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Sammendrag: 

De siste årene har en havmodell basert på Blumberg og Mellors ECOM3D blitt 
benyttet ved Havforskningsinstituttet. Dette er en populær modell som blir 
benyttet ved en rekke institusjoner både nasjonalt og internasjonalt. Basert på 
de erfaringene en har gjort er det imidlertid mulig å peke på flere svakheter ved 
modellen. Med dette som utgangspunkt har men i et samarbeid mellom Univer- 
sitetet i Bergen og Havforskningsinstituttet arbeidet for å utvikle en ny og 
bedre havmodell. I den nye modellen har man beholdt det beste av ECOM3D, 
samtidig som flere av de mindre gode delene er blitt erstattet. Denne rapporten 
er en dokumentasjon av versjon 1 av modellen. 
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1 INTROD UCTION 

1 Introduction 

This report is a documentation of a a-coordinate numerical ocean model developed 
at the Institute of Marine Research and the University of Bergen. The work on the 
model started in 1995, and is expected to continue in the years to come. 

Since the early 1990s a a-coordinate model due to Blumberg and Mellor [6] has been 
used by the Norwegian ocean modeling community in a number of oceanographic 
studies [l, 4, 13, 21, 22, 23, 251. This model performed successfully in a model val- 
idation, MOMOP [20], financed by Norwegian oil cornpanies. The availability and 
use of this model has been of great importance to the applied oceanographic com- 
munity in Norway both as a to01 for studying important oceanographic problems, 
but als0 because a number of persons involved in this work gained better insight in 
the properties of the model. 

Based on this insight and on knowledge about more recent numerical techniques, 
we believed that it would be possible to develop a a-coordinate model that could 
produce in some sense more accurate model results. Techniques for ocean model 
validation that the user community can agree on have not yet been established, 
and thus it will be hard to state that one model is generally better than another. 
Nevertheless, we have proposed some tools for intercomparison of model data and 
measurements [5 ] .  In this report observations from the SKAGEX experiment [7] are 
used to validate the models. 

In section 2 the a-coordinate model is described and in section 3 some results from 
experiments with the model are presented. 

The model implemented on an idealized test case is available on request to one of 
the authors. 



2 THE a-COORDINATE &!ODEL 

2 The o-coordinate model 

2.1 The Basic Variables and Equations 

The symbols used in the description of the model are given in Appendix A. The 
model assumes that the weight of the fluid identically balances the pressure (hydro- 
static assumption), and that density differences are neglected unless the differences 
are multiplied by gravity (Boussinesq approximation). The following equations are 
used to describe the variables as functions of the cartesian coordinates x, y ,  z. 

The continuity equation is 

and the Reynolds momentum equations are 

The pressure at  depth z may be obtained by integrating equation (4) vertically 

The conservation equations for temperature and salinity are 

The density is computed according to an equation of state of the form 
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taken from [31]. 

Motions induced by small scale processes (sub-grid scale) are parameterized by hori- 
zontal and vertical eddy viscosity Idiffusivity terms. The horizontal terms F,, Fy, FT 
and Fs may be written 

The horizontal diffusivities, AM and AH, are computed according to Smagorinsky 

i261 
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2.1.1 Boundary conditions 

At the free surface, z = ?(x, y), we have 

There are no volume fluxes through the side walls. On the side walls and bottom 
of the basin there are no advective or diffusive heat and salt fluxes. The vertical 
velocities at the free surface and at the bottom are given by 

The effect of the bottom drag on horizontal velocities is given by 

The bottom stress is specified by 

where the drag coefficient CD is given by 

and zb is the distance of the nearest grid point to the bottom. The von Karman 
constant IC = 0.4. In lack of further information we use zo = 0.01m for the bottom 
roughness parameter, see Weatherly and Martin [33]. 
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2.2 The o-coordinate system 

The basic equations have been transformed into a bottom following sigma coordinate 
system [19]. The independent variables (x, y ,  z, t )  are transformed to (x*, y*, a, t*) ,  
where 

a ranges from a = O at z = v to a = -1 at z = - H(x, y). Introducing the total 
depth, D r H + 7 ,  the basic equations may now be written as (after deletion of the 
asterisks) 

where w is the new vertical velocity. The momenturn equations on flux form become 

The new conservation equations take the form 

and the horizontal viscosity and diffusion terms are now defined according to 
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It should be noted that several terms originating from the a -  coordinate transfor- 
mation are neglected in equations (27), (28) and (29). These simplified formulations 
for horizontal viscosity/diffusivity terms in a-coordinate models are suggested by 
Mellor and Blumberg [14]. In [l41 a description of the complete terms is also given. 

