu5oc	cu5oc
INTINU	1729	1735	6010	656	1008	1011	1015	1018	1023	1027	1031	1034	1039	1042	1046	1050	1055	1058	1102	1106	1110	1113	1120	1123	1128	1131	1135	1138	1141	1145	1148	1152	1155	1158	1203	1206	1210	1213
E 44. (C	260980	260980	006005	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980
TABL	505	900		600	10	11	512	513	514	515	516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543

	LT 90	LT 90	LT 0	LT 0									JRNED 90	JRNED 90	[LT 0	ILT 0	ILT 90	ILT 90												
	ET OC				00	00	o O	Ő	õ	00	g	00	00 TI	00 TI	00 I)	00 T	00 T.	00 T.	00	00	00	8	00	00	00	00	00	00	00	00
	Š	ы С	ы С	ы С	ы С	15(	ŭ	ŭ	15	20(	ŭ	ñ	ŭ	õ	ഹ്	ഹ്	ഹ	പ്	വ്	ñ	ഹ്	ũ	ഹ	ഹ	ū	ū	ū	ñ	ŋ	ഹ
	10			29	∞			~	13			34	10			15	5			13	6			108	7			ŝ	16	
	31.4			34.0	111.0		1	390.8	65.0			8.19	433.0			29.8	30.1			33.7	433.4			.054	456.0			496.8	13.6	
		10 1	ω		,	9	ഹ			4	13			Q	11			13	14			<u>~</u>	146			ഹ	ഹ			9
		24.4	35.9			104.0	829.9			760.6	52.1			763.2	36.7			24.3	31.7			741.5	.18			824.0	841.6			48.0
	9			6	~			2	4			10	4			9	9			8	ഹ			131	9			ſ	6	
	37.5			51.5	25.1			359.3	265.0			124.70	366.8			56.1	36.7			42.2	356.2			.042	355.0			350.2	30.6	
		14	17			ω	ഹ			10	12			10	17			13	19			9	109			4	2			8
		38.5	29.9			150.3	278.8			498.8	65.2			275.1	28.5			35.1	28.6			302.3	.17			322.0	323.8			51.6
	3)	3)	3	3	12)	12)	26)	26)	25)	25)	31)	31)	20)	26)	3)	3)	3)	3)	1	1	26)	26)	(66	(66	26)	26)	26)	26)	43)	43)
(D)	cu35B-(	cu35B-(	cu35B-(	cu35B-(	cu60 (	cu60 (	SS130 (	SS130 (	RS130 (	RS130 (	AL60 (	AL60 (	SS130 (	SS130 (	CU35B-(	CU35B-(	CU35B-(	CU35B-(	CU35A (	CU35A (	SS130 (	SS130 (	NOISE (	NOISE (	SS130 (	SS130 (	SS130 (	SS130 (	SKF2B (	SKF2B (
INTINUE	1218	1221	1228	1231	1236	1239	1249	1253	1302	1310	1323	1327	1334	1337	1344	1347	1353	1357	1401	1404	1408	1412	1725	1728	1735	1739	1742	1745	1750	1756
5 44. (CU	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980	300980
TABLI	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573

.



measured with the EK-38 echo sounder.

FIGURES WITH CALIBRATION SPHERE DATA



measured with the EK-50 echo sounder.







Fig. 12. Echo energy or backscattering cross sections in QD-units of seven copper spheres measured with the EK-38 echo sounder.



0





measured with the EY-M echo sounder.









measured with the EK-50 echo sounder.



Fig. 18. Echo energy or backscattering cross sections in QD-units of six steel spheres measured with the EY-M echo sounder.



measured with the EK-120 echo sounder.

spheres measured with the EK-38 echo sounder.



