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Preface

Research on reproduction of resource species is an essential element in the evolution of fi shery science for several 

reasons. For example the age or size at fi rst reproduction is a driving variable in most stock assessment models, which 

directly affects estimates of stock productivity. Similarly annual age- or size-specifi c reproductive effort is a critical 

variable in stock and recruitment models and in understanding recruitment variability. Reproductive analysis is also an 

essential element in egg and larval production models used to estimate fi sh biomass, as part of very widespread survey 

techniques used to monitor biomass of fi sh stocks independent of commercial fi sheries. While such parameters are 

routinely estimated in fi shery science, investigation of the scientifi c basis for such estimates is a long neglected subject 

area. Many of the basic measurements and concepts have remained unchanged over the last hundred years, underlying 

major assumptions are seldom discussed or investigated although the potential for error or bias are substantial. Today 

fi shery analysis often uses reproductive parameters based on concepts and protocols of the early 20th century conceived 

long before the dawn of the computer age to feed into increasing complex numerical stock assessment models. Over 

the last 15 years some advances have been made in fi shery-based reproductive measurements, such as daily fecundity. 

These advances have fundamentally altered thinking regarding reproductive rates and raise fundamental questions 

regarding the soundness of traditional reproduction measurements and protocols, used world-wide in fi sheries today. 

Existing fi shery manuals for reproductive rate measurements for fi shery scientists around the world are also long out 

of date. 

Our intentions with this Workshop were to improve the overall quality of reproduction data used in assessments of marine 

stocks and egg production surveys world-wide by reviewing present practices, and establishing a new standard for routine 

reproductive measurements in fi shery science.

Specifi cally the Workshop should: 

� Review present practices in the reproductive science that support fi shery assessment and surveys around the world. 

� Identify key topics and set priorities for research that will improve accuracy of reproductive information used in fi shery 

stock assessments and biomass surveys. In this process consider the major potential biases in reproductive parameters 

used for fi shery assessments and surveys; identify cost effective measures that could improve precision, reduce bias 

and costs. Identify what we know and what we do not know regarding key life table reproductive parameters. 

� Recommend new standards for measurements and procedures for fi shery-based reproductive work. 

� Produce workshop report that covers: review chapters on specifi c topics, and various “experience papers” which are 

scientifi c contributions from various countries, consistent with the general theme but limited to specifi c observations 

on a particular species in a particular country. 

Both experts in fi sh reproduction as well as fi shery scientists that use reproductive information were invited to the 

Workshop. The 21 participants were selected from different countries and continents and formed an outstanding group of 

people with very broad competence and insight (see List of Participants). 

We were most pleased with the outcome of the Workshop and hope this Report will attract attention among scientists and 

technicians working within this important fi eld of applied fi sh and squid reproductive biology.

The Editors would like to thank the Institute of Marine Research, Bergen and The Research Council of Norway (project no. 

140267/120) for supporting this Workshop. 

 Olav Sigurd Kjesbu  John R. Hunter Peter R. Witthames
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Plenary document

and the ovary being completely translucent 

� All else are “other”

Male gross anatomical classifi cation may start with:

� Immature – translucent

� Other – no milt in sperm duct

� Spawning – milt running or present when testes are 

bisected with a knife

For both genders, colour of the gonad is not a basic feature 

to catalogue maturity stage.

Taken together, the classifi cation system may look like 

this: 

This document is based on the results of the open discus-

sions between members of the Workshop during the length 

of the meeting (see List of Participants). The list of topics 

was to some extent ranked by an increasing complexity 

in the protocol needed to carry out the work successfully. 

Thus, we decided to start with the use of visual maturity 

stages and end with the estimation of realised fecundity. 

Recommendations are included for each topic.

GONAD GRADING KEYS BASED ON MACROSCOPIC 
CHARACTERISTICS

It was agreed on that macroscopic stage systems have sev-

eral shortcomings, but are very simple in use, i.e., fast and 

cheap, and already exist in numerous time series; they are 

here to stay. 

However, to be used on females the classifi cation must:

� Be able to discriminate hydrated oocytes/gonads with 

running eggs as a separate class 

� Have one class that clearly has visible yolked oocytes 

� Have a clearly immature ovary class: oocytes not visible 

Reference 

number
Maturity stage Females Males

M1 Immature Tube like, transparent Flat and solid, transparent

M2 Maturing Vitellogenic oocytes visible White and fi rm

M3 Spawning
Hyaline oocytes visible, or 

running eggs
Running milt or milt present 

in central collecting duct

M4 Early maturing / spent
Firm or fl accid – no 

discernible yolked eggs
White, no milt present in 

central collecting duct



Note that this is a general case and cannot be applied to all 

species, e.g. male sole, which show reddish M2-gonads and 

do not run milt to any extent in M3; may need a special key 

with histological validation. Also, an additional code must 

be included for each fi sh to cross reference with other bio-

logical information, time, location and mode of sampling 

(commercial or research vessel catch). 

 Alternative approaches

• Histology (formally speaking this is not an alternative; it 

is considered to the best) 

• Oocyte size frequency distributions including whole 

mount examinations

• Male and female GSIs (gonadosomatic indices)

• Fat content (especially for small pelagic fi sh)

Recommendations

1. Assess uncertainty in these coarse macroscopic keys to 

derive confi dence limits (e.g., to comply with EU data regu-

lation)

2. Validate indices, e.g. redness - time at stage

3. Additional research on developing new methods of 

maturity classifi cation, e.g. selective staining and hormone 

assays.

4. If GSI will be used, try to validate it. Calculations of 

monthly averages of GSI stratifi ed by length could be useful 

in studies of the effect of size on the timing of the spawning 

season. 

AGE OR LENGTH SPECIFIC MATURITY VALIDATION

The objective here is to develop a maturity age or length 

schedule. An additional important benefi t would provide 

information on reproductive strategies and reproductive 

effort.

Recommendations

1. For all new species or stocks, the 1st step should be to con-

duct a detailed histological study with respect to fi sh age or 

length classes. 

2. For maturity validation on existing species, all techni-

cal available means e.g. histological, oocyte diameter, GSI, 

visual identifi cation of yolk and hydrated oocytes should 

as far as possible be used to calibrate the gross anatomical 

system in use to develop and provide a probability of correct 

classifi cation. 

3. Some grading systems are so inaccurate and imprecise 

that it is a waste of time to validate them. 

4. Samples taken must be representative of the stock, both 

spatially and temporally.

5. Cross validation between research groups working on 

the same stock or on different stocks of the same species 

should be undertaken with the objectiveto develop a unifi ed 

grading system.

With reference to the annual timing of samples for measur-

ing maturity:

6. Must be done during spawning season  

7. Sampling early in the spawning season is preferred to 

reduce risk of misclassifi cation 

8. Routine sampling outside the spawning season is still 

going on, but is often of limited use except when it is used to 

clarify when the spawning period is going to start. 

9. Try to carry out a stratifi ed sampling by fi sh size to indi-

cate reproductive potential by length groups.  

FECUNDITY AND MATURITY METHODOLOGY

General recommendations

1. A set of standards should be established for estimation of 

maturity and fecundity schedules.

2. Measurements of maturity and fecundity require histol-

ogy to be accurate. 

3. Studies based on historical time series are valuable but the 

precision of the assessment method should not be ignored.

4. The linkage of reproductive potential and the dynam-

ics of the stock and effects of the environment are poorly 

understood and require experimentation and modelling.

5. Spawning biomass should be considered a poor index of 

the reproductive potential of the stock (cf. condition and 

age effects on realised egg production)

6. A thorough revision of terminology used in reproductive 

studies is required and should be incorporated in any rel-

evant manual.

Important questions

� Under what conditions should the Batch Fecundity 

Method be applied

� Under what conditions should the Potential Annual 

Fecundity (PAF) Method be applied 

Specifi c recommendations

Evaluate reproductive annual strategy before you select 

and apply fecundity methods. This should include:

1. If ovaries with hydrated oocytes are available determine 

batch fecundity in relation to spawning season.

2. Determine oocyte size frequency distributions through 

the reproductive cycle (annual if possible) 

Measure extent of atresia throughout the season, and then 

note:

3. Spatial and temporal sampling should be included in 

experimental design.

4. Quantify, using histological or stereological techniques, 

role of atresia in regulating potential fecundity through the 

annual cycle.

PLENARY DOCUMENT8



5. Discriminate between pre-spawning and spawning 

stages.

6. Establish oocyte development growth curve.

Do both batch and potential annual fecundity assessments 

if possible and evaluate which is the most accurate. If you 

cannot do both, do the one that is most practical to do.

One should identify the oocyte size frequency distribu-

tion at the onset of the spawning season, and if there is a 

clear hiatus between the advanced stock from the other 

oocytes apply the PAF method. The mean diameter of the 

advanced stock of oocytes should be measured and if it does 

not increase during the spawning season the PAF method 

should be rejected. If there is a high incidence of atresia, 

extensive laboratory studies and fi eld work will be required 

for an accurate estimate of PAF. 

The batch fecundity method should be used when no clear 

hiatus exists. 

Clarifi cations of methodological problems

The Batch Fecundity Method

� Lose hydrated oocytes due to catching and handling, 

which could bias sample for hydrated females. 

� Since the duration of the hydrated stage is short, it may 

be diffi cult to obtain suffi cient numbers of specimens for 

estimating frequency of spawning. Also, frequency of 

spawning is quite variable and requires a large number of 

positive sets or hauls.

The Potential Fecundity Method

� If there are high atresia rates, these have to be quantifi ed 

and the atretic duration known.

� Potential is not realized; potential and realized fecundity 

could be substantially different .

� Recruitment problem of oocytes to enhance potential 

fecundity.

� Verify potentially fully formed ovaries (prespawning) 

and not yet lost eggs (not spawned).

Atresia and POFS

Steps for quantifying atresia:

1. Defi ne alpha atretic classes to be used to estimate losses 

to all oocytes included in potential fecundity.

2. To measure atretic losses the alpha stage is the only reli-

able stage.

3. The later stages of atresia should be identifi ed to 

increase period of detection for maturity classifi cation 

(as for instance immature vs spent fi sh).

4. Intensity and prevalence of atresia should be assessed 

carefully from the time the potential fecundity is made 

until spawning is completed.

5. Estimate intensity of atresia based on

a. the Disector method or the Weibel method (see 

review of Andersen, this volume)

b. whole oocyte preparation might be used to quantify 

atresia if the time at stage can be determined.

6. Estimate duration of atretic stages in relation to tem-

perature.

7. Determine the oocyte growth curve from the time of 

sampling until the time of spawning.

Steps to quantify and use POFs as markers of spawning 

activity:

1. Defi ne POF classes based on their morphology and or 

size in relation to the time following ovulation.

2. Estimate duration of POF stages in relation to tempera-

ture.

FUTURE RESEARCH

� Initiate research on and develop new techniques, including biochemical, to separate developing ovaries from 

post spawning ovaries.

� Develop methods to identify and age postovulatory and atretic follicles in non-histological tissue preparations

� Develop criteria to separate immature, inactive, and active testes.

� Develop volume fraction method for assessing maturity in males and females. 

� Estimate daily spawning fraction by age or size groups. 

� Is reproductive output proportional to fi sh weight or age?

WORKSHOP ON MODERN APPROACHES TO ASSESS MATURITY AND FECUNDITY 9
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Unbiased stereological estimation of cell 
numbers and volume fractions: the disector 
and the principles of point counting

T.E. Andersen

Institute of Marine Research, 

Nordnesgaten 50, 

P.O. Box 1870 Nordnes, 

N-5817 Bergen, Norway 

E-mail (from 2003): andersen@microscopica.com

methods for counting particles based on histological sec-

tions is imperative, as the use of simple profi le counts will 

bias the results severely and variably. The size of the bias 

introduced is highly dependent on the shape and size distri-

bution of the cells or particles being counted.

Stereological estimates of cell or particle number tend to 

be rather labour-intensive and complicated. Estimates of 

volume and volume fraction, on the other hand, are eas-

ily obtained stereologically, and good methods have been 

known for a long time (see Weibel 1979; Gundersen et al. 

1988a; Howard & Reed 1998). Before point counting meth-

ods (like the one described below) were described, people 

have used a number of solutions. This includes drawing 

an image of the tissue on paper, cutting out the regions of 

interest, and weighing the pieces of paper, thereby obtain-

ing fractions of individual histological or cellular compart-

ments! As will be discussed, software-based image analysis 

methods that, in theory, should give unbiased results, may 

nevertheless be biased due to the interpretation of tissue 

boundaries. 

So, what is stereology? Stereology may be considered a set 

of mathematically well-defi ned tools for the estimation of 

volume, area, length or number. These tools can be applied 

in almost any fi eld, be it satellite photography, geology, or 

fi sh biology. This brief presentation covers two methods for 

use in quantitative biological microscopy. Please consult 

the cited literature for details before starting to use the 

methods described. The excellent introductory text by 

Howard & Reed (1998) is a good place to start, and contains 

references to most major publications in the fi eld. It will be 

referred to extensively in this presentation. 

ABSTRACT

Modern stereology provides tools for obtaining unbiased, quan-

titative estimates of number, volume, area or length in micros-

copy. Methods for estimating number and volume fractions are 

presented in this paper, based on information available in the 

literature. 

INTRODUCTION

The need for estimates of cell numbers is responsible for 

a large portion of the workload in many fi sheries-related 

reproductive biology studies. New image analysis methods 

(Thorsen & Kjesbu 2001), or the traditional gravimetric or 

volumetric methods (see e.g. Bagenal 1978) are in most 

cases adequate and, indeed, often the simplest solution. 

Nevertheless, situations exist in modern fecundity analy-

sis, as well as in a number of histological studies related 

to maturation, where such approaches are not suitable. 

Examples include estimates of oocyte numbers in early 

maturing fi sh, and potential fecundity estimates in species 

or individuals with high levels of atresia. In these cases, the 

small size of the cells as well as the lack of reliable whole-

cell methods for detecting specifi c developmental stages or 

atresia prevent the use of simple methods, and using them 

may bias the results. Stereological methods for estimating 

particle numbers have been available for several decades. 

Weibel (1979) describes methods used prior to the disec-

tor, and Emerson et al. (1990) describe an application in 

fi sheries biology. However, the fi rst (and so far only) shape 

independent method was described for biological micros-

copy as late as in 1984 (Sterio 1984; Gundersen et al. 1988a; 

Mayhew & Gundersen 1996), the disector principle. This 

principle enables unbiased counts to be made of any parti-

cle, regardless of its shape or size. The use of stereological 
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various structures are counted. The volume fractions are 

then estimated as:

            (1)
      

est
V

(a,ref)
  is the volume fraction of structure a in the  

 reference space,

P
(a)i

  is the number of points falling on (“hitting”)  

 structure a in fi eld i, and

P
(ref)i

  is the number of points falling on (“hitting”)  

 the reference space in fi eld i.

Please note that the points hitting the structure of interest 

must be added together over all sections and fi elds before 

being divided by the sum of points “hitting” the reference 

space. If this division is made for each fi eld, and the results 

averaged, the estimate may be wrong. This is because both 

the numerator and the denominator may vary between 

counting fi eld. As a result, too much weight will be given 

to the fi elds with little reference space, if the division is 

done for each fi eld. The term reference space represents 

the structure in which another structure is to be quantifi ed. 

Examples include: the animal (e.g. the fraction of the liver 

in the individual), an organ (e.g. the fraction of hepatocytes 

in a liver) or a cell type (e.g the fraction of nuclei or lipid 

droplets in the hepatocytes).

Fig. 1.  A point grid for esti-
mating volume fractions. The 
encircled points may be used 
for abundant structures, and 
all the points for rarely occur-
ring structures. In this way, 
adequate precision of the esti-
mate may be obtained for both 
in the same count. Note that in 
this particular grid, there are 9 
times as many “small” points as 
there are encircled points.

METHODS

Sampling

All stereological methods require random samples. As a 

consequence, it is necessary to use a design-based sam-

pling scheme, unless it is known that the structure (e.g. an 

ovary) from the species being studied is homogenous. The 

fractionator, a method for obtaining random, quantitative 

samples from a large structure (population, individual, 

organ etc.) (Gundersen et al. 1988a; Howard & Reed 1998) 

is probably the best sampling scheme available. Small 

biopsies from a more or less fi xed position in the ovary may 

only be used for stereological estimations when the ovary 

is homogenous (this should be tested by a design-based 

method like the fractionator). 

Volume fraction estimation

Volume fractions are the easiest estimates to obtain from 

sections. Only a single, random (not arbitrary) section is 

needed, and there is no need to compensate for shrinkage 

or section distortion. In short, a point grid (e.g. one similar 

to that in Fig. 1) is placed randomly on sections through the 

tissue. Placing a randomized grid on a section is equivalent 

to placing random points within the three-dimensional 

tissue. It should be realised that if one point in the grid is 

randomised in 3D, then every point in the grid is randomly 

placed. Such a system, where one point is randomised, and 

the remaining points are systematically placed in relation 

to this random point, is called a systematic random selec-

tion. This systematic random sampling scheme is the most 

effi cient in reducing the sampling error in the estimate 

(Howard & Reed 1998). To estimate the volume fractions of 

tissue components, the number of points in the grid hitting 

+ + + + + + + + + + + +

+ + + + + + + + + + + +

+ + + + + + + + + + + +

+ + + + + + + + + + + +

+ + + + + + + + + + + +

+ + + + + + + + + + + +

+ + + + + + + + + + + +

+ + + + + + + + + + + +

+ + + + + + + + + + + +
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The number of points to be counted is usually low. In most 

cases about 200 points “hitting” the tissue is suffi cient to 

reach 5% CE (coeffi cient of error) in the estimate. It is best 

to use few points and several fi elds. E.g.: Using four small 

tissue pieces (all four may be embedded in one mould), tak-

ing four fi elds from each, you only need about 12 points in 

each point screen. This kind of screen may easily be printed 

on A4 paper, and photographed at a suitable reproduction 

size (preferably using lithographic fi lm). The fi lm (must 

be positive!) with the point screen may be cut circular and 

placed in the visual or photo/video ocular of the micro-

scope. The XY-table on the microscope may then be used to 

move the screen systematically over the tissue.

If a structure has a low occurrence in the tissue, a screen like 

the one in Fig. 1 may be used. The encircled points are then 

used for estimating the reference space, and all points for 

estimating the infrequent structure. By using more points 

for the rare structure, a reasonable CE of the estimate is 

obtained, while using the encircled points for the reference 

space ensures that no more time than necessary is spent 

counting (for the grid in Fig. 1, one must not forget to com-

pensate for the fact that there are 9 times as many points in 

the fi ne grid as in the course grid!).

Estimation of the reference space (V
ref  

) 

One very important condition must be fulfi lled for volume 

fractions to be meaningful: the volume (in some cases the 

weight is suffi cient) of the reference space must be known! 

If you don’t know the size of the reference space, a change 

in volume fractions may just refl ect a change in the size of 

the organ or the amount of another component, and not a 

change in the number or size of the cells examined. A good 

example is the fraction of non-maturing oocytes in the 

ovary. As maturation proceeds, the fraction of these in the 

ovary will decrease dramatically, a change not related to the 

amount of immature oocytes, but to the expansion of the 

reference space (i.e. the growth of maturing oocytes). This is 

often refered to as the “reference trap” (see Howard & Reed 

(1998), and references therein for several more examples), 

and may cause the wrong conclusions to be drawn. For 

many fi sheries-related studies, the weight of the ovary may 

be used as the reference space estimate, if necessary with a 

compensation for weight per unit volume. If, however, one 

is trying to identify volume fractions of mature, lipid-rich 

oocytes in comparison with early maturing oocytes (within 

or between ovaries), there is likely to be a difference in spe-

cifi c gravity between the two cell populations being com-

pared. It may then be necessary to estimate the true volume 

of the ovary using the Cavaleri principle, in combination 

with a point counting method. Note that whereas all mod-

ern literature refer to this as the Cavalieri-principle, a look 

at a 1653 edition of the original reference (Cavalerio 1653), 

implies that it should be called the Cavaleri-principle, the 

mans name being P. Bonaventura Cavalerio (I’m not sure 

if the P. is an initial or a title). A modern implementation of 

the Cavaleri priciple may be found in Howard & Reed (1998, 

cited as the Cavalieri method).

Counting cells 

Two-dimensional (2D) counting

Counting rules commonly used in 2D are not always unbi-

ased. For counting blood cells or algae, a counting chamber 

is often used, with a counting scheme like the one shown in 

Fig. 2.  2D counting frames. 
a) A commonly used, biased counting frame. 

b) An unbiased counting frame. 
Full drawn lines are exclusion lines (“forbid-
den lines”), and particles crossing these are 

not counted. Dotted lines are inclusion lines 
(“allowed lines”), and particles crossing 

these are counted. In the unbiased counting 
rule in b), particles crossing the inclusion 

lines are only counted if they do not cross 
any of the forbidden lines. In a), particles 

crossing both the inclusion and exclusion 
lines may, or may not be counted, depend-

ing on the rule applied. If tessellated over 
the tissue, it will be clear that the frame in a) 
counts some particles more than once, and 

is therefore biased. The frame shown in b) 
allows each particle to be counted once and 

only once, and is therefore unbiased.

X

X

X

X

?

X

a) b)
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Fig. 2a. This does not result in unbiased counts, since cells 

or particles may be counted more than once if a tessella-

tion of these counting frames is placed on the sample. The 

frame in Fig. 2b does give unbiased results (Gundersen et 

al. 1988b), and should always be used. It should be noted 

that a projection of whole cells (like a whole mount prepa-

ration of oocytes) is basically a 2D situation, since each cell 

or particle can only produce one image profi le or silhouette. 

Consequently, a 2D counting frame may be used. It is nec-

essary to make sure that all cells or particles are identifi -

able in the projected image. No overlapping particles are 

allowed unless they can be distinguished from each other 

in the image. Counting cells in sections, however, brings up 

the need to deal with three dimensions, and a 3D counting 

principle must be employed.

Three-dimensional (3D) counting (the disector)

Particles or cells exist in a three-dimensional environment. 

For practical purposes, the thin resin or paraffi n sections 

normally used in histology are two-dimensional; they are 

approximately planes. A plane cannot be used as a probe 

to sample number. The reason for this is that any particle 

in a 3D structure (such as a tissue) has a probability of 

being represented by a profi le in the section plane, which is 

proportional with the particle height normal to the plane. 

This is illustrated in Fig. 3: large particles or cells appear 

in a larger portion of the sections through the tissue, and 

produce more profi les. A requirement for a count to be 

correct is that all particles are given the same probability 

of being counted. If we count profi les in a single section, 

that requirement is violated. So, to sample number in a 

3D environment, a volume must be used as the probe. In 

1984, a method was published, which has since become the 

standard for stereological counting: the disector principle 

(Sterio 1984, Gundersen et al. 1988a). The physical disec-

tor makes use of two consecutive sections from the tissue. 

There is also an optical disecor, which uses a single, thick 

section. Within this thick section, a volume is sampled by 

focusing through the specimen (optical sectioning) and 

cells or particle are counted as they come into focus. In this 

presentation, only the physical disector will be described. 

However, if working with small cells or particles, then the 

optical disector is much less labour intensive, and should be 

preferred over the physical one. 

The physical disector requires two consecutive sections 

from the tissue. The distance between the sections must be 

known. As a result, it is necessary to keep track of shrinkage/

swelling throughout the processing of the tissue and sec-

tions (this is not always necessary if only addressing relative 

numbers of particle populations). The distance between the 

sections must never exceed the size of the smallest cell or 

particle to be counted, and should generally be chosen at 

about 1/4 to 1/3 of the smallest particle size (e.g. if the small-

est cell in the tissue is 35 µm, then the two sections should be 

no more than about 10 µm apart). Please consult the cited 

literature for details in this procedure. The two sections are 

then aligned, side by side, and a 2D counting frame is placed 

Fig. 3.  Particles are sampled with a probability that 
is proportional with the height of the particle normal 
to the section plane. In the fi gure, a set of particles 
in 3D is seen as a simplifi ed projection from the side. 
If sections are taken at constant intervals through 
the tissue (dashed lines), each particle will appear in 
anything from none to several sections. The number 
of profi les generated is proportional to the height of 
the particle normal to the section plane, producing a 
volume-weighted estimate (for isotropic tissues and/or 
randomly oriented sections). This is quite different from 
number weighting, which gives all particles the same 
chance of being counted. As a result, simple section 
profi le counts are not suitable to estimate the number 
of cells in a tissue or organ. 
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on one of the sections. To aid in comparing the sections, a 

frame may also be placed on the other section. This is not 

used in the counting, just to make it easier to compare the 

sections. If a cell or particle occurs in the fi rst section (refer-

ence or counting section), but not in the other (look-up or 

control section), it is counted. If it occurs in both sections, 

it is not counted. To increase the effi ciency of the counting, 

the sections may be counted in both directions (a➝b and 

b➝a), giving a disector volume twice as large as the volume 

described by the section separation and the counting frame. 

The procedure is illustrated in Fig. 4.

The number of particles or cells per unit volume is esti-

mated as:

          
(2)

estN
v
  is the number of particles per unit volume,

a/f  is the area per counting frame (at the level of the  

 tissue),

h  is the section separation, 

Q-  is the number of particles counted over all   

 disector frames and

P  is the number of disector counting frames falling  

 on the tissue.

In practice, one will fi nd that fi elds sometimes fall only par-

tially on the reference space. This is dealt with using what 

is usually called “associated points”. This means that one 

point, somewhere within the counting frame is defi ned as 

the associated point. If this falls on the reference space, the 

area of the fi eld is included in the denominator of equation 

(2). If it falls outside the reference space, it is disregarded. 

The particles (Q-) observed are counted in both cases. Thus, 

in practical use of the disector, the P in the formula will be 

the number of such “associated points”, rather than the 

total number of fi elds used. For further explanation, see 

Howard & Reed, 1998.

The number of particles or cells in the tissue is then esti-

mated as:

         (3)

   
  

estN  is the number weighted estimate of total particle  

 number and

estV
ref 

 is the estimated reference volume (e.g. volume  

 of the organ or cell type. Not to be confused with  

 volume fraction, estV
(a,ref)

).

It is clear from equation (2) that the estimation of number is 

not independent of tissue shrinkage and section distortion. 

As a result it is necessary to keep track of any dimensional 

changes after the stage when the reference volume was 

Fig. 4.  The disector priciple. The disector 
describes a volume of the tissue. Only if a 

profi le is seen in one section, but not in the 
following section, is the corresponding cell 

or particle counted. The result is an esti-
mate of the number of cells per unit volume 
(Equation (2)), and the total number of cells 

in the organ may easily be estimated by 
multiplying the numerical density by the 
volume of the organ (Equation (3)). Note 

that the area per fi eld (a/f) is the area of the 
disector frame at the level of the tissue. In 

the fi gure, particles c and f (encircled in the 
look-up section) will be counted. Particle 

a also disappears, but touches the forbid-
den line, and is not counted. If the disector 

is applied “backwards”, particle b is only 
found in the right section, and is counted. 

(If the disector is applied in both directions, 
it is important to remember that this repre-
sents two disector pairs, and therefore has 

a total volume 2 * a/f * h).
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estimated. E.g. if the volume of the organ was estimated 

using the fresh, unfi xed organ, then any changes during 

fi xation, embedding and sectioning need to be estimated. 

If, on the other hand, the reference volume was estimated 

after embedding, only changes due to the sectioning and 

staining need to be addressed. It is important to remember 

that the dimensions of the tissue and sections by no means 

are constant during/after embedding (Hanstede & Gerrits 

1983).

DISCUSSION

The application of stereological tools is becoming more and 

more common in all fi elds of microscopy. This is due to their 

simple nature and the accuracy (unbiasedness) of the esti-

mates. Stereological estimates are in many cases the only 

way to obtain unbiased quantitative microscopical data. In 

other cases they are simply the most effi cient estimates. 

Generally, estimates of volume and volume fractions 

are easily obtained, as only point counting is required. 

Few “hits”, generally less than 200 on the entire tissue 

(Gundersen et al. 1988b, Howard & Reed 1998), are nec-

essary to obtain good estimates, making the method very 

effi cient. There is also no need for sophisticated image 

analysis computers, as simple grids on overhead fi lm or as 

a graticule in the ocular of the microscope is usually equally 

or more effi cient. Estimates of area fraction (which is a 

direct estimator of volume fraction (Delesse, 1847)) using 

image analysis software require, to my knowledge, practi-

cally without exception that profi les are drawn manually 

around the structures of interest. This not only considera-

bly increases the workload, but may also bias the result due 

to the way the edge of the structure is interpreted (the line 

you draw has a width!). When I asked a group of students 

to make volume fraction estimates from the same (simple, 

colour coded, “synthetic”) images, image analysis software 

gave estimates about 20% lower than (unbiased!) point 

counting. The bias in “real” situations may of course vary, 

but care should be taken if such software has to be used in 

quantitative work. 

In fi sheries biology volume fractions may prove very use-

ful in obtaining ungraded staging criteria for male fi sh. 

In some situations, it may also be useful for grading the 

maturity of females, particularly in the early stages of 

development. In both these situations, the volume of cells 

in the different stages will be a sensitive measure for the 

developmental status of the individual. As the development 

proceeds, the volume fractions of the most advanced cell 

types will increase. If the development includes volume 

changes (as for oocytes), the volume fraction of the lead-

ing stages will tend to increase exponentially, producing a 

very sensitive tool for assessing e.g. the onset of a process. A 

further advantage in using volume fractions for grading is 

getting a continuous scale. In many situations, this will be 

preferable to a grading based on more or less well defi ned 

stages imposed on nature by the scientist. When quantita-

tive data are needed, most natural processes (ontogenetic 

or maturational development being no exeption) are best 

described as continua, rather than in stages. 

Table 1.  Summary of symbols used.

SYMBOL LEGEND

estV
ref estimated reference volume

estV
(a,ref)

volume fraction of structure a in the reference space

P
(a)i

number of points ”hitting” structure a in section i

P
(ref)i

number of points ”hitting” the reference space in section i

estN
v

number of particles per unit volume

estN number weighted estimate of total particle number

a/f area per counting frame (at the level of the tissue)

h section separation

Q- number of particles counted in the disector counting frame

P number of disector counting frames (in practice ”associated points”) falling on 
the tissue
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For number estimation, the major part of the work is pre-

paring and aligning the sections needed in the physical 

disector. This makes number estimates labour intensive. 

Still, a rather low number of particles need to be counted, 

and if an optical disector can be used, the workload is sig-

nifi cantly reduced. It is my strong belief that the benefi ts 

of these methods far outweigh the increased workload. If 

a large amount of stereological counting is expected, it will 

probably be wise to look into semi-automated equipment to 

aid in the rather troublesome alignment of the sections. 

Stereological estimates tend to produce more noisy 

(imprecise) estimates than non-random methods. The 

main explanation for this is the requirement of random 

sampling. When random samples are collected (at all 

stages in the sampling sequence), the chance of observing 

an event (i.e. counting a point or a profi le) is more variable 

than would be the case if the counting frames were placed 

deliberately onto interesting areas of the section. However, 

the variability introduced by the method is easily reduced 

to an acceptable level by adapting the number of points of 

profi les counted. It should be remembered that in most 

biological studies, the major relative contribution to the 

overall variability is the inter-individual (i.e. biologi-

cal) and intra-individual (i.e. between blocks) variation, 

whereas the variation between fi elds usually accounts for 

far less, and the counting error for only a tiny fraction of 

the variability in the estimate (Gundersen & Østerby 1981; 

Howard & Reed 1998). The biological variation is usually 

by far the greatest, and as a result, it is more often than not, 

better to increase the number of animals, using a less pre-

cise estimate for each animal. It should also be emphasised 

that the unbiased nature of most stereological estimates 

usually make them highly preferable to model-based (often 

biased) approaches. 

The current discussion on quantitative microscopy in 

fi sheries science is very similar to the one in the medical 

sciences some time ago (Howard 1986, discussion fol-

lowing Howards presentation; Coggeshall & Lekan 1996; 

Saper 1996). A reasonable assumption is that the benefi ts of 

design-based (unbiased) methods over the older assump-

tion-based (and usually biased) methods will cause more 

fi sheries biologists to convert to these methods in the 

future. In medical studies in need of quantitative micro-

scopy, the unbiased stereological methods are more or 

less imperative. As an increasing fraction of microscopical 

examinations in fi sheries biology requires quantitative 

data, stereology will, or at least clearly should, increase 

in importance also in this fi eld. At least one journal in the 

medical sciences is now rejecting publications present-

ing unvalidated profi le counts (Coggeshall & Lekan 1996; 

Saper 1996 (editorial)). It is time for the fi sheries sciences 

to take similar measures to ensure that the best available 

methods are being used. The increase in work required to 

obtain stereological estimates should be viewed against the 

background of the signifi cant number of invalid estimates 

published today. In that context, it is likely a simple choice 

to spend the extra time to obtain unbiased estimates. 
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ABSTRACT

Dutch and English scientists have built up extensive time series 

of data on the sexual maturity of North Sea plaice. These are 

based on visual assessment of the stage of sexual maturation of 

the gonads. Most English plaice maturity studies have been con-

ducted in the central and northern North Sea, whilst the Dutch 

studies have concentrated in the south. There are obvious benefi ts 

to be gained by combining the two datasets to provide a compre-

hensive temporal and spatial picture of the maturation of North 

Sea plaice. These include provision to investigate the timing of 

sexual maturation, to study the impact of environmental change 

and fl uctuating fi shing pressures on sexual maturation, and to 

facilitate the construction of maturity ogives applicable to the 

entire North Sea plaice population. The main problem in combin-

ing the North Sea plaice maturity data stems from the maturity 

keys used by the two nations, which are different. An attempt is 

made to salvage a degree of compatibility between the datasets 

based on “the lowest common denominator principle”, but with 

limited success. Progress towards developing a standard protocol 

for sampling plaice maturity is discussed, in order that in future 

maturity data derived from a variety of sources can be pooled into 

a common database. 