2.2.1 Vertical boundary conditions 

The new boundary conditions for the vertical velocity, w,  in equation (22) become 

The new conditions at the surface (a = 0) becomes 

and at the bottom (a = -1) the boundary conditions become 
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2.3 The numerical a-coordinate model 

The governing equations form a set of simultaneous partial differential equations 
which cannot be solved using known analytic methods. Therefore the equations 
have been discretized using finite difference methods. The horizontal finite differ- 
ence scheme is staggered, and the Arakawa C-grid [l71 has been used, see Figure 1. 

Figure l. The location of variables in the C-grid 

The model is written in FORTRAN 90 and the discrete versions of the state variables 
and parameters are gathered in a module, STATE, that may be addressed by all 
subroutines. Equations (22) - (26) are stepped forward in time using the same time 
step for all equations. The method of fractional steps is applied. That is a sequence 
of subroutines is called to perform specific subtasks and update the corresponding 
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variables in MODULE STATE in each timestep. After all subroutines are called the 
effects of all terms in the governing equations are included. 

A description of the variables in MODULE STATE is given in Appendix B and an 
overview over the tasks of different subroutines is given in Appendix C. Descriptions 
of how different physical effects are included are given in the following sections. 

When describing the finite difference approximations to the governing equations, 
the following sum and difference operators are used 

2.4 Effects of the earths rotation 

The subsystem of differential equations that describes the effects of the earths rota- 
tion may be written 

This subsystem (35) is a coupled system of two ordinary differential equations which 
may be solved exactly if U and V were defined in the same points in space. The 
solutions for U and V at the new time step n + 1 are approximated by 

Ut;*' = au:, + ppxy(V;~kDCij)/D~;j, (36) 

y;:' = a<$ - p p z y ( U ~ k D ~ i j ) / D ~ j .  (37) 

where Du and Dv are the dynamic depths H + q  in U-points and V-points respec- 
tively and a = cos(fAt), p = sin(fAt). These operations are performed by the 
routine CORIOLIS. 

2.5 Surface gravity waves 

There is no time splitting in the model. This simplifies the structure of the code 
considerably. The fast surface gravity waves are treated with a spatially split implicit 
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time stepping technique. The use of an implicit scheme for the water elevation 
facilitates the use of the same time steps for all equations. The spatia1 splitting 
reduces the computational complexity and is described in [2]. 

The CFL-criterion imposed when applying explicit methods in free surface ocean 
circulation studies, very often forces us to apply smaller time step than necessary 
to resolve the major physical processes. When applying implicit methods, the CFL- 
criterion may be avoided or the bound on the time step increased. On the other 
hand linear systems of equations have to be solved at each time step, and the extra 
cost of using implicit methods may be significant. 

A third approach is to split the system of differential equations in several subsystems 
of equations. By choosing appropriate numerical techniques for each subsystem the 
CFL-criterion is affected and may be removed. The cost of solving each subproblem 
and also the total cost is often only a small fraction of the cost of applying implicit 
methods to the complete system. 

Subsystems of equations (23), (24) and the vertically integrated equation (22) may 
be written 

o 
where (g, V )  = / (U, V)do. This system of differential equations may be split into 

-1 

the following two sibsystems 
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Subsystems (39)  and (40) are both one-dimensional, and may be propagated in time 
with the Crank-Nicholson method. Using (39)  to update U and 7 we get 

where D Z  is the a-coordinate layer thicknesses. These operations are performed by 
the routine SPLITGX. Using (40) to update V and 77 we get 

(W2 "+l = 7; - A~~,(Y~D$,~)  + - "li j 4  gsx(~$,~y("l;+' + "l;)). 
These operations are performed by the routine SPLITGY. By numbering the grid 
cells in x-direction and y-direction respectively, the solution matrices for equations 
(43)  and (46)  become tridiagonal and are solved efficiently. 