88



STL60A STL608 X BRS60T NOISE SOUNDER BRS60 NYL60 LEGEND CU60 ZN60 ▲ AL60 EY-M Fig. 22. Echo energy or backscattering cross sections in QD-units of eight 60 mm-diameter Х¤ + Ð Θж 4-9 11 13 15 17 19 15 17 19 16 18 20 15 17 10 12 14 ∢ ă ă 30 ж × 4-44 26 Ж × 4 4-23 Ð ¤ ¤ × + + 21 ≝≠ × X Ж spheres measured with the EY-M echo sounder. × × 19 ED4 (SEPTEMBER 1980) HOUR OF DAY 9 11 13 15 17 19 21 ⊞ × Ж 18 ┿ × E O 4 4 ∢ 16 18 20 22 10 12 14 16 18 20 7 + × X # 17 ĸ Жк Ж × × Ř 16 ×× Ж 1000 0.01 10 100 0.1 (SLINA DO) ENERGY ЕСНО





X



 $\Theta$ 

93

X





o -



(c) EY-M 0.2 ms 0.05 v



(a) EK-38 0.2 ms 0.05 v (b) EK-50 0.2 ms 0.05 v



(d) EK-120 0.2 ms 0.05 v



Fig. 28. Echo waveforms from sphere CU35A. Heading sequences: echo sounder, abscissa and ordinate scale sizes.

(a) EK-38 0.2 ms 0.05 v
(c) EY-M 0.2 ms 0.05 v



(b) EK-50 0.2 ms 0.05 v



(d) EK-120 0.2 ms 0.05 v



Fig. 29. Echo waveforms from sphere CU35B. Heading sequences: echo sounder and scale sizes.



a

(c) EY-M 0.2 ms 0.05 v



(a) EK-38 0.2 ms 0.05 v (b) EK-50 0.2 ms 0.05 v



(d) EK-120 0.2 ms 0.05 v



- Fig. 30. Echo waveforms from sphere CU35C+. Heading sequences: echo sounder and scale sizes.
  - (a) EK-38 0.2 ms 0.05 v (b) EK-50 0.2 ms 0.05 v







(c) EY-M 0.2 ms 0.05 v (d) EK-120 0.2 ms 0.02 v



Fig. 31. Echo waveforms from sphere CU40. Heading sequences: echo sounder and scale sizes.



(c) EY-M 0.2 ms 0.05 v



(a) EK-38 0.2 ms 0.05 v (b) EK-50 0.2 ms 0.05 v



(d) EK-120 0.2 ms 0.05 v



Fig. 32. Echo waveforms from sphere CU45. Heading sequences: echo sounder and scale sizes.



## (a) EK-38 0.2 ms 0.05 v (b) EK-50 0.2 ms 0.05 v



(d) EK-120 0.2 ms 0.05 v



Fig. 33. Echo waveforms from sphere CU50A. Heading sequences: echo sounder and scale sizes.

<u>9</u>8



...

(c) EY-M 0.2 ms 0.05 v



(a) EK-38 0.2 ms 0.05 v (b) EK-50 0.2 ms 0.05 v



(d) EK-120 0.2 ms 0.05 v



- Fig. 34. Echo waveforms from sphere CU50B. Heading sequences: echo sounder and scale sizes.
  - (a) EK-38 0.2 ms 0.05 v (b) EK-50 0.2 ms 0.05 v







(c) EY-M 0.2 ms 0.05 v (d) EK-120 0.2 ms 0.05 v



Fig. 35. Echo waveforms from sphere CU50C+. Heading sequences: echo sounder and scale sizes.





0.05 v (C) EY-M 0.2 ms





(d) EK-120 0.2 ms 0.1 v



Fig. 36. Echo waveforms from sphere CU60. Heading sequences: echo sounder and scale sizes.



(a) EK-38 0.2 ms 0.05 v

(b) EK-50 0.2 ms 0.05 v





Fig. 37. Echo waveforms from sphere STL60A. Heading sequences: echo sounder and scale sizes.





(a) EK-38 0.2 ms 0.05 v (b) EK-50 0.2 ms 0.05 v





Fig. 38. Echo waveforms from sphere STL60B. Heading sequences: echo sounder and scale sizes.



(a) EK-38 0.2 ms 0.1 v (b) EK-50 0.2 ms 0.1 v



N

(d) EK-120 0.2 ms 0,1 v



Fig. 39. Echo waveforms from sphere STL99. Heading sequences: echo sounder and scale sizes.