Key words - sexual maturation, maturity ogive, North Sea, 

plaice, Pleuronectes platessa, sampling protocol

INTRODUCTION

Maturity keys aim to partition gonad maturation into a 

series of distinct stages. Ideally, these should be readily 

identifi able and should preferably refl ect histologically dis-

tinct aspects of gonad development. However, all schemes 

for staging maturity tend to be somewhat subjective and 

different workers have often adopted different matu-

rity keys (Wallace, 1909, 1916; Wimpenny, 1953; Simpson, 

1959; Rijnsdorp, 1989), which creates diffi culties and can 

even thwart meaningful comparisons between data derived 

using different sampling protocols. Dutch and English 

scientists have built up extensive time series of data on 

the sexual maturity of North Sea plaice (Rijnsdorp and 

Vethaak, 1997; Bromley, 2000). These are based on visual 

assessment of the stage of sexual maturation of the gonads. 

In general, little attempt has been made to introduce qual-

ity control measures to assess the reliability of visual stag-

ing and only occasionally have there been attempts to verify 

the fi ndings against histological examination of the gonads 

(Morrison, 1990; Ramsay and Witthames, 1996). Indeed, 

without such verifi cation, maturity studies based on visual 

staging alone are considered unreliable. However, his-

torical time series are too valuable to be dismissed solely 

on these grounds, and as long as the sampling methodol-

ogy has not changed signifi cantly during the course of the 

study, such time series should provide useful indices of 

sexual maturity for monitoring trends through time. 

Most English plaice maturity studies have been conducted 

in the central and northern North Sea, whilst the Dutch 

studies have concentrated in the south. There are obvious 

benefi ts to be gained by combining the two datasets to pro-

vide a comprehensive temporal and spatial picture of the 

maturation of North Sea plaice. These include provision 

to investigate the timing of sexual maturation, to study the 

impact of environmental change and fl uctuation in fi sh-

ing pressures on sexual maturation, and to facilitate the 

construction of maturity ogives for assessing the spawning 

stock biomass of the entire North Sea plaice population. 

Current stock assessments treat North Sea plaice as a single 
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stock (Anon., 1996), and it is desirable that the maturity 

ogives are representative of the whole area. 

  

The main problem in combining the North Sea plaice 

maturity data stems from the maturity keys used by the 

two nations, which are different. An attempt is made here 

to salvage a degree of compatibility between the datasets 

based on “the lowest common denominator principle”, but 

with limited success. Progress towards developing a stand-

ard protocol for sampling plaice maturity is discussed, in 

order that in future maturity data derived from a variety of 

sources can be pooled into a common database. 

MATERIALS AND METHODS 

The maturity keys used by Dutch and English scientists 

(Rijnsdorp and Vethaak, 1997; Bromley, 2000) to assess the 

maturity stage of plaice caught by the commercial fi shing 

fl eets are shown in Table 1. The sampling was undertaken 

at the respective North Sea ports where the catches were 

landed. Both countries have extensive databases, going 

back many years and have supplemented the market sam-

pling with data derived on fi shing surveys. Most of the Dutch 

maturity data are from the southern North Sea, whilst the 

English data are from the central and Northern North Sea 

(Rijnsdorp and Vethaak, 1997; Bromley, 2000), though 

there is some spatial overlap between the two datasets.

RESULTS

a) Female plaice 

Both the Dutch and English (Rijnsdorp and Vethaak, 1997; 

Bromley, 2000) use a 7-stage key (Table 1) for female 

plaice. The number of stages is one of the few similarities 

between the two keys and there is plenty of opportunity for 

confusion. Sometimes, similar stages are given a different 

number, or different stages are given the same number. 

For example, a stage 6 Dutch female is nearly spent but a 

stage 6 English fi sh is running. Both keys class immature 

ovaries as stage 1, but do not agree on the defi nition of what 

constitutes an immature plaice. The English defi nition of 

an immature ovary must be regarded as the extreme limit 

of the immature phase, since the yellowish orange colour 

probably marks the start of vitellogenesis and will therefore 

overlap into the Dutch maturity stage 2. It can therefore be 

expected that use of the English key will lead to a higher 

estimate of the proportion of fi sh classifi ed as immature 

compared with the Dutch key (and by defi nition, therefore, 

a smaller proportion classed as maturing). When compar-

ing maturity levels between the two keys, therefore, it is not 

possible to be certain as to what extent any differences are 

real or stem from an artefact of the sampling technique. 

The Dutch stage 2 is a broad category describing matur-

ing fi sh and includes some of the English maturity stage 1 

as well as all of stages 3 and 4. None of the other maturity 

Table 1. Description of the Dutch and English sexual maturity stages of female North Sea plaice

Dutch English 

1 Immature: 
lumen transparent grey

Immature: 
small ovaries <4cm in length, thin walled and internally 
yellowish orange in colour

2 Ripening:
 colour orange, vitellogenesis in progress

Spent, recovering: 
all eggs resorbed, little or no slime inside ovaries

3 Spawning: 
as 2 but with few ripe hyaline eggs

Half full: 
ovaries fi lling with eggs

4
Spawning: 
ovary completely fi lled with hyaline eggs

Full: 
ovaries full and usually distending body, no sign of 
hyaline eggs

5 Spawning: 
as 4 but partly shed

Hyaline eggs: 
ovaries containing from a few to many hyaline eggs, but 
ovaries will not run, even under heavy pressure. 

6 Nearly spent: 
ovaries containing a small amount of hya-
line eggs

Running: 
hyaline eggs can be extruded copiously under light 
pressure - fi sh cycling from stage 5 to 6 during 
the spawning season 

7 Spent: 
ovary small, fl abby and bloodshot back to 
stage 2.

Spent: 
few mainly opaque eggs in a state of resorption and much 
slime in ovaries
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stages exactly correspond either. The Dutch class spawning 

fi sh from the hyaline egg stage onwards into three stages 

- stages 3, 4 and 5, whereas the English class them into two 

stages - stages 5 and 6. The Dutch have one stage for spent 

ovaries, the English have two stages. 

Pooling of maturity data can only be reliably achieved on the 

‘lowest common denominator principle’ and if the maturity 

stages of one sampling regime overlap those of another 

sampling scheme then pooling data is not feasible. The fi nal 

number of communal stages in the resulting combined 

database depends on how many of the maturity stages have 

common starting and end points (stage boundaries), which 

correspond across the various sampling schemes. If there 

are no matching common boundaries the data cannot be 

pooled.

In the case of the plaice data there was only one common 

stage boundary and that occurred at the start of the hyaline 

egg phase. For comparative purposes the various maturity 

stages were aggregated into two classes, which are shown in 

Table 2. It is therefore justifi ed to compare directly the pro-

portion of pre- and post-hyaline ovaries between the Dutch 

and the English maturity keys. This should enable broad 

trends in the maturity of female plaice to be compared 

between the central and southern North Sea.    

b) Male plaice 

The maturity keys applied to males are also different and 

can be dealt with using a similar approach to that used with 

the females. The male maturity stages are shown in Table 3. 

As in the case of females, none of the male maturity stages 

was identical in the two keys. The Dutch defi nition of an 

immature fi sh is not as precise as the English defi nition and 

it cannot be assumed that the two keys will give an identi-

cal estimate of the proportion of immature fi sh. In terms of 

combining the two datasets, the only common stage bound-

ary occurred at the point where the males started running. 

As for females, therefore, it was only possible to merge the 

two datasets into two broad categories, pre- and post-run-

Table 2. Common maturity stages between the Dutch and English maturity key for female plaice

Common maturity stages Dutch maturity stages English maturity stages

A) Pre-hyaline egg phase 1 and 2 1, 3 and 4

B) Hyaline + phase 3, 4, 5, 6 and 7 5, 6, 7 and 2

Table 3. The sexual maturity stages of male plaice according to Dutch and English protocols

Stage  Rijnsdorp and Vethaak, 1997 CEFAS studies

1. Immature: testes very small Immature: testes tight up against back of gut cavity 
and very small, usually not larger than 1.2 cm long 
by 0.25 cm in width 

2. Ripening: testes bigger, grey coloured Spent, recovering: testes thin, redness lost, any 
sperm remaining in ducts can be extruded under 
moderate pressure

3. Ripe: testes big and white, milt can be 
expelled under pressure 

Half full: testes fi lling, roughly half full, no sperm 
in ducts 

4. Spawning: as 3, milt freely running or can 
be expressed under slight pressure

Full: testes fully swollen, but will not run, even 
with moderate pressure 

5. Nearly spent: milt brownish, can be 
expelled under strong pressure

No stage 5 in males

6. Spent: small, form of half moon, brown Running: sperm can be extruded under light 
pressure

7. Spent: shrunken, often going back to 
stage 1

Spent: testes thin, fl abby and often red in places. 
Any remaining sperm in the ducts can be extruded 
under fairly light pressure. 
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ning individuals, as shown in Table 4. Though not ideal, this 

does allow a direct comparison of broad trends in maturity 

to be made between the two datasets, and as a consequence, 

between the central and southern North Sea.

DISCUSSION

The broad maturity bands derived by aggregating the Dutch 

and English maturity data on a communal basis provide 

an opportunity to investigate gross regional and temporal 

trends in plaice maturity of North Sea plaice. However, the 

division between the bands is such that the aggregated data 

are of little value in ascertaining the spawning fraction of the 

population, which is often the prime purpose of maturity 

studies. Such information is needed in order to estimating 

the plaice spawning stock biomass. Rather than trying to 

aggregates the two datasets directly, a alternative option 

might be to conduct comparative trials where the two matu-

rity keys are applied to the same fi sh samples, thereby allow-

ing a degree of inter-calibration between the datasets. 

In terms of estimating the spawning fraction, the sim-

plest approach is to assume that all non-immature fi sh 

will spawn, in which case the English maturity key will 

probably underestimate the proportion of mature fi sh 

compared with the Dutch key. However, there is increasing 

evidence (De Veen, 1970, 1976; Bromley, 2000; Bromley 

and Casey, 2003) that some virgin fi sh approaching spawn-

ing for the fi rst time might be adolescents that fail to reach 

spawning condition or only spawn infrequently, and their 

contribution to the spawning stock biomass should be 

down-weighted. In terms of identifying this fraction, the 

English key probably has the advantage, since it includes 

ovaries that are classed as ‘half-full’ (English stage 3). This 

is certainly a very subjective stage, however, if fi sh with 

only partially developed ovaries are found towards the end 

of the spawning season it can reasonably be assumed that 

they will not participate in spawning, either because the 

vitellogenic oocytes are too poorly developed (Ramsay and 

Witthames, 1996), or they may possibly be subject to atretic 

degeneration (Hunter and Macewicz, 1985; Witthames 

and Walker, 1995; Bromley et al., 2000). It is becoming 

increasingly important to be able to identify the proportion 

of potentially non-spawning adolescents in stocks such as 

North Sea plaice that are heavily fi shed and the spawning 

fraction is becoming increasingly dominated by young 

fi sh. Failure to do so could lead to overestimation of the 

spawning stock biomass and the belief that the stock is in 

a healthier condition than it really is. Usage of the English 

key, or an allied key with the facility to identify adolescents, 

offers the potential for improving estimates of the spawn-

ing fraction. 

In order to standardise the collection of fi sh maturity data a 

‘Universal’ four-stage gonad grading key (three-stages for 

males) has been recommended for use in maturity studies 

(Table 5). This was chosen because it was felt that it was 

generally not feasible to reliably separate out more than 

four maturity stages by eye, without resorting to histologi-

cal screening. In practical terms, the ‘Universal’ grading 

key has close similarities with existing maturity keys, 

though there are fewer stage boundaries to contend with. 

Effectively, the total sampling effort is similar regardless 

of which maturity key is used; the only difference is in the 

detail and the combination of the information collected. In 

Table 4. Common maturity stages between the Dutch and English maturity keys for male plaice

Common maturity stages Dutch maturity stages English maturity stages

A) Pre-running phase 1 and 2 1, 3 and 4

B) Post-running phase 3, 4, 5, 6 and 7 6, 7 and 2

Table 5. Proposed ‘Universal’ gonad grading key 

Stage Females Males

I Immature Tube like, transparent Blade like, transparent

M Maturing
Vitellogenic oocytes visible to 
naked eye

S Spawning Hydrated / running Running milt

O Early maturing / spent
Flaccid – no discernible yolk 
eggs

Flaccid – some development
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the ‘Universal’ grading key, immature ovaries are classed 

stage ‘I’. The ‘Universal’ stage ‘M’ is the same as stage 2 in 

the Dutch key and approximates to a combination of stages 

3 and 4 in the English key. The ‘Universal’ stage ‘S’ corre-

sponds to a combination of stages 3, 4, 5 and 6 in the Dutch 

key and a combination of stages 5 and 6 in the English key. 

The ‘Universal’ stage ‘O’ is equivalent to stage 7 in the Dutch 

key and a combination of stages 7, 2 and some stage 3’s in 

the English key. The timing of the gonad sampling is also 

important since it is only around the time of spawning 

when it is possible to ascertain most accurately the spawn-

ing fraction of the population. If sampling is undertaken too 

early before the start of spawning, particularly in the case of 

young fi sh, it might not be apparent which individuals are 

likely to reach full maturity status. Too late after the end of 

spawning and there is the possibility of confusing resting 

with immature ovaries.

Changing the existing sampling procedures for North 

Sea plaice maturity to the new ‘Universal’ scheme could 

cause problems similar to those encountered when try-

ing to merge the Dutch and English databases and might 

disrupt the integrity of both the existing North Sea plaice 

maturity time series. To avoid this there would appear to 

be little option but to continue sampling using the existing 

methodologies. However, it might be feasible to run the two 

sampling schemes alongside each other for a while to inter-

calibrate the new maturity key against the old ones. For new 

investigations, there are clear advantages to be had from 

implementing a unifi ed gonad grading system from the 

onset, thereby providing scope for merging databases from 

different sources and even for inter-species comparisons. 

The 4-stage key of the ‘Universal’ scheme advocated at the 

Bergen meeting is certainly the simplest to apply. It should 

yield consistent results and will greatly reduce the obvious 

confusion that arises when different maturity keys are used, 

and will facilitate the analysis of temporal and regional 

variability in fi sh maturation across a range of investiga-

tions. In the ‘Universal’ key, early maturing fi sh are classed 

in the same stage as spent fi sh (stage ‘O’). Though it may 

not be possible in all cases to distinguish between these two 

sub-stages by eye alone, unless some attempt is made to 

separate the two groups, the proportion of spawning and 

non-spawning individuals could become confounded. In 

such circumstances it might not be possible to get a reliable 

estimate of the spawning fraction, which is often the chief 

objective of the investigation. 

If there is a need to incorporate greater detail into the 

maturity key, it should be done in such a way that the 

maturity data can subsequently be aggregated down into 

a condensed key where the maturity stages map to those of 

the ‘Universal’ key. In effect, the more complex key should 

retain common stage boundaries with the Universal key, 

but with the option of splitting the main ‘Universal’ stages 

into sub-stages as required. In this way the facility for pool-

ing maturity data from different sources into a common 

database for comparative studies is retained. For example, 

it might be feasible to split the ‘Universal’ stage O into spent 

and early maturing phases. It might also be desirable to 

spilt the ‘Universal’ stage M into early and late vitellogenic 

stage ovaries, though this might require additional histo-

logical screening to be achieved successfully. 

For most studies, the ‘Universal’ approach for grading 

gonads, as recommended by the Bergen meeting, should 

be satisfactory. In terms of implementing a standard gonad 

grading system, of paramount importance is the need to 

decide on a common defi nition of what constitutes an 

immature fi sh. It is also important at the start of any new 

study to rigorously defi ne each maturity stage and particu-

larly the stage boundaries. It is likely that such defi nitions 

will vary depending on the biology of the sexual maturation 

process of the species under investigation. In fi sh such as 

male Dover sole, Solea solea, which do not run freely when 

stripped, it may be necessary to resort to dissection of the 

gonad to ascertain if the fi sh are mature or not. If the matu-

rity key requires expansion, as might be necessary with 

commercially important fi sh species in order to ascertain 

more precisely the spawning fraction, the basic integrity of 

the ‘Universal’ key should be maintained by retaining the 

common maturity stage boundaries. Whether it is possible 

to expand the maturity key to more than the 4-stages of the 

‘Universal’ key without recourse to histological screening 

should be ascertained at the onset of any new investiga-

tions. 
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ABSTRACT

This paper is based on the analysis of female whiting maturity data 

collected during North Sea International Bottom Trawl Surveys 

from 1991-1995. This provided an opportunity to investigate the 

sexual maturation of whiting throughout the North Sea on a sea-

sonal basis. A standard protocol based on a 4-stage maturity key 

was used to sample the maturity stage of the whiting and the data 

were pooled into a common database. There was evidence that 

1-year old female whiting were predominantly non-spawning 

adolescents, or else spawned only occasionally. The older whit-

ing exhibited a protracted spawning season during the fi rst half of 

the year. Because of this, and the relatively simple gonad grading 

key used to assess maturity, it proved diffi cult to obtain a reliable 

estimate of the spawning fraction of the population as a whole. A 

more sophisticated gonad grading system appears to be required 

to achieve that objective. 

Key words - maturity, maturity ogive, spawning fraction, 

North Sea, whiting, Merlangius merlangus

INTRODUCTION

Whiting (Merlangius merlangus) is one of the North 

Sea gadoid species, the abundance of which is annually 

assessed by ICES (ICES, 2001) to provide the EU with 

advice for managing the commercial fi shery and the 

setting of annual Total Allowable Catch (TAC) quotas. 

Estimates of the total number of whiting in the North 

Sea stock are assessed annually using Virtual Population 

Analysis (VPA) and maturity ogives (the proportion of 

mature fi sh by age group) are applied to estimate the size 

of the spawning stock. Over a fi ve year period during the 

early 1990’s, whiting maturity data were collected during 

the International Bottom Trawl Surveys (IBTS) of the 

North Sea during all four quarters of each year using a 

standard sampling protocol. This provided an oppor-

tunity to investigate the sexual maturation of whiting 

throughout the North Sea on an annual and seasonal 

basis, with a view to providing estimates of the spawning 

fraction.

MATERIALS AND METHODS

The whiting maturity data were collected during the IBTS 

of the North Sea from 1991-1995. The detailed materials 

and methods are described in the IBTS manual (ICES, 

1992) and are only summarised here. The trawl surveys 

were conducted during all four quarters of each year by a 

number of nations within ICES. These included Denmark, 

England, Germany, Netherlands, Norway, Scotland and 

Sweden. The fi sh were caught mainly using a Grande 

Ouvriture Verticale (GOV) trawl with a cod end liner of 20 

mm stretched mesh, in order to retain smaller fi sh than 

taken in the commercial fi shery. Fishing was at pre-select-

ed survey sites throughout the whole North Sea and the 

fi sh were sampled on a length-stratifi ed basis. Typically, 

on each cruise, sampling was at the rate of 8 whiting per 1 

cm length group in each of the seven ICES standard North 

Sea Roundfi sh Areas. Otoliths were taken for ageing. The 

whiting were sexed and the maturity stage of the ovaries 

was ascertained using a 4-stage key. This was chosen on 

the basis of its simplicity and ease of use, even by rela-

tively inexperienced operators. The four maturity stages 

identifi ed were immature (IM), maturing (MI), running 

with eggs (MA) and spent (SP). All participants used the 

same maturity key. Overall, the sampling regime was 

intended to provide a reasonably unbiased estimate of 

the proportions of immature, maturing, mature and spent 
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Quarter 1 Quarter 2

age Number 
sampled

% non-
immature

% running: 
maturing

Number 
sampled

% non-
immature

% running:
maturing

1 1611 8.1 1.6 1991 8.4 6.0

2 1463 75.7 5.3 1447 75.1 21.7

3 1142 86.1 13.9 1195 89.8 24.9

4 815 92.0 13.1 614 97.2 27.0

5 378 96.8 6.5 296 98.0 24.4

Table 1. Summary of the total numbers of female whiting sampled, the percentage of non-immature females and 
the ratio of running to maturing females (expressed as a %) 

ning (MA) and spent (SP) on a quarter year basis using IBTS data from 1991-95.
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whiting maturity for the North Sea as a whole. The aim 

was to attempt to assess the spawning fraction of North 

Sea whiting.

RESULTS

Maturity data from 22000 female whiting aged 0-10 years 

were analysed. In the fi rst half of the year, running females 

were distributed throughout the North Sea, except in the 

vicinity of the Dogger Bank, where there appeared to be an 

absence of spawning activity. 

The maturity data for the female are summarised for each 

age group on a quarter year basis in Figure 1. Based on the 

proportion of running females, moderate spawning activity 

took place during the 1st quarter of the year, with spawning 

peaking in the 2nd quarter. The proportion of spent females 

peaked in the 3rd quarter, at which time the incidence of 

running females became sporadic and limited to the area 

west of 3o east. In the 4th quarter, running females were 

only occasionally found in the western North Sea, south 

of 58oN. 

 

The percentage of females classed as non-immature (i.e. 

those fi sh which were in the process of maturing or else 

fully mature: MA, MI or SP), along with the ratio of running 

(MA) to maturing (MI) females during the fi rst half of the 

year are shown in Table 1. For all age groups, the ratio of 

running:maturing fi sh (Table 1) was higher in the 2nd than 

the 1st quarter of the year, corresponding with the peak in 

spawning activity during April-June. In the 2nd quarter, 

the proportions of non-immature fi sh ranged from 8.4% in 

1-year old females to 98% in 5-year olds. The ratio of run-

ning:maturing 1-year old females (Table 1) was 6%, which 

was signifi cantly lower than for older fi sh (range 21.7-27%), 

suggesting that of the 1-year old females that initiated ovar-

ian recrudescence, a substantial number were adolescents 

that either failed to reach spawning condition or produced 

fewer or smaller egg batches. 

In older females during the 2nd quarter, up to 20% were 

running and 10% were spent, with the rest classifi ed as 

immature or maturing (Figure 1). Based on the propor-

tion of running and spent individuals in the population, 

therefore, it was only possible to be certain that 30% of 

females spawned. This is consistent with the data from the 

3rd quarter, where the proportion of spent fi sh reached a 

maximum of 30%, apparently confi rming the proportion of 

fi sh that could be defi nitely identifi ed as having spawned. 

The majority of the females were classed as maturing, but, 

because of the limitations of the 4-stage key used to assess 

whiting maturity, it was not possible to ascertain with any 

degree of certainty what proportion of these fi sh would 

have reached spawning condition. 

DISCUSSION

Whiting spawning activity appears to be concentrated dur-

ing the fi rst half of the year, with peak activity in April-June. 

From July onwards, there may be sporadic localised spawn-

ing activity in the western North Sea, the contribution of 

which to the annual egg production of whiting is almost 

certainly negligible. Some information is known about the 

spawning biology of whiting (Hislop and Hall, 1974), but it 

is uncertain how many egg batches are produced in the wild 

and over what period. It is unclear, therefore, whether the 

protracted spawning season of whiting is due to individu-

als producing repeat batches of eggs over an extended time 

period, or whether there is variation in the time when indi-

vidual females come into spawning condition.

The ICES Working Group currently assumes that 11% of 

1-year old whiting spawn (sexes combined). In the present 

study, at best, only 8% of 1-year old females were classed as 

having initiated ovarian recrudescence. The scarcity of run-

ning 1-year old female whiting and the low ratio of spawn-

ing:maturing 1-year olds compared with the ratio for older 

whiting (Table 1) suggests that of those 1-year old females 

that were classed as maturing, a high proportion were prob-

ably adolescents that did not reach spawning condition or 

else only spawned occasionally or released only a few eggs 

per spawning, thereby making only a limited contribution 

to the egg production capacity of the stock. Similar con-

clusions have been drawn from market sampling of the 

commercial landings of 3-year old female North Sea plaice 

(Bromley, 2000) and 2-year old female sole (De Veen, 1970; 

1976; Bromley, 2003). Bearing in mind that the 1-year olds 

make up about 60% of the whiting stock in the North Sea, 

even small errors in the spawning fraction are likely to have 

a big impact on the perceived size of the spawning stock bio-

mass. During the 2nd quarter, 75.1% of 2-year old females 

whiting were classed as non-immature, which is lower than 

the 92% of 2-year olds currently assumed to spawn in the 

North Sea for assessment purposes (ICES, 2001). The ratio 

of running:maturing 2-year old females (21.7%) was also 

somewhat lower than for older fi sh (Table 1), suggesting the 

possibility that some 2-year old females might also be non- 

or reduced-spawning adolescents. Since the 2-year olds 

make up around a further 20% of the stock by numbers, 

again, errors in estimating the spawning fraction of these 

fi sh could also have a substantial impact on the reliability of 

the spawning stock biomass estimates. In the case of older 

whiting, the discrepancy between the estimated spawning 

fraction used for stock assessment by ICES and the propor-

tion of non-immature fi sh identifi ed from the IBTS data 

was less substantial. 

The IBTS second quarter whiting maturity data only pro-

vides unequivocal confi rmation that 30% of adult whiting 
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actually spawn, based on the proportion of fi sh sampled that 

were running or spent (Figure 1). This is almost certainly an 

underestimate of the actual spawning fraction. This is likely 

to be due to a combination of factors including the protract-

ed spawning season of whiting, the lengthy quarter-year 

sampling interval, the simplicity of IBTS maturity key, 

and uncertainty over the duration of the spawning phase 

and what proportion of the time individuals remain in run-

ning condition. Only running individuals were classed as 

mature (MA), and individuals with well-developed ovaries 

containing advanced vitellogenic oocytes and hyaline eggs, 

and which were almost certain to spawn, were classifi ed as 

maturing (MI). Such fi sh were lumped together with those 

that might have only just progressed beyond the immature 

phase and be unlikely to spawn. At the other end of the scale, 

any spent fi sh, having progressed to the spent-recovering 

phase, would also be liable to be classifi ed as maturing. 

With such a simple gonad grading scheme it is not possible, 

therefore, to get a precise estimate of the spawning fraction. 

The alternative assumption, that all non-immature fi sh will 

spawn, is likely to overestimate the spawning fraction since 

there is evidence that amongst the younger age groups in 

particular, a substantial number of females might be non-

spawning adolescents or only produce small or occasional 

egg batches. Based on the available information from the 

IBTS survey, therefore, it is only possible to conclude that in 

the case of adult whiting, the spawning fraction lies some-

where between 30-98%, probably nearer the latter than 

the former. The lack of precision is unfortunate since the 

wrong choice of maturity ogive might contribute to an inap-

propriate stock and recruitment relationship, which could 

adversely affect stock predictions and future management 

strategy (Rochet, 2000). 

In recent years, there has been considerable effort devoted 

towards sampling the maturity of North Sea fi sh. At the 

same time, there has been a tendency to simplify the 

maturity keys used on fi shing surveys to just a few maturity 

stages (ICES, 1992) that can be easily recognised by eye, 

even by relatively inexperienced operators. The present 

fi ndings question the validity of this approach; particularly 

if the objective is to estimate the spawning fraction of the 

population. If the grading keys are too simple it becomes 

increasingly diffi cult both to quantify the spawning fraction 

and to arrive at meaningful confi dence limits - and hence 

to reliably quantify spawning stock biomass. The situation 

could be improved by the introduction of a more detailed 

maturity key, preferably with at least some additional his-

tological screening to provide a quality control check of the 

reliability of visual staging. In essence, if fewer fi sh were 

examined but the maturity stage was ascertained with more 

precision, the fi ndings would be of greater utility for stock 

assessment purposes.
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INTRODUCTION

Fisheries are one of the main economic activities in Peru. 

During 2001 the total catch of fi sh was 6’284 793 metric 

tons, of which 88% and 1,42% corresponds to anchovy and 

hake, respectively, placing Peru as one of the main fi shery 

countries of the world.

Species such as anchovy and hake are heavily exploited and 

have management plans that specify, among others things, 

the minimum size of capture, as well as the periods when it 

is necessary to close the fi shing season in order to protect 

the spawning stock biomass.

To support these management plans it is important to 

consider how the reproductive cycle of hake and anchovy 

responds to changes in the environment. Of particular 

importance in this regard are direct measurements of 

reproductive rates, based on the fraction of females spawn-

ing per day (estimated from examination of histological 

sections of the ovary) and indirect measurements of the 

reproductive cycle, such as gonadosomatic index and fat 

content. These measurements provide a scientifi c basis 

for advising managers regarding the reproductive state 

of the stock. The present work describes the reproductive 

monitoring that is routinely carried out and presents some 

results on the effect of the 1997-1998 El Niño on anchovy 

and hake reproduction.

MATERIAL AND METHODS

The samples of anchovy and hake were taken randomly and 

stratifi ed by length from either research cruises or com-

mercial fi shery landings. Ovaries were processed either by 

infi ltration in paraffi n for wax histology or by freezing at 

–29° C in a cryostat (Fig. 1) to prepare sections that were 

fi xed and stained by haematoxyline and eosin. Both meth-

ods were used to produce slides that were scored for the 

presence of post ovulatory follicles to calculate spawning 

frequency, but when information is needed urgently, for 

an assessment, the faster cryostat approach has a major 

advantage. Both techniques were carried out in the labora-

tory as well as in the research vessel. The percentage of each 

maturity stage was calculated weekly (Fig. 2) or monthly 

and was weighted by the catch, giving the fraction of spawn-

ing (percentage of ovaries with post-ovulatory follicles 

and/or hydrated oocytes) and regressing females (ovaries 

with 50% or more of α-atretic oocytes). 

The annual cycle of lipid content in pelagic fi sh shows a 

decline during the spawning season due to the transfer of 

energy reserves for gonad development (Matthews 1960; 

Schulein 1971; Tsukayama 1989). We used this cycle as 

an indirect predictive tool to assess the duration of the 

annual spawning. The lipid extraction was done using 

isopropilic hexane (Krivobok and Tarkovskaya, 1964). The 

analysis considers two groups of individuals depending 

on their length and reproductive capacity: group 1 longer 

Fig.1. Histological 
technique based on 

freezing, using cryostat.
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than 14,0 and group 2 shorter than 14,0 cm total length. 

Unfortunately, the fat analysis was suspended from 1987 

until 1999, so no information exists for the 1997-1998 El 

Niño, which was catalogued as intense and characterized by 

sea-surface temperature anomalies from 2°C to 4°C.

 

Batch fecundity was estimated in anchovy using the hydrat-

ed oocyte method (Hunter et al., 1985) using hydrated 

females sampled on research cruisers carried out during 

each spawning season.

To calculate the size at fi rst maturity of hake we used 70 

individuals taken on the research cruise BIC José Olaya 

Balandra 9806-07. We estimated maturity as a function of 

length using microscopic criteria and expressed maturity 

as a cumulated frequency of mature females: mature ova-

ries were those with oocytes undergoing full vitellogenesis. 

The curve was fi tted using the logistic model of Somerton 

(1980). 

Fig.3. Variation of female Peruvian anchovy Engraulis ringens spawning fraction during and after El Niño 1997-1998.
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RESULTS

The ovaries of adult anchovy and hake were classifi ed into 

5 stages: resting (I), maturing (II), mature (III), spawning 

(IV) and regressing (V) using histological criteria (Buitrón 

et al, 1997; Perea et al, 1997). We consider stages III and IV 

as reproductively active females.

Anchovy

The reproductive cycle of anchovy shows a typical pat-

tern of two spawning seasons, one in winter-spring 

(August-September) and another in the southern summer 

(February), with a characteristic resting period between 

April and May, as was described previously by Chirinos 

and Alegre (1969). However, during the 1997-1998 El Niño, 

Peruvian anchovy responded to the unfavorable environ-

mental changes in three ways:

1. A reduction in the female spawning fraction: In Fig. 3 

the monthly spawning fraction for 1992-1995 is com-
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pared to the El Niño period and the recovery period 

from 1997 to 2000. In the winter-spring spawning 

period of 1997, the fraction of spawning females was 

lower for both the maximum value of 30,4% and the 

minimum (0%) compared to 36,4% and 12%, respec-

tively, observed as a pattern from 1992-1995.

2. A displacement of the spawning period: Comparison of 

the fraction of spawning females observed during 1997 

and 1998 to the pattern from 1992 to 1995, indicates 

a delay in the period of major spawning of 3 months 

from July-August until October and November in 1997 

(Fig. 3). The shift in spawning coincides with the high 

sea surface temperatures, which had the greater posi-

tive thermal anomalies between June and September 

1997 and between February and April 1998 (Vásquez 

and Tello 1998).

3. Batch fecundity declined markedly: Anchovy batch 

fecundity decreased by almost 22,0% compared to 

the previous years. Batch fecundity on average for a 

female with a weight of 21,7 g went from 16 634 oocytes 

per spawning batch in August-September 1996 to 12 

976 oocytes per spawning batch in 1997 (Table 1). 

At the end of the 1997-1998 El Niño, the reproductive cycle 

of anchovy gradually returned to normal, with fecundity 

increasing to 15 792 oocytes per spawning batch (Table 1).

Grouping the frequency of spawning females into two 

length classes indicates another possible effect of El Niño 

(Fig. 4). Spawning was dominated by the larger females 

(females equal or greater than 14.5 cm) during the 1997 El 

Niño year, while in the 1998 recovery period, the fractions 

for large and small females were similar.

Hake

The microscopic analysis of ovaries of hake shows that 

their reproductive cycle has two spawning seasons, a main 

season between July and August and a secondary one in 

January, as was already described by Canal (1989). The 

1997-1998 El Niño effected the reproduction of Peruvian 

hake in three ways as follows:

1. Lower reproductive activity: During the 1997 El Niño 

the peak level of reproductive activity was lower than 

the previous year, but the spawning extended over a 

much longer period (Fig. 5).

2. Latitudinal variation of the reproductive state: Results 

Fig.4. Relative 
frequency of 

spawning females 
of Peruvian 

anchovy Engraulis 
ringens between 

January 1997 and 
December 1998.

Fig.5. Reproductive activity of females of Peruvian hake, 
Merluccius gayi peruanus, from 03º S to 06º S.

Table 1. Batch fecundity by years for an average anchovy 
female of 26,74 g.