In the model the order of the operations are reversed every second step to make 
the operator symmetric. According to von Neurnann analysis for free waves and 
constant depth this method is unconditionally stable. 

It is known, Weare [32] and Stelling et al. [28], that due to the spatial splitting the 
shortest surface gravity modes are damped. In studies where tides are dominating 
and in studies where the free surface is in focus the use of spatia1 splitting techniques 
like the one described above should therefore be avoided. But in studies where the 
focus is on mean transports and on processes acting on a larger time scale, we have 
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found that it may have little or no effect on the quality of the results whether we 
apply the Crank-Nicolson method directly to the coupled system (38) or treat the 
two subsystems (39) and (40) separately, see Berntsen and Espelid [3]. On the other 
hand the splitting implies a substantial reduction in computational cost. 

The Crank-Nicolson method applied to the coupled system (38) is implemented in 
the routine CRANK and an iterative solver for the corresponding system of equations 
is implemented in GAUSSIT. In the routine GAUSSIT there is a local parameter 
NUMIT (the number of iterations) that will depend on the given problem and the 
chosen time step. 

Equation (22) with the surface boundary condition w(0) = O is used to compute w 

at  all layer interfaces. In all ocean cells w:;' is chosen to be zero and then (22) is 
integrated from the surface to the bottom by the algorithrn 

C k 

for k = 1,KB-1. Doing this, the bottom boundary condition w(-l) = O is satisfied 
to machine accuracy. The operations above are performed in the routine CRANK 
after the new values of the surface level and horizontal velocities are computed. 
When using spatia1 splitting, corresponding expressions are used to compute w. 
The contributions to w from the two substeps must then be added. 

The routine WREAL computes the z-coordinate vertical velocities, WR, defined in 
S and T points from the equation 

2.6 The internal pressure 

The subsystem of equations (23) and (24) representing the internal pressure force 
in our a-coordinate system is given by 

dVD - gD2 lo ( - - -  - 
a t  P0 

a dy) da. 
dy D ay aa 
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This is a very important force which in areas with steep bottom topography, as 
we have in Norwegian waters, is difficult to approximate in a-coordinate models. 
These problems are well documented, see for instance Haney [ I l ] .  On the other 
hand there are numerical evidence that despite the objections, finite difference ap- 
proximations to the equations ( 4 8 )  and ( 4 9 )  give adequate representation of these 
forces in baroclinic studies, see Mellor et al. [15]. 

Stelling and van Kester [27] suggest to include the effect of internal pressure by 
treating these terms in z-coordinates 

They choose a vertical integration technique that guarantees that in cases with no 
horizontal internal pressure gradients the corresponding numerical gradients also 
become zero. In a recent thesis work Slørdal [24] focus on the horizontal pressure 
gradient force in a-coordinate ocean models in a number of diagnostic studies. He 
shows that the errors in velocities may be much larger when using the algorithm 
used in the Blumberg and Mellor model than the corresponding errors produced by 
the Stelling and van Kester algorit hm. However, he finds t hat the Stelling and van 
Kester algorithm tend to underestimate the internal pressure force and thus give 
too small integrated transports. 

In order to compute the gradients of equations ( 5 0 )  and ( 5 1 )  we need approxima- 
tions to p  at  the depths of all U and V points of the a-coordinate model. Slørdal 
suggest to use linear interpolation to get values p  at  required depths, and shows 
that this improves the accuracy of the integrated transports compared to the origi- 
nal Stelling and van Kester algorithm. Our findings from baroclinic studies support 
this conclusion, and the results also improve to some extent when using higher order 
splines in the vertical. 

The finite difference approximations to equations ( 5 0 )  and ( 5 1 )  become 

Atg l k - l  1 
U"' k = U" $3 k - - 6 , ( - ( ~ ~ ) 1 ~ u i ~ p ~ ,  + C + ,ou )), ( 5 2 )  

p0  2 2 z3k+l 
k=l 

Atg l k-1 1 
V.n+l = vn 

23 k 23, - 6 ~ ( S ( D Z ) 1  D ~ i j f &  + C S ( D Z ) k D v i j ( p : i  + P,)b+l)), ( 5 3 )  
P 0  k=l 
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where all the variables at  the right hands side are defined at time step n and the 
superscripts on p means that we have to approximate the densities at  the depths of 
U and V points before applying the difference operators 6, and Sy. In the subroutine 
INTERNAL quadratic splines are used to perform the vertical interpolations. We 
have not found a clear improvement of the quality of the model results when using 
cubic splines that are computationally more expensive. The routine ZSPL2 is used 
to define the quadratic splines and SPL2 to perform the interpolations. 