(a) EK-38 0.2 ms 0.1 v (b) EK-50 0.2 ms 0.05 v

0



(d) EK-120 0.2 ms 0.1 v



Fig. 40. Echo waveforms from sphere AS130. Heading sequences: echo sounder and scale sizes.



(b) EK-50 0.2 ms 0.1 v



(d) EK-120 0.2 ms 0.05 v



Fig. 41. Echo waveforms from sphere RS130. Heading sequences: echo sounder and scale sizes.





(d) EK-120 0.2 ms 0.1 v



Fig. 42. Echo waveforms from sphere SS130. Heading sequences: echo sounder and scale sizes.



(a) EK-38 0.2 ms 0.05 v (b) EK-50 0.2 ms 0.1 v



(d) EK-120 0.2 ms 0.02 v



Fig. 43. Echo waveforms from sphere AL60. Heading sequences: echo sounder and scale sizes.





(d) EK-120 0.2 ms 0.05 v

	•	. •							
	1					Sec.			a an
19		•	. 1			ς.		े	
				7	7.4		5		
							2		
						2			
									1.020

Fig. 44. Echo waveforms from sphere BRS60T. Heading sequences: echo sounder and scale sizes.

(a) EK**-**38 0.1 v 0.2 ms (c) EY-M 0.2 ms 0.1 v

0.2 ms 0.05 v (b) EK-50



(d) EK-120 0.2 ms 0.05 v



Fig. 45. Echo waveforms from sphere BRS60. Heading sequences: echo sounder and scale sizes.



(c) EY-M 0.2 ms 0.05 v



(a) EK-38 0.2 ms 0.05 v (b) EK-50 0.2 ms 0.05 v



(d) EK-120 0.2 ms 0.1 v



Fig. 46. Echo waveforms from sphere NYL60. Heading sequences: echo sounder and scale sizes.



(b) EK-50 0.2 ms 0.05 v



(d) EK-120 0.2 ms 0.2 v



Fig. 47. Echo waveforms from sphere ZN60. Heading sequences: echo sounder and scale sizes.



(c) EY-M 0.2 ms 0.05 v



(a) EK-38 0.2 ms 0.05 v (b) EK-50 0.2 ms 0.05 v



(d) EK-120 0.2 ms 0.05 v



Fig. 48. Echo waveforms from sphere SKF2B. Heading sequences: echo sounder and scale sizes.



(c) EY-M 0.2 ms 0.05 v

•



(a) EK-38 0.2 ms 0.05 v (b) EK-50 0.2 ms 0.05 v



(d) EK-120 0.2 ms 0.05 v



Fig. 49. Echo waveforms from sphere SKF2.5. Heading sequences: echo sounder and scale sizes.

(a) EK-38 0.2 ms 5 v



(c) EY-M 0.2 ms 5 v



(b) EK-50 0.2 ms 10 v



(d) EK-120 0.2 ms 10 v



Fig. 50. Transmit signals of four echo sounders. Heading sequences: echo sounder and scale sizes.

FISKEN OG HAVET SERIE B

Artikler utkommet i 1981. Oversikt over tidligere artikler finnes i tidligere nr.

- 1981 Nr. 1 Arnold Sutterlin, Vilhelm Bjerknes og Tor G. Heggberget: Mulighetene for pukkellaks (<u>Oncorhyncus gorbuscha</u>) i Norge - kulturbetinget fiskeri.
- 1981 Nr. 2 Olav R. Godø og Noralf Slotsvik: Borgundfjordtorsken. Ein rapport til Ålesund kommune om Borgundfjorden si betydning som gyteområde for torsk.
- 1981 Nr. 3 Jan Aure: Akvakultur i Hordaland. Kartlegging av høvelige lokaliteter for fiskeoppdrett.
- 1981 Nr. 4 Lars Føyn, Magnar Magnussen og Kjell Seglem: Automatisk analyse av næringssalter med "on-line" databehandling. En presentasjon av oppbygging og virkemåte av systemet i bruk på Havforskningsinstituttets båter og i laboratoriet.
- 1981 Nr. 5 Grim Berge og Reidar Pettersen: Miljøforholdene i Indre Vanylvsfjorden, Syltefjorden og Kjødepollen.