Year
Batch fecundity 

adjusted
Number of 

samples
SD

1981 15914 105 657

1994 13987 70 241

1996 16634 407 171

1997 12976 38 212

1999 15792 97 593

2000 15576 288 222
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obtained from a research cruise carried out in May and 

June 1997, during the 1997-1998 El Niño (Perea et al., 

1997), showed two latitudinally different groups based 

on their spawning activity: One group located between 

03º59’ S and 06°59’S, was mainly reproductively inac-

tive; whilst a second group situated between 07º00’S 

and 11º 59’S had more advanced ovaries, with consid-

erable higher frequency of mature spawning females 

(Fig. 6). 

3.  Early ripening: Between 09°S and 12° S smaller hake, 

ranging in size from 16 to 24 cm (mean length of 20,6 

cm) total length, had a greater reproductive activity 

than those found to the north of 09°S. (Fig. 7).

DISCUSSION

The 1997 to 1998 El Niño greatly perturbed the environ-

ment experienced by Peruvian anchovy. Ñiquen and 

Gutierrez (1998) recorded a drop in the quality and quanti-

ty of food available, which caused a reduction in individual 

fi sh weight of about 30%. Probably, the reproductive strat-

egy adopted by anchovy during the 1997-1998 El Niño was 

to invest the scarce energetic resources in survival rather 

than spawning. A smaller percentage of adult females 

were reproductively active outside the usual periods, when 

environmental conditions were less unfavorable. Although 

at low levels, the productivity concurrently favored both 

spawning activity and improved larval survival as noted 

previously (Wootton, 1990). This also demonstrates the 

high plasticity of anchovy, which was strongly infl uenced 

by environmental changes (Alheit 1989). The decrease of 

batch fecundity caused by the 1982-83 El Niño has already 

been described by Arntz and Fahrbach (1996) and by 

Picquelle and Stauffer (1985) for Engraulis mordax. 

The consequences of the 1997-1998 El Niño on the repro-

duction of anchovy, was that fewer adult females had the 

capacity to spawn, because of their poor condition. Some 

fi sh did spawn, but the timing of the reproductive cycle was 

shifted, so they spawned when the conditions of the envi-

ronment were less unfavorable. Those fi shes that were able 

to reproduce did so with a lower batch fecundity.

The fact that spawning was sustained by the larger females, 

raises some interesting energetic questions concerning 

anchovy reproduction in responses to short and long term 

environmental change. Laboratory experiments with cap-

tive individuals taken from the sea would help us to eluci-

date many of these aspects.

In the case of hake, only one previous study has been pub-

lished on their length at fi rst maturity, which was estimated 

at 27,3 cm (Canal, 1989) using histological examination 

during the spawning season. Compared with this, we 

have shown a reduction of the length at fi rst maturity to 

20,6 cm for individuals inside a specifi c area. Wosnitza-

Mendo and Guevara-Carrasco (2000) indicate that early 

gonadal maturation in hake can increase natural mortality, 

because it diverts energy from growth and smaller fi sh have 

a reduced probability of survival. Potts and Wootton (1984) 

noted that an organism facing a stress it cannot avoid 

tends to have slower growth and switches to reproductive 

investment and lowers its length at fi rst maturity. The lat-

ter authors note that change of age and length of maturity 

could be genetic or environmentally determined. The geno-

type controls the amount the organism can accommodate 

environmental change whilst the environmental regime 

elicits a response in the balance allocation in reproduc-

Fig.7.  Length at fi rst maturity of Peruvian hake 
Merluccius gayi peruanus females between 09º S 
and 12º S during May and June 1997.

Fig.6. Relative frequency of maturity stages of Peruvian hake 
Merluccius gayi peruanus females during May and June 1997.
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tion and growth. Trippel (1995) argues that shifts in length 

at maturity in many species in response to high levels of 

exploitation, are most likely to be a consequence of a mix of 

factors having both compensatory and genetic origins.

The observation of older individuals of Peruvian hake, 

located to the north of 6º 59’ S had lower reproductive 

activity than individuals from the south was corroborated 

by Ayón and Aronés (1997), who observed larvae of hake in 

the samples of ichtyoplankton taken only southern to 07° 

S. Besides, Alamo and Espinoza (1997) differentiated two 

groups of hake with a distinct feeding spectrum in the north 

and to the south of 07° S. These observations support the 

hypothesis of the existence of two stocks of hake (Guevara-

Carrasco and Wosnitza-Mendo 1997) that were discovered 

thanks to the unfavorable conditions of the environment. 

Genetics studies in the mitochondrial DNA level in the 

future will be able to test this hypothesis (Guevara-Carrasco 

and Wosnitza-Mendo 1997).

 In all cases, the monitoring of the reproductive process and 

of the changes in the reproductive pattern of these species 

can be possible thanks to the application of precise method-

ologies such as microscopic analyses of ovaries. 
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ABSTRACT

Traditional linear models are often inadequate to detect and 

quantify complex, non-linear interactions of environmental 

variables with biological factors. Generalized Additive Models 

(GAMs) offer an attractive possibility to overcome statistical 

problems linked to normality and linearity assumptions. GAMs 

extend the power of any conventional regression techniques by fi t-

ting nonparametric functions to estimate relationships between 

the response and the predictors. Therefore, GAMs have been used 

with an increasing frequency in the last decade as an exploratory 

tool to defi ne complex interaction between variables of differ-

ent origin. Quantifying the reproductive potential of marine 

fi sh stocks is one of the crucial step for improving assessment 

and management of exploited fi sh populations. Unfortunately, 

the indeterminate relationship between spawning stock bio-

mass and recruitment (SR) has historically puzzled population 

modellers and impeded fi sheries management. Recent research 

has shown that specifi c biotic factors, such as maturing-at-age, 

age/size population structure and maternal effect, may contrib-

ute signifi cantly to explain recruitment variability in fi sh stock. 

Nevertheless, SR relationship is often complicated by highly vari-

able environmental conditions (i.e. salinity, temperature, oxygen 

level, wind-induced fl ux and others). In this context, GAMs have 

been successfully used to model how cod recruitment is affected 

by population size (density-dependent effect), age population 

structure (maternal effect), different oceanographic variables 

and their interactions. For several cod stocks, results indicate 

that stock structure constitutes a crucial factor in explaining 

recruitment variability. However, abiotic factors are also shown 

to infl uence recruitment. Changes in temperature, oxygen, salin-

ity, wind variables and sea-level atmospheric pressure are known 

to contribute signifi cantly to explain recruitment variability of 

several fi sh species. 

INTRODUCTION

Generalized Additive Models (GAMs) were launched for the 

fi rst time in 1990 (Hastie and Tibshirani 1990) and are cur-

rently available for example in S-PLUS computer program 

(version 2000, 1999 Statistical Sciences, Seattle, WA). In 

GAMs, the range of the relationships can be extended to 

curves and non-linear surface. However, as stressed by 

Daskalov (1999), the price of this larger fl exibility is the 

limited possibility for statistical inference and the large 

number of degrees of freedom (i.e. parameters) used by the 

smoothing terms. These statistical inconveniences can be 

reduced using more parsimonious models (i.e. the mini-

mum residual deviance with the minimum number of pre-

dictors). However, it is important to point out, as stressed 

by Hastie & Tibshirani (1990), that GAMs are not superior 

to Generalised Linear Models (GLMs). Instead, the user 

should be aware of the strengths and the weaknesses of 

GAMs using this tool as well as linear modelling within 

the frame of his/her overall research and then making use 

of particular tools to resolve specifi c problems (Daskalov 

1999). GAMs have been used with an increasing frequency 

in the last decade as an exploratory tool to defi ne complex 

interaction between variables of different origin. In partic-

ular, GAMs have been successful in fi shery ecology (Table 

1) to model the effects of oceanographic features and food 

density on spatial aggregation and abundance of pelagic 

(Maravelias 1997, Maravelias and Reid 1997, Maravelias 

1999, Maravelias et al. 2000a and b) and demersal fi sh spe-

cies (Swartzman et al. 1992, 1995). 

Quantifying the reproductive potential of marine fi sh 

stocks represents a pivotal step for improving assess-
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ment and management of exploited fi sh populations. 

Unfortunately, the indeterminate relationship between 

spawning stock biomass and recruitment (SR) has histori-

cally puzzled population modellers and impeded fi sheries 

management. Historically, two basic stock-recruitment 

models have been developed (Hilborn & Walters 1992). The 

Beverton & Holt model assumes that the number of recruits 

increases with spawning biomass up to an asymptotic level. 

The Ricker model incorporates larger density-depend-

ent effects (i.e. cannibalism) and therefore the number 

of recruits decreases at high level of spawning biomass. 

A central assumption in SR models is that the spawning 

biomass is proportional to the reproductive potential of 

the stock (Trippel et al. 1997). However, different authors 

have recently challenged this paradigm (Lowerre-Barbieri 

et al. 1998, Marteinsdottir & Thorarinsson 1998, Marshall 

et al. 1998, 1999, Scott et al. 1999). The depletion of large 

individuals may not only affect the quantitative reproduc-

tive potential of the population but, if poorer gamete quality 

is exhibited by younger fi sh as compared to older fi sh, the 

qualitative reproductive output of the stock may also be 

seriously depleted (Trippel et al. 1997). 

Environmental factors (e.g., salinity, temperature, oxy-

gen, wind-induced fl ux etc.) have long been recognised as 

important (Cushing 1982) and have recently been included 

in several models to explain recruitment variability of fi sh 

stocks (e.g. Daskalov 1999, Marshall et al. 2000, Jarre-

Tiechmann et al. 2000; Sundby 2000). Specifi cally, GAMs 

have been recently applied to model recruitment of four 

Black Sea species (i.e. sprat, whiting, anchovy, horse mack-

erel) (Daskalov 1999), in particular how recruitment is 

affected by population size (density-dependent effect) and 

several abiotic variables. Moreover, GAMs have been used 

to model the contribution of fi rst and repeated spawners 

along with several abiotic variables to recruitment in sev-

eral cod stocks (Cardinale & Arrhenius 2000a). For Baltic 

cod, GAMs have been used to quantify the effect of age 

structure and its interaction with variable environmental 

conditions on recruitment (Cardinale & Arrheiuns, 2000b, 

2001). Here, I review the results from several GAMs mod-

eling of recruitment data with special emphasis on my own 

results derived from applications on cod stocks.

 Authors Year Application

 Swartzman et al.  1992 Fish distribution & abiotic factors
 Swartzman et al.  1994 Fish distribution & abiotic factors
 Swartzman et al.  1995 Fish abundance & abiotic factors
 Welch et al. 1995 Fish abundance & abiotic factors
 Jacobson & MacCall 1995 Fish recruitment & biotic and abiotic factors
 Borchers et al. 1997 Fish egg production
 Stefansson & Palsson 1997 Fish feeding ecology
 Maravelias 1997 Fish abundance and distribution & abiotic factors
 Maravelias & Reid 1997 Fish abundance & biotic and abiotic factors
 Augustin et al.  1998 Fish egg production
 Stratoudakis et al. 1998 Fish egg spatial distribution
 Bigelow et al. 1999 Fish abundance & abiotic factors
 Daskalov 1999 Fish recruitment & biotic and abiotic factors
 Maravelias 1999 Fish distribution & abiotic factors
 Adlerstein & Welleman 2000 Fish feeding ecology
 Faure et al.  2000 Cephalopod recruitment & abiotic factors
 Fox et al. 2000 Fish egg spatial distribution
 Maravelias et al. 2000a Fish distribution & abiotic factors
 Maravelias et al. 2000b Fish distribution & biotic and abiotic factors
 Cardinale & Arrhenius 2000a Fish recruitment & biotic factors
 Cardinale & Arrhenius 2000b Fish recruitment & biotic and abiotic factors
 Cardinale 2001 Fish recruitment & biotic and abiotic factors
 Maury et al. 2001 Fish abundance & abiotic factors

 Stoner et al. 2001 Fish distribution & abiotic factors 

Table 1. Applications of GAMs to fi sheries data.
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MATERIALS AND METHODS

Fisheries data 

I analysed fi shery-dependent and -independent data of the 

Baltic, North Sea, Kattegat and North East Arctic cod stocks 

from the ICES (International Council for the Exploration of 

the Sea) annual stock assessment reports calculated with a 

Virtual Population Analysis (VPA) (ICES 1998, 1999a,b). 

Catch-at-age data from commercial landings were tuned 

with survey index of abundance estimated from trawl sur-

veys. Natural mortality is set to 0.2 for all the age classes. 

VPA calculates past stock abundances for each year based 

on past catches. The stock size estimates, which include 

recruitment estimates for each year, can be used for stock 

and recruitment analysis. VPA, known also as cohort analy-

sis, is one of the most powerful techniques available for the 

analysis of fi sheries data and forms the heart of many cur-

rent stock assessment methods where catch-at-age data 

are available (Hilborn & Walters 1992). For further details 

on mathematical calculations of a VPA-type model, see 

Hilborn & Walters (1992). 

Reproductive potential of cod stocks

To assess the contribution to cod recruitment of different 

age classes of the stock, I calculated their potential egg 

production. The total potential egg production for each 

age class was based on yearly estimates of stock numbers, 

proportion of mature individuals, sex ratios and weight-at-

age in the stocks (ICES 1998, 1999a,b). Relative fecundity 

estimates (number of eggs/weight of fi sh (g-1)) for North 

Atlantic and Baltic cod stocks were available from Kjesbu et 

al. (1996) and Kraus et al. (2000). 

Reproductive volume for the Baltic cod stock

Time-series of reproductive volume (the volume of water 

suitable for successful spawning) used in this study were 

from MacKenzie et al. (2000). The hydrographic data 

set consists of measurements from 36 different standard 

stations in the Baltic Sea (see MacKenzie et al. 2000 for 

details). The survey data were used to calculate the thick-

ness of the reproductive layer of Baltic cod. Horizontal 

fi elds of the thickness of the reproductive layer were 

constructed by objective analysis (Bretherton et al. 1976), 

which is based on a standard statistical approach, the 

Gauss-Markov Theorem giving an expression for the least 

square error linear estimate of the variables. Thus, at every 

single point an estimate of the environmental conditions 

can be given, which depends linearly on the total number 

of measurements, i.e., a weighed sum of all observations 

(Bretherton et al. 1976). Therefore, the reproductive vol-

ume is calculated by a simple integration between two 

horizontal planes, whereby the upper is usually given by 

the 11 ‰ isohaline and the lower one by the bottom of the 

layer below which the oxygen content declines down to 2 

ml•l-1. For each of the deep basin in the Baltic, data are avail-

able for February, March, April, May, August and October, 

except for the central Gotland basins, where estimates are 

available as the mean for the period February-May, May 

and August.

Statistical analysis

Generalized additive models (GAMs) 

Generalized Additive Models (GAMs) is a useful tool for 

exploratory analysis able to identify functional relation-

ships suggested by the data alone, in cases where con-

ventional linear methods have failed (Daskalov 1999). 

GAMs extend the power of any conventional regression 

techniques by fi tting nonparametric functions to estimate 

relationships between the response and the predictors. 

The underlying probability distribution for the data can 

be any distribution from the exponential family, including 

the normal, Poisson, Gamma and binomial distributions 

(Swartzman et al. 1992). Here I used the normal distribu-

tion for North Sea, Kattegat and North-East Arctic cod 

stocks and the gamma distribution for Baltic cod. Gamma 

distribution was chosen for Baltic cod since when testing 

different distributions, we found out that the gamma gave 

better fi t with the data and the minimum residual deviance 

in the models (Cardinale & Arrhenius 2000b). 

In GAMs, the predictors, through additive, unspecifi ed 

smooth functions affect dependent variable. Recruitment 

(dependent variable) was expressed as a sum of smooth 

functions of the predictors. The hypothesised predictors 

were: number of eggs produced by fi rst spawners (FS), 

number of eggs produced by second spawners (SS), number 

of eggs produced by repeated spawners (RS), reproductive 

volume (RV) and their fi rst-order interactions term. The 

age classes used in the analysis to distinguish between fi rst, 

second and repeat spawners were depending on the age-at-

maturity of different stocks. Recruitment was the number 

of age 1 or 2 individuals depending on the stock as defi ned 

by ICES (1998). Cubic B-spline algorithms were used to 

estimate the smooth functions (Hastie & Tibshirani 1990, 

Swartzman et al. 1992). The following two-step procedure 

was applied in analysing the data. First the functional 

relationship between the response and the predictors was 

explored using non-parametric GAM. In this way the form 

of the function was found empirically according to data 

without prior assumptions. Secondly, a more parsimoni-

ous model was tested and the fi nal models were selected 

based on the following criteria: 

•  parsimonius principle (the largest amount of variance

 explained with the minimum number of predictors) 

•  analysis of residuals (non-violation of the normality 

 and homogeneity assumption)

•  biologically meaningful predictions by the model
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Parsimony was evaluated using Akaike Information 

Criteria (AIC, Chambers & Hastie 1992). The AIC statistic 

accounts simultaneously for the degrees of freedom used 

and the goodness of the fi t. More parsimonious models 

have a lower AIC. Confi dence intervals (95%) and signifi -

cance levels for the predictors were estimated using per-

mutation test and bootstrap resampling (1000 samples) 

(percentile method) (the techniques are described in detail 

in Swartzman et al. (1992)). 

GAM fi ts are illustrated using partial regression graphs 

showing the shape of the estimated relationship between 

the response variable (i.e. recruitment) and each of the 

signifi cant covariates together with its approximate 95% 

confi dence intervals. In our case, the 0-line indicates the 

mean recruitment estimated by the model while the y-axis 

is a relative scale where the effect of different values of the 

predictors on the response variable (i.e. recruitment) is 

showed. Thus, negative values on the y-axis indicate that, 

at those levels of the predictor (x-axis), the model estimates 

a recruitment that is lower than the mean value while the 

opposite holds at positive values on the y-axis. Spikes on 

the x-axis indicate the observed values of the response vari-

able. Fewer points usually lead to larger confi dence interval 

bands. 

Residuals were analysed to test for departure from the 

model assumptions or other anomalies in the data or in 

the model fi t using both analytical (Q
1
 statistic) (Kitanidis 

1997) and graphical methods (Cleveland 1993). The residu-

als were tested for normality and for auto-correlation using 

the Durbin and Watson and the Shapiro and Wilk´s test, 

respectively. Residuals were also plotted against the pre-

dicted values to test for their homogeneity. 

Statistical analysis was performed with the S-PLUS soft-

ware (version 2000, 1999 Statistical Sciences, Seattle, 

WA). The level of signifi cance was set at 5% for the statisti-

cal tests used in this study.

RESULTS

Effect of age of spawners on 
recruitment of cod stocks

Results from the GAMs analysis for different cod stocks 

revealed a signifi cant effect of age of spawners on recruit-

ment for North-East Arctic, North Sea, Kattegat and Baltic 

cod. Noticeably, the effect of fi rst spawners (FS) on recruit-

ment was not signifi cant in all the cod stocks. Instead, the 

second (SS) but mostly repeat spawners (RS) have a signifi -

cant effect on recruitment (Fig. 1a-d). Importantly, when 

the number of eggs produced by repeat spawners is low, the 

recruitment is strongly depleted (negative effect on y-axis) 

while the effect on recruitment is positive at large values of 

a
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Figure 1. Effects of repeated spawners (RS) egg potential produc-
tion on recruitment of cod stocks: a) North East Arctic cod (Arctic 
cod); b) North Sea cod; c) Kattegat cod and d) Baltic cod. 
From Cardinale and Arrhenius (2000a and b).
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Kattegat Cod

Baltic Cod
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RS eggs in all the cod stocks. Therefore, it appears that the 

number of recruits are dependent on the population age 

structure, with second but mostly, repeat spawners provid-

ing both the largest amounts of recruits and thus likely the 

highest offspring survival rates. 

Interaction between biotic and abiotic factors
infl uencing recruitment of Baltic cod

The repeat spawners (RS) and the interaction between RS 

and reproductive volume (RV) were the most signifi cant 

explanatory variables, explaining around 70% of recruit-

ment variability. The effect of fi rst spawners (FS) was not 

signifi cant and therefore excluded from the fi nal model. As 

for North-East Arctic, North Sea and Kattegat cod, when 

the reproductive contribution from RS is at the lowest level, 

recruitment is strongly depleted, while recruitment of 

Baltic cod was largest at highest RS levels (Fig. 1d). Increase 

of the variation at larger values of RS was probably due to 

sparse data (Fig. 1d). 

The selected GAM model for Baltic cod recruitment was 

used to make predictions at different combinations of RS 

and RV (i.e. the most important explanatory variables) 

values using a matrix with 1600 simulated points from the 

models. Differently from GAMs plots, the values predicted 

here were estimated on the scale of the original response 

(i.e. recruitment of 1-year cod individuals). The largest 

recruitment was predicted at the combination of large val-

ues of both RS and RV (Fig. 2). However, at relatively low 

values of RV (i.e. sub-optimal environmental conditions 

for successful spawning of Baltic cod) the recruitment was 

moderately good when RS potential eggs production was 

high.

DISCUSSION

Results from GAMs modelling have stressed the impor-

tance of stock structure for the recruitment of several cod 

stocks (Cardinale & Arrhenius, 2000a,b) highlighting the 

presence of maternal effect (e.g. Marshall et al. 1998, Scott 

et al. 1999) on recruitment of cod. Moreover, the advantage 

of using GAM was that it was able to identify the quantita-

tive effect of both biotic and abiotic factors and their com-

plex, non-linear interactions on Baltic cod recruitment. It 

is well known that in the Baltic, in absence of water mass 

infl ow from the North Sea, oxygen below the halocline 

progressively decreases to < 2 ml•l-1, i.e., to concentra-

Figure 2. Recruitment predicted of Baltic cod at different values of repeat spawners (RS) potential egg production and reproductive volume (RV).
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tions at which few Baltic cod eggs are unable to develop 

and hatch successfully (Nissling & Vallin 1996). In particu-

lar for Baltic cod, Vallin & Nissling (2000) have recently 

shown that egg buoyancy (i.e. the ability of eggs to fl oat 

and thus avoid deep anoxic layers) is positively related to 

female size, stressing the importance of larger and older 

females on recruitment of this stock. Data from our study 

strongly support their hypothesis. In years with relative 

large anoxic layers (i.e. low values of RV), high buoyancy 

eggs from the older individuals give the largest contribu-

tion to recruitment. This implies that the impact of stock 

structure on Baltic cod recruitment would be even larger 

at very unfavourable environmental conditions. Those 

results were also in agreement with Jarre-Tiechmann et 

al. (2000).

Similar type of results were obtained by Daskalov (1999) 

analysing, using GAMs, the effect of several abiotic vari-

ables on recruitment of four fi sh species of the Black Sea. 

Signifi cant correlation appeared between fi sh recruit-

ment, stock biomass and physical environment. Patterns 

of the recruitment response to wind variables and sea level 

atmospheric pressure were found to be similar in all species. 

Again, GAMs were a suitable tool for fi sheries and environ-

mental data modeling, providing a fl exible and powerful 

way to explore non-linear relationships (Daskalov 1999). 

Several authors have recently stressed the fact that bio-

mass-based Stock-Recruitment (SR) theory is poorly sup-

ported by empirical data (Marshall et al. 1998, Daskalov 

1999, Cardinale & Arrhenius, 2000a,b). In particular, 

conventional approaches overestimate the reproduc-

tive potential of age-truncated populations assuming 

proportionality between spawning biomass and recruit-

ment (Trippel 1998). This paradigm has been challenged 

(Gilbert 1997) and rejected for many cod stocks (Cardinale 

& Arrhenius, 2000a,b). It is now evident that the presence 

of a rich variety of age classes in the spawning population, 

increases the probability of successful cod recruitment 

(i.e Marteinsdottir & Thorarinsson 1998, Cardinale & 

Arrhenius, 2000a,b). The contribution of older and larger 

individuals on recruitment is important due to both the 

production of larger larvae and the combination of more 

batches over an extended spawning period (Kjesbu et al. 

1996, Trippel 1998). The larger size of those larvae is likely 

to increase their chance to survive (Kjesbu et al. 1996) while 

their presence along an extended period may increase the 

chance of matching favourable growing conditions (i.e. 

optimal feeding and environmental conditions) (Cushing 

1982, Kjesbu et al. 1996). Therefore, current stock assess-

ment increases, rather than decreases, the risk of commer-

cial extinction of exploited marine fi sh by overestimating 

the reproductive potential of the stocks. This leads to a 

dangerously optimistic view of the future status of the pop-

ulations. Overestimation happens especially when popula-

tions are currently “truncated” by fi shing mortality and the 

number of “high quality” individuals (i.e. repeat spawners) 

is below a certain limit. Thus, the subsistence of exploited 

fi sh stocks depends also on the maintenance of an adequate 

age population structure. Nevertheless, abiotic factors also 

infl uence recruitment. Temperature, oxygen, salinity and 

wind-induced fl uxes together with other biotic factors as 

food availability and egg predation contribute signifi cantly 

to recruitment variability of fi sh stocks (Kjesbu et al. 1991, 

Daskalov 1999, Jarre-Tiechmann et al. 2000, Vallin & 

Nissling 2000, Köster & Möllmann 2000; Sundby, 2000). 

In particular, it is now evident that the reproductive success 

of Black Sea fi sh stocks is highly dependent on the physical 

features of the marine environment (Daskalov 1999) and 

similar results have been obtained for Atlantic cod stocks 

(Sundby 2000). In Baltic cod, the combined impact of 

maternal effect and physical features of the environment on 

recruitment is likely to be even larger than in other oceanic 

areas. The peculiar environmental conditions (i.e. brack-

ish waters) of the Baltic Sea strongly affect cod recruitment 

mainly via their effect on the buoyancy of the eggs (Vallin & 

Nissling 2000, Cardinale 2001). 

The above results hint that to assure the persistence of 

exploited fi sh populations it is crucial to view the assess-

ment of the stocks from a holistic perspective. For several 

decades fi sheries biologists focused their attention on the 

taxonomy, life history and population dynamics of single 

species of fi sh. There have been attempts to bring together 

the species relationships into some integrated general 

picture of the ecosystem, but this incentive has never been 

strong enough (Beamish & Mahnken 1999). Several recent 

events have now provided this incentive. An important rec-

ognition is that climate impacts on population productivity 

must be understood for fi sheries management (Cushing 

1982, 1995). The lessons from recent fi sheries manage-

ment issues such as Northern cod (Cook et al. 1997) have 

highlighted that there are serious problems with previous 

concepts (single species management) and that it is cost 

effective to study marine ecosystems and manage and pro-

tect them as a whole (Beamish & Mahnken 1999). On the 

other hand, we should also be aware that fi shing mortality is 

often, if not always, the main reason why fi sh stocks collapse 

(Hutchings & Myers 1994; Jonzén et al. 2000). Spectacular 

stock collapses and recent commercial extinction should 

provide policy-makers the core evidence that the collapse 

of marine resources is not due to environmental causes 

(Hutchings & Myers 1994). Nevertheless, the management 

of exploited fi sh stocks in the future cannot disregards the 

incorporation of the interaction between biotic and abiotic 

factors in the assessment of fi sheries resources.
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ABSTRACT

The spawning fraction of fi sh with multiple spawnings and inde-

terminate fecundity is usually estimated through time-consum-

ing histological procedures, e.g. the proportion of females with 

post-ovulatory follicles of 1 day of age. Alternative methods based 

on macroscopic observations of the gonads are desirable. In 

previous works we showed theoretical and statistical arguments, 

which supported the use of the gonadosomatic index as a proxy 

of spawning fraction, when this fraction is conceptualized as an 

area under a normal distribution of females classifi ed according 

to oocytes diameters in the more advanced batch. We applied our 

methods to Sardinops sagax from northern Chile, using a time 

series of gonadosomatic index that spanned from 1980 to 1996. 

In this work we combined our previous results with estimates of 

total abundance to produce a time series of total egg production 

during the period. This information has interesting ramifi cations 

into the area of basic populations dynamics, namely the study of 

the relation between stock and recruitment. Furthermore, here 

we apply our methods to two stocks of pelagic fi sh from central 

Chile, Engraulis ringens and Strangomera bentincki. The new 

approach yielded results which were in agreement with those 

from histological procedures. The use of our indirect approach 

seems to be an interesting low-cost alternative to estimate spawn-

ing fraction in fi sh with multiple spawnings and indeterminate 

fecundity.

INTRODUCTION

How many eggs do stocks of fi sh with multiple spawnings 

and indeterminate fecundity produce on a given period, 

say a year? This question is highly relevant for population 

dynamics and fi sheries biology since many fi sh stocks of 

commercial importance show indeterminate fecundity 

(Hunter et al., 1985). For example, one of the major issues 

in the fi eld is the existence and nature of a relation between 

the abundance of spawners and recruitment (Hilborn and 

Walters, 1992). This issue can be clarifi ed by considering 

total egg production, instead of spawning biomass, as best 

representing the true reproductive potential of a stock, 

and then search for its relationship with recruitment. This 

is not just a change of focus since spawning biomass and 

total egg production in fi sh with indeterminate fecundity 

are not expected to be proportional (Parrish et al., 1986). 

The same case can also be presented for some determinate 

spawners. For instance, Marshall et al. (1998) observed 

that in the Northeast Arctic cod stock, Gadus morhua, 

total egg production is a better predictor of recruitment 

variation than spawning biomass.

So how can total annual egg production be measured in 

fi shes with indeterminate fecundity? A direct method may 

include histological analyses of some daily samples of fi sh 

gonads to produce a sampling estimate of the proportion 

of females with post-ovulatory follicles of 1 day of age. This 

proportion can then be expanded to the female stock and 

the full period under consideration. The main problems 

with this approach are related to the effort involved in the 

histological procedures and the consequently low sample 

size for each daily proportion and number of days sam-

pled in the period. Alternative methods based on indirect 

procedures and large sample sizes are therefore desir-

able. Claramunt and Roa (2001) developed theoretical 

and statistical arguments for a new method, previously 

outlined by Claramunt and Herrera (1994), which utilizes 

the gonadosomatic index to estimate annual spawning 

fraction, and applied it to Sardinops sagax from northern 

Chile. In this work we extend our previous results by com-
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advanced batch (hereafter 1st batch) present a diam-

eter equal or higher than the hydration diameter;

2) the distribution of females classifi ed according to 

mean oocyte diameter in the 1st batch forms a normal 

curve (see Claramunt and Herrera, 1994); 

3) as a consequence of 1) and 2) we consider the daily 

spawning fraction to be an area to the right of the 

hydration parameter in a normal curve, an area whose 

size is determined by two unknown parameters, the 

mean and the standard deviation, and one known 

parameter, the hydration diameter;

4) next, by assuming certain known cutoff values for 

quantiles in the normal curve, we reduce the problem 

to one unknown parameter: the standard deviation;

5) subsequently, we fi x the standard deviation param-

eter by calibrating the resulting proportion with that 

obtained from the same sample by the histological 

method;

6) fi nally, we expand to larger samples and for periods 

in which there are no histological analyses by using 

a linear relation between the standard deviation and 

the gonadosomatic index (defi ned as the ratio of ovary 

weight to body weight).

Explicitly, the daily spawning fraction F
t
 is considered to 

be

  

        
(1)

              

where H
t
 is the hydration diameter (X

t 
= H

t
), and µ

t
 and σ

t
 

are the mean of the oocyte diameter distribution in the 1st 

batch across the female fi sh population and its standard 

bining annual spawning fractions from Sardinops sagax 

with stock-assessment based estimates of population 

abundance to generate a time series of total egg produc-

tion. Furthermore, aiming to show the potential of the 

approach to other fi sh stocks, we apply it in a tentative way 

to two additional stocks of pelagic fi sh from central Chile, 

Engraulis ringens and Strangomera bentincki.

MATERIALS AND METHODS

Source of Information

Sardinops sagax: The information used for developing and 

corroborate the method is outlined in Claramunt and Roa 

(2001). The historical database of gonadosomatic index 

(1974 to 1996) was provided by the Instituto de Fomento 

Pesquero, Valparaíso, Chile. Abundance of sardine came 

from results of sequential population analysis (SPA) (GTE: 

IFOP – IMARPE, 1998).

Strangomera bentincki and Engraulis ringens: Data came 

from sampling the catch of vessels from the Talcahuano 

fl eet operating off central Chile (see Cubillos et al., 1999 

for details). There was no complete annual series of histo-

logical analyses available for any of the two species, so we 

pooled data from 1993 to 1997 to obtain monthly estimates 

of spawning fraction through the proportion of hydrated 

females per month. 

The Method and its Approximations

Our view of the problem of determining the spawning 

fraction in fi sh with multiple spawning and indeterminate 

fecundity has several components, which are listed below 

(see Fig. 1):

1) we conceptualize the daily spawning fraction as the 

daily proportion of females whose oocytes in the most 

Fig. 1. Conceptualization of the 
daily spawning fraction as an 
area under a normal curve. Each 
female fi sh contributes one obser-
vation (oocyte diameter in her 
most advanced batch) to the fre-
quency distribution. 1st batch: More 
advanced batch in the ovary, that at 
the end of maturation is hydrated 
and then spawned. 2nd batch: 
Oocytes that remains in the ovary 
after spawn.
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deviation, and t indexes day. Thus, the integral is taken over 

the female fi sh population and it includes all those females 

whose eggs in the 1st batch are equal or higher in diameter 

than H
t
. The integral operator is valid here because we are 

summing up though a continuous variable (oocyte diam-

eter) though actual instances of the variable come in the 

form of discrete events (individual female fi sh). To reduce 

the number of unknowns from two to one, we can use some 

known quantiles along the normal distribution. In the 

whole population of females there is a hydration diameter 

of oocytes in the 1st batch H
t
 and a mean diameter of oocytes 

in the 2nd batch (lower batch: oocytes that remain in the ova-

ry after spawn and will conform the next batch). Assuming 

that the latter mean provides a minimum diameter for the 

oocytes in the 1st batch, a lower bound called l
t
, and assum-

ing additionally that the distance (d) between H
t
 and l

t
 

remains constant through the whole year (see Tascheri and 

Claramunt, 1996 and Plaza et al., 2002 for S. sagax), we can 

drop the t subindex and write

       (2)

We also know that 99% of the area of any normal curve is 

within 3σ units to the left and right of the mean, so 

       (3)

where the mean is now expressed as a function of the stand-

ard deviation given than the hydration parameter and the 

distance between it and the mean oocyte diameter in the 2nd 

batch are known. The proportion of hydrated females in the 

population in Eq. (1) becomes 

  

       (4) 

     

       

The upper limit of integration is the mean µ (Eq. 3) plus 3σ 

units to the right. Under this formulation, fl uctuations of 

the population spawning fractions remain solely depend-

ent on the standard deviation of the oocyte diameter dis-

tribution in the 1st batch across the female fi sh population. 