2.7 The atrnospheric pressure 

The third component of the pressure (5) is Patm. Whenever this field is available, 
the subsystems of equations (23) and (24) 

are approximated by 

at y;,+' = V? - -6 p" 
$3 k Y a tm'  

P0 

These operations are performed by the routine ATMOSP 

2.8 Advection 

The advective terms of equations (23), (24), (25) and (26) may all be written 

where F is either U, V, T or S. We want the numerical advection technique to 
be 2nd order accurate in areas with small gradients, gradient preserving near fronts 



and monotonic. Among the many recent advection schemes claiming to satisfy these 
conditions we have chosen to use a superbee limiter scheme due to Roe and Sweby 
1303. This scheme performed favorably in a comparison due to Yang and Przekwas 
[34]. Also for our applications the scheme has proved to maintain the fronts very 
well. In Figure 2 the surface layer salinity in Skagerrak after running a 4km model 
90 days from 15/3-1990 with this scheme is shown. 

Figure 2. Surface layer salinity in Skagerrak produced by the superbee limiter tech- 
nique. 

For one dimensional problems the algorithm is described in detail in [34]. In our 
three dimensional implementations the fluxes in all three dimensions are computed 
before updating the fields on the new time step. The routine for advecting U and 
V is called SUPERBEEUV. The routine for advection of scalar fields defined in S 
and T points is called SUPERBEEF. 

2.9 Subgrid scale vertical mixing processes 

With the present spatia1 resolution of ocean models many of the important mixing 
processes will not be resolved. Model results are sensitive to how the effects of 
these processes are represented and in particular this applies for the vertical mixing 
processes. A number of choices have been implemented in different models, but to 
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pick an algorithm that generally is superior to the competitors seems impossible. 

In equations (23), (24), (25) and (26) the effects of the vertical subgrid scale pro- 
cesses are represented by terms on the form a 

but it is not obvious that this is the best way of including the effects of these 
processes. 

We have experimented with different techniques. Some of these, and the arguments 
for the choices in the present version of the model, are presented below. Our expe- 
rience is mainly from the North Sea and Skagerrak. In certain periods the vertical 
salinity structure of the water masses leaving Skagerrak along the Norwegian coast 
is known. If this structure is reproduced by the model, it will be a good indication 
that the effects of the mixing processes are well represented. We have used the 
Mellor and Yamada [l61 2 112 leve1 model with and without the modifications due 
to Galperin et al. [g]. We often find, for both alternatives, that and that 
the surface water masses in Skagerrak becomes too saline. In the summer the near 
surface salinity may be less than 30 p.s.u. in large parts of Skagerrak, see [7, 81. 
We do not get such model water near the surface when using this model to produce 
both and KM.  An alternative would be to use some simple Richardson number 
formulation. We have tried the formulation due to Munk and Anderson [l81 

where A. is a function of the wind speed and Ri the Richardson number. Also 
for this formulation vve find that the surface layer gets too saline due to too much 
vertical mixing. The routine RICH computes liH and KM according to the above 
algori t hm. 

Therefore, a very simple vertical mixing algorithm for scalar fields was tried. The 
main technique for representing vertical exchange processes of scalar fields is to swap 
the fields of cells i, j, k and i, j, k + 1 whenever p;jk > p ; j k + ~ .  This is repeated up 
to I<B - 1 times after each update of the temperature and salinity fields. After 
advecting S and T and updating p,  the routine STABLE performs these tests and 
possible exchanges. With the resolution we have in Skagerrak, 4km horizontally and 
11 layers in the vertical, we find that with this technique we are able to maintain 
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a surface layer with salinities similar to those observed during the SKAGEX ex- 
periment. How 'close' the model surface fields are to the observed fields depend of 
course on how the momentum is mixed vertically. 