In practical terms, this formulations is simplifi ed by using 

d = 400 µm (Claramunt and Roa, 2001) and calculating the 

spawning fraction in a standardized form:

       (5)

      

          

in which the hydration diameter is not present, but its dif-

ference with the mean diameter of the lower (2nd) batch. 

This is an important simplifi cation, because the hydra-

tion diameter may vary to some extent (e.g. Atlantic cod: 

Kjesbu et al., 1996) while the difference may not (Fig. 1). 

An additional approximation that we found useful is to 

increase the window of observation from daily to monthly. 

This reduces resolution but increases sample size by pool-

ing daily observations. In the next step the determination 

of the standard deviation is carried out by calibrating its 

value against histological observations by using numerical 

optimization methods (e.g. Newton-Raphson). Finally, it is 

observed that the monthly standard deviation parameters 

are linearly related to the corresponding gonadosomatic 

index observations from the same samples (see Claramunt 

and Roa, 2001, for details in S. sagax).

Applied to the historical database of S. sagax (1974 – 1996), 

the monthly averages of the gonadosomatic index were 

transformed into spawning fractions and then into number 

of spawning events per year. These results combined with 

female abundance (from age-structured sequential popu-

lation analysis) and partial fecundity, allowed computation 

of total egg production per year.

RESULTS

The relationship between calibrated standard deviation 

(Table 1) and the gonadosomatic index show a clear posi-

tive linear relationship in the three species:

S. sagax :     r2 = 0.78 n = 11

S. bentincki :     r2 = 0.88 n = 11

E. ringens :     r2 = 0.88 n = 10

l = µ – 3σ 

µ = H – d + 3σ 
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The standard deviation obtained through these equations 

predict monthly spawning fraction values, which are very 

closed to the values obtained from direct methods (hydrat-

ed females proportion in S. bentincki and E. ringens and 

postovulatory follicles in S. sagax) (Table 1; Fig. 2). In addi-

tion, when regressing the monthly spawning fractions from 

both methods the three regressions have an intercept not 

signifi cantly different from 0 and a slope not signifi cantly 

different from 1.

Annual total egg production in S. sagax (Fig. 3) follows the 

same trend as female abundance at low stock levels (e.g.: 

1988 – 1994), but the relation tends to break down at higher 

abundances (1977 - 1986). 

DISCUSSION

The conceptual core of our approach to calculate spawning 

fraction is the view of the population of females, character-

ized by oocyte diameter in the fi rst batch, as a normal distri-

bution. On what conditions could this view represents what 

is going on in any particular stock of fi sh? Firstly, oocyte 

development and thus spawning need to be synchronized 

or otherwise there would be multiple modes in (fi rst-batch) 

oocyte diameter distribution at any given time. Supporting 

evidence for S. sagax comes from the spawning frequency 

estimated by histology and atresia index (Herrera et al, 

1994): it shows the same temporal trend in fi sh from dif-

ferent size classes. This is consistent with the idea that the 

frequency of spawning among mature females is governed 

by a common biorhythm (Hunter and Lo, 1997) and/or 

environmental clues experienced by most mature females. 

Secondly, fi rst-batch oocyte diameter must be suffi ciently 

independent of fi sh body size or otherwise its distribution 

at any given moment would mimick that of the fi sh them-

selves, which most likely is non normal. Wallace and Selman 

(1981) have shown that the main determinant of oocyte 

diameter in teleost fi sh is the amount of yolk and the degree 

of hydration, and Claramunt et al. (1994) have shown that 

the amount of yolk is independent of body weight in S. sagax 

from northern Chile. This same argument may not apply for 

other fi sh species, including the Strangomera bentincky 

and Engraulis ringens stocks tentatively analyzed here. For 

example, as the length range increases there might be more 

room for variation in oocyte diameter, including a depend-

ence on fi sh body size. We believe however that small depar-

tures from strict independence between (fi rst-batch) oocyte 

diameter and fi sh body size shall not distort too much a 

supposedly normal (i.e. symmetric and unimodal) distribu-

tion as required by our approach. Nevertheless, we recom-

mend that in using this method for other fi sh stocks authors 

present direct or indirect evidence supporting the condition 

of normality of oocyte diameter in the fi rst batch across the 

female population.

A further important feature of our approach is the use of 

the gonadosomatic index as a proxy variable representing 

size-standardized gonad development (DeVlaming et al., 

1982; Hunter and Macewicz, 1985; West, 1990; Claramunt 

and Roa, 2001). Long time series of the index are avail-

able for many exploited fi sh stocks, like S. bentincky and 

E. ringens from central Chile as used in this work. Thus, 

the existence of a relation between the calibrated stand-

ard deviation of the normal distribution and the gonado-

somatic index could prove useful in the construction of 

time series of annual egg production for fi sh with multiple 

spawning and indeterminate fecundity. It is necessary to 

assume a temporal constancy in the relevant parameters 

and to check that the index truly represents size-stand-

Figure 2. Monthly daily spawning fraction for three species: A: 
Sardinops sagax. B: Strangomera bentincki. C: Engraulis ringens. 
Solid circles: Spawning fraction from direct methods, in S. sagax 
from postovulatory follicles, and in S. bentincki and E. ringens from 
proportion of hydrated females. Empty circles: Spawning fraction 
estimated through monthly averages of GSI. (Data of S. sagax from 
Claramunt and Roa, 2001) 



WORKSHOP ON MODERN APPROACHES TO ASSESS MATURITY AND FECUNDITY 47

Table 1. Calculation of monthly spawning fraction for 3 small pelagic fi shes from Chile. For S. bentincki and E. ringens the monthly values are 
averages from the period 1993 to 1997. GSI: gonadosomatic index; F

POF
: spawning fraction of females with post-ovulatory follicles of 1 day of age 

as determined from histological analyses; F
HYD

: spawning fraction of females estimated through the proportion of hydrated females; σ: standard 
deviation of the normal distribution of oocyte sizes in the most advanced batch from individual females as calibrated from the histological analy-
ses; F

GSI
: spawning fraction of females as determined from the linear relation between σ and GSI.

Sardinops sagax Strangomera bentincki Engraulis ringens

Month n
GSI 
(%) F

POF

σ 

(µm) F
GSI

n
GSI
(%) F

HYD
σ (µm) F

GSI
n

GSI
(%) F

HYD
σ (µm) F

GSI

April 1078 3.063 0.094 92.667 0.014 588 2.31 0.005 71.828 0.009 412 4.01 0.051 86.241 0.071

May 1072 3.527 0.018 78.478 0.021 421 1.74 443 2.58 0.020 79.121 0.013

June 1211 4.823 0.063 88.299 0.052 668 2.29 0.006 72.557 0.009 628 2.38 0.011 75.623 0.009

July 1134 5.388 0.083 91.216 0.072 517 2.96 0.008 73.786 0.015 547 2.27 0.013 76.375 0.008

August 1323 6.413 0.090 92.150 0.115 532 3.40 0.008 73.645 0.020 528 2.89 0.006 72.290 0.020

September 948 5.759 0.094 92.666 0.086 521 4.38 0.035 83.026 0.036 327 3.40 0.038 83.831 0.039

October 1133 4.029 0.076 90.242 0.031 756 6.90 0.140 98.054 0.108 394 4.77 0.126 96.533 0.126

November 656 3.337 0.016 77.756 0.018 586 8.00 0.159 100.005 0.150 268 4.70 0.149 99.014 0.120

December 659 4.818 0.044 84.997 0.052 468 5.26 0.043 84.749 0.056 368 5.38 0.179

January 214 5.754 0.083 91.217 0.086 510 2.26 0.022 79.643 0.008 439 3.93 0.072 89.647 0.066

February 805 6.718 0.134 97.378 0.130 434 1.35 0.007 73.234 0.004 255 3.87 0.063 88.220 0.062

March 868 5.132 0.075 90.099 0.063 350 1.53 0.009 74.301 0.004 128 4.91 0.137
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ardized gonad development. The type of reasoning and 

statistical results reported in Claramunt and Roa (2001) 

may serve as a proper justifi cation of the use of the index. 

This method may also work for multiple, determinate 

batch spawners if there is synchronization in spawning 

and oocyte size does not depend strongly on fi sh body size, 

though it might be easier to apply traditional methods 

based on counting vitellogenic oocytes at the start of the 

reproductive season.

A fi nal noteworthy feature in the approach showed here is 

the use of the second oocyte batch as a benchmark indicat-

ing a minimum bound in the normal distribution. Does the 

difference of this lower threshold with hydration diameter, 

which in the case of our application is 400 µm, remain 

constant throughout the year as new spawning events take 

place? There is some evidence backing this assumption. 

Firstly, yolk incorporation into the oocytes begins at most 

at 200 - 250 µm of diameter (Herrera and Claramunt, 1990; 

Macewicz et al., 1996; Hay et al., 1987; Tyler and Sumpter, 

1996). Secondly, the immediately lower batch of oocytes is 

in the range of 200 to 450 µm of diameter, which accord-

ing to Claramunt and Herrera (1994) corresponds to the 

size range with a greater rate of growth. This indicates that 

intra-annual changes in oocyte size would result in paral-

lel trends between lower and more advanced batches. 

Thus, the diameter difference between both batches 

would remain constant, in agreement with Tascheri and 

Claramunt (1996) and Plaza et al. (2002), whom found that 

the dry weight and average diameter of the lower batch fol-

lows the same seasonal trend as the more advanced batch 

in S. sagax. 

In summary, the approach to estimate spawning fraction 

that has been developed through Claramunt and Herrera 

(1994) and Claramunt and Roa (2001), and which has 

been extended here and tentatively applied to two new 

fi sh stocks, could be used more generally because it con-

veniently utilizes a minimum of laboratory work. It also 

conveniently utilizes a maximum of information normally 

taken on a routine basis for many stocks of exploited fi sh, 

such as the gonadosomatic index. The principal applica-

tions that we foresee are to estimate annual egg production 

in fi sh with indeteterminate fecundity in dynamic popula-

tion studies. It must however be used with caution. Care 

must be taken to check the validity of its main assumptions 

and approximation for any particular application.

 
ACKNOWLEDGEMENTS

We are grateful to Olav S. Kjesbu and one anonymous reviewer for 

their helpful comments on the fi rst draft of this work.

REFERENCES

Claramunt, G. and G. Herrera. - 1994. A new method to estimate 

the fraction of daily spawning females and the num-

bers of spawnings in Sardinops sagax in northern 

Chile. Scientia Marina, 58:169-177.

Claramunt, G.; G. Herrera, and P. Pizarro. - 1994. Producción 

potencial anual de huevos por tallas en Sardinops 

sagax (Jenyns, 1842) del norte de Chile. Revista de 

Biología Marina, Valparaíso. 29: 211-233.

Claramunt, G. and R. Roa. 2001. An indirect approach of esti-

mating spawning fraction as applied to Sardinops 

sagax from northern Chile. Scientia Marina 65:87-94.

Cubillos, L.; M. Canales; D. Bucarey; A. Rojas and R. Alarcón. 

1999. Época reproductiva y talla media de primera 

madurez sexual de Strangomera bentincki y Engraulis 

ringens en el período 1993-1997, en la zona centro-sur 

de Chile. Invest. Mar., Valparaíso, 27: 73-85.

DeVlaming, V.; G. Grossman, and F. Chapman. - 1982. On the 

use of the gonadosomatic index. Comp. Biochem. 

Physiol. 73A: 31-39.

GTE: IFOP – IMARPE. 1998. Evaluación conjunta de los stocks 

de sardina y anchoveta del sur del Perú y norte de 

Chile. Inf. Técnico Grupo de Trabajo IFOP-IMARPE 

sobre pesquerías de pequeños pelágicos. Quinto Taller, 

Valparaíso, 4-13 noviembre de 1998. 48 pag + Tablas y 

Gráfi cos.

Hay, D.E.; D. N. Outram; B.A. McKeown, and M. Hurlburt. 

- 1987. Ovarian development and oocyte diameter as 

maturation criteria in Pacifi c herring (Clupea haren-

gus pallasi). Can. J. Fish. Aquat. Sci. 44: 1496-1502.

Herrera, G. and G. Claramunt. - 1990. Estimaciones de la fecun-

didad parcial y frecuencia de desove de Sardinops 

sagax durante 1987 y 1988, en el norte de Chile. 

Revista de Invest. Cient. y Tec., Serie: Ciencias del 

Mar, Universidad Arturo Prat, 1: 55-68.

Herrera, G.; G. Claramunt and P. Pizarro. 1994. Dinámica ovári-

ca de la sardina española (Sardinops sagax) del norte 

de Chile, período abril 1992 – marzo 1993. Análisis 

por estrato de talla. Rev. Biol. Mar., Valparaíso, 29:

147-166.

Hilborn, R. and C. Walters. 1992. Quantitative Fisheries Stock 

Assessment: Choice, Dynamics and Uncertainty. First 

Ed. Chapman and Hall. New York. 570 p.

Hunter, J.R., and B. Macewicz. - 1985. Measurements of spawn-

ing frequency in multiple spawning fi sh. In R. Lasker 

(ed) An Egg Production Method for Estimating 

Spawning Biomass of Pelagic Fish: Application to the 

Northern Anchovy, Engraulis mordax. NOAA Tech. 

Rep. NMFS 36: 79-94.

Hunter, J.R.; N. Lo, and R. Leong. - 1985. Batch fecundity in 

multiple spawning fi sh. In R. Lasker (ed) An Egg 

Production Method for Estimating Spawning 

Biomass of Pelagic Fish: Application to the Northern 



WORKSHOP ON MODERN APPROACHES TO ASSESS MATURITY AND FECUNDITY 49

Anchovy, Engraulis mordax. NOAA Tech. Rep. NMFS 

36: 67-77.

Hunter, J.R. and N. Lo. - 1997. The daily egg production method 

of biomass estimation: some problems and potential 

improvements. Ozeanografi ka, 2:41-69.

Kjesbu O.S., H. Kryvi, and B. Norberg. – 1996. Oocyte size and 

structure in relation to blood plasma steroid hormones 

in individually monitored, spawning Atlantic cod. J. 

Fish. Biol., 49:1197-1215.

Macewicz, B.J.; J.J.C. Castro; C.E. Cotero and J.R. Hunter. - 

1996. Adult reproductive parameters of Pacifi c sardine 

(Sardinops sagax) during 1994. CalCOFI Rep., 37: 

140-151.

Marshall, C.T.; O.S. Kjesbu; N.A. Yaragina; P. Solemdal and Ø. 

Ulltang. 1998. Is spawner biomass a sensitive meas-

ure of the reproductive and recruitment potential of 

Northeast Arctic cod?. Can. J. Fish. Aquat. Sci., 55: 

1766-1783.

Parrish, R. H.; D.L. Mallicoate and R.A. Klingbeil. - 1986. Age 

dependent fecundity, number of spawning per year, 

sex ratio and maturation stages in northern anchovy. 

Fish Bull., U.S. 84: 503-517.

Plaza, G.; G. Claramunt and G. Herrera - 2002. An intra-annual 

analysis of intermediate fecundity, batch fecundity 

and oocyte size of ripening ovaries of Pacifi c sardine 

Sardinops sagax in northern Chile. Fisheries Science, 

68: 95-103.

Tascheri, R., and G. Claramunt. - 1996. Aproximación a los cam-

bios intra-anuales en el contenido de energía del ovario 

de sardina (Sardinops sagax Jenyns, 1842) en el norte 

de Chile. Invest. Mar., Valparaíso, Chile. 24:51-66.

Tyler, C.R. and J.P. Sumpter. - 1996. Oocyte growth and devel-

opment in teleosts. Reviews in Fish Biology and 

Fisheries, 6: 287-318.

Wallace, R. and K. Selman. - 1981. Cellular and dynamic aspects 

of the oocyte growth in teleosts. Amer. Zool., 21:325-

343.

West, G. - 1990. Methods of assessing ovarian development in 

fi sh: a review. Aust. J. Mar. Freshwater Res., 41: 199-

222.



50



Atresia in Icelandic cod (Gadus morhua L.) 
prior to and during spawning

K. Harðardóttir1,2, O.S. Kjesbu2 and G. Marteinsdottir3 

1University of Bergen, Department of Fisheries and Marine Biology, P.O. Box 7800, N-5020 Bergen, Norway 

[present E-mail: kristha@simnet.is]
2Institute of Marine Research, Department of Marine Environment, P.O. Box 1870, N-5817 Bergen, Norway. 

Corresponding author. E-mail: olav.kjesbu@imr.no
3G. Marteinsdottir, Marine Research Institute, Skulagata 4, P.O. Box 1390, 121 Reykjavik, Iceland

ABSTRACT

Using the stereological Disector method to quantify relative 

number of different types of oocytes in prespawning and spawn-

ing fi sh, this study presents new insight in vitellogenic oocyte 

recruitment and atresia regulation in relation to fi sh length and 

condition in Icelandic cod. It is demonstrated that the Atlantic cod 

is a determinate spawner and that atresia is a complex function of 

several factors including presently oocyte size, spawning period, 

and condition factor in the analysis. 

INTRODUCTION

Atlantic cod (Gadus morhua) is a determinate spawner 

with a high potential fecundity (Kjesbu et al., 1990). When 

fecundity is determinate, a defi nite number of previtello-

genic (immature) oocytes start vitellogenesis (yolk uptake) 

for a period of time prior to spawning whereas no previtello-

genic oocytes are assumed to enter vitellogenesis during the 

spawning season (for further information and discussion on 

this topic, see Hunter & Macewicz, this volume, and Kjesbu 

et al., 1990; Greer Walker et al., 1994; Witthames & Greer 

Walker, 1995; Kjesbu et al., 1996a). 

Fecundity in cod generally increases with maternal size, as 

larger females are more fecund per body weight, compared 

with smaller females (Hutchings & Myers, 1993; Kjesbu 

et al., 1996b; Kraus et al., 2000; Lambert et al., 2000; 

Marteinsdottir et al., 2000; Marteinsdottir & Begg, 2002). 

Though this is the general rule, size-specifi c fecundity 

can be highly variable from one year to another (Kjesbu 

et al., 1998; Marshall et al., 1998; Kraus et al., 2000; 

Marteinsdottir & Begg, 2002).

Under ideal circumstances potential fecundity may be 

approximately equivalent to the number of eggs spawned 

during the spawning season (i.e., realized fecundity). 

When environmental conditions are unfavorable some or 

all, developing oocytes included in the potential fecundity 

estimate may be lost through degeneration from the ovary, 

a process known as atresia (Kjesbu et al., 1991; Tybjerg & 

Tomkiewicz, 1999). Atresia is a well-known process, seen in 

captivity and under natural conditions, both in fresh-water 

and marine fi sh (Htun-Han, 1978; Hunter & Macewicz, 

1985; Trippel & Harvey, 1990; Kjesbu et al., 1991; Greer 

Walker et al., 1994; Karlou-Riga & Economidis, 1996; Ma 

et al., 1998; Webb et al., 1999; Witthames et al., 2000).

To estimate the effects of fi sh size and condition on poten-

tial and realized fecundity in Icelandic cod, samples were 

collected on the spawning grounds southwest of Iceland 

and west of Iceland (Figure 1) prior to and during the 

spawning season. The proportion of maturing (vitel-

logenic) oocytes in relation to immature (previtellogenic) 

oocytes and intensity of vitellogenic oocyte undergoing 

atresia were estimated histologically and correlated with 

fi sh size and condition. The size frequency distribution 

of cod vitellogenic oocytes (VO) is known to change dur-

ing the spawning season. As maturation advances the 

mean VO diameter increases, approaching the mean size 

of fully mature hydrated oocytes. At the same time, the 

corresponding standard deviation of mean VO diameter, 

decreases as the portion of total eggs spawned per season 

(PES) increases (Kjesbu et al., 1990). This knowledge was 

used to calculate PES as well as relative time to onset of 

spawning (based on PES).



52 K. HARÐARDÓTTIR, O.S. KJESBU AND G. MARTEINSDOTTIR: ATRESIA IN ICELANDIC COD (GADUS MORHUA L.) 

Our fi rst task was to affi rm that Icelandic cod is a deter-

minate spawner as has been earlier indicated for other 

Atlantic cod stocks (Kjesbu et al., 1990). For this purpose 

two criteria were established. Our fi rst criterion was that 

prior to spawning, we expect to see a gap (hiatus) between 

the size frequency distributions of the most advanced 

previtellogenic oocytes (PVO) and the size frequency 

distributions of the least advanced VO (Witthames & 

Greer Walker, 1995; Ma et al., 1998). During the oocyte 

development we might also expect to see an increase in 

this hiatus as the VO increase in size during the spawning 

season, whereas the size of PVO should remain approxi-

mately constant. Our second criterion was that the relative 

number of VO in some way is linked to female condition 

prior to spawning, as condition might be a factor determin-

ing the total number of oocytes that start maturation each 

season (potential fecundity). After onset of spawning we 

expected to see a decline in the number of VO throughout 

the spawning season, as fully mature oocytes are gradually 

ovulated and no PVO are expected to enter vitellognesis 

during spawning. 

MATERIAL AND METHODS 

We studied Historesin-sectioned oocytes (4 µm thick-

ness, nucleus in section plane) stained with toluidine 

blue, measured by image-analysis (area transformed to 

diameter) and using the stereological Disector principle to 

estimate the relative number of the various types of cells 

(for more details on the Disector method, see Andersen, 

this volume).

Number of females studied and their maturity status is 

given in Table 1.

RESULTS AND DISCUSSION 

A notable hiatus (gap) between the size frequency distri-

bution of PVO and VO was seen prior to spawning and 

increased as the spawning season advanced (Figure 2). This 

shows, based on the outlined defi nitions, that Icelandic cod 

is a determinate spawner, as has been indicated for the 

other cod stocks reported above. 

Figure 1. 
Main sampling areas (in black), southwest and west of Iceland

Figure 2. Relationship between portion of eggs spawned (PES) and 
hiatus size, prior to and throughout the spawning season (PES ≤ 0 
and PES >0, respectively).

Table 1. Mean and standard deviation (in parentheses) of prevalence (fraction of the population) and relative intensity (number of atretic 
vitellogenic oocytes in relation to total number of atretic and normal vitellogenic oocytes, in percentage) of ovarian atresia in Icelandic cod 
females with observed atresia, in prespawning and spawning females.

Spawning status No. of females Prevalence Relative intensity (± SD)

Prespawning 36 0.42 11 (8.0)

Spawning 70 0.16 8 (6.7)
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Fulton’s condition factor (K), total length and whole body 

weight of females were found to be signifi cant factors infl u-

encing the number of oocytes that start maturation prior 

to spawning (potential fecundity) (Figure 3). After onset 

of spawning a signifi cant decrease was seen in number of 

VO as spawning proceeded, further implying that cod is 

a determinate spawner. Larger females in good condition 

showed a larger proportion of VO prior to and throughout 

the spawning season, indicating that these females are 

able to invest more in potential fecundity than smaller 

females.

To measure relative intensity of VO reabsorbed through 

atresia, 106 females were analyzed. Ovarian atresia was 

mainly detected prior to spawning, as 42% of the observed 

females contained atretic oocytes, while only 16% of the 

spawning females (Table 1). In prespawning females 

ovarian atresia was accelerated by low K, or relative con-

dition factor, C (C = observed weight/expected weight 

given from a regression) (Scott et al., unpubl.), and low 

liver index (Figure 4). No signifi cant correlation was noted 

between K or C and liver index, and atresia after onset of 

spawning. 

Atresia seems to be oocyte-size dependent as smaller 

and less mature oocytes were being reabsorbed from the 

ovary (Figure 5). In other words, being involved in hiatus 

enlargement. It might be advantageous to reabsorb energy 

from oocytes where less energy has been invested and from 

oocytes that might never reach the fi nal maturation stage 

Figure 3. Relationship between proportion of previtellogenic oocytes 
to total number of oocytes in the ovary (PVO/TO) and Fulton’s condi-
tion (K) and total length in prespawning females.

Figure 4. Relationship between relative intensity of ovarian 
atresia and condition (Fulton’s K and C) for the spawning season 
as a whole (prespawning and spawning females). 

Figure 5. Linear relationship between PES (portion of eggs spawned) 
and mean vitellogenic oocyte (VO) diameter in ovaries with (�) or 
without (�)
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due to slow growth rate (Kjesbu et al., 1991). The fi nal matu-

ration phase seems to be oocyte size related with a mini-

mum of ca. 800 µm (Kjesbu et al., 1996a). Atresia was not 

detected in ovaries where the mean diameter of vitellogenic 

oocytes exceeded about 750 µm (Figure 6) and in ovaries 

where estimated portion of eggs spawned (PES) exceeded 

about 65% (Figure 5).

As seen from above, fecundity of Atlantic cod is not a fi xed 

pre-programmed process, but rather a fl exible process 

adjusted to internal and external condition factors, that 

females are experiencing prior to and during spawning. 

Larger females and females in good condition, produce 

higher number of vitellogenic oocytes and a larger fraction 

of oocytes are developing to fi nal maturation during vitel-

logenesis, leading to ovulation. This points out the impor-

tance of sustaining larger females in the spawning stock to 

maximize the spawning output of the stock as a whole. Even 

though larger females are producing larger fraction of vitel-

logenic oocytes, the condition seems to be an important 

factor determining the realized fecundity. Atresia seems 

mainly to be restricted to prespawning fi sh and in lesser 

extend to the fi rst 2/3 of the spawning period. However, 

more work is obviously needed to better understand this 

temporal dynamics. 
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INTRODUCTION

Estimates of the onset of sexual maturity and annual or 

lifetime fecundity play a vital role in fi shery science because 

they are closely linked to stock productivity. In addition, 

reproductive rates make possible the conversion of egg 

and larval abundance to adult biomass using egg or larval 

production methods. In this paper we discuss some of the 

potential biases and uncertainties in common methods 

used to estimate such reproductive rates and consider how 

these subjects could be treated in a manual on measure-

ment of reproductive rates for fi sheries. 

ANATOMICAL GRADING SYSTEMS 

Anatomical grading systems are used in fi sheries to meas-

ure size and age at fi rst maturity, the duration of the spawn-

ing season, diel timing of reproduction, and under some 

circumstances spawning rates (Table 1). Many more precise 

methods exist to classify ovaries (histology, microscopic 

appearance, diameter of whole oocytes, and length specifi c 

gonad weight (West 1990)) than using a gross anatomical 

grading system. Although these more precise methods are 

preferred, gross anatomical grading systems will continue 

to be used in fi sheries, regardless of their imprecision and 

biases, because they are an inexpensive way to routinely 

monitor the reproductive state of the catch. 

Gross anatomical grading systems could be improved by 

reducing the number of classes, and focusing on the most 

reliable characters. The most reliable characters to describe 

an ovary are yolked oocytes present or absent, and hydrated 

(hyaline) oocytes present or absent. When yolked oocytes 

are fi rst visible to the unaided eye they are opaque with the 

yolk fi lling at least half of the volume of the oocyte. The size 

of the oocyte at which yolking is fi rst visible varies depend-

ing upon the size of egg produced by the species. In species 

with small eggs, yolking may be visible in oocytes as small 

as 0.3 mm diameter (Nichol and Acuna 2001), and in tel-

eosts with the typical 1 mm diameter egg, yoking is visible at 

about 0.4 mm diameter. Regardless of the differences in the 

onset of yolking among species, detection of yolked oocytes 

by the unaided eye, is a reliable marker for reproductively 

active females. Females, with yolked oocytes visible in 

their ovaries, are clearly capable of spawning within the 

current reproductive season or have already begun spawn-

ing. Postovulatory follicles often occur in ovaries in which 

only small but visibly yolked oocytes are seen. The presence 

of hydrated oocyte (hyaline or translucent oocyte) indi-

cates imminent spawning and at temperate temperatures 

spawning may take place in less than 24 hours. Using the 

presence or absence of yolked oocytes, presence or absence 

of hydrated (hyaline) oocytes, one can accomplish all the 

primary functions of anatomical grading without the mis-

leading complexities or ephemeral characters of the older 

systems. Certain reproductive states (such as spent, recov-

ering, resting, partially spent, developing virgin,) can not 

be reliably detected using a cursory visual examination of 

a whole ovary so that adding such classifi cations provides 

no benefi t. The “spent” stage is confusing because spent is 

undefi ned in most classifi cation systems and could mean 

after one spawning or all spawning in a year. Spent charac-

teristics (ovary fl accid, numerous blood vessels apparent, 

thick ovarian wall, and possibly remnant hydrated oocytes 

in lumen) may be useful for identifi cation of the recent 

completion of the spawning season in cold water species 

(T≤10 °C) where the condition persists for suffi cient time to 

be reliably detected. If used to identify the end of spawning, 
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From Kesteven (1960) From Nikolsky (1963) From Dickerson et al. (1992)

I. Virgin

Very small sexual organs close under 
the vertebral column. Testes and 
ovaries transparent, colorless to grey. 
Eggs invisible to naked eye.

I. Immature

Young individuals which have not yet 
engaged in reproduction; gonads of 
very small size.

1 Virgin individuals. Very small sexual 
organs close under vertebral col-
umn. Females: often wine-colored, 
with torpedo-shaped ovaries. Eggs 
invisible to naked eye. Males: testes 
very small, knife-shaped, and quite 
thin. In chub mackerel testes can be 
longer than half the ventral cavity.

II. Maturing virgin

Testes and ovaries translucent, grey-
red. Length half, or slightly more than 
half, the length of ventral cavity. Single 
eggs can be seen with magnifying 
glass.

II. Resting stage

Sexual products have not yet begun 
to develop; gonads of very small size; 
eggs not distinguishable to the naked 
eye.

2 Maturing virgins or recovering 
spents. Females: ovaries not longer 
than half the ventral cavity. Eggs 
may or may not be visible to naked 
eye. Males: tests easily identifi able, 
but still thin and knife-shaped.

III. Developing

Testes and ovaries opaque, reddish 
with blood capillaries. Occupy about 
half of ventral cavity. Eggs visible to 
the eye as whitish granular.

III. Maturation

Eggs distinguishable to the naked eye; 
a very rapid increase in weight of the 
gonad is in progress; testes change 
from transparent to a pale rose color.

3 Sexual organs swelling. Eggs defi -
nitely visible to naked eye. Ovaries 
and testes occupying about half the 
ventral cavity.

IV. Developing

Testes reddish-white. No milt-drops 
appear under pressure. Ovaries orange 
reddish. Eggs clearly discernible; 
opaque. Testes and ovaries occupy 
about two-thirds of ventral cavity.

4 Ovaries and testes fi lling nearly 2/3 
of ventral cavity. Eggs still opaque. 
Testes swollen, milt whitish.

V. Gravid

Sexual organs fi lling ventral cavity. 
Testes white, drops of milt fall with 
pressure. Eggs completely round, 
some already translucent and ripe.

IV. Maturity

Sexual products ripe; gonad have 
achieved their maximum weight, 
but the sexual products are still not 
extruded when light pressure is 
applied.

5 Ovaries and testes fi lling ventral cav-
ity. Ovaries often with some large 
transparent eggs.

VI. Spawning

Roe and milt run with slight pressure. 
Most eggs translucent with few opaque 
eggs left in ovary.

V. Reproduction

Sexual products are extruded in 
response to very light pressure on the 
belly; weight of the gonads decreases 
rapidly from the start of spawning to 
its completion.

6 Roe and milt running. Slight pres-
sure on belly of fi sh exudes roe or 
milt.

VII. Spawning/spent

Not yet fully empty. No opaque eggs 
left in ovary.

VIII. Spent

Testes and ovaries empty, red. A few 
eggs in the state of reabsorption.

VI. Spent condition

The sexual products have been dis-
charged; genital aperture infl amed; 
gonads have the appearance of defl at-
ed sacs, the ovaries usually containing 
a few left-over eggs, and the testes 
some residual sperm.

2 Maturing virgins or recovering 
spents. Females: ovaries not longer 
than half the ventral cavity. Eggs 
may or may not be visible to naked 
eye. Males: tests easily identifi able, 
but still thin and knife-shaped.

II. Recovering spent

Testes and ovaries translucent, grey-
red. Length half, or slightly more than 
half, the length of ventral cavity. Single 
eggs can be seen with magnifying 
glass.

II. Resting stage

Sexual products have been discharged; 
infl ammation around the genital 
aperture has subsided; gonads of very 
small size, eggs not distinguishable to 
the naked eye.

Table 1. Three classifi cations systems for maturity stages in fi shes, with approximate 
correspondence between them.
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investigators need to specify how the ovary differs from one 

taken after completion of a single spawning. In temperate 

and tropical species, the gross anatomical features used to 

characterize the “spent” condition are ephemeral, and can 

not be reliably detected. We advise the abandonment of this 

stage for temperate and tropical species. 

The confounding of the fi rst maturity (size or age when 

50% are mature) of a species, and the annual spawning 

maturity that is attained each year by iteroparous species 

(Kock and Kellermann 1991), is a serious fl aw in all clas-

sifi cation systems (Table 2). No ovary classifi cation sys-

tem, including histological ones, can separate all females 

with regressed ovaries that have spawned in the current 

year (postovulatory follicles completely reabsorbed and 

no yolked oocytes) from females with inactive ovaries 

that have yet to attain their fi rst maturity. Finding large 

individuals well past the size of fi rst maturity with inac-

tive or “immature” ovaries during the spawning season is 

not unusual. One may propose that such individuals have 

either refrained from spawning in the current year, or that 

the female matured, spawned, and regressed the ovary out 

of phase with most of the females in the stock. For example, 

in the Antarctic Neothenoid fi sh (Champsocephalus gun-

nari), large females with inactive ovaries were so numer-

ous in the samples that they were believed to have refrained 

from spawning in the current year (Kock 1990). We used 

a detailed histological analysis of females, Microstomus 

pacifi cus, to determine the extent that histological charac-

ters could be used to improve the accuracy of fi rst maturity 

estimates by detection of past spawning activities (Figure 

1). The addition of criteria such as incidence of alpha and 

beta stages atresia improved the accuracy of the estimate, 

but the most striking feature of this analysis was, regardless 

of the criteria, the size at 50% maturity was always larger if 

the measurement were made during the reproductive sea-

son rather than before it started (Table 3). This indicates 

that even with the best available histological criteria, the 

regressed ovaries of some postspawning females become 

indistinguishable from females defi ned as immature or 

inactive. The surest way to reduce this potential bias is to 

confi ne maturity samples to a period just before the onset of 

spawning for the stock, when postspawning females would 

be expected to be uncommon. This may be more easily dis-

cussed than done. A representative sample of a spawning 

population may be more diffi cult to obtain because of dif-

ferential movements by the immature, spawning and post 

spawning components or their spatial separation. Thus it is 

necessary to understand the spatial and temporal charac-

teristics of the reproductive season to develop an effective 

sampling strategy. 