If we apply the Munk and Anderson formulation for KM, the momentum is typically 
transferred to deeper layers too quickly and we get very little vertical mixing due 
to convection. Thus, using this technique for computing KM, we may find model 
surface water with salinity less than 10 p.s.u. at the outflow of Skagerrak which 
is not in accordance with observed values. Therefore, we apply the Mellor and 
Yamada 2 112 leve1 model with the Galperin et al. modifications to compute I&. 
The governing equations in z-coordinates for turbulent kinetic energy, q 2 / 2 ,  and 
turbulent macroscale, l, are given below, see 19, 161, 

where 

and where 

li = 0.4 is the von Karman constant. Defining 
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the stability functions become 

and 

KM and I(, are then computed according to 

The empirical values in the expressions above are 

At the surface the following boundary conditions are used 

where u,, = (%)'I2 and 0 .0246~:~ is an approximation to the surface wave height 
as a function of the wind speed, ulo7 lom above the water surface, see [lo]. This 
is a modification of the original Mellor-Yamada model where l = O at  the surface. 
In ocean models this is not, as commented by others for instance Blumberg and 
Mellor [6], a realistic surface boundary condition. With the present formulation we 
are able to maintain a surface layer in Skagerrak with salinities in more agreement 
with observed values. With the zero condition, we tend to get too much energy in 
the surface layers, much vertical convection and a too saline surface layer. 

The routine UPSTREAMQ advects the fields q2 and q21 with the simple upstream 
method. Computation of the rernaining terms of equations (59) and (60) and 
the computations of GM, GH, Sh17 SH7 KM and liq are performed in the routine 
MY2HALV. 

2.10 Subgrid scale horizontal rnixing processes 

Terms of the type (g), (10) and (11) are often included in ocean models to  include 
the effects of subgrid scale horizontal mixing processes. In many cases it is also 
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necessary to include such terms with large enough values of AM andlor AH to avoid 
instabilities. 

Wit h the present choice of advection scheme, see Section 2.8, overshooting/under- 
shooting near fronts is avoided and we may run this model without including horizon- 
tal eddy viscosity/diffusivity terms. Also the fractional step method for advecting 
the surface gravity waves will damp the short scale 2-D, modes. 

We want to preserve the fronts of the scalar fields as well as possible and we have 
chosen to use CH = O (and thus AH = O) in our model. Small non-zero values have 
been tried, but as we increase AH the quality of the model results for Skagerrak tend 
to degrade slowly. So our findings is that AH = O is the best and als0 computationally 
simplest choice. 

The fronts in our model density fields may be very sharp and therefore CM = O 
(and AM = O)  will cause strong advective/convective processes near the fronts. The 
model results for the North Sea and Skagerrak are not very sensitive to the choice of 
CM,  but the choice CM = 0.5 seems to produce model fields in reasonable agreement 
with observed fields. AM is computed according to (12) in the routine SMAGOR. 
The viscosity fluxes due to the terms DF, and DF, of equations (23) and (24) 
are computed in the advection routine SUPERBEEUV and added to the advective 
fiuxes before updating U and V at the new time step. 

2.11 Time step constraints 

There are no time step constraints for the inertia-gravity modes because they are 
transport ed with implicit techniques. 

The internal waves are propagated with an explicit technique and the CFL criterion 
is At  < e where ei is the maximum internal gravity wave speed in the model area. 
c; depends on the stability of the model water masses which develop dynamically, 
and for small values of Ax and large values of At which we want to apply, numerical 
instabilities may occur because this criterion is violated. 

For the advection steps the time step criterions become 

At < MIN (k 9 2) . u ' v ' w  

When using thin layers near the surface (Az < l), which we often have in shallow 
areas, this criterion may be violated because At becomes larger than Y .  
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3 Model validation 

3.1 Model validation using SKAGEX-90 data 

During SKAGEX-90 [7] fixed hydrographical stations along 8 sections were taken 
every third day in the period from 24 May to 20 June 1990, see Figure 3. From this 
dataset tempora1 mean values and standard deviations of salinity and temperature 
are produced and compared to corresponding statistics produced from model results 
produced by the Blumberg and Mellor model, see [5], and the present model. Both 
models are implemented over a 4km model area, see Figure 2, and we are using 11 
layers in the vertical. Initial and boundary values are produced by 20km resolution 
North Sea models. 

Here we will focus on data from section H at the inflow/outflow of Skagerrak, see 
Figure 3. Average values of salinities produced from observed values are given in 
Figure 4. Average model results produced by the Blumberg and Mellor model with 
parameter settings as in the public domain version are presented in Figure 5, and 
corresponding model results for the present model are given in Figure 6. 

In order to quantify the discrepancies between model results and observed values, 
the following error measure is suggested, see [5] 

where Smodel is the average modelled salinity, T d a t a  the average measured salinity 
and SSD-data the standard deviation in the salinity data. Also area averages of the 
absolute values of this error measure are computed. In Table 1 these error measures 
are reported. 

Based on both the sectional modelled and measured density fields we have used the 
thermal wind relation 

to estimate the velocities normal to the sections. p is the model result or data 
density computed from salinity and temperature using the equation of state. We 
have assumed zero velocity at  the bottom. The barotropic current component is not 
known from data and therefore this will not give the correct picture of the actual 
flow through the sections, but in this context the differences in model and data 
geostrophic currents and transports are of greatest interest. For all velocity fields 
total transports in and out of the sections are computed. The transports measured 
in Sverdrups (1Sv = 106m3s-l) are given in Table 1. Based on average values of 
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model velocities for the Skagex period transports are computed and given in Table 1. 

Table 1. Measures transect H. 

Measure 

D ~ - a v e r  
Model transport-out 
Model transport-in 
Geostrophic transport-out 
Geostrophic transport-in 

With the present resolution the internal Rossby radius in Skagerrak is not well 
resolved so i t  may be argued that we can not trust model results produced by any 
model with the present resolution. However, in the foreseeable future the problem 
with important unresolved processes will be present in most model studies and it 
is hoped that with a reasonable representation of subgrid scale processes, we may 
get at  least a good picture of the general circulation. Anyway, the capacity of the 
available computers will always limit the resolution and we should try as best we 
can with the resolution we can afford. 

Some may argue that we now have reached a state where the quality of the ocean 
models is good enough and that the focus in future should be on applications. The 
experience from the MOMOP [20] validation was that ocean models could produce 
quite different results even on simple test cases. In the present Skagerrak study 
we note that even for similar codes, both a-coordinate and with the same spatia1 
resolution, the plots of figures 5 and 6 and the numbers of Table 1 are remarkably 
different. We find that the model transports differ with almost a factor 3. 

Data 
% 

* 
* 

0.639 
0.255 

Both models produce circulation patterns in agreement with what is believed to be 
the general circulation in Skagerrak, and many of the major processes, that can be 
represented with the present resolution, are reproduced by both models. See [29] for 
further results produced by the Blumberg and Mellor model. The numbers above 
show that even if the models reproduce known circulation patterns qualitatively 
reasonably well, the transports computed by the models may be very uncertain. 

We do not claim that the present model generally is superior to the Blumberg and 
Mellor model. The results are sensitive to the parameter setting, see 151. However, 
we believe that for model areas like Skagerrak and Kattegat with strong density 

B & M 
5.74 

1.779 
1.750 
3.238 
0.087 

Present model 
1.80 

0.663 
0.665 
1.268 
0.131 
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gradients it is important to apply non-oscillatory advection schemes to avoid under- 
and over shooting near the fronts. When using the leapfrog scheme for advection, 
as in the Blumberg and Mellor model, we tend to get too much vertical mixing and 
the internal pressure gradients at the outflow of Skagerrak become too strong, see 
figures 4 and 5 and Table 1. 

Figure 3. Topography of Skagerrak. A, B, C, D , E, F, G and H show 
the different sections with the positions of the hydrographical 
stations. Areas deeper than 500m are hatched and the 50 and 
200m bottom contours are enhanced. (From Danielssen et. 
al., 1995) 
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Figure 4. Mean values of observed salinity for section H. 

Figure 5. Model mean salinity for section H produced by the Blumberg 
and Mellor model. 
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Figure 6.  Model rnean salinity for section H produced by the present 
model. 

3.2 Validation using an idealized test case 

The rnodel is implemented on an idealized test case for two reasons 

1. To study whether model results are in agreement with general theory and earlier 
numerical experiments. 
2. To make the implementation of the rnodel on this test case available to other 
users. 