BATCH FECUNDITY METHOD 

In the batch fecundity method, daily spawning rates are 

estimated by multiplying the batch fecundity (number of 

oocyte released in a single spawning) times the daily spawn-

ing fraction. Daily spawning fraction is the frequency of 

mature females spawning per day. The criteria or combina-

tion of criteria (advanced migratory-nucleus stage oocytes, 

or hydrated oocytes, or aged postovulatory follicles (POF)) 

selected to identify a spawning female depends on the peak 

time of daily spawning, the duration of the stage (possible 

temperature effects), and the hours of sampling. The batch 

fecundity method is usually used to estimate spawning 

biomass by applying the Daily Egg Production Method. 

Annual fecundity also may be estimated by measuring 

daily spawning rates throughout a season or by calibrat-

ing a proxy for spawning frequency based on oocyte size 

Number of 
Females

ANATOMICAL CLASSIFICATION HISTOLOGICAL CLASSIFICATION

Stage 
Number

Fish Maturity
Immature 

%

Mature

Postspawn % Nonspawn % Spawn %

34 1 Immature 44 56 0 0

174 2 Mature 23 68 3 5

91 3 Mature 3 29 32 36

26 4 Mature 4 42 54

2 5 Mature 0 50 50

1 6 Mature 0 0 100

Fraction
Mature:

294/328 = .90 270/328 = .82

Table 2. Comparison of California Department of Fish and Game anatomical maturity classifi cation to histological 
classifi cation of the ovaries of S. japonicus from Dickerson et al. 1992.
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Defi nition 
number

Histological 
criteria sets 
included in 

maturity defi nitiona

Before spawning
(854 females)

During spawning
(1321 females)

Length at 50% mature 
(mm)

Length at 50% mature 
(mm)

I 1 373 419

II 1, 2 361 396

III 1, 2, 3 348 391

IV 1, 2, 3, 4 332 348

V 1, 2, 3, 4, 5 258 255

a 1 Certain Maturity - Advanced yolked oocytes present
 2 Maturity uncertain - Early yolked oocytes present with beta atresia
 3 Maturity uncertain - Early yolked oocytes present with alpha atresia or none
 4 Maturity uncertain - Only unyolked oocytes with beta atresia
 5 Maturity uncertain - Only unyolked oocytes with atresia of unyolk
 6 Certain immaturity - Only unyolked oocyte with no atresia

Table 3. Estimated length at which 50% of Dover sole females are sexually mature, estimated using logistic model using six histological 
defi nitions of ovarian maturity before and during spawning.

Figure 1. Dendrogram 
illustrating classes of his-
tological criteria for active 
and inactive ovaries of 
Microstomus pacifi cus. 
From Hunter et al. 1992.
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distribution, or gonad weight (Claramunt and Roa 2000). 

Bias in estimating spawning rates will occur if the ovarian 

criteria selected to identify a spawning event persist longer 

than 24 hours (any POF versus POF in a 24 hour age class 

such as 6-30 hrs old, or 18 to 41 hrs old, or 26-50 hrs old) 

or when the hydrated oocyte method is used and females 

with hydrated oocyte are more vulnerable to capture as 

seems to be the case for Peruvian anchovy (Alheit 1985). 

Care must also be taken, if one uses migratory-nucleus 

stage oocytes to measure batch fecundity, to be sure that all 

the oocytes that will become the batch have fully recruited 

into this stage (Macewicz and Hunter 1993). These are 

small but important details, but in the context of general 

fecundity issues, they seem minor. Overall if the standard 

procedures for estimating batch fecundity and spawning 

fraction (Hunter et al. 1985 and Hunter and Macewicz, 

1985a) are followed, the chances for bias in using the batch 

fecundity method are quite low. It may be impractical to use 

the batch method in some applications because of the cost 

of obtaining a suffi cient number of samples of spawning 

animals. Sometimes the batch fecundity method may be 

rejected because of the cost of placing observers on fi shing 

boats to preserve ovaries of freshly caught specimens for 

histological analysis. This problem may be overcome if the 

catch is fl ash frozen at sea as it may be possible to use landed 

specimens for histological analysis under these conditions 

(Farley and Davis 1998). Normally landed specimens are 

not useful for histological analysis because of autolysis. The 

hydrated oocyte method for estimating spawning rates may 

be used under these circumstances. 

POTENTIAL ANNUAL FECUNDITY METHOD

Potential annual fecundity is used as a proxy for the actual 

fecundity realized by a female during an entire spawning 

season. In this method, a group of oocytes are identifi ed 

that are believed to represent the maximum number of 

oocytes that could be spawned in a season. In semelparous 

animals such as market squid, all oocytes are included in 

the potential. This group of oocytes, or the potential annual 

fecundity, are counted at the beginning of the spawning 

season before there is a risk of oocyte losses due to spawn-

ing. Potential fecundity is used to estimate spawning bio-

mass using the annual egg production, fecundity reduction, 

and egg deposition methods (Hunter and Lo 1993). Other 

applications include estimating escapement fecundity in 

squid (Macewicz et al. 2003), and annual or lifetime repro-

ductive effort. 

Potential fecundity is a valuable and widely used method but 

major uncertainties may exist. The method requires making 

three key assumptions which are infrequently validated: 1) 

one can identify a certain stock or size range of oocytes into 

which no new oocytes are recruited once spawning begins; 

2) females used to estimate potential fecundity have not 

spawned; and 3) atretic losses are negligible. Clearly, for 

most fi sheries applications potential fecundity is of value 

only to the extent that it is an accurate proxy for actual 

annual fecundity. We discuss the assumptions below. 

Identifi cation of the stock: In fi shes that produce large eggs, 

a wide gap in the oocyte frequency distribution often occurs 

between the stock of advanced oocytes considered to be the 

potential fecundity and the rest of the smaller oocytes in the 

ovary (Figures 2 and 3). As the advanced stock continues to 

develop during the spawning season this gap typically wid-

ens and the average size of oocytes in the stock increases. As 

the gap may not be extensive at the onset of spawning, it is 

best to test for the recruitment of oocytes into the advanced 

stock of eggs considered to be the potential fecundity, in 

order to be sure that all oocytes have been fully recruited. 

We have done this by relating average oocyte diameter to 

Figure 2. The frequency distribution of the diameter of oocytes within 
four oocyte stages based on the apparent yolk concentration under a 
dissection microscope for Anoplopoma fi mbria. Stages are 0, no yolk; 
1, initial layer of yolk along periphery of the oocyte; 2, yolk extending 
from periphery to the nucleus; 3 (shaded area) yolk so dense nucleus 
is indistinct or occluded (advanced yolked oocyte). Each panel repre-
sents one female. From Hunter et al. 1989.
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potential fecundity using multiple regression (Figure 4). 

When no signifi cant positive correlation exists between 

the average size of oocytes in potential fecundity and the 

number of oocyte it contains, one can assume that the stock 

has been fully recruited. We are not entirely satisfi ed with 

this regression approach, but it is the best test we have been 

able to devise; this is an area needing further work. In sum, 

there is a window of opportunity for sampling females for a 

potential fecundity where risks due to incomplete recruit-

ment and risks due to spawning are minimized (Figure 5). 

In many species no wide and obvious gap exists in the 

oocyte distribution in prespawning animals, consequently, 

different criteria are needed to separate the potential 

fecundity from the rest of the oocytes in the ovary. Most 

pelagic fi sh, which produce eggs of about 1 mm in diameter 

fall into this category. In such animals smaller gaps may 

exist in the oocyte frequency distribution, (Greer Walker 

et al. 1994) or no consistent gap may exist at all (Figure 6). 

Typically in such animals, a small oocyte class between 

0.1 mm and 0.2 mm diameter associated with the initial 

onset of seasonal oocyte maturation (cytoplasmic vacuole 

stage, a.k.a. cortical alveoli, yolk vesical stages) is used to 

separate the potential fecundity for the year from the rest 

of the oocytes in the ovary. It is unlikely that all such small 

oocytes will be recruited and spawned in a season. A major 

diffi culty in using the cytoplasmic vacuole stage, or similar 

small oocyte stage, as a criterion for potential fecundity is 

that considerable atretic winnowing of oocytes may occur 

during the season, making the potential a rather inaccurate 

proxy for actual fecundity. Atretic winnowing of oocytes 

would be expected to vary from year to year depending 

Figure 3. The frequency 
distribution of the diameter 
of oocytes within three 
maturity stages (based 
on the apparent yolk 
concentration under a 
dissection microscope) for 
Microstomus pacifi cus. 
Stage 1 is initial layer of yolk 
along periphery of oocyte; 
stage 2 is yolk visible from 
periphery to the nucleus but 
nucleus is distinctly visible; 
and stage 3 is advanced 
yolked oocytes where the 
nucleus is indistinct or 
occluded by yolk. Numbers 
are mean size of stage 3 
oocytes. Each panel rep-
resents one female. From 
Hunter et al. 1992. 
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Figure 4. The optimal 
range of mean diameters of 

advanced yolked oocytes for 
determining potential annual 

fecundity of Microstomus 
pacifi cus. Open circles, 

Student’s t as a function of 
the mean diameter of oocyte 

in the data set; solid circles, 
spawning rate index, pro-

portion of females showing 
hydrated oocyte and/or post-

ovulatory follicles. 
From Hunter et al. 1992. 

Figure 5. Maturity window in Anoplopoma fi mbria indicated by the range of advance yolked oocyte sizes over which estimates of 
the potential annual fecundity can be made without bias. From Macewicz and Hunter 1994. 
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on food and energy reserves. This small oocyte approach 

to demarcation of the potential seems impractical when 

a spawning season extends throughout most of the year 

and spawning is nearly daily such as in the tropical tunas 

(Schaeffer 1998).

Insuring against spawning losses: We include insuring 

against spawning losses as a potential bias in potential 

fecundity estimations because up to this time this has not 

become a standard procedure as it has for batch fecundity 

estimates. Since the steps to be taken are quite straight 

forward, and the potential for bias considerable, we believe 

that potential fecundity estimates are unacceptable unless 

the necessary precautionary steps have been taken. One 

way to insure against major spawning losses in the poten-

tial stock is to examine histologically all females used to 

estimate potential fecundity, determine if postovulatory 

follicles or oocytes in beta atresia are present and discard 

all those that have them. Even if postovulatory and atretic 

follicles are absent, it is always possible that a female may 

have spawned because eventually these indicators of past 

spawning are completely resorbed. The risk of undetected 

spawning may increase if females are in elevated water tem-

peratures because the rate of absorption would be acceler-

ated, or if the intervals between spawning are long enough 

for complete resorption to take place. Another approach 

is to relate average oocyte diameter to the probability of 

spawning using the prevalence of females with hydrated 

oocytes or postovulatory follicles (Nichol and Acuna 2001) 

as an indicator of spawning. Then use this information to 

establish a window of opportunity for sampling using the 

average oocyte diameter, or similar proxy, as the criteria 

(Figure 4). This method of validation of the potential fecun-

dity is not possible when cytoplasmic vacuole stage is used 

as the demarcation point for potential fecundity because 

so many small oocytes exist in the potential fecundity that 

the mean diameter of the potential does not change as 

spawning takes place (Greer Walker et al. 1994). For such 

species histological analysis would have to be used to select 

prespawning females for the potential using the presence 

of migratory nucleus oocytes, hydrated oocytes, postovula-

tory follicles and beta atresia to exclude the spawners. 

Atretic losses are negligible: A major weakness in the 

potential fecundity method is that the potential and actual 

fecundity may differ substantially depending upon the 

numbers of oocytes in the potential that are resorbed dur-

ing the spawning season (Kjesbu et al. 1991; Tuene et al. 

Figure 6. The 
frequency distribu-
tion of the diam-
eters of oocytes 
of Merluccious 
productus taken at 
different times in the 
spawning season. 
Distributions were 
divided by the batch 
fecundity to indicate 
the location in the 
frequency distribu-
tion of the six most 
advanced potential 
batches of oocytes. 
Hydrated (H) and 
atretic oocytes (A) 
are also indicated. 
Each panel repre-
sents one female. 
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Figure 7. Duration of various atretic states during ovary resorption and recovery in Engraulis mordax. From Hunter and Macewicz 1985b. 

2001). This is a key issue in the application of the potential 

fecundity method because its primary value in iteroparous 

animals is as a proxy for actual annual fecundity. Atretic 

losses to the potential stock may be the most extensive 

when many small oocytes are included in the potential 

fecundity. Micostomus and Anoplopoma have low preva-

lence of atresia, produce large eggs and have a wide gap 

separating the potential from other oocytes. On the other 

hand, Engraulis, Sardinops, Trachurus, Scomber, and 

Merluccius produce small eggs, have a more or less con-

tinuous distribution of oocytes, and may have extensive 

atresia affecting all stages of vitellogenic and previtel-

logenic oocytes. We suspect that extensive atresia that we 

have observed in these animals is a regular event occurring 

at the end of a females spawning season when the continu-

ous distribution of oocytes supplying the spawning batches 

are resorbed. Scombroid fi shes may be the most diffi cult to 

analyze because atresia in scombroid seems patchy (Priede 

1990; Dickerson et al. 1992) and groups of females with 

highly atretic ovaries, clearly in postspawning condition, 

may be captured most any time during the spawning sea-

son. Scombroid fi shes might be able to mature and regress 

ovaries more than once during a spawning season depend-

ing on food availability.

 

If the assumption that atretic losses are negligible is unac-

ceptable, then the potential fecundity lost to atresia must be 

estimated. This is a complex undertaking, that exceeds esti-

mation of daily spawning rates in diffi culty, and requires 

the following: 1) the incidence and density of atretic oocytes 
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must be quantifi ed; 2) quantifi cation must extend through-

out the season with more intensive sampling near the end 

since the duration of alpha atresia is short, about 8 to 13 

days (Hunter and Macewicz 1985b, Kjesbu et al. 1991); 3) 

the temperature specifi c time at stage for alpha and other 

atretic stages must be known so that standing stock esti-

mates of atretic oocyte can be converted to a loss rate; 4) 

the variance associated estimation of atretic losses must be 

incorporated into the fecundity estimate, and ultimately 

that of the spawning biomass; and 5) the atresia estimate 

needs to be repeated each time spawning biomass is esti-

mated since annual variability in reproductive output is 

tied to annual variability in atretic rates. Such a compre-

hensive approach has never been followed in its entirety, 

Priede (1990) study on Scomber scomber is one of the most 

thorough in this regard. One of the diffi culties is that the 

direct measurements of the duration of the atretic stages 

(Figure 7) are often lacking. 

GUIDELINES FOR A FECUNDITY STUDY

Concepts and terminology: Some of the terms used in fi sh-

eries to describe oocyte maturation, fecundity and spawn-

ing (e.g. multiple spawners, serial spawners, batch spawn-

ers, synchronous or asynchronous oocyte development, 

determinate and indeterminate fecundity, fi xed fecundity) 

are confusing, and misleading (Table 4). We regret our role 

in popularizing some of these terms and believe their use 

should be discouraged. In fact, most of the terms apply to 

nearly all species. Most species reported in the literature 

spawn in batches so making distinctions between multiple, 

or serial spawners, and the rare case of a one batch spawner, 

solves few problems. The distinction between fi xed and 

indeterminate fecundity is also not useful because even in 

species that spawn daily, one might be able to pick a small 

enough oocyte class as a marker to separate the potential 

fecundity for a season or a year from smaller oocytes in 

the ovary. In this sense, any species may be considered to 

have a fi xed or determinate fecundity, hence discussions 

on whether or not fecundity is fi xed or indeterminate are 

unproductive. It is preferable to approach the problem of 

selecting a fecundity methodology by assessing how likely 

a method will provide an unbiased estimate of the desired 

parameter, and what the precision of the estimate is likely 

to be when all factors are considered. Of course one must 

also consider costs, practicality, and whether daily or 

annual fecundity is the desired parameter. 

Preliminary steps in a fecundity analysis: The fi rst step 

in the method assessment should include an examination 

of the oocyte size frequency distribution of some sexu-

ally mature females (do not pool the distributions because 

pooling different development states may lead to errone-

FECUNDITY SPAWNERS MATURITY

absolute fecundity
absolute individual fecundity
advanced standing stock
age specifi c fecundity
annual fecundity
batch fecundity
clutch
determinate fecundity
fi xed fecundity
hydrated batch
indeterminate fecundity
potential fecundity
potential annual fecundity
relative fecundity 
standing stock
total fecundity
oocyte development:
  - asynchronous 
  - synchronous
  - group synchronous

active
fractional
iteroparous
multiple
partial
semelparous
serial
spawns once

active
advanced maturation
cycling
developing
virgin
early maturation
immature
inactive
massive atresia
mature
maturing
ovulated
partially spent
post spawning
prespawning
proliferation
recovering
regressing
resting
ripe
running ripe
sexually active 
spawning
spent 
total maturation
virginal

Table 4. Some commonly used terms in fecundity studies. 
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ous conclusions) and a determination of when and where 

specimens with hydrated oocyte may be obtained. The sec-

ond step is to determine if the oocyte distribution is more 

or less continuous throughout spawning season, if females 

with hydrated oocyte are readily available from the fi eld, 

and if it is practical to age postovulatory follicles through 

fi eld or aquarium work. If these points are answered in 

the affi rmative, the batch fecundity method will provide 

the most accurate estimate of fecundity because fewer 

assumptions are required. The easiest estimate to make 

under these conditions is the number of eggs spawned per 

day during the survey period. However, if annual fecundity 

were the desired outcome it may not be necessary to rou-

tinely measure spawning frequency throughout the season 

as a reasonably precise annual fecundity estimate may be 

possible using a calibrated proxy for spawning frequency 

such as the gonosomatic index (Claramunt and Roa 2000). 

On the other hand, if the oocyte distribution is discontinu-

ous with the advanced oocyte class (containing more than 

one spawning batch) well separated from the rest of the 

smaller oocytes in the ovary (similar to the distributions 

illustrated in Figures 2 and 3), then the potential annual 

fecundity method could probably be used with a relative 

low risk of bias, although the three potential fecundity 

assumptions would need validation before going forward. 

Under these conditions, the annual or the fecundity reduc-

tion methods of egg production could be used. It should be 

remembered, however, that the extent of such a discontinu-

ity in the oocyte frequency distribution depends upon when 

a sample is taken relative to the maturation and spawning 

cycle, with the gap widening as spawning progresses. If the 

gap appears late, when spawning is underway, adjusting 

the data for atretic losses may be necessary. 

The most diffi cult situation is when prespawning females 

have no wide and consistent separation between the 

potential fecundity for the year and the less mature 

oocytes (Figure 6), females with hydrated oocytes are not 

available in suffi cient numbers to measure spawning rates, 

and it is impractical to age postovulatory follicles. Under 

these circumstances the potential fecundity method may 

be the only way to obtain some measure of annual fecun-

dity. Before deciding on a marker to separate the potential 

annual fecundity from the rest of the oocytes, such as the 

cytoplasmic vacuole stage, it may be worthwhile to add an 

additional step to the analysis. Make a rough estimate of 

the batch fecundity for the species, either from fi nding 

a few specimens in the hydrated or migratory nucleus 

stage, or using literature values. Then determine roughly 

how many spawning batches exist in the stock of oocytes 

presumed to be the potential fecundity for the year, in pre-

spawning specimens. If the marker does not include the 

number of spawns that one might expect, given literature 

values for spawning rates at the observed water tempera-

ture, one may want to select an earlier oocyte stage to mark 

off the potential. Once the demarcation for the potential 

becomes standardized, the effect of fi sh size on fecundity 

can be evaluated, and a crude measure of annual fecun-

dity may be possible depending on the extent the three 

assumptions underlying potential fecundity estimates are 

validated. 

After deciding if batch or potential fecundity will be 

estimated, the next step in an analysis of fecundity is to 

determine if the oocytes to be counted (hydrated, advanced 

yolked, or those greater than a marker size, etc.) are ran-

domly distributed in the ovary. This is an important step 

if the gravimetric method for fecundity estimation is used 

because although most studies indicate there is no effect 

of the location of a tissue sample within the ovary on the 

counts of the targeted oocyte class (Hunter et al. 1985; 

Hunter et al. 1992) this is not always the case (Nichol and 

Acuna 2001). The homogeneity of the targeted oocyte class 

within the ovary can be adequately evaluated using as few 

as 10 females, three or more sampling locations within the 

ovary, and a tissue weight needed for an acceptable level of 

precision. The last preparatory step in fecundity work is to 

estimate the number of females and number of tissue sam-

ples needed for the desired level of precision (Hunter et al. 

1985; Sanz and Uriarte 1989; Hunter et al. 1992). Generally, 

the within ovary variance is so low compared to the between 

fi sh variance, that seldom more than two gravimetric tissue 

samples are required per female but often more than 50 

females are needed. 

Gilson’s Fluid: Gilson’s Fluid (Bagenal 1971) used to 

free the oocytes from the tissues surrounding them, is a 

popular treatment commonly advocated in past fecundity 

manuals to enable total oocyte counting. We believe this 

fl uid should not be used because it destroys the ovary for 

subsequent histological examination, shrinks the oocytes 

about 30% (Kjesbu et al. 1990), turns hyaline oocytes 

opaque, delays fecundity estimates (oocytes remain in fl uid 

3 to 12 months), and is very toxic. In most applications it 

is no more time consuming to count and measure oocytes 

without Gilson’s treatment than with it. Loss of informa-

tion related to the condition and stage of the oocyte being 

counted, as well as the structures being dissolved such as 

postouvlatory follicles and atretic follicles, is a serious 

drawback. The subtle features and oocyte stages often hold 

the key to interpreting reproduction. A possible gain in pre-

cision by using Gilson’s because larger numbers of oocytes 

are counted may be illusory since the controlling factor in 

fecundity determinations is the variance between females, 

not the within ovary variance (Hunter et al. 1985).
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INTRODUCTION

The fi shery activity constitutes one of the most important 

economical resources of Argentina, with an annual catch 

of around 850,000 t1. The fi shery management requires 

knowledge about the reproductive biology of the species. 

To estimate fi sh biomass, most assessment models use 

information about reproductive parameters such as length 

at maturity, fecundity or spawning frequency. Annual 

changes of these variables could affect the stock fecundity 

and produce variability in the recruitment of fi shes. 

 

This review summarises some of the reproductive aspects 

of four commercial fi shes that inhabit different environ-

ments in Argentine waters: 

- Micromesistius australis (Southern blue whiting) is a 

mesopelagic species typical of the Cold Malvinas Current 

distributed mainly between 47° S and 55° S at depths 

ranging from 100 to 700 m. It is one of the most impor-

tant resources in this area with an abundance estimated at 

around 700,000 t. 

- Engraulis anchoita (Argentine anchovy) is a small 

pelagic species with a high biomass (3,000,000 t) distrib-

uted from 24° S to 48° S mainly at depths between 20 and 

100 m.

- Merluccius hubbsi (Argentine hake), the main fi shery 

resource of Argentina, is a demersal species distributed 

from 22° S to 55° S at depths between 50 and 500 m, with an 

abundance of around 1,000,000 t.

- Micropogonias furnieri (White croaker) is a demersal 

coastal species, which inhabits marine and estuarine 

waters at depths less than 50 m. It is the most important 

coastal resource, but its abundance (40,000 t) is relatively 

low compared to the other species analysed. 

 

The objectives of this paper are to describe spawning pat-

tern and reproductive cycle of these species and to estimate 

reproductive variables such as fecundity, spawning fre-

quency and length at maturity. 

MATERIALS AND METHODS

Sampling

Information for reproductive studies was collected 

from research cruises carried out during the spawning 

season of the species. To determine reproductive cycle 

data collected from commercial catches were also 

analysed. During the research cruises fi sh samples and 

oceanographic data (temperature and salinity) were 

taken for each trawl station (Fig. 1). Total length (TL), 

total weight (TW) and macroscopic maturity stage were 

recorded for each fi sh sampled (about 200 individuals 

per trawl station). Macroscopic staging was determined 

for both sexes using a 5-stage maturity key (Table 1). 

Adult females were randomly selected from each trawl 

station (n ≅ 30) and the ovaries removed and fi xed in 10% 

neutral-buffered formalin for about two weeks.

Laboratory processing

Ovaries were weighed, and a portion of tissue (about 2.0 

g) was removed from each gonad, dehydrated in ethanol, 

cleared in xylene and embedded in paraffi n. Ovaries were 

cut into 5-µm sections and stained with Harris’s hematoxy-

lin followed by eosin counterstain.

1 Argentina. Secretaría de Agricultura, Ganadería, Pesca y Alimentación. 

2001. Capturas Marítimas Totales 2000. Buenos Aires: SAGPyA . 

8 p (MS)
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Females Males

1
Immature
(Juvenile)

Ovary small and translucent with a thin 
albuginea tunica. Oocytes can not be seen 
with the naked eye.

Testis small and translucent.

2 
 Developing 1

Ovary becomes opaque and yellow. 
Individual oocytes can be seen. 

Testis becomes larger and white in colour.

3  
Spawning

Ovary fi lls most of the body cavity. 
Translucent (hydrated) as well as opaque 
(yolked) oocytes can be seen.

Testis white. Spermatozoa easily released 
from vent.

4  
Spent

Ovary shrunken and fl abby with few residual 
yolked oocytes.

Testis white with opaque areas. Residual 
spermatozoa.

5
Recovering

Ovary opaque with a thick albuginea tunica 
and without yolked oocytes.

Testis opaque without spermatozoa.

 1 This stage includes ovaries with evidence of spawning but with many yolked oocytes. 

Table 1.  Macroscopic criteria used to describe gonadal reproductive stages for males and females. 

Figure 1. Samples 
location of M. australis, 
E. anchoita, M. hubbsi 
and M. furnieri taken 
during research cruises 
carried out in the main 
spawning areas of 
these species, during the 
spawning peak.
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Histological staging of ovaries was based on the stage of 

oocyte development and on the occurrence of postovula-

tory follicles (POF) and atresia (Hunter and Goldberg, 

1980; Hunter et al., 1992). In view of this, the following 

classifi cation was established:

1) Hydrated (spawning imminent): ovaries with many 

hydrated oocytes and no POFs 

2a) Age-O day (spawning females): ovaries with 

day-O POFs and hydrated oocytes

2b) Age-O+ day (spawning < 24 h): ovaries with 

day-O POFs and no hydrated oocytes

3) Age 1 day (spawning ≥ 24 h but < 48 h): ovaries with 

day-1 POFs and yolked oocytes

4) Non-spawning (mature) (spawning ≥ 48h): ovaries with 

many yolked oocytes; may contain POFs in advanced stage 

of degeneration and minor atresia (α atresia of yolked 

oocytes < 50%)

5) Inactive (mature): ovaries with α atresia of yolked 

oocytes ≥ 50%. May contain evidence of past spawning

6) Immature: ovaries with no yolked oocytes and no atre-

sia of yolked oocytes

Females with ovaries in stages 1 to 4 were considered capa-

ble of spawning at the time of capture or in the near future 

(active females, Hunter et al. 1992).

The description of the POF stages was adapted from that 

given by Hunter and Macewicz (1985) for Engraulis 

mordax (northern anchovy):

 

- Day-O POF has an irregular shape, the granulosa cells are 

aligned with the lumen clearly visible. The granulosa cells 

are columnar with a prominent nucleus and the cellular 

walls are well defi ned (Fig. 2A). 

 - Day-1 POF shows degenerative process, the linear appear-

ance of the granulosa cells is not distinct and the lumen 

becomes reduced. The granulosa and theca cells cannot be 

clearly distinguished (Fig. 2B).

Although we could not validate the age of POFs in E. 

anchoita and M. hubbsi, we assigned to these species 

the duration reported for E. mordax (48 hours), because 

northern anchovy spawns at moderate temperatures (13° 

– 19° C, Hunter and Macewicz, 1985), similar to those 

recorded for Argentine anchovy (11° - 16° C, Sánchez, 1995) 

and Argentine hake (10° - 14° C, Pájaro and Macchi, 2001a) 

in their spawning sites. 

 

In the case of M. furnieri, eight females were spawned in 

captivity during a research cruise and sampled at different 

hours after spawning (6h, 12h, 24h and 36h). The ovaries 

were preserved and processed for histological analysis. 

In M. furnieri, the degenerative process of the POFs was 

faster than that found in Argentine anchovy and hake; 24-

h-old POF showed advanced signs of degeneration similar 

to those observed in E. mordax 48 h after spawning2. The 

highest speed of degradation could be associated with the 

higher water temperatures (20° - 25° C) in the spawning 

area of M. furnieri, which are signifi cantly hotter than 

those recorded at the corresponding reproductive zones of 

E. anchoita and M. hubbsi.

Estimation of reproductive variables

The macroscopic maturity key was used to determine the 

seasonal reproductive cycle and the location of spawning 

areas. Moreover, macroscopic staging was employed to 

estimate length at maturity (L50%), regarding as mature 

those individuals that show gonads in stage 2 or higher. In 

females, it was necessary to complement macroscopic stag-

ing with histological examination, mainly in small females, 

2 Macchi, G.J., E.M. Acha and M.I. Militelli. 2003. Seasonal egg 

production pattern of whitemouth croaker (Micropogonias furnieri) 

in the Río de la Plata estuary, Argentina-Uruguay. Fish. Bull. (US) 101:

332-342.

Figure 2. Postovulatory follicles of M. hubbsi at age 0-day (A) and 
age 1-day (B). G = granulosa layer; T = thecal layer; L = lumen.
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which could have ovaries with uncertain appearance. To 

estimate this variable, the fraction of mature fi sh per length 

class was fi tted to a logistic function applying the maximum 

likelihood approach.

 

Spawning frequency for E. anchoita and M. hubbsi was 

determined from the percentage of age-1 day females 

(Hunter and Goldberg, 1980). In M. furnieri incidence of 

spawning was estimated from the percentage of females 

with POFs in different stages of degeneration, because in 

this species POFs, as reported above, are degraded before 

24 h after spawning. Mean and variance of this variable 

were calculated according to the equations developed by 

Picquelle and Stauffer (1985)

Samples of hydrated ovaries of M. hubbsi, M. furnieri and 

E. anchoita were used to show the oocyte size-frequency 

distribution. In the case of M. australis, ovaries with yolked 

oocytes and without signs of previous spawning were 

selected to analyse the pattern of oocyte development. 

Oocyte diameters of these females (n ≅ 1000 oocytes) were 

measured along the longest axes with an ocular micrometer 

after fi xation.

Hydrated ovaries without evidence of spawning (no POFs) 

were used to estimate batch fecundity (number of oocytes 

released per spawning) by the hydrated oocyte method 

(Hunter et al., 1985). Three pieces of ovary (about 0.1-0.2 g 

each) were removed from the anterior, middle and posterior 

parts of each gonad, weighed (± 0.1 mg), and the hydrated 

oocytes counted. Batch fecundity for each female was the 

product of the mean number of hydrated oocytes per unit 

of weight and the total weight of the ovaries. Relative batch 

fecundity (number of hydrated oocytes per gram of body 

weight) was determined as the batch fecundity divided by 

female weight (without ovary). The relationships of batch 

fecundity to total length and to total weight were described 

using standard regression analysis.

RESULTS AND DISCUSSION

Spawning pattern

Ovaries in advanced maturation (with yolked oocytes) of M. 

australis showed a pattern of oocyte development charac-

teristic of fi shes with determinate annual fecundity. Oocyte 

size frequency distribution (Fig 3) showed a hiatus between 

yolked oocytes (secondary yolk stage) and unyolked 

oocytes (primary growth stage), which indicates that the 

recruitment of unyolked oocytes into the advanced stock 

ceases during this phase (Hunter et al., 1992). Besides this, 

histological analysis showed that the proportion of mature 

oocytes in pre spawning females (Fig. 4 A) was much higher 

than in females with evidence of spawning (Fig. 4 B). This 

observation could indicate that yolked oocytes decrease 

substantially over the spawning season. 
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Figure 3. Oocyte diameter distribution for an ovary of M. australis in 
advanced maturity stage. 

Figure 4. A) Ovary of M. australis in advanced maturity stage show-
ing a high proportion of yolked oocytes (SY). B) Ovary of M. australis 
with postovulatory follicles (P) and few oocytes in hydration (H). PG = 
primary growth stage (unyolked).
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The other species analysed (M. hubbsi, M. furnieri and E. 

anchoita) were multiple spawners according to observation 

of maturing ovaries with POFs and yolked oocytes (Fig. 5). 

Furthermore, in contrast to that observed for M. australis, 

the oocyte size frequency distribution of hydrated females 

showed a pattern with continuous batches of growing 

oocytes (Fig. 6), characteristic of species with indetermi-

nate annual fecundity. 

Spawning season

Temporal variation of maturity stages showed that spawn-

ing females of M. australis can be observed in a short period 

between late winter and early spring with a main peak in 

August (Fig. 7 A). During these months the maximum of 

productivity in the cold waters south of Malvinas Islands, 

the main spawning area for southern blue whiting (Pájaro 

and Macchi, 2001b), occurs. The observed oocyte develop-

ment pattern, with a fi xed number of yolked oocytes at the 

onset of spawning, may be an adaptive strategy to the short 

period of good conditions for reproduction. 

In contrast, E. anchoita, M. hubbsi and M. furnieri, which 

spawn in temperate waters, have a protracted reproductive 

season, which extends from spring to summer with a main 

spawning peak between December and January (Fig. 7 B 

and C). A long reproductive season is generally character-

istic of species with multiple spawning and indeterminate 

annual fecundity (Brown-Peterson et al., 1988).

Length at maturity

Length at 50% maturity was estimated for males and 

females of M. furnieri and M. hubbsi. A good fi t was 

P100 mµ

SY
LC

EC

PG

Figure 5. Ovary of M. hubbsi with postovulatory follicles (P) and 
oocytes in different stages of development. PG = primary growth 
stage; EC = early cortical alveolus stage; LC = late cortical alveolus 
stage; SY = secondary yolk stage.

obtained between percentages of maturity and length 

in both cases (Fig. 8). Females of these species reached 

sexual maturity at a higher size than males. In the case of 

Argentine hake, which has been suffering over-exploita-

tion during the last ten years, length at maturity showed a 

decreasing trend in comparison with previous estimates 

reported for this species (Pájaro and Macchi, 2001a).

Spawning frequency and batch fecundity

Spawning frequency and batch fecundity were estimated 

for E. anchoita, M. hubbsi and M. furnieri with samples 

Figure 6. Oocyte diameter distribution for hydrated ovaries of   
M. hubbsi, M. furnieri and E. anchoita. Oocytes smaller than 150 µm 
were not included.
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collected during the spawning peak of these species. Table 

2 shows the number of mature females in different stages 

sampled during three cruises carried out for these species. 

Of all the specimens examined, about 12 % of E. anchoita 

and 15 % of M. hubbsi females had day-1 POFs, which 

indicated that these species spawn once every 8 days and 7 
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Figure 7.  A) Temporal distribution of macroscopic maturity stages 
of M. australis (juvenile females were not included); B) Relative egg 
production of E. anchoita estimated for different months (data from 
Sanchez, 1995); C) Temporal distribution of active females of   
M. hubbsi and M. furnieri. 

days, respectively. M. furnieri showed the highest spawn-

ing frequency with about 31 % of females with POFs, which 

indicated an average spawning interval of about 3 days dur-

ing the main reproductive peak.

  

Batch fecundity estimates for M. hubbsi and M. furnieri 

were fi tted to a power function of total length and a lin-

ear function of ovary-free body weight; in the case of E. 

anchoita both relationships were fi tted to a linear model 

(Fig. 9). Batch fecundity of Argentine hake was higher than 

that estimated for white croaker in the same weight range. 

This difference was also evident for relative batch fecun-

dity; the mean number of hydrated oocytes per female gram 

of M. hubbsi (508 oocytes, SD = 180) was more than twice 

that estimated for M. furnieri (196 oocytes, SD = 55). Batch 

fecundity of Argentine anchovy was much lower than that 

estimated for Argentine hake and white croaker (Fig. 9), 

but the mean relative batch fecundity was the highest esti-

mated (574 oocytes/g ovary-free body weight, SD = 151). 
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Figure 8. Length at maturity estimated for males and females of 
M. furnieri (A) and M. hubbsi (B).
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Trawl 
stations

(n)

Hydrated 
ovaries 

(n)

Day – O
ovaries 

(n)      

Day –  O+
ovaries

(n)

Day – 1
ovaries

(n)

Total 
mature 
females

Spawning 
frequency 

Coeffi cient 
of 

variation

E. anchoita 1 23 77 23 74 67 590 0.12 0.13

M. hubbsi 1 25 70 16 50 112 739 0.15 0.19

M. furnieri 2 20 39 33 85 342 0.31 0.18

1 Age of POFs by analogy to northern anchovy (Hunter and Macewicz, 1985).

2 Age of POFs by measurement of degradation time.

Table 2. Number of females in reproductive activity of E. anchoita, M. hubbsi and M. furnieri that were histologically staged for estimation of 
spawning frequency. Data were collected from three cruises carried out during peak spawning for each species. 
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REMARKS

- We consider that the macroscopic 5-stage maturity key 

is useful and easy to apply in fi shery studies to determine 

spatial and temporal spawning.

- To estimate length at maturity it is necessary to comple-

ment macroscopic analysis with histological examination 

of ovaries, mainly in small females.  

- Histological analysis is necessary to describe spawning 

pattern and to estimate incidence of atresia and reproduc-

tive variables such as spawning frequency and fecundity.

- Spawning pattern seems to be related to the environmen-

tal conditions in the spawning area. In general, species that 

spawn in temperate waters have a long reproductive season 

and show continuous recruitment of growing oocytes along 

the spawning period. In the case of M. australis, which 

spawns in colder waters with temperatures between 5° and 

6° C (Perrota, 1982), it has a short spawning season and 

shows determinate annual fecundity. This characteristic 

could be associated to the narrow productivity period in 

the spawning area of this species. Furthermore, plankton 

data showed that the diameter of M. australis eggs (1,260 

– 1,430 µm, Ciechomski and Booman, 1981) is larger than 

those reported for species of temperate waters with spheri-

cal eggs, such as Argentine hake (800 –900 µm, Ehrlich, 

1998) or white croaker (730 - 1053 µm, Weiss, 1981). The 

larger eggs may be advantageous during the fi rst days of 

life, because hatchlings could have larger quantity of yolk 

reserves (Hinckley, 1990; Wootton, 1994). 

- Spawning frequency, estimated as the percentage of 

females with postovulatory follicles, was the most problem-

atic reproductive variable. In most cases it was considered 

to be a preliminary estimate, because we could not validate 

the age of these structures.

- Degradation of postovulatory follicles seems to be faster 

in M. furnieri spawning at higher temperatures than hake 

and anchovy. This observation confi rms that increasing 

temperatures decrease the time that POF can be detected in 

fi shes, as was reported for other species (Hunter et al. 1986; 

Fitzhugh and Hettler, 1995; Schaefer, 1996).
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ABSTRACT

Loligo opalescens, market squid, live less than a year and die 

after a short spawning period, before all oocytes are expended. 

The maximum lifetime fecundity of a female can be estimated 

by counting all oocytes in the ovary just before initial ovulation 

(potential fecundity, E
P
) and subtracting from E

P
 the number of 

oocytes remaining in the ovary (residual fecundity, E
R
) at the end 

of the spawning period. During the spawning period no oogonia 

are produced, hence the standing stock of oocytes declines as they 

are ovulated. This decline in the number of oocytes is correlated 

with a decline in mantle condition and an increase in the size of 

the smallest oocyte. For a L. opalescens female of 129 mm dorsal 

mantle length E
P
 was estimated to be 3844 oocytes and E

R
 was 

estimated as 834 oocytes; thus our estimate of maximum lifetime 

fecundity (E
P
-E

R
) is 3010 oocytes. The dry weight of 3844 eggs was 

equivalent to 65.6% of the dry body weight of a 129 mm female 

at the beginning of the spawning period. The close agreement 

between the decline in body weight and the standing stock of 

oocytes during the spawning period indicates that the production 

of eggs is largely, if not entirely, fi nanced by the conversion of tis-

sue to eggs.

As the fi shery for L. opalescens occurs only on their spawning 

grounds, and market squid die after completing all spawning (all 

bouts of egg depositions), it is possible to calculate the fraction of 

the potential fecundity that escapes the fi shery. To do this we used 

an indirect method to compute the mean fecundity in the catch 

and then subtracted this average total fecundity from the esti-

mated, average potential fecundity. These calculations indicate 

that, during the period December 1998 through December 1999, 

32.6% of the reproductive potential of the catch escaped capture. 

This indicates that it may be practical to use escapement fecundity 

as a way to monitor the California fi shery for L. opalescens.

INTRODUCTION

Market squid, Loligo opalescens, is the most valuable fi sh-

ery resource in California waters and is monitored under 

the Coastal Pelagics Species Fishery Management Plan of 

the Pacifi c Fishery Management Council. L. opalescens off 

the California coast is short lived (Butler et al. 1999) and 

may die after spawning (McGowan 1954; Fields 1965). 

This population is entirely dependent upon the reproduc-

tive output of the preceding generation. Thus, the poten-

tial and maximum lifetime fecundity of L. opalescens are 

critical life history traits and fecundity must be known to 

estimate the biomass using either egg deposition or larval 

production methods (Hunter and Lo 1997). 

Traditional squid fecundity methods assume that counts 

of the standing stock of oocytes in the ovary and/or ova 

in the oviduct of animals taken on the spawning grounds 

is equivalent to the lifetime fecundity of the animals. As 

Laptikhovsky (2000) postulated, such estimates will be 

biased if the females selected for fecundity estimates 

spawned some eggs prior to capture, if some of the 

oocytes remain in the ovary after the female dies, or if 

some of the standing stock of oocytes is lost due to atresia. 

The fi rst analyses of L. opalescens fecundity taking such 

biases into account and an evaluation of the use of fecun-

dity as a tool to examine egg deposition, mortality, and to 

monitor egg escapement from the fi shery, were recently 

completed (Macewicz et al. MS). Our objectives here are 

to present information on maturity, spawning and age, 

and to review fecundity of L. opalescens. We will present 

the following aspects of L. opalescens fecundity: poten-

tial, the standing stock of oocytes of all development 

stages in the ovary just prior to ovulation of the fi rst batch 
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of mature oocytes into the oviduct; batch, the number of 

mature oocytes (stage VI of Knipe and Beeman 1978) in 

the ovary that are ready to ovulate; minimum residual, 

the minimum standing stock of all oocytes that might 

be expected to remain in the ovary at death; maximum 

lifetime, the maximum number of eggs a female might 

be expected to deposit in a lifetime equivalent to the 

potential less the minimum residual; oviduct fecundity, 

the number of ova (ovulated mature oocytes) present in 

the oviduct; and total fecundity, the sum of the standing 

stock of oocytes in the ovary and the standing stock of ova 

in the oviduct present in a female regardless of when she 

is sampled. 

METHODS

L. opalescens, were collected jointly by California 

Department of Fish & Game (CDF&G) and National 

Marine Fisheries Service (NMFS) in 1998 (Figure 1). 

Female Organs Character Grade

Nidamental gland     length millimeters

Accessory nidamental gland
     

 color 0=clear, 1=whitish, 2= pink, 3=peach, 
4=reddish-orange

Oviduct number of large clear ova 1=none,  2=1-20, 3=21-200, 4= >200 

Ovary number of large clear oocytes 1=none,  2=1-20, 3=21-200, 4= >200

Ovary
     

number of opaque or white 
oocytes

1=none,  2=1-20, 3=21-200, 4= >200

Male Organs Character Grade

Testis length and width  millimeters

Spermatophoric (Needham’s) sac     number of spermatophores 1=none, 2=1-20, 3=21-100, 4= >100

Terminal spermatophoric duct number of spermatophores 1=none, 2=a few, 3=some, 4=many

Table 1. Classifi cation system for the gross anatomical characteristics of the reproductive system of female and male market squid, 
Loligo opalescens.

Figure 1. Female Loligo opalescens collection locations for two joint research cruises during 1998 by California Department of Fish & Game 
(CDF&G) and National Marine Fisheries Service (NMFS) and location of three immature females collected in two trawls (solid triangle) during 
February 2000 (CDF&G).
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Immediately after capture, sex, dorsal mantle length 

(mm), whole body weight (g), and characteristics of the 

reproductive systems (Table 1) of each individual were 

recorded. A standard size disc of tissue was cut out of the 

mantle and frozen, and later dried. Statoliths were dried 

and aged following Butler et al. (1999). The reproductive 

organs that were preserved in the fi eld in 10% formalin 

were weighed. The ovaries from 135 female L. opalescens 

collected in January and 117 females from December were 

analyzed histologically (Figure 2) to determine maturity 

and spawning condition (Table 2).

All oocytes in weighed ovarian tissue samples were macro-

scopically identifi ed (Figure 3) and counted for 98 females 

(37 from January and 57 from December 1998, 4 from 

2000). Mean number of oocytes in the ovary was estimated 

using the gravimetric method (Hunter et al. 1985, 1992). 

The diameter of the major axis (D, in mm) of the smallest 

REPRODUCTIVE STATE HISTOLOGICAL CHARACTERISTICS

IMMATURE Ovary contains only unyolked oocytes; oocyte development ranged 
from stages I (oogonia) to IV(follicular invagination oocyte)

MATURE PREOVULATORY No postovulatory follicles are present. Ovaries must contain oocytes 
with yolk (stages V-VI, yolking begins about 1.1 mm in size); ovary 
usually also contains unyolked oocytes.

SPAWNING MATURE Ovary contains postovulatory follicles of any age indicating that the 
female has ovulated; degree of degeneration of postovulatory follicles 
varies from none to extensive; the female is considered to be “spawn-
ing”. Oocyte development stages III-VI are often present but stages 
Ic-II are rare (late stage Ic oocytes were present in 2% of the ovaries) 
and the earliest stages Ia and Ib are absent.

Table 2.  Defi nition of three groups of female maturity and spawning based on the histology of their ovaries (numerical stages from Knipe and 
Beeman, 1978).

Figure 2. Histological 
H&E stained slide of 

the ovary of a mature 
spawning female 

L. opalescens.
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Figure 3. Whole L. opalescens 
oocytes as viewed under a 
dissection microscope used 
for counting and classifying 
oocytes.

Figure 4. Oocyte size distri-
bution of six female market 
squid, Loligo opalescens. 
Dorsal mantle length (mm), 
body weight (g), the total 
number of oocytes in the 
ovary, the number of ova, and  
the mantle condition index 
(C, mg/mg2) are indicated for 
each specimen. Female A is 
immature. Females B and C 
are considered to be mature-
preovulatory because neither 
has postovulatory follicles 
(POFs) in her ovary nor ova in 
her oviduct. While female B 
has begun yolking its oocytes, 
female C has well-yolked 
oocytes and is close to her fi rst 
ovulation. Females D and F 
are mature-spawning females 
and their ovaries contained 
postovulatory follicles. Female 
F was caught by a scuba diver 
and appeared to be dying.
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oocyte was measured. The number of ova in the oviduct was 

also counted either directly (usually when N was less than 

300) or the mean estimated using the gravimetric method. 

Finally, all the oocytes in one tissue sample were measured 

for six females and whole-ovary, oocyte frequency distri-

butions were estimated (Figure 4); for this work we used a 

video coordinate digitizer linked by a NTSC video camera to 

a dissection microscope with a resolution in vertical lines of 

5µm and of 7.69µm in horizontal lines. 

In addition, samples were routinely taken from the landed 

squid catch by CDF&G port samplers. Length, weight, and 

reproductive characteristics were recorded and mantle 

sample discs were collected and dried for 1275 mature 

female squid caught by the fi shery December 1998 to 

December 1999 in the southern Californian Bight. We 

selected 60 of these females and used the gravimetric 

method to directly estimate fecundity (number of oocytes) 

of their ovaries while the number of ova in the oviducts 

was calculated indirectly from their oviduct weight using 

the linear equation developed from the research survey 

females (Y = 245W
oviduct

, pseudo r2 = 0.98).
 

RESULTS

Gross anatomical and aging  

We found that the gross anatomical characterization could 

distinguish immature from mature females by the absence 

of large clear oocytes in the ovary and the absence of large 

clear ova in the oviduct, but mature females could only be 

separated into preovulatory or spawning categories with 

analysis of ovarian histology slides. Therefore numerous 

maturity stages are not necessary. Although nidamental 

gland length (NGL) showed a change from immature to 

mature, the mature females could not be further separated 

using this character (Figure 5) and we do not recommend 

measuring NGL since presence of large clear oocytes or ova 

is quicker in identifying mature females. Immature female 

market squid are generally smaller and younger than 

mature females. Age of mature females is highly variable 

per length and mature-preovulatory females are scattered 

among the size classes of mature-spawning females, indi-

cating that fecundity may not be age specifi c (Figure 6).

Batch fecundity  

Although spawning females had postovulatory follicles of 

distinctly different stages, indicating that ovulation is not 

a continuous process but are events separated by enough 

time to produce the distinct stages of degeneration, batches 

of mature oocytes are not spawned as soon as they are 

ovulated. No evidence exists for the production of ova in 

large batches: 1) fl at oocyte distribution in spawning squid 

(Figure 4D, E, F); 2) ovaries had small batches of mature 

oocytes (range 5-246 oocytes per batch, mean of 50); and 3) 

maximum batch in the ovary was never close to the maxi-

mum (1726) ova in the oviduct. Ova may build up in the 

oviduct as the result of a series of waves of ovulations since 

spawning females with 900 or more ova in their oviduct 

had, in every case, three or more different stages of post-

ovulatory follicles in their ovaries (Table 3). Hence, batch 

fecundity is not useful in estimating daily egg deposition in 

L. opalescens.

Potential fecundity 

The immature ovary has a narrow size range of unyolked 

oocytes but as oocyte maturation proceeds, D (smallest 

oocyte size) increases and the total numbers of oocytes of all 

sizes decline markedly after the onset of spawning (Figures 

4 and 7). This supports the conclusions of Knipe and 

Figure 5. Nidamental gland length as a function of dorsal mantle 
length for each female Loligo opalescens (N=255) sampled during 
research surveys. Reproductive state of females identifi ed by symbols.

Figure 6. Age from daily rings on statoliths as a function of dorsal 
mantle length for each female Loligo opalescens (N=129) sampled 
during research surveys. Reproductive state of females identifi ed by 
symbols.
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Number of Eggs 
in the

Oviduct

Number 
of 

Females

Percentage of 
Females

 1- 2 ages 
POF

≥3 ages 
POF

 0 1 100  0

  1 - 300 36  22  78

 301 - 600 20 35 65

 601 - 900 10 20 80

 901 - 1200 7 0 100

1201 - 1500 2 0 100

1501 - 1800 2 0 100

Table 3. Percentage of spawning female market squid classed by 
the number of eggs in their oviducts and by the number of ages of 
postovulatory follicles (POF) in their ovaries.

Figure 7. The number of oocytes in ovaries of 98 Loligo opalescens 
as a function of dorsal mantle length (A), the diameter of the major 
axis of the smallest oocyte (B), and mantle condition index (the dry 
weight per surface area of a mantle tissue disc, C). Line in A expresses 
potential fecundity as a function of dorsal mantle length (E

P
 = 29.8L) 

for the 13 mature-pre-ovulatory females. 

Beeman (1978) and our own histological analysis that new 

oocytes (primary oogonia, stage I) are not recruited during 

the spawning period, and therefore supports the notion 

of a fi xed potential fecundity in L. opalescens. Ovaries of 

immature females contain an excess of oocytes, some of 

which undergo atresia. Potential fecundity (E
P
) can be esti-

mated only by using mature females prior to fi rst ovulation. 

Classifi cation of mature-preovulatory females is certain 

only with histology to ensure absence of postovulatory fol-

licles. Result of simple regression of dorsal mantle length (L 

in mm) on the number of oocytes from 13 mature-preovula-

tory females (Figure 7) was E
P
 = 29.8L with a pseudo r2 of 

0.92. A 129 mm mature female has a potential fecundity of 

3844 (SE 317) oocytes.

Residual fecundity  

Few if any L. opalescens live to realize their full potential 

fecundity. Knipe and Beeman (1978) indicated “spawned 

out”, dying, or dead had some oocytes remaining in their 

ovaries when examined histologically. During the present 

study divers collected a dying female with 1487 oocytes 

remaining in her ovary (Figures 4F, 7). Mantle disc dry 

weight in milligrams per square millimeter of disc surface 

area was used as a crude index of mantle condition (C) of 

mature females. Early in the spawning period, when C 

is decreasing from 0.8 to 0.6 mg/mm2 (Figure 7C), the 

number of oocytes in the ovary declines rapidly but later on 

the number of oocytes declines more gradually. To provide 

quantitative estimates of the rate of decline of fecundity 

through the spawning period we fi tted a nonlinear model to 

the fecundity data of 75 mature-spawning females from our 

research cruises (Figure 8). We assumed that a female squid 

meeting extreme conditions, with the most advanced ovary 

(D=0.771) and the thinnest mantle (C=0.323) observed, 

would not spawn again and a female of 129 mm L may have 

a residual fecundity (E
R
) of 834 oocytes (c.v. = 0.12).

Maximum lifetime fecundity  

A 129 mm female L. opalescens might be expected to release 

a maximum of about 3010 eggs (E
P
-E

R
 = 3844-834) in her 

lifetime: about 78% of her E
P
. However, very few females 

would be expected to realize 78% of their potential since 

this maximum is based on extreme values for both mantle 

condition and ovarian maturation. In fact in the overall 

spawning population (Table 4), only 1.5% of the females 

had C≤0.349 mg/mm2. 

Direct estimation of fecundity of 
60 females from landed catch 

Ovaries from females landed by the squid fi shery are not 

useable for fi ne-scale histological analysis to determine 

preovulatory females. Since the 13 mature-preovulatory 

females had a mean C of 0.73 mg/mm2 (2SE was ± 0.02), 
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we used values of C ≥0.7 mg/mm2 to identify 22 of the 60 

females as being close to the preovulatory state. Indeed 

the mean total fecundity (3890 oocytes and ova) for the 22 

females was within 5% of the computed potential fecundity 

(4083) based on their mean length (137mm). This mean 

is a minimum value because some of the ova in oviducts 

may have already been deposited in egg capsules on the 

spawning grounds. Two additional classes were arbitrarily 

set using values of C ≤0.49 mg/mm2 and C = 0.5-0.69 mg/

mm2. We used fecundity data for these 60 females with the 

research survey data for subsequent analyses.

Endogenous support of oocyte maturation 

The oocyte maturation and egg deposition of the potential 

fecundity (3844) for a 129 mm female would require 65.6% 

(6.8/10.37 x 100) of her preovulatory dry-body weight; 

calculations are 6.8g = 3844 x 0.00177 (the dry weight of a 

squid egg including its portion of the capsule) and 10.37g = 

0.24 (conversion factor from wet to dry mantle disc weight) 

x 43.2g (preovulatory wet-body weight estimated from the 

relation of mantle length and body weight for immature 

and mature-preovulatory females of W
W

 =0.000051L2.8086). 

If we convert the decline in body weight loss from release 

of eggs to proportional changes in C (starting at C= 0.798, 

the mean for values of C ≥0.7), we fi nd that the hypothetical 

line follows the general trend in the decline of total fecun-

dity with C (Figure 9) indicating that the production of eggs 

could be largely, if not entirely, fi nanced by conversion 

of mantle tissue to eggs, although some feeding has been 

observed on the spawning ground (Butler, pers. comm.).

Average total fecundity and the fraction of 
potential fecundity released before capture 

The total fecundity (E
YD

, total number of oocytes and ova 

present inside the female) of those sampled from landed 

fi shery catches can give us fecundity remaining in the 

catch. The estimated average total fecundity for the stock 

caught and sampled during December 1998-1999 is about 

2599 oocytes and ova which is about 0.674 of the potential 

fecundity (3859) of the average size female taken in the 

fi shery (129.5 mm dorsal mantle length). This estimate 

Mantle Condition 
Index 

(mg/mm2)

Mature Females
Number  

Percentage 

0.263 - 0.299 4  0.3

0.300 - 0.349 15  1.2

0.350 - 0.399 29  2.3

0.400 - 0.449 54  4.2

0.450 - 0.499 91  7.1

0.500 - 0.549 128 10.0

0.550 - 0.599 207 16.2

0.600 - 0.649 210 16.5

0.650 - 0.699 216 16.9

0.700 - 0.749 137 10.7

0.750 - 0.799 94  7.4

0.800 - 0.849 53  4.2

0.850 - 0.899 18  1.4

0.900 - 0.949 10  0.8

0.950 - 0.999 6 0.5

1.000 - 1.043 3 0.2

Table 4.  Distribution of mantle condition index for 1275 mature 
female L. opalescens sampled from the landed catch during 
December 1998 to December 1999. 

Figure 8. Changes in the standing stock of oocytes predicted by the 
equation when the major axis of smallest oocyte (D) is varied and 
mantle condition index (C) held constant (upper panel), and when C 
is varied and D held constant (lower panel). Major axis size of oocyte 
when yolking begins and when ovulation begins is also indicated, 
as is the maximum observed D and minimum observed C, respec-
tively. Substitution of the latter two values into the equation yields 
the standing stock of oocytes of females close to the end of their 
reproductive activity, and is considered to be a minimum estimate 
of residual fecundity.
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was calculated by weighting our combined data (Table 5) 

of mean total fecundity by the frequency of C observed in 

the 1275 females sampled from the catch (Table 4) during 

1998-1999. Therefore the average number of eggs released 

was 1260 (E
P
 - E

YD
 = 3859-2599), equivalent to 0.326 of the 

average potential fecundity escaping capture. 

Proxies for measuring fecundity of the catch 

We investigated three methods for indirectly estimating 

E
YD

 of mature females caught and landed by the fi shery, 

because directly estimating oocytes and ova is not practi-

cal as L. opalescens spawn year round. The best method 

(pseudo r2 =0.6) used C and G (gonad weight: ovary and ovi-

duct weighed together), as predictors: E
YD

=378e(2.33C+0.2447G-

0.24CG). Another method used C and L to predict standing 

stock of oocytes (E
Y
=220.453e(1.99C + 0.0079L)) but it explained 

only 33% of the variability and an estimate of the number 

of ova remaining in the oviduct would be needed to obtain 

the total sum of oocytes and ova remaining in the female. A 

third relationship used only C to predict the total stock of 

oocytes and ova: E
YD

 = 728.82e(1.95C) but was less precise (r2 

= 0.42) than using both G and C. 

Figure 9. Standing stock of oocytes and ova as a function of 
mantle condition index for 60 mature females taken in the fi sh-
ery (triangles) and 87 mature females taken in research surveys 
(circles). The hypothetical line indicates the expected relation 
if losses in body weight were equivalent to the weight of the 
spawn released. Line is computed for a 129 mm female where 
the starting point is her potential fecundity of 3844 oocytes and 
a mantle condition index (C) of 0.798, and the ending point is 0 
eggs and C of 0.275 mg/mm2.

Mantle 
Condition 

Index
(mg/mm2)

Number 
of 

Spawning 
Females

Mean Fecundity 

(SE)

Dorsal 
Mantle 
Length
(mm)

Mean 
Potential 

Fecundity a

E
P
 

(SE)

Number 
of Eggs 

Deposited 

E
SP

 = E
P
 -E

YD
 

Weighting
Factors

(Table 4)

Class
Oocytes in 
ovary (E

Y
)

Ova in ovi-
duct (E

D
)

Total 
(E

YD
)

Mean

   ≤0.499 31 1212  (93)  207  (40) 1419 (100) 133 (2.08) 3954 (384) 2535 0.151

0.500-
0.699 70 2008  (84)  437  (49) 2496 (100) 128 (1.20) 3813 (340) 1317 0.597

 ≥0.700 34 2571 (202) 1073 (109) 3657 (210) 135 (2.37) 4020 (385) 363 0.252

0.323-
0.951 135 1967  (83) 544  (47) 2541 (102) 131 (1.01) 3897 (336) 1356 

2599b 129.5 3859 (320) 1260c 

a Potential fecundity estimated by: E
P
 = 29.8L , where L = dorsal mantle length in millimeters 

b Product of population E
P
 and weighted average of the fraction of potential fecundity remaining in spawning females): 

3859 x [(1419/3954 x 0.151) + (2496/3813 x 0.597) + (3657/4020 x 0.252)] = 2599; or the population E
P
 less E

SP(weighted)
 which is 

3859-1260 

c Weighted average of the number of eggs deposited [(2535 x 0.151) + (1317 x 0.597) + (363 x 0.252)]

Table 5. The mean fecundity for various classes of mantle condition for spawning Loligo opalescens and the grand mean weighted by the frequency 
of mantle condition classes in fi shery samples 1998-1999.
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DISCUSSION 

Estimation of the egg deposition rate and mortality of adult 

market squid on the spawning grounds are important life 

table parameters that must be considered to calculate the 

proportion of potential fecundity escaping the fi shery. 

Neither mortality nor egg deposition rates have been 

measured directly. We are investigating indirect sources 

of information to help delimit the general domain of these 

variables. Additionally, the proportion of immature and 

mature- preovulatory females in the catch should be moni-

tored because if either increases dramatically then release 

of eggs may drop to a level of concern. We think estimation 

of fecundity of the catch is important in monitoring the fi sh-

ery and egg escapement.
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ABSTRACT

Some aspects of estimating proportions mature are shown using 

North East Arctic haddock (Melanogrammus aeglefi nus L.) as 

an example. Data from the Norwegian Barents Sea bottom trawl 

surveys in February from 1989 through 2001 are used together 

with data from an acoustic survey off Lofoten in the end of March. 

Proportions mature at age differ when comparing proportions of 

numbers with proportions of biomass. Observed proportions of 

female spawners in the total spawning stock are also varying. The 

overall picture is further confused by different yearclasses having 

possible differences in their geographical distribution and migra-

tory patterns. 

INTRODUCTION

Haddock is the second most important of the commercially 

exploited groundfi sh species in the Barents Sea. In the 

years covered by the analyses presented in this paper, land-

ings have ranged from 26 000 tons in 1990 to a high of 173 

000 tons in 1996. Previous catch statistics show an all time 

high of 322 000 tons landed in 1973.

Previous studies have shown large fl uctuations in matu-

rity at length and/or maturity at age somehow connected 

to the large variations in year class strength (Templeman 

et al., 1978; Beacham, 1983; Tormosova, 1983; Kovtsova, 

1993; Korsbrekke, 1999). Large fl uctuations in recruitment 

have also led to large fl uctuations in spawning stock size. 

The main spawning areas are on the continental slopes 

in the western part of the Barents Sea and as far south as 

Røstbanken and spawning takes place from the end of 

March, but mostly towards the end of April (Solemdal et al., 

1989; Solemdal et al., 1997).

Estimating the spawning biomass (or the spawning poten-

tial) of any commercially exploited stock is considered 

important for assessment purposes. Traditional estima-

tion uses observed fractions, but these can contain so much 

noise that a modelled maturity ogive (smoothed ogive) will 

be preferred.

MATERIAL AND METHODS

The Barents Sea survey

Data from the Norwegian Barents Sea bottom trawl survey 

collected from 1989 to 2001 are used in this study. The 

survey is a combined acoustic and bottom trawl survey for 

demersal fi sh and is conducted annually from the end of 

January to the beginning of March. The main aim of the 

survey is to map the spatial distribution and obtain indices 

of abundance for the most important commercially exploit-

ed species in the Barents Sea. The target species are cod 

(Gadus morhua), haddock, golden redfi sh (Sebastes mari-

nus), beaked redfi sh (Sebastes mentella) and Greenland 

halibut (Reinhardtius hippoglossoides). The survey area 

consists of 23 strata and these are grouped into 7 subareas 

(A, B, C, D, D’, E and S). The strata system together with the 

bottom trawl stations taken in 1996 are shown in Figure 1.

The Lofoten survey

Data from the acoustic survey off Lofoten collected from 

1989 to 2001 are used in this study. This acoustic survey is 

mainly targeting the spawning stock of North East Arctic 

cod. The survey area is the continental shelf from around 

70°N south to and including Røstbanken and the Vestfjord 

area from the Lofoten islands and down to approximately 

200 meters depth. This survey consists of equidistant paral-
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lel acoustic transects with bottom trawl stations (and some 

pelagic trawl station) to estimate population composition 

and parameters. Observations indicate that most of the 

haddock in the survey area are in the echosounder dead-

zone. Trawl stations are therefore used to produce tradi-

tional swept area estimates of abundance. Each station is 

treated as a random sample (this will not hold for cod, but 

could be a fair assumption for haddock). The survey tracks 

(1999) are shown in Figure 2. A further description of the 

survey can be found in Korsbrekke (1997).

Determination of maturity stages 
and number of spawnings

The macroscopic determination of maturity stages used in 

both surveys is given in the following table:

Samples with stages 2, 3 and 4 were treated as sexually 

mature fi sh while samples classifi ed as uncertain (stage 5) 

were deleted from further analysis. All samples classifi ed 

as maturing (stage 2) were clearly going to spawn that year. 

Only a limited number of spent (stage 4) were found and 

mainly in the Lofoten survey.

During age reading of otoliths the occurrence of narrow 

zones was assumed to be signs of previous spawning. No 

further investigations were performed to validate this.

Swept area estimation and age-length keys

The bottom trawl stations taken during the Lofoten survey 

are assumed to represent fairly random stations relatively 

to the haddock occurring in the survey area. Swept area 

Stage Description

1 Immature, gonads are small, no visible eggs or milt

2 Maturing, gonads are larger in volume, eggs or milt are visible but not running

3 Spawning, running gonads, light pressure on the abdomen will release eggs or milt

4
Spent, gonads small, loose and/or bloody, regeneration starting, gonads somewhat larger and fuller 
than stage 1, no visible eggs or milt

5 Uncertain, used only when diffi cult to distinguish between stages 1 and 4

Figure 1.The Barents Sea survey with strata system and trawl stations (1996 survey).
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Figure 2. Survey tracks from the Lofoten survey (1999).
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estimates of abundance are calculated in the same way as 

for the Barents Sea survey. Length-based abundance indi-

ces are estimated in 5-cm length groups as

      
(1)

where

  is the abundance index, stratum p, and for length 

group l

  is the area of stratum p

  is the number of stations in stratum p and

  is the single station point observation of fi sh density.

Details on the calculation of point observations of density 

including the use of a length-dependent fi shing width of the 

trawl can be found in Jakobsen et al. (1997). Length-strati-

fi ed biological samples are given a weighting factor:

      
(2)

where

  is the number of biological (age) samples in stratum p 

and length group l. 

Traditional age-length keys are extended to subarea-based 

age-sex-maturity-length keys using the following propor-

tion:

      
(3)

where

     is the weighted proportion of age a, maturity m and 

sex s within length group l (for the subarea in ques-

tion).

             is the number of biological samples in stratum p 

of age a, maturity m in length group l.

Indices of abundance are calculated by multiplying the 

proper proportion with Lp,l and then sum up over all length 

groups. Population paramters are calculated as weighted 

means. This can be done at different levels and not only 

at age. It is quite straightforward to calculate for example 

mean length at age and sex and also mean weight at age, 

sex and maturity. Such increased resolution in population 

parameters can be used in future studies to further improve 

the goodness of maturity models. Such studies are also 

likely to gain more knowledge of the underlying processes 

leading up to variations in maturation.