The problem, flow over seamounts in a stratified ocean, is described in detail by 
Slørdal et al. [25]. The rnodel domain is O < x < L,, O < y 5 L, with L, = 70000m 
and L, = 200000m. There are vertical walls at x = O and x = L,, and open bound- 
aries at y = O and y = L,. A bel1 shaped seamount centered at  the point (x,, y,) = 
(L,/2,50000m) grows in time according to 

with r2 = ( x  - x , ) ~  + ( y  - H is the rnodel depth, HO = 250m, A H  = 150m, 
R = 10000m. The growth function S( t )  is given by S(t )  = 1 - e-1.3x10-5t. Above 
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a depth, hl (x), the density is initially p. = 1025kgm-3. Below a depth, h2(x), the 
density is initially pb = 1027.5kgmm3. Between the two depths the density varies 
linearly. The depths are defined according to 

where hoi = 40m, hO2 = gom, and a = 2.7 x 10-5m-1. Initially u = w = 0, and v and 
q are computed assuming geostrophic balance, see [25]. Below h2(x) v = 0 .02 rn~-~  
in our implementation. 

The horizontal model resolution is 2.5 km. The interior model domain thus consists 
of 28 x 80 grid points. In our implementation we have added one grid cell on each 
side of the interior model domain in x-direction which are defined as land cells. At 
the inflow and outflow 10 cell wide FRS-zones, see [12], are added to the interior 
model domain. In these zones the initial values of all variables are used as external 
values. 

In Figure 7 the 85m depth currents and densities after 72, 144, 192 and 240 hours 
are shown. The plots of Figure 7 should be compared to FIG. 15 in 1251. 

The numerical solution of this problem will depend on the choices of parameters. 
For the results presented in Figure 7 we have used no bottom friction and CM = 
1.0. With these choices we get results in qualitative agreement with the results of 
Slørdal et  al. [25]. 

Acknowledgernent S. We thank the S kagex participants for making the S kagex 
dataset available for model evaluation and the Norwegian Meteorological Institute 
for supplying the atmospheric forcing. Comments from Lars Asplin concerning the 
computations of vertical velocities are appreciated. Thanks to Leiv H. Slørdal for 
interesting discussions on the internal pressure terms. 



Figure 7. Tempora1 evolution of 85-m depth currents and density (kg m-3). Every 

20 

second velocity vector is plotted. The solid lines are isopycnals. For actual density 
add 1025 kg m-3. 
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A List of symbols 

u = (U,  V )  
W 

f -, 
70 = (70x, roy) 
?b = ( ~ b x  1 7 b y )  

To 
s, 
U b  = (Ub, v,) 
w0 
w6 
CD 
6 

Horizontal velocities in x- and y-direction respectively 
Vertical velocity in the z-coordinate system 
Vertical velocity in the a-coordinate system 
Surface elevation 
Bottom static depth 
Bottom dynamic depth (H + q )  
Pressure 
Atmospheric pressure 
Temperature 
Salinity 
In situ density 
Vertical eddy viscosity 
Horizontal eddy viscosity 
Dimensionless horizontal eddy viscosity coefficient 
Vertical eddy diffusivity 
Horizontal eddy diffusivity 
Dimensionless horizontal eddy diffusivity coefficient 
Turbulent kinetic energy 
Turbulent macroscale 
Reference density 
Gravity 
The Coriolis parameter 
Surface wind stress 
Bottom stress 
The surface heat flux 
The net precipitation/evaporation at the surface 
Horizontal velocities a t  the bottom 
Vertical velocity at the surface (2-coordinate) 
Vertical velocity at  the bottom (2-coordinate) 
Bottom drag coefficient 
The von Karman constant 
Bottom roughness parameter 
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l3 FORTRAN 90 variables 

The main variables of the code are defined in MODULE STATE. In the following 
table a description of the variables is given. 