Estimation of maturity ogives

Proportions sexually mature are modelled as a response 

probability using the logit link function (Nelder and 

Wedderburn, 1972):

      
(4)

Since the different age groups have a different maturation 

pattern relative to length (Korsbrekke, 1999) a model with 

different age-dependent intercepts was used:

      
(5)

3 ≤ i ≤ 8 being the different age groups analysed in this 

study. There was no indication in the material of any speci-

men being sexually mature at the age of 2 and no imma-

ture fi sh were found at age 9 or older. The only continous 

explanatory variable used was weighted mean length at 

age using the combined data from both surveys. Thus, the 

model can the be rewritten as:

      
(6)

The regression parameters were estimated using weighted 

maximum likelihood. Each observation was given a weight 

as given in Equation (2) or the same weights multiplied with 

biomass. Thus, the weighting factors are equal to the swept 

area estimates (abundance indices) or biomass indices.

A number of four different models were fi tted to the data. 

Model 1 and 2 are using the proportion of spawners as 

the dependent variable while model 3 and 4 are using the 

proportion of female spawners. Model 1 and 3 are using 

swept area estimates of numbers as weighting factors while 

model 2 and 4 are using swept area estimates of biomass as 

weighting factors.

RESULTS

Mean length at age and differences in abundance

Mean length at age (and cohort) from both surveys is shown 

in Figure 3. Most age groups seem to peak at a maximum 

length at around 1992 or 1993. The younger age groups 
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have a higher length in the Lofoten survey, but the growth 

rates appear to be higher in the Barents Sea.

The higher growth rate observed in the Barents Sea can also 

be seen in Figure 4 (left panel) where the arithmetic mean 

of yearly differences in mean lengths is shown. There is an 

overall tendency that the mean length at age 3 is more than 

4 cm higher in Lofoten than in the Barents Sea. This differ-

ence is reduced with age and while age groups 7 are of about 

the same length the mean length in age group 8 is higher in 

the Barents Sea than in Lofoten. 

Repeat spawners shows reduced growth as compared to 

the immature part of the population. Figure 4 (right panel) 

illustrates the difference in mean number of spawnings at 

age (spawning checks) for the two areas. Differences in 

observed length at age is result of different growth rates 

and possible migrations between the areas. The arithmetic 

mean of the difference between the (log) abundance indices 

from the two areas is shown in Figure 5. The Barents Sea 

indices are at times many hundred times higher that the 

Lofoten indices (especially at age 3 or 4), but sometimes are 

the indices higher in Lofoten (7 and 8 year olds). 

Modelling proportions sexually mature

The above outlined 4 different models were applied to the 

combined datasets. The results are summarized in the fol-

lowing table:

Figure 3. Mean length at age (3-8) observed in the Barents Sea survey (left) and the Lofoten survey (right).

Figure 4. Difference in mean lengths observed in the Barents Sea survey and in the Lofoten survey (left). Mean number of spawnings observed 
in both surveys (by sex) are shown in the right panel. Vertical lines connect ± 2 SD. 
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The best fi t was achieved when modelling proportions of 

numbers, while the modelling of female spawners gave a 

better fi t than modelling all spawners. Model 4 is visual-

ized in Figure 6A where the lines connect minimum and 

maximum observed length at age. Age groups 3-5 shows 

a nice fi t to the observed proportions of female spawning 

biomass, while age groups 6-8 have a reduced fi t. Predicted 

and observed proportions of female spawning biomass at 

ages 6-8 are compared in Figure 6B-D. The predicted pro-

portions by age and year are shown on the left hand side of 

Figure 7 and compared with the proportions used by the 

Arctic Fisheries Working Group (AFWG) on the right hand 

side. Applying these proportions on stock numbers at age 

yields the results shown in Figure 8.

DISCUSSION

Length at age shows clear and similar trends in both areas 

(Figure 3). The variation is larger in the Barents Sea, and 

both surveys demonstrate clear cohort effects in addition 

to year effects. The cohorts 1991 and 1992 show reduced 

growth relative to most other cohorts and this should be 

viewed in relation to possible density dependent effects 

since 1989, 1990 and 1991 are the three largest yearclasses 

observed in this material. Figure 4 (left panel) shows that 

there is an overall tendency for younger fi sh to be larger in 

the Lofoten area than in the Barents Sea; 3 and 4 year olds 

are on average more than 4 cm longer in the Lofoten area, 

while 7 year olds and older are of similar length and pos-

sibly longer in the Barents Sea. The observed differences in 

length at age is a consequence of at least two factors:

1. The true underlying growth rates are likely to be 

different in the two areas due to different climatic 

conditions and prey availability. This would imply 

earlier maturation in the Lofoten area (higher growth 

of immature fi sh) and reduced growth after maturity 

due to the divertion of energy to reproduction.

2. Figure 5 clearly demonstrates a migration with age 

towards the Lofoten area and if this (possibly spawn-

ing) migration is size dependent the largest individual 

in the youngest migrating age groups will show up in 

that area and thus affect the observed length at age. The 

migratory trend is very clear for all cohorts except for 

the weakest 1986 yearclass. The strongest yearclasses 

in this material are the 1989-1991 yearclasses and they 

also show a larger difference between the two areas 

than weaker yearclasses. This points to a reduced or 

delayed migration for these yearclasses and, as point-

Model 
no.

Weigthing 
factor

1 0.2050 -11.21 -10.55 -10.26 -9.83 -8.16 -5.95 Numbers 0.7713

2 0.1859 -10.13 -9.48 -9.10 -8.70 -6.98 -5.27 Biomass 0.5948

3 0.1766 -11.79 -10.70 -10.12 -9.68 -9.47 -10.11 Numbers 0.8686

4 0.1542 -10.45 -9.42 -8.73 -8.35 -8.07 -8.72 Biomass 0.7049

Figure 5. Ratio
Barents Sea fi g
divided by Lofo
fi gures, of log a
dance (indices
by cohort
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Figure 6. A) Predicting the proportion female spawning biomass; visualization of model 4, lines connect minimum and maximum observed 
length at age. B), C) and D) Predicted proportion female biomass (solid line) compared with observed proportions (dotted line) for age groups 6, 7 
and 8, respectively.

Figure 7. Predicted proportions female spawning biomass by age (solid line) and cohort (dotted line) (left panel) compared with proportion 
spawners used by AFWG (right panel).
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ed out earlier, maybe due to lower growth. Figure 5 

quantifi es the change in relative abundance over time 

and it is clear that the migration of haddock from the 

Barents Sea to the west and south will be a dominating 

factor. 

The spawners observed in the Lofoten area have a higher 

number of previous spawnings than spawners observed in 

the Barents Sea (Figure 4, right panel). Haddock is known 

to spawn along the continental edge from Lofoten to Bear 

Island, but it is not known how much the preferred spawn-

ing ground may change between years or if some yearclasses 

are spawning on different spawning grounds than others.

The mean weight of spawners (at age) is different from 

mean weight at age in the population. This difference is 

largest for the youngest fi sh in the spawning stock (ages 

3-5) and could possibly lead to a large bias in the spawning 

stock biomass calculation for a large yearclass. The four 

different models presented tabled above illustrate clearly 

the difference between modelling proportion spawners in 

numbers and proportion spawners as proportion of total 

biomass. The biomass weighted models show a poorer fi t 

than the others. This is to be expected due to the inclusion 

of one additional (stochastic) variable, namely the average 

weight at age. This would increase the level of “noise” and 

must be a part of the explanation for the reduced goodness 

of fi t. 

Previous work (Korsbrekke, 1999) has shown that males 

sexually mature approximately one year earlier than 

females. This will lead to trends in female spawning stock 

biomass that are somewhat delayed relative to the total 

spawning stock biomass. This means that the use of female 

spawning stock biomass as an indicator of spawning poten-

tial yields a different perception than the use of traditional 

spawning stock biomass. This is partly demonstrated in 

Figure 8 where the female spawning stock biomass has a 

larger dynamic range and is also suggesting differences 

in trends. This could be of importance when the stock is 

assessed. Replacing the estimated spawning stock biomass 

with an other indicator of spawning potential will lead to 

revisions of limit reference points and could also give a dif-

ferent perception of the current stock status. 

Observed and predicted proportion female spawning bio-

mass is at times very high for agegroups 6 to 8. This problem 

can be linked to strong intra haul correlation, but could also 

point at a substantial and possibly varying spawning mor-

tality for recruit male spawners. Future work should look 

into this problem in further details.
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INTRODUCTION

Some recent reports suggest that reproductive traits of 

spawning fi sh likely affect recruitment dynamics (Kjesbu 

et al., 1996; Marteinsdottir and Thorarinsson, 1998; Slotte 

and Fiksen, 2000). In addition, spawning stock biomass 

(SSB) is not necessarily proportional to population egg 

production because relative fecundity (fecundity/body 

weight) may be dependent on the age composition and/or 

nutritional condition of spawning fi sh (Hunter et al., 1985; 

Trippel et al., 1997; Kjesbu et al., 1998,). Marshall et al. 

(1998) also showed that total egg production is a better 

index of recruitment potential than SSB for Atlantic cod, 

Gadus morhua, indicating the importance of accurate esti-

mation of egg production to better understand the spawn-

ing - recruitment relationship.

 

Current life history and migration patterns of Norwegian 

spring spawning (NSS) herring, Clupea harengus, are as 

follows (Fig. 1). NSS herring spawn once a year from late 

February to early April on stony or rocky bottom below 

250 m depth along the Norwegian coast (58 – 70 ̊ N). They 

spawn for the fi rst time in their life (recruit spawners) at an 

age of 3 – 5 years and 27 – 31.5 cm in total length (TL), after 

which (≥32 cm TL) they spawn every year (repeat spawn-

ers) (Slotte, 1999). After spawning, the fi sh feed in the 

Norwegian Sea, but migrate in September to a restricted 

coastal overwintering area within the Vestfjorden system 

(67 – 68˚N). They stay in this area until mid-January with-

out taking food, followed by spawning migration. During 

overwintering and spawning migration, body reserves 

accumulated during the previous summer feeding season 

are the only source of energy for reproduction, migration, 

and routine metabolism (Slotte, 1999).

The objectives of this contribution are to establish relation-

ships between oocyte growth (maturation cycle) and real-

ized fecundity (i.e., subtracting for atresia) and to indicate 

when and which condition indices should be measured to 

refl ect reproductive investment.

RESULTS AND DISCUSSION

Oocyte growth

Our sampling schedule (Fig. 1) almost covered the matura-

tion cycle especially for vitellogenesis because one third (15/

45) of fi sh still had oocytes in cortical alveolus stage in July 

and 18% (7/40) had hydrated oocytes in February/March. 

Monthly mean oocyte diameter (OD, 314-1390 µm) except 

for hydrated oocyte changed according to the relationship:

OD = 3.75 x ED + 402 (r2=1.00, n=5), 

where ED is elapsed days from 1 July (Kurita et al., 2003). 

As expected, oocyte volume increased to the power of three 

against diameter. Single oocyte weight also grew to the 

power of three against diameter because it was propor-

tional to oocyte volume. Since gonad weight can be approxi-

mately expressed as a product of oocyte weight and fecun-

dity, it can be expressed as a function of oocyte diameter 

and fecundity. Therefore GSI can be expressed with oocyte 

diameter, fecundity, and somatic weight (Fig. 2). Hydrated 

oocytes or ovaries should be dealt with more carefully in the 

estimations because oocyte weight increases rapidly with 

the extent of hydration. 

Fecundity regulation by atresia 
throughout maturation cycle

Fecundity of repeat spawners, which were larger than 32 

cm TL, increased positively with body size (Kurita et al., 
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2000). When comparing fecundity of 32-34 cm fi sh, which 

was found to be independent of TL (p>0.05), fecundity 

decreased signifi cantly from 104,600 ± 19,700 (mean ± 

SD, n=24) in July to 44,700 ± 9,400 (n=23) in February/

March, i.e., to about 43 % of that in July. 

The noticed decrease in fecundity was concurrent and 

associated with seasonal changes in oocyte resorption. 

We counted only α-stage atresia as an atretic oocyte (see 

Witthames, this volume). Alpha-stage atresia of vitello-

genic oocytes was easily recognizable (Kurita et al., 2003). 

In an earlier phase of α-stage atresia, chorion was distorted 

and fragmented, but in position (Fig. 3). Follicle cells 

became enlarged and yolk granules were disintegrated. 

Chorion gradually moved into deeper layers and follicle 

cells phagocytized yolk granules, and the oocyte proper 

became smaller. When all yolk was resorbed, the term β-

atresia was, in agreement with traditional protocols, used. 

Both prevalence (P: (number of fi sh having atresia)/(total 

number of fi sh examined)) and average relative intensity 

of atresia among fi sh having atresia (Ia: geometric mean of 

relative intensity of atresia among fi sh having atresia) were 

zero in July when fi sh had just started vitellogenesis (Table 

1). In contrast active resorption of developing oocytes 

occurred in October and November, i.e., almost all fi sh had 

atresia, and average relative intensity of atresia among all 

examined fi sh (= Ia × P) reached around 4 %. Resorption 

declined in January with prevalence decreasing to 35 % 

and average relative intensity of atresia to only 0.8 %, and 

very low in February/March. Average relative intensity of 

atresia for each oocyte diameter at 50 µm intervals was high 

in October and in November (Fig. 4). Particularly, all fi sh 

with oocytes between 800 and 1000 µm had atresia and 

average relative intensity exceeded 3 %.

 

The duration of early α-stage atresia was estimated at 4.3, 

5.6, 7.3, and 6.6 days between July and October, October 

and November, November and January, and January and 

February/March, respectively (Table 2). For further infor-

mation, see Kurita et al. (2003). These are comparable to 

8 days for northern anchovy, Engraulis mordax, at 15.5 

– 16.5 °C (Hunter and Macewicz, 1985).

Condition control of reproductive investment
Fecundity for 32-34 cm fi sh in February/March varied 

from 26,200 to 63,400, and a strong condition effect was 

observed, i.e., 51% of fecundity variance was explained by 

condition factor (CF; 100 × (body weight)/TL3 : r2= 0.51, 

p<0.01, n=22; Fig. 5). Moreover, a condition effect on 

relative fecundity was observed for CF (r2= 0.18, p=0.05, 

Fig. 1. Sampling schedule for Norwegian spring-spawning herring 
from July 1998 to February/March 1999 in relation to adult life cycle. 
Stars indicate sampling points.

Table 1. Characteristics of atresia from July 1998 to Feb/Mar 1999 for Norwegian spring spawning herring of 32 - 34 cm TL (based on Kurita et al., 
2003). Refer to the text for defi nition of each characteristic

Month
Number of 

females
Prevalence (%)

Average relative intensity (%)

among fi sh with 
atresia

among all fi sh

July 51 0 0 0

October 40 98 3.9 3.8

November 47 89 4.8 4.3

January 40 35 2.2 0.8

Feb/Mar 40 10 1.7 0.2
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spawning migration
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Fig. 3. Light 
micrographs of 

(a) a normal vitel-
logenic oocyte; (b) 

an early α-stage; 
(c) a late α-stage, 
and (d) a β-stage 
atretic oocyte of 

Norwegian spring-
spawning herring. 

C, chorion; Y, yolk; 
F, follicle cell. Bars 

for (a) and (b) = 200 
µm, and for (c) and 

(d) = 100 µm.

Fig. 2.  Relationships among diameter, volume and weight of oocytes, fecundity, gonad weight (GW), somatic weight (SW: body weight – GW), gona-
dosomatic index (GSI) for Norwegian spring-spawning herring. Squares indicate hydrated oocytes.
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Table 2. Estimated duration of           -atresia for Norwegian spring-spawning herring of 32 - 34 cm TL (based on Kurita et al., 2003). 

Date
Interval

(day)
Temperature
at 20 m deep

Number
of

females

Estimated
fecundity

A
(day)

Relative intensity of atresia (%)

Duration
(day)for each 

month

average 
between 

successive 
months

20 Jul
4.2 - 11.3 24 104600 0

100 0.0045 1.92 4.3 

28 Oct
(9 - 10)a 27 66900 3.83

26 0.0073 4.04 5.6 

24 Nov
6.8 - 7.2 40 55300 4.25

52 0.0035 2.52 7.3 

15 Jan
5.8 - 6.6 29 46100 0.78

42 0.0007 0.48 6.6 

26 Feb 5.8 - 6.7 28 44700 0.17

A = coeffi cient of decrease.
a Sea surface temperature informed by fi shermen.

n=22). Relative fecundity was found to vary by a factor of 

1.3 (max/min). These variations in relative fecundity sup-

port previous results that total egg production spawned 

by populations even with the same SSB differ depending 

on fi sh condition (Óskarsson et al., 2002). Moreover, 

spawning fraction in population may differ with condition 

(Óskarsson et al., 2002). Age composition may also affect 

total egg production. Therefore, fecundity variation due to 

maternal traits should be considered in the study on popu-

lation dynamics.

Single regression analyses between gonad weight (GW) 

and condition factor (CF) for a 33-cm standardised fi sh for 

each month from July to February/March suggested that 

the condition effect on GW had occurred before November 

because the slope of CF increased from July to November, 

but then stayed constant (Fig. 6). Therefore reproductive 

investment in the current spawning season appears to be 

established according to accumulated body reserves at 

around September and October (Fig. 7). For those fi sh which 

continue feeding during spawning season and the amount 

of food intake or nutritional condition in the spawning 

season immediately infl uence their reproductive output, 

e.g., northern anchovy (Hunter and Macewicz, 1985) and 

Pacifi c anchovy, Engraulis japonica (Tsuruta and Hirose, 

1989), somatic condition in the spawning season should be 

a better index for reproductive investment. On the other 

hand, for those fi sh which stop feeding in the middle of the 

maturation cycle, and which establish the possible amount 

of reproductive investment far before spawning season, 

like NSS herring, somatic weight or body condition as an 

index of reproductive investment should be examined at a 

period just before main regulation of reproductive invest-

Fig. 4. Changes in average relative intensity of atresia among fi sh 
having atresia and prevalence of atresia against each 50-µm interval 
of oocyte diameter through maturation cycle (July 1998 – February/
March 1999) for Norwegian spring-spawning herring of 32 - 34 cm TL 
(Kurita et al., 2003).
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Fig. 6. Changes in relationships between gonad weight 
and condition factor through maturation cycle (July 1998 
– February/March 1999) for Norwegian spring-spawning 
herring of 32 - 34 cm TL .

Fig. 7. Seasonal dynamics of fatty 
acid and solids (= water and fat 
free) weight in soma and ovary 
through maturation cycle (July 

1998 – February/March 1999) for 
Norwegian spring-spawning her-

ring. Arrows (a) indicate somatic 
weight around September and 

October, arrows (b) somatic 
weight in the spawning season, 

and arrows (c) body weight in the 
spawning season.  

Fig. 5. Fecundity and relative fecundity against condition factor in 
February/March 1999 for Norwegian spring-spawning herring of 
32 - 34 cm TL.
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ment occur (arrow “a” in Fig. 7), i.e., around September 

and October for NSS herring. However, somatic weight at 

spawning (arrow “b” in Fig. 7) for NSS herring shows only 

the remainder of body reserves, following investment in 

the gonad. Although it is not clear whether body weight at 

spawning (arrow “c” in Fig. 7) is proportional to somatic 

weight around September and October (arrow “a”), CF in 

the spawning season is considered to be a useful index of 

reproductive investment.

To summarize, fecundity regulation of NSS herring can be 

expressed as follows. During summer feeding season when 

the amount of materials to be invested in reproduction has 

not yet been established, fi sh produce high quanta of small 

vitellogenic oocytes independently of condition, while in 

autumn when the possible amount of investment is estab-

lished and much more materials are needed for further 

oocyte growth, fecundity starts to be regulated depending 

on nutritional condition. Going through this active down-

regulation period, only selected oocytes can be supported 

by surplus nutrition to reach fi nal maturation and to be 

spawned.
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ABSTRACT

This paper reviews previous and present studies on the repro-

ductive characteristics of the ommastrephid squid Todarodes 

pacifi cus, including captive studies of the mating and spawning 

behavior, maturation process, fecundity and egg development, 

and fi eld surveys near the spawning grounds. These and other 

observations on the importance of seawater temperature near the 

spawning grounds on stock size are discussed. We then discuss 

the relationship between recent seasonal and annual changes in 

the inferred extent of the spawning grounds based on water tem-

peratures around Japan and review a hypothesis explaining how 

climatic regime shifts might affect the reproductive process and 

result in stock fl uctuations.

Key words: Todarodes pacifi cus, maturation, mating, 

spawning, egg production, stock fl uctuation, climate 

change

INTRODUCTION

Cephalopods generally grow fast, reproduce once and then 

die (Mangold, 1987). This life cycle can be summed up in the 

phrase “live fast and die young” (O’Dor and Wells, 1987). 

In such short-lived species, reproductive and recruitment 

success is thought to depend heavily on the physical and 

biological environments they experience throughout the 

life cycle (Lipi´ nski et al., 1998). As groundfi sh landings 

have decreased and cephalopod landings have increased 

globally (Caddy and Rodhouse, 1998), understanding how 

environmental conditions affect squid populations has 

become increasingly important. However, a major impedi-

ment to such research includes our lack of knowledge of the 

basic biology of many squid species. 

Todarodes pacifi cus (family Ommastrephidae) is a com-

mercially important squid in Japan. Annual catches in 

Japan have fl uctuated widely, with a marked increase 

occurring after the late 1980s; this increase appears to 

have been related to a climatic shift from a cool to a warm 

regime that occurred in 1988/89 (Sakurai et al., 2000, 

2002). Scientists from throughout Japan have studied the 

fi shery biology of this species (reviewed by Murata, 1990), 

but most studies of its reproduction (Ikeda et al., 1993a,b; 

Bower and Sakurai, 1996; Sakurai et al., 1996; Watanabe 

et al., 1996, Sakurai et al., 2000) and gonad development 

(Ikeda et al., 1991a,b) have been conducted at Hokkaido 

University.

This paper reviews previous and present studies on the 

reproductive characteristics of T. pacifi cus based on 

captive experiments and fi eld surveys near its spawning 

grounds. We also review a hypothesis explaining how cli-

matic regime shifts might affect the reproductive process 

and result in stock fl uctuations.

REPRODUCTIVE CHARACTERISTICS

Todarodes pacifi cus is a nerito-oceanic squid distributed in 

waters around Japan and Korea. Annual catches increased 

markedly after 1989 and have fl uctuated widely since 

the 1990s (Fig. 1). Three populations with different peak 

spawning seasons (summer, autumn and winter) migrate 

seasonally between the Sea of Japan and the Pacifi c Ocean, 

with most spawning occurring near Kyushu Island and the 

Tsushima Strait (Fig. 2, Murata, 1990). The life span has 

been estimated to be one year based on analysis of statolith 

increments (Nakamura and Sakurai, 1991; 1993).
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GONAD DEVELOPMENT

The maturation process in T. pacifi cus has been studied 

by histological observations (Takahashi and Yahata, 1973; 

Ikeda et al., 1991a,b). Takahashi and Yahata (1973) divided 

the process of oocyte maturation into eight stages from the 

oogonium production stage to the maturation and ovula-

tion stage (Takahashi and Yahata, 1973), and Ikeda et al. 

(1991a) divided female maturation into six stages based on 

histological observation of ovaries. The stage composition 

in oocytes in ovaries of maturing females shows asynchro-

nistic development (Table 1). The female maturation proc-

ess consists of two phases, and ovary and oviduct develop-

ment are correlated with nidamental-gland development. 

In the fi rst phase, ripe ova are produced in the ovary with 

rapid development of the nidamental gland, and in the next 

phase, ripe ova are transferred into the oviduct and stored 

there until spawning. 

Ikeda et al. (1991b) divided male maturation into fi ve stag-

es. Spermatozoa are produced in the testis even when the 

testis is relatively small, and the male maturation process 

consists of two phases. In the fi rst phase, spermatozoa are 

produced in the testis, and in the next phase, spermatozoa 

are transferred into the accessory gland, where they are 

packed in spermatophores and stored until mating. 

MATURITY CRITERIA

A clear defi nition of the different maturity stages is of great 

importance for fi sheries biologists, particularly for recog-

nizing spawning populations. In Illex illecebrosus (another 

ommastrephid squid), Durward et al. (1979) showed that 

the relative length of the nidamental glands is well cor-

related with clearly defi ned stages in ovary development. 

Ikeda el al. (1991a) also showed that female maturity of T. 

pacifi cus is well correlated with both the gonad somatic 

index (GSI: ovary and oviduct weight as a percentage of 

body weight) and nidamental gland index (m: a ratio of 

nidamental-gland length to mantle length). Table 2 shows 

a comparison of female maturity conditions of T. pacifi cus 

between the morphological maturity scale used by the 

Japanese Fisheries Experimental Station and the histo-

logical maturity scale described by Ikeda et al. (1991a). In 

immature squid (i.e., those in maturity stages I-III), the 

GSI is <1.0% and m is <0.21. In maturing squid, the GSI is 

Fig. 1. Annual fl uctuations in Todarodes pacifi cus catches of Korea and Japan during the 20th century. (Data derived from the Japan Sea National 
Fisheries Institute, Japan and the National Fisheries Research and Development Institute, Korea). Horizontal lines indicate interdecadal regime shifts 
in water temperature in the western North Pacifi c (Minobe, 1997). (Sakurai et al., 2002)



WORKSHOP ON MODERN APPROACHES TO ASSESS MATURITY AND FECUNDITY 107

between 1.0 and 2.6% and m is between 0.21 and 0.29. In 

mature squid, the GSI is >2.6% and m is >0.29 (Fig. 3).

In male T. pacifi cus, Ikeda et al. (1991b) showed that matu-

rity could be expressed numerically using the testis somatic 

index (TSI: testis weight as a percentage of body weight) 

and accessory gland somatic index (AGSI: accessory gland 

weight as a percentage of body weight). These numerical 

values are TSI>0.5% and AGSI>0.1% in the maturing stage, 

when there are no spermatophores and the vas deferens is 

Date    
DML*1

(mm)

Ovary
weight

(100mg)

GSI*2

 (%) 

Number      
of eggs
 exam-

ined 

Percentage of oocytes at each stages*3

EYL  LYL EYF MYF LYF  M

9 Aug. ’88 214 12 0.6 320 79.7 20.3

6 Sep. ’88 213 12 0.7     318 80.5 19.5    

20 Jul. ’88 215 14 0.7   325  70.2 27.4 2.5 

9 Aug. ’88 225 18 0.8  337 70.9 25.8 3.3

9 Aug. ’88 206 25 1.2 341 71.0 24.0 3.5 1.5

8 Jun. ’88 186 22 1.6 301 69.4 19.9 8.0 2.7
23 Aug. ’88 221 19 0.9 434 62.0 27.2 2.5 3.0 5.3

23 Aug. ’88 285 57 1.3 406 69.2 20.0 4.2 3.2 3.4
23 Aug. ’88 262 118 3.1 473 53.3 17.5 2.5 1.7 24.1 0.8

1 Sep. ’88 238 57 2.1 424 52.6 21.7 1.9 1.7 21.7 0.5

*1 DML: dorsal mantle length,
*2 GSI: gonad somatic index (ovary and oviduct weight as a percentage of body weight) 
*3 Oogenetic stage: EYL and LYL, early and late yolkless stage; EYF, MYF and LYF, early, middle and late yolk formation stage; 

M: mature stage.

Table 1. Summary of the stage composition in oocytes of Todarodes pacifi cus (Ikeda et al., 1991a)

Fig. 2. Todarodes pacifi cus spawning grounds and typical migration 
(winter and autumn spawning groups). (Murata, 1990)

white, and TSI>2.0% and AGSI>1.0% in the mature stage, 

when spermatophores are present in the spermatophore 

sac and penis (Table 3 and Fig. 4).

MATURATION, MATING AND SPAWNING IN CAPTIVITY

Since 1988, Hokkaido University scientists have conducted 

captive experiments to clarify the reproductive character-

istics of T. pacifi cus in a fi ltered, recirculating raceway tank 

(5.5 m in length, 2.5 m in width, 1.2 m in depth, and 15,000 

L in capacity) at the Marine Biological Station of Hokkaido 

Fig. 3. Relationship between the gonad weight and nidamental 
gland length during maturation in Todarodes pacifi cus. GSI, gonad 
somatic index (ovary and oviduct weight as a percentage of body 
weight). m, maturation index (the ratio of nidamental gland length 
to mantle length). Symbols indicate histological maturity; (�) early 
immature stage, ( �) late immature stage, ( �) early maturing stage, 
(�) mid maturing stage, (�) late maturing stage, (�) mature stage. 
Three solid lines show the regression lines. (Ikeda et al., 1991a)
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University (Sakurai et al., 1993). Immature squid have 

been collected from inshore waters of southern Hokkaido, 

Japan, and maintained in the tank, where they mature, 

mate and spawn. Figure 5 shows an example of a captive 

experiment conducted during 1988 (Ikeda et al., 1993a). 

Figures 6 and 7 show the progress of male and female sexual 

maturation in captive squid. At the start of the experiment, 

males were immature and maturing, and females were 

immature. Males matured earlier than females. Males 

began mating with immature females about two weeks 

after the beginning of the captive experiment and contin-

ued to do so through the end of the experiment (Fig. 6). 

Females matured two or three weeks after mating was fi rst 

observed, stored ripe ova in their oviducts, spawned, and 

then died (Fig. 7). 

During mating, a T. pacifi cus male deposits spermato-

phores on the buccal membrane of a female, and sperma-

tozoa are stored in the female’s seminal receptacles for 

several weeks until spawning (Fig. 8, Ikeda et al., 1993a,b). 

During mating, the male quickly approaches the female 

from below and grasps her around the head and mantle. 

The hectocotylus (the male’s fourth right arm) then picks 

up spermatophores and drives them into the buccal mem-

brane of the female within a few seconds (Fig. 9). 

Generally about two days before spawning, females stop 

feeding and often rest on the tank bottom (Bower and 

Table 2. Comparison of female maturity conditions of  Todarodes 
pacifi cus between morphological maturity scale that is commonly 
used in the Japanese Fisheries Experimental Station (maturity A) and 
histological maturity scale (maturity B) by Ikeda et al. (1991a)

Maturity scale A   Maturity scale B

 Immature          

(without ripe eggs)   

 I. Early immature stage

  II. Late immature stage

III. Early maturing stage

(GSI>1.0, m>0.21)

IV. Mid maturing stage

V. Late maturing stage

 Mature           

   (ripe eggs are present 

in 

the oviduct)

VI. Mature stage

(GSI>2.6, m> 0.290)

GSI: see Table 1, m: maturation index (the ratio of nidamental 

gland length to dorsal mantle length)

Table 3. Comparison of male maturity conditions of the Japanese 
common squid,Todarodes pacifi cus between morphological maturity 
scale that is commonly used in the Japanese Fisheries Experimental 
Station (maturity A) and histological maturity scale (maturity B) by 
Ikeda et al. (1991b)

TSI: testis somatic index (testis weight as a percentage of total 

body weight) 

AGSI: accessory gland somatic index (accessory gland weight 

as a percentage of total body weight)

Maturity scale A   Maturity scale B

  Immature         (with-

out spermatophores)

 I. Spermatogonial prolif-

eration stage  

II. Early maturing stage

(TSI> 0.5, AGSI> 0.1) 

III. Mid maturing stage

 Maturing         

(without spermato-

phores; 

the vas deferens 

white)

VI. Late maturing stage

Mature

(spermatophores 

are present in the 

spermatophoric sac)

V. Mature stage

(TSI> 2.0, AGSI> 1.0)

Fig. 4. Relationship between the testis weight and the accessory 
gland weight during maturation in Todarodes pacifi cus. TSI, testis 
somatic index (testis weight as a percentage of body weight). AGSI, 
accessory gland somatic index (accessory gland weight as a percent-
age of body weight). Symbols indicate histological maturity; (�) 
spermatogonial proliferation stage, (�) early maturation stage, ( �) 
mid maturation stage, (�) late maturation stage and ( �) mature 
stage.  (Ikeda et al., 1991b)
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Sakurai, 1996). While resting, their chromatophores 

fl ash rapidly over the entire body surface; this character-

istic is now known to be a sign that spawning is imminent. 

Spawning has been observed only once (Fig. 10). The 

female’s arms just prior to spawning were slightly fl at-

tened and lowered. After one minute in this posture, the 

arms opened gradually, allowing the small egg mass to be 

formed and held within the arms (Fig. 10-A). The egg mass 

expanded and was not clearly visible during the spawning 

(Fig. 10-B,C,D). Egg-mass formation resembled the swell-

ing of a balloon and lasted about seven minutes (Fig. 10-E). 

The spawning behavior was similar to that of Illex illecebro-

sus (O’Dor et al., 1982).

Fig. 5. Physical conditions and survival of Todarodes pacifi cus during 
the1988 experiments. (A) Number of live squid. Arrows indicate the 
onset of Experiment I and Experiment II. (B) Water temperature (�—�) 
and salinity (�—�) in the breeding tank. (Ikeda et al., 1993a)

Fig. 6. The progress of 
male sexual matura-

tion in Todarodes 
pacifi cus held in 
captivity in 1988. 

Testis somatic index 
and accessory gland 

somatic index (see TSI 
and AGSI in Fig. 4). �: 

Immature to maturing 
male; �: Mature male 
with spermatophores 

in the accessory gland. 
(Ikeda et al., 1993a)

Fig. 7. The progress of female sexual maturation in Todarodes pacifi -
cus held in captivity in 1988. Ovary index (ovary weight as a percent-
age of body weight); Oviduct index (oviduct weight as a percentage 
of body weight); Nidamental gland index (see m, maturation index in 
Fig. 3).�: Pre-spawning female (ripe ova are present in the oviduct); �: 
Post-spawning female (spawned female); �: Exhausted female just 
prior to spawning (the total percentage of gonadal weight is almost 
50 % of total body weight). (Ikeda et al., 1993a)
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EGG MASS, FECUNDITY AND HATCHING

Bower and Sakurai (1996) described the characteristics 

of two T. pacifi cus egg masses spawned in captivity. The 

spherical egg masses were nearly neutrally buoyant and 

found fl oating near the surface of the tank. Externally, the 

masses were covered with a jelly-like secretion, presumably 

from the nidamental glands, and the interior of the masses, 

which contained eggs measuring 0.9 mm in diameter, 

consisted of a jelly presumably secreted by the oviducal 

glands. The larger mass measured 80 cm in diameter and 

contained approximately 200,000 eggs. More than 90% 

of the eggs within this mass were fertilized. The egg-mass 

surface layer effectively prevented crustaceans, proto-

zoans, and bacteria from infesting the masses. Egg were 

positioned 0.4-2.0 cm apart throughout the inner mass. 

The chorion surrounding each egg expanded to diameters 

of 1.9-2.3 mm. Paralarvae hatched after 4-6 days at 18-190C 

and actively swam at once, with many individuals swim-

ming the surface. The egg masses disintegrated soon after 

hatching occurred.

Fig. 8. Diagram of copulated Todarodes pacifi cus female buccal area. 
Bm, buccal membrane; Sp, embedded spermatophore by copulation; 
Sr, seminal receptacle; Tt, tentacle. (Ikeda et al., 1993b)

Fig. 9. Mating behavior of 
Todarodes pacifi cus. 
A: Male grasps female 
around head and mantle 
with his arms and tentacles. 
B: Male’s hectocotylus 
sweeps past his funnel, 
picks up spermatophores, 
and transfers them to the 
female’s buccal membrane. 
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The results of our captive experiments suggest that mature 

females usually spawn once and then die, but some females 

spawned twice in a week when their spawning was dis-

turbed (Ikeda et al., 1993a). The fecundity of T. pacifi cus 

based on counts of ripe ova in oviducts of pre-spawning 

females is estimated to be between 320,000 and 470,000 

(Soeda, 1956). However, in the ovaries of spawning females, 

oocytes occurred in all stages of development, from yolkless 

to mature stages and in exhausted females with thin man-

tles, the ovary and oviducts composed 28 % of the total body 

weight (see Fig. 7, Ikeda et al., 1993a). The oviducts of dead 

post-spawning females still contained many ova (Bower 

and Sakurai, 1996) suggesting that females do not neces-

sarily spawn all ova before dying. 

The development of a technique of artifi cial fertilization 

for ommastrephid squids (Sakurai et al., 1995) has made it 

possible to examine the development and early life stages 

of T. pacifi cus (Watanabe et al., 1996, Sakurai et al., 1996). 

After hatching, paralarvae were maintained for up to seven 

Fig. 10. Spawning behavior of 
Todarodes pacifi cus observed 

in captivity, Oct. 25, 1991. 
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days without being fed while the internal yolk was com-

pletely absorbed (Watanabe et al., 1996). Paralarval mantle 

lengths measured 0.95 mm at hatching and 1.25 mm after 

seven days (Fig. 11). To date, there have been no successful 

long-term rearing experiments, as all attempts to feed the 

hatchling paralarvae have failed.

WORKING HYPOTHESIS OF 
REPRODUCTION PROCESSES 

Sakurai et al. (2000) proposed a working hypothesis of 

the reproduction process of T. pacifi cus based on results 

of experimental studies (Fig. 12). T. pacifi cus produces 

gelatinous, nearly buoyant egg masses (Bower and Sakurai, 

1996). The temperature range for normal embryonic 

development is 15-230C (Sakurai et al., 1996), while most 

hatchlings collected off southern Japan occur at sea surface 

temperatures of 17-230C (Bower et al., 1999). Embryonic 

development in an egg mass over a temperature range of 15-

230C is estimated to last 4.0-9.5 days (Sakurai et al., 1996). 

Temperatures at 50-m depth were used to estimate the 

range of spawning grounds, since most paralarvae occur at 

25-50 m depth (Watanabe, 1965) and gelatinous structures 

resembling egg masses have been observed within the pyc-

nocline (70-100 m depth) using an ROV (fi rst author, pers. 

Fig. 11. Hatchlings of 
Todarodes pacifi cus. 
Stage 28: one day 
after hatching: Yolk 
sac at cephalic region 
almost disappears. Fin 
primordia (fi ) appear 
on the apex of the 
mantle. Primodia of 
arms IV (ar IV) are fi rst 
visible. Statoliths (sl) 
are evident in both 
statocytes.  Stage 34: 
7 days after hatching. 
Yolk almost consumed. 
Scale bar = 0.5 mm. 
(Watanabe et al., 
1996). 

Fig. 12. Schematic view of reproductive processes of 
Todarodes pacifi cus (working hypothesis based on results 
of experimental studies). (Sakurai et al., 2000)



WORKSHOP ON MODERN APPROACHES TO ASSESS MATURITY AND FECUNDITY 113

obs.). Spawning is assumed to occur above the continental 

shelf and slope around Japan, because captive females 

regularly sit on the tank bottom just before spawning 

(Bower and Sakurai, 1996). Also bottom trawls often collect 

exhausted spent females on the shelf and slope at 100-500 

m depth (Hamabe and Shimizu, 1966). 

STOCK FLUCTUATION THROUGHOUT 
THE REPRODUCTION PROCESS RELATED 
TO CLIMATIC REGIME SHIFTS

Using GIS data, Sakurai et al. (2000, 2002) examined the 

monthly and annual changes of inferred spawning areas 

(identifi ed as the surface area where both temperatures 

at 50-m depth ranged 15-230C and bottom depths ranged 

100-500 m) during 1984 and 1999 (Fig. 13). These results 

suggest that winter spawning areas in the East China Sea 

decreased in size when adult stocks decreased during the 

cool regime before 1988. During this phase, the autumn 

spawning group was presumably dominant, and the migra-

tion routes occurred mainly in the Sea of Japan. In contrast, 

the autumn and winter spawning areas are thought to have 

expanded and overlapped in the Sea of Japan and the East 

China Sea during the warm regime that occurred after 1989 

(Fig. 14). 

As a result, both populations of autumn and winter-spawn-

ing groups increased, and their migration routes would 

have expanded into Pacifi c waters, especially those of the 

winter-spawning group (e.g., in 1989, 1990 and 1991). 

Warm winters, such as those in 1989, 1990 and 1991, may 

Fig. 13. Comparison 
of seasonal shifts in 

inferred spawning 
areas (dark) between 

October to April in 
1985/86 (cold year) 

and 1990/91 (warm 
year) based on GIS 

data. Black and white 
areas represent 

land and unsuitable 
depths/temperatures, 
respectively. (Sakurai 

et al., 2000)
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promote an increase in stock size. However, the inferred 

spawning sites varied annually (e.g. in 1992 and 1993, there 

were a reduction in size of inferred spawning areas in win-

ter), which might be a cause of the annual catch fl uctuations 

(Fig. 1). 
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ABSTRACT

Tuna spawning patterns are diverse and complex. All species 

of the tribe Thunnini spawn only at sea-surface temperatures 

in excess of about 24ºC. Because they are repetitive broadcast 

spawners, tunas must have very high lifetime fecundities to be 

successful. This is achieved through various degrees of protracted 

spawning, along with a combination of frequent spawning and 

relatively high batch fecundities.

Maturity and fecundity estimates, and descriptions of method-

ologies utilized, are presented for the following species: Thunnus 

albacares, T. maccoyii, T. orientalis, T. obesus, Katsuwonus 

pelamis, and Euthynnus lineatus. 

The fi rst requirement in the process of the estimation of propor-

tions sexually mature is to defi ne precise criteria for the classifi ca-

tion of maturity. The statistical procedure for deriving a maturity 

schedule involves fi tting an appropriate weighted non-linear pre-

dictive regression model directly to the maturity data. The model 

can then be used to predict proportions sexually mature at specifi c 

lengths and/or ages. Also, statistical evaluations of spatial and 

temporal variation in maturity functions can be conducted on 

the data. Maturation schedules are normally estimated only for 

females, but procedures have also been developed for estimation 

of maturity for males.

Estimation of the annual fecundity in tunas requires spawn-

ing frequency estimates by length classes, and corresponding 

estimates of batch fecundities over the length range of mature 

females. Knowledge of the appearance and longevity of posto-

vulatory follicles in ovaries of tunas after spawning is necessary 

for estimation of spawning frequency. The frequency at which 

ovaries of mature females contain postovulatory follicles has been 

used to estimate spawning frequency for a few tunas. Only at the 

fi nal stages of oocyte maturation, beginning with the migratory-

nucleus phase and followed by hydration, is there a distinct hiatus 

in the distribution of oocytes from which the batch fecundity esti-

mates can be derived. Spatial and temporal variation in fecundity 

estimates in tunas are also presented. 

INTRODUCTION

The reproductive characteristics of a stock, along with those 

of growth and mortality, are among the most important fac-

tors in determining the regenerative ability of a population 

(Quinn and Deriso, 1999). Understanding the reproductive 

biology of tunas and quantifying size-specifi c parameters 

provides the means, when incorporated into length- and/

or age-structured models, for predicting the effects of 

fi shing on the reproductive potential of a stock. Although 

there has been some progress in the past 20 years on elu-

cidating some important life history processes in tunas, 

for the majority of the species our knowledge regarding 

reproductive patterns and parameters is meager. Accurate 

interpretation and classifi cation, in recent years, of repro-

ductive condition and estimates of spawning potential for 

tunas has largely been the result of utilizing histological 

techniques and appropriate classifi cation criteria.

OVERVIEW

Tunas are oviparous, have asynchronous oocyte develop-

ment, and are considered to be multiple or batch spawners, 

shedding their gametes directly into the sea, where fertiliza-

tion occurs. Spawning patterns within the tribe are diverse 

and complex. There are three types of spawning patterns 

exhibited by the tunas: 1) confl uent throughout tropical 

and subtropical regions (Katsuwonus pelamis, Thunnus 
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albacares, and T. obesus), 2) regionally-confi ned and pro-

tracted (Auxis spp., Euthynnus spp., Thunnus atlanticus, 

and T. tonggol) and 3) migratory and spatiotemporally-

confi ned (Thunnus alalunga, T. maccoyii, T. orientalis, 

and T. thynnus). Common to all these species within the 

tribe is the relationship between spawning activity and sea-

surface temperatures in excess of about 24°C. 

Most studies of gonadal development in tunas, intended to 

describe maturation and spawning distributions, have been 

based on ovaries and have utilized various formulations of 

the gonosomatic index for classifi cation of condition. If 

a gonosomatic index is calibrated, for instance through 

use of histology, it can potentially be used for determina-

tion of spatiotemporal spawning distributions, but it is 

not accurate for classifi cation of maturity or reproductive 

activity (de Vlaming et al., 1982). Other methodologies 

that are appropriate for interpretation and classifi cation 

of the gonadal development and reproductive activity of 

individual fi sh include the use of oocyte diameters from 

the most advanced batch of oocytes present in an ovary 

(Buñag, 1956; Yoshida, 1966; Schaefer, 1987; Ramon and 

Fig. 1. Developmental stages and oogenic cells observed in Thunnus albacares ovaries. (A) unyolked oocyte (x160); (B) early yolked oocyte (x100); 
(C) advanced yolked oocyte (x40); (D) migratory-nucleus stage oocyte (x40); (E) hydrated oocyte (x25); (F) postovulatory follicle less than 12 h after 
ovulation (x160). Reprinted from Schaefer (2001b), with permission from Elsevier Science.
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Bailey, 1996; Schaefer, 2001a) and histology of ovarian and 

testicular tissues (Cayré and Farrugio, 1986; Goldberg and 

Au, 1986; Hunter et al., 1986; McPherson, 1991; Nikaido 

et al., 1991; Batalyants, 1992; Timohina and Romanov, 

1996; Farley and Davis, 1998; Schaefer, 1998). Histological 

examination of microscopic slides of ovarian and testicular 

tissues provides the greatest precision for classifi cation of 

reproductive state of tunas (Schaefer, 1998).

The histological classifi cation of tuna ovaries for assess-

ments of reproductive biology should be based on the sys-

tem applied successfully by Hunter and Macewicz (1985), 

and following some adjustments by Schaefer (1996, 1998). 

Oogenesis begins with the proliferation of oogonia by 

mitotic divisions within the oogonial nest, which become 

primary oocytes (Figure 1A). The oocytes considered 

within this developmental category are unyolked. In early 

yolked oocytes (Figure 1B) numerous euvitelline nucleoli 

appear homogeneously around the nuclear membrane, 

with no true nucleolus present. There is an increase in the 

lipoid vesicles and yolk granules, and the zona radiata can 

be distinguished in the follicular epithelium as develop-

Fig. 2. Developmental stages and spermatogenic cells observed in Thunnus albacares testes. (A) primary spermatogonia (sg) (x240); (B) primary 
spermatocyte (ps) cells and secondary spermatocyte (ss) cells (x240); (C) spermatids (sm) (x240); (D) spermatozoa (s) (x240); (E) prespawning stage 
in mature testis with vas deferens fi lled with spermatozoa (x10); (F) postspawning stage (< 12 h) in mature testis with the vas deferens almost com-
pletely devoid of spermatozoa (x10). Reprinted from Schaefer (2001b), with permission from Elsevier Science.
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ment proceeds (Figure 1C). The fi rst observed histological 

change associated with the fi nal maturation of the oocyte 

is the migration of the nucleus (germinal vesicle) toward 

the animal pole, where the micropyle is located. During 

this process coalescence of the lipoid vesicles takes place 

within the cytoplasm (Figure 1D). The fi nal maturation of 

the oocyte occurs during the later stage of hydration, when 

the yolk plates completely fuse and form a homogeneous 

yolk mass (Figure 1E), during which time the oocyte sig-

nifi cantly increases in size due to hydration or the uptake of 

fl uid by the oocyte (Wallace and Selman, 1981). This fusion 

of yolk granules and hydration gives the oocyte a trans-

lucent (hyaline) appearance in fresh or preserved whole 

oocytes (Schaefer, 1998). Upon completion of maturation 

the hydrated oocytes are expelled through a rupture in their 

surrounding follicles into the ovarian lumen. The posto-

vulatory follicle remains as a distinct involuted structure 

within the ovigerous lamellae. The postovulatory follicle 

is transitory, and in Katsuwonus pelamis and Thunnus 

albacares by 24 h (@>24°C) after ovulation postovula-

tory follicles cannot be accurately identifi ed (Hunter et al., 

1986; Schaefer, 1996). The degenerating postovulatory fol-

licle has few involutions and a follicular cavity (Figure 1F).

Tuna testes are considered as unrestricted spermatogonial 

testis types, because the distribution of spermatogonia may 

occur along the entire length of the tubule (Grier, 1981). The 

histological classifi cation of tuna testes development should 

be based on the degree of spermatogenesis, as described 

by Grier (1981), and the classifi cation system of Schaefer 

(1996, 1998) for assessments of reproductive biology. The 

four cellular stages that can be differentiated in sperm 

maturation are spermatogonia, spermatocytes, sperma-

tids, and spermatozoa (Figures 2A, B, C, D). Primary sper-

matogonia, distributed along the lobule lengths, undergo 

a series of mitosis, which produce cysts containing several 

spermatogonial cells, called secondary spermatogonia. The 

primary spermatogonia are spherical and acidophilic, and 

each possesses a single prominent nucleolus. These are the 

largest germ cells in the testis (Figure 2A). A second series 

of mitotic divisions results in the formation of cysts full of 

primary spermatocytes (Figure 2B). The next developmen-

tal stage in the maturation process is secondary spermato-

cytes (Figure 2B), which are formed after the fi rst meiotic 

division and are retained within the cysts until they eventu-

ally burst through the cyst’s capsule into the lobular lumen, 

where they develop after a second meiosis into spermatids. 

Each spermatid (Figure 2C) develops into a spermatozoan, 

a process termed spermiogenesis. Mature spermatozoa 

possess a distinct rounded basophilic head and a long 

acidophilic fl agellum (Figure 2D). The lobular lumens are 

continuous with the vas deferens, which are straight tubes 

with thick, muscular walls, and which merge caudally and 

exit through a pore in the anal region. The lumen of the vas 

deferens is lined along its length with cuboidal to columnar 

epithelium, and varies in general appearance from smooth 

to convoluted (Harder, 1975; Schaefer, 1996). Histological 

evidence of recent spawning activity in male T. albacares 

is apparently detectable for only about 12 hours after the 

spawning event, based on appearance of the epithelial lin-

ing and the amount of sperm present in the vas deferens 

(Figure 2E, F) (Schaefer, 1996). 

There has been a considerable amount of non-quantitative 

estimation of sizes and/or ages at maturity for tunas, based 

mostly on invalid gonosomatic indices. Many such studies 

have reported the apparent size at fi rst maturity. Reporting 

only the size at fi rst maturity is useless, and even mislead-

ing. Functional statistical relationships between propor-

tion mature and size and/or age must be derived to estimate 

proportions sexually mature from a population.

The fi rst requirement in the process of the estimation of 

proportions sexually mature is to defi ne precise criteria for 

the classifi cation of maturity. Histological examinations 

and criteria are necessary to attempt to correctly classify 

female and male tuna as to sexual maturity. Particularly for 

females, histological information is required because of the 

inadequacy of gonad indices or oocyte diameters for sepa-

rating developing ovaries, in a stage of early vitellogenesis, 

from post-spawning ovaries, in atretic stages of resorption. 

The histological classifi cation scheme used by Schaefer 

(1998) for female and male T. albacares provides the basis 

to distinguish between mature and immature individu-

als. The second consideration is the implementation of an 

appropriate experimental design based on previous knowl-

edge of the spawning locations and times for the species 

under consideration. The fi nal consideration should be the 

Fig. 3. Relationship between proportion of female tunas mature and 
length. (1) Katsuwonus pelamis (Stéquert and Ramcharrun, 1996); 
(2) Euthynnus lineatus (Schaefer, 1987), and (3) Thunnus albacares 
(Schaefer, 1998). Reprinted from Schaefer (2001b), with permission 
from Elsevier Science.
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use of an appropriate statistical procedure for evaluation 

and interpretation of the data. A weighted non-linear pre-

dictive regression model fi t directly to these sigmoidal data 

is probably the most appropriate (Schaefer, 1987; 1998). 

The model can then be used to predict proportions sexually 

mature at specifi c lengths and/or ages for the stock being 

investigated.

The available estimates of lengths at 50% maturity of 

female tunas are given in Table 1. These estimates, for 

just 3 of the 15 species of Thunnini, appear to be the only 

reliable estimates available. The relationship between pro-

portion of female E. lineatus mature and length from the 

eastern Pacifi c (Schaefer, 1987) is shown in Figure 3, and 

the estimated length at 50% maturity in Table 1. The esti-

mated lengths at 50% maturity given in Table 1 for female T. 

albacares from studies conducted in two different oceanic 

regions, western and eastern Pacifi c, are quite variable. 

These differences may be more a function of the experi-

mental designs and classifi cation procedures employed 

than geographic variation. The relationship between pro-

portion of female T. albacares mature and length from 

the eastern Pacifi c is shown in Figure 3. In the study by 

Schaefer (1998) the estimated length at 50% maturity for 

females of 92 cm corresponds to an age of about 2 years 

(Wild, 1986). As an example of the size at fi rst maturity, and 

the potential misuse of such information, the minimum 

length at sexual maturity of females was 59 cm. Males 

were found to mature at lesser lengths than females, with 

the estimated length at 50% maturity for males being 69 

cm. The relationship between proportion of mature female 

K. pelamis and length, from the Indian Ocean, is given in 

Figure 3. The shape of the maturation curve is noticeably 

different than that for T. albacares, but similar to that for 

Fig. 4. Migratory-nucleus or hydrated-stage oocytes and postovula-
tory follicles (p), in advanced stages of degeneration, in fi ve species 
of tuna. (A) Katsuwonus pelamis (x25); (B) Thunnus albacares 
(x40); (C) T. maccoyii (x40). Microscopic slide from J. Farley, CSIRO, 
Hobart, Australia; (D) T. obesus (x25). Microscopic slide from H. 
Nikaido, JASFA, Obama Fukui, Japan, and (E) T. orientalis (x40). 
Microscopic slide from S. Tsuji, NRIFSF, Shimizu, Japan. Reprinted 
from Schaefer (2001b), with permission from Elsevier Science.
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E. lineatus. It appears in K. pelamis and E. lineatus, once 

the critical size and/or age is attained, there is a strong 

selection pressure for individuals to initiate maturation. 

The estimated lengths at 50% maturity given in Table 1 for 

female K. pelamis from studies conducted in three differ-

ent oceanic regions are almost identical. For T. maccoyii, 

Davis (1995), using oocyte diameter and gonad index data, 

estimated the mean size at fi rst maturity to be 152 to 162 cm. 

Recent analyses of size and age data for T. maccoyii caught 

on the spawning ground provide estimates of the size and 

age at 50% maturity of 158 – 163 cm and 11 or 12 years old 

(T. Davis, CSIRO, personal communication). 

Tunas, being multiple spawners, continuously produce 

batches of hydrated oocytes that are released into the sea in 

separate spawning events. The estimation of spawning fre-

quency, as the mean spawning interval between sequential 

spawning events, is essential for a comprehensive under-

standing of the reproductive biology of tunas. Knowledge 

of the appearance and longevity of postovulatory follicles 

in ovaries of tunas after spawning is necessary for estima-

tion of spawning frequency (Hunter and Macewicz, 1985; 

Hunter et al., 1986; Schaefer, 1996). The age and longevity 

Species Length (cm)  Area Reference

Euthynnus lineatus    47 Eastern Pacifi c  Schaefer (1987)

Katsuwonus pelamis    42 Atlantic Cayré and Farrugio (1986)

Katsuwonus pelamis    42 Western Indian Stéquert and Ramcharrum (1996)

Katsuwonus pelamis    43 Western Indian Timohina and Romanov (1996)

Thunnus albacares   108 Western Pacifi c McPherson (1991)

Thunnus albacares    92 Eastern Pacifi c Schaefer (1998)

Table 1. Estimates of lengths at 50% maturity for female tunas. (From Schaefer, 2001b)

Species Days  Area Reference

Katsuwonus pelamis    1.18 Western Pacifi c Hunter et al. (1986)

Thunnus albacares    1.53 Western Pacifi c McPherson (1991)

Thunnus albacares    1.52 Eastern Pacifi c Schaefer (1998)

Thunnus maccoyii    1.62   Eastern Indian Farley and Davis (1998)

Thunnus obesus  1.09 Western Pacifi c Nikaido et al. (1991)

Table 2. Estimates of spawning frequency (mean spawning interval) for female tunas. (From Schaefer, 2001b)

Species Fecundity Area Reference

Euthynnus lineatus 99-136 Eastern Pacifi c Schaefer (1987)

Katsuwonus pelamis 82 Western Atlantic Goldberg and Au (1986)

Thunnus albacares 67 Eastern Pacifi c Schaefer (1998)

Thunnus orientalis 69  Western Pacifi c Tanaka (1999)

Thunnus maccoyii 57 Eastern Indian Farley and Davis (1998)

Thunnus obesus 31 Western Pacifi c Nikaido et al. (1991)

Table 3. Estimates of the relative batch fecundity (oocytes per gram of body weight) of tunas. (From Schaefer, 2001b)

of postovulatory follicles have been determined only for K. 

pelamis (Hunter et al., 1986) and T. albacares (Schaefer, 

1996). However, the frequency of ovaries of mature females 

containing postovulatory follicles has been used to estimate 

spawning frequency in K. pelamis (Hunter et al., 1986), T. 

albacares (McPherson, 1991; Schaefer, 1996, 1998), T. 

obesus (Nikaido et al., 1991), and T. maccoyi, (Farley and 

Davis, 1998) (Table 2). The data in Table 2 implies that 

these species, when reproductively-active, spawn almost 

daily. The incidence of both postovulatory follicles and 

late-stage oocytes indicates daily spawning in tunas (Figure 

4). This high frequency of spawning implies that in a repro-

ductively-active female there is a continuous maturation of 

oocytes, which are recruited from the reservoir of primary 

oocytes. The relationship between length and the fraction 

of mature T. albacares females spawning is illustrated 

in Figure 5. It appears the larger females are physiologi-

cally capable of maintaining a higher spawning frequency, 

which is potentially related to their energy reserves.

 

The fecundity of tunas is not fi xed at the beginning of their 

spawning period. Their annual fecundity is indeterminate 

because tunas spawn numerous times during a season 
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or year, and their potential annual fecundity exceeds the 

number of developing oocytes within the ovaries at any 

given time. Annual fecundity can be estimated from batch 

fecundity (the number of oocytes released per spawning) 

and spawning frequency. Only at the fi nal stages of oocyte 

maturation, beginning with the migratory-nucleus phase 

and followed by hydration, is there a distinct hiatus in the 

distribution of oocytes from which the batch fecundity 

estimates can be derived. Migratory-nucleus and hydrated 

oocytes can be easily distinguished from other oocytes in 

ovaries of tunas by their larger size (>0.75 mm) and by their 

appearance (Schaefer, 1998). However, there is only a short 

period from late afternoon until about 2200 h (previous to 

spawning) when ovaries with migratory-nucleus or hydrat-

ed oocytes are found in T. albacares (Schaefer, 1996, 1998). 

Estimated mean relative batch fecundities for tunas, based 

on counts of distinct advanced stages of oocytes, are given 

in Table 3. The relative fecundity estimates in Table 3 for 

T. albacares (67 oocytes/g body weight), T. orientalis (69 

oocytes/g body weight) and T. maccoyii (57 oocytes/g 

body weight) are similar, but considerably greater than 

the estimate for T. obesus (31 oocytes/g body weight) and 

considerably less than the estimates for K. pelamis (82 

oocytes/g body weight) and E. lineatus (99-136 oocytes/g 

body weight). Batch fecundity increases with body length 

for the species listed in Table 3 (Figure 6). Although not 

illustrated in Figure 6, the data for each of these species 

clearly indicate the high variation in batch fecundity esti-

mates among tunas of similar size. Even with the high 

variability in batch fecundity estimates of fi sh of the same 

size, statistical comparisons have indicted signifi cant spa-

tiotemporal differences. For example, the predicted batch 

fecundity estimate for a 125-cm T. albacares was 1.45 mil-

lion oocytes and the estimate for the following year was 

2.50 million oocytes, within the same area of the eastern 

Pacifi c (Schaefer, 1998).

Fig. 5. Relationship between fraction of mature Thunnus albacares 
females spawning per day and length. The circles are from 5-cm inter-
vals. From Schaefer (1998).

Fig. 6. Relationship between batch fecundity and length. (A) 
Euthynnus lineatus (Schaefer, 1987); (B) Katsuwonus pelamis 
(Goldberg and Au, 1986); (C) Thunnus albacares (Schaefer, 1998); (D) 
Thunnus obesus (Nikaido et al., 1991), and (E) Thunnus maccoyii 
(Farley and Davis, 1998). Reprinted from Schaefer (2001b), with per-
mission from Elsevier Science.
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The annual fecundity is the product of the spawning fre-

quency and the batch fecundity. The annual relative batch 

fecundity (number of oocytes/g body weight/year) was 

estimated to be 14100 and 17300 for the average 2- and 

3-year-old T. albacares, respectively, in the eastern Pacifi c 

(Schaefer, 1998). These estimates illustrate that the annual 

egg production is far greater for the average 3-year-old than 

for the average 2-year-old. Predictive models for length at 

maturity and spawning frequency should be coupled with 

those for batch fecundity and used with abundance esti-

mates for females to produce estimates of the potential 

annual egg production of tuna stocks. 
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ABSTRACT

Studies on the development of potential fecundity during matura-

tion, and its dispersal during spawning are described for Solea 

solea with reference to assessment of maturity at age and realised 

fecundity. Recruitment of fecundity was shown to be complete 

well before the start of spawning in 4 year and older fi sh that were 

probably about to spawn for the second time or more. However, 

the youngest group in the study (three-year-old fi sh) appeared to 

have a low spawning success as indicated by many partially devel-

oped ovaries that appeared to abort maturation though follicular 

atresia. In view of this partial maturity it was considered that the 

assessment of population maturity at age or length would be most 

reliable at the start of spawning and, if based on macroscopic 

assessment, the ovary should contain yolk oocytes visible to the 

unaided eye (ie oocytes >0.5mm diameter). The main obstacle to 

estimating realised fecundity was high levels of follicular atresia in 

some fi sh within all age groups peaking around the start and end 

of spawning. The selection of methods and results are discussed 

with reference to other teleosts and the application of fi sheries 

independent methods based on egg production.

INTRODUCTION

This paper describes methodology and presents results 

relating to the assessment of sexual maturation and 

fecundity (millions of eggs) in a species with a broad-

cast spawning strategy. Despite their high fecundity and 

somatic growth rates many of these species are threatened 

by extremely high fi shing mortality on the adolescent and 

adult populations and stock assessments are required 

to provide safeguards for several reasons. These include 

determining at what size and age fi sh start producing eggs 

(attainment of maturity) in relation to the their life span 

determined by fi shing or natural mortality. More recently 

it has become apparent that age diversity in the spawn-

ing stock infl uences egg number and egg survival with 

older fi sh performing much better to maintain recruitment 

(Scott et al., 1999). The measurement of egg production can 

also provide the basis for a valuable fi shery independent 

method of stock assessment by dividing the average indi-

vidual’s contribution into that of the population production 

over a day (Parker, 1980), period (Lo et al., 1992), or a year 

(Lockwood et al., 1981). 

All of these assessments require a thorough understand-

ing of the dynamics of oocyte growth (Wallace and Selman, 

1983) within the follicle and the degradation of post ovu-

latory follicles following ovulation and the release of egg 

batches completing oocyte maturation. This paper there-

fore refers to literature describing the morphology and 

classifi cation of oocytes and post ovulatory follicles that 

form the theoretical basis to the assessment of maturity and 

fecundity in female fi sh. Attainment of maturity is defi ned 

as the culmination of oocyte development leading to the 

production of ovulated eggs in batches, which may comprise 

all (total ovulation) or a proportion of the potential fecun-

dity (partial ovulation). The potential fecundity equates to 

the number of oocytes that contain either yolk granules and 

or cortical alveoli and is rarely equivalent to the number of 

eggs spawned (realised fecundity). The difference between 

the two values arises because some follicles abort develop-

ment (follicular atresia) after recruiting to the vitellogenic 

population either prior to or during spawning.

The focus of the methods and results section is on repro-

duction in females of a fl atfi sh Solea solea because it has 
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been extensively studied to estimate realised fecundity 

to apply the annual egg production method (ICES, 1990, 

Horwood, 1993, Armstrong et al., 2001). Because of the 

asynchronous oocyte development and long spawning sea-

son sole provide an example of several problematic aspects 

of maturity and fecundity assessment (Urban, 1991). In the 

discussion the methods and results will also be considered 

in relation to other species maturing over a range of ages/

sizes and include round fi sh such as cod Gadus morhua. 

Although these species occupy European shelf edge waters 

the conclusions and processes should be representative of a 

wide range of teleosts from all over the world. 

METHODS

Fish collections

Collections of female sole were taken mostly from the 

catches of commercial vessels using beam trawls working 

in three regions around the English coast with high sole 

abundance during the maturation and spawning seasons 

1984, 1993-4 and 1997 (Table 1). On two occasions, one in 

August 1993 and the other in March 1997, the collections 

were taken from research vessel beam trawl catches. The 

total length of each fi sh was measured (cm) and the body 

cavity opened to assess the stage of sexual maturity using 

macroscopic criteria described in Table 2. Stage 6 fi sh 

were excluded from the ovary collections made in 1997 

otherwise the ovaries were preserved in 4% (w/w) formal-

dehyde buffered with 0.1M sodium phosphate Ph 7.0. After 

removal of the ovary the remaining body was wrapped in 

polyethylene and transported on ice to the shore where it 

was weighed. Only in 1993 – 94 were the otoliths removed 

for age determination (Möller-Christensen, 1964). Ages 

given throughout this paper are based on a nominal birth 

date of 1 January and the birth year will be used to identify 

and follow each year class through the study period from 

August 1993 until July 1994. For example, fi sh spawned in 

1991 (referred to as the 1991 year class) will be classed as age 

two in 1993 and age three in 1994.

Date
Latitude

 range
(degrees)

Longitude 
range

 (degrees)
Sea area

Number
 of fi sh

Length range of 
fi sh samples

Study

1984 51.5 N 1 5 E Southern 
North Sea

2 35-38 cm Homogeneity of the ovary

July 1993 
– May 1994

50.5 N 0 to 0.5 E English 
Channel

50 – 80 
per month

Length stratifi ed 
25-43 cm

Development of fecundity 
and maturity at age

March – June 
1997

53.5 N -3 to -4 W Irish Sea 215 Random 
28-40 cm

Realised fecundity and 
production of atretic vitello-
genic follicles

Table 1. Details of the length ranges of fi sh collected at various locations off the English coast between 1984 and 1997 to complete 
each aspect of the study.

Maturity 
stage

Description

1 Immature
Ovaries are small; extending more than 8 cm into the body cavity; translucent in 
appearance. No oocytes visible.

2 Resting
Ovaries cream coloured, extending further into the body cavity. Lumen fi lled with 
fl uid. No oocytes visible.

3
Early 

developing
Ovaries extend to fi ll half the body cavity. Yellow in colour. Blood supply well devel-
oped. Some developing oocytes visible.

4
Late 

developing
Ovaries fi ll the body cavity and body is distended. Yellow in colour. Lumen and 
advanced yolked eggs visible.

5 Ripe
Ovary swollen and the body distended. Translucent hyaline oocytes can be seen 
through the ovary wall (tunica) interspersed with opaque granular oocytes and may 
be just a few or many but ovaries will not run even under heavy pressure.

6 Running
Ovary full becoming fl accid as spawning progresses. Lumen fi lled with ovulated 
oocytes, which can be extruded under light pressure.

7 Spent
Ovaries reduced in size and fl accid. Few eggs in state of resorption (mainly opaque 
eggs) and much slime in ovaries.

Table 2. Female sole ovary maturity staging criteria
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Preparing the ovary for histology