IM Number of grid cells in x-direction 
JM Number of grid cells in y-direction 
KB Number of grid cell interfaces vertically 

DX 
DY 
DT 
GRAV 
RHOO 
PMEAN 
CM 
CD 
zo 

The grid spacing in x-direction (m) 
The grid spacing in y-direction (m) 
The model time step (s) 
Gravity ( r n ~ - ~ )  
Reference Density 
Mean atmospheric pressure 
The horizontal viscosity parameter 
Minimum value of the bottom drag coefficient 
Bottom roughness parameter 

l-D arrays of dimension KB 

Z The a-coordinates of cell interfaces 
ZZ The a-coordinates at cell centers (ZZ(I<) = (Z(K)+Z(K+1))/2) 
DZ Thickness in a-coordinates of cells (DZ(K)= Z(K)-Z(K+1)) 
DZZ Distance in a-coordinates between cell centers (DZZ(K) = ZZ(K) - ZZ(K+l)) 
DZR 1/DZ 
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2-D arrays of dimension (IM,JM) 

COR The Coriolis parameter 
ALPHA COS(COR*DT) 
BETA SIN(COR*DT) 
FSM Mask array for cell-centered variables 

FSM = O in land points 
FSM = 1 in ocean points 

DUM Mask array for variables defined in U-points 
DUM = O in land points 
DUM = 1 in ocean points 

DVM Mask array for variables defined in V-points 
DVM = O in land points 
DVM = 1 in ocean points 

ETA The water level 
ETAP The water level at the previous time step 
H Static depth in ETA points 
HU Static depth in U points 
HV Static depth in V points 
D Dynamic depth in ETA points (D = H + ETA) 
DU Dynamic depth in U points 
DV Dynamic depth in V points 
WUSURF Momentum flux in x-direction at the surface 
WVSURF Momentum flux in y-direction at the surface 
WUBOT Momentum flux in x-direction at the bottom 
WVBOT Momentum flux in y-direction at the bottom 
WSSURF Salinity flux at the surface 
WTSURF Heat flux at the surface 
PATM Atmospheric pressure 
CBC Bottom drag coefficients 
WSPEED10 Wind speed lom above sea surface 
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3-D arrays of dimension (IM,JM,KB) 

u 
v 
W 
WR 
UADV 
VADV 

S 
T 
RHO 
AM 
KM 
KM 
Q2 
Q2L 
DDZ 
DUDZ 
DVDZ 

Horizontal velocity in x-direction 
Horizontal velocity in y-direction 
a-coordinate vertical velocity 
z-coordinate vertical velocity 
Horizontal velocity in x-direction used for advection 
Horizontal velocity in y-direction used for advection 
The fields UADV, VADV, W and ETA satisfy the equation of continuity 
Salinity 
Temperature 
Density 
Horizontal viscosity coefficients 
Vertical viscosity coefficients 
Horizontal viscosity coefficients 
q2, turbulent kinetic energy 
q21, turbulent kinetic energy times length scale 
Dynamic thickness of a cell in a S or T point 
Dynamic thickness of a cell in a U point 
Dynamic thickness of a cell in a V point 
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C FORTRAN 90 subroutines 

The table below briefly describes the tasks of different subroutines. 

CORIOLIS 
SPLITGX 
SPLITGY 
CRANK 
GAUSSIT 
INTERNAL 
ZSPL2 
SPL2 
ATMOSP 
SMAGOR 
SUPERBEEUV 
VERTVISCUV 
WREAL 
SUPERBEEF 
VERTDIFF 
STABLE 
DENS 
UPSTREAMQ 
MYZHALV 
RICH 
TRIDIA 
MTRIDIA 
UPDATEDD 

Effects of earths rotation 
Surface gravity waves in x-direction 
Surface gravity waves in y-direction 
Surface gravity waves (without dimensional splitting) 
Iterative solver called from CRANK 
Effects of internal pressure 
Defines quadratic splines in the vertical 
Evaluates a quadratic spline in the vertical 
Effects of atmospheric pressure 
Computes AM 
Advection and diffusion of momentum 
Vertical mixing of momentum 
Computes the vertical z-coordinate velocity 
Advection of T and S 
Vertical mixing of T and S 
Mixes water masses vertically when they are unstable 
The equation of state 
Advection of q2 and q21 with the upstream method 
The Mellor-Yamada algorithm for computing ICM and liH 
A Richardson number based algorithm for computing ICM and liH 
A tri-diagonal equation solver 
Solves M tri-diagonal equations 
Updates Dynamic Depths 
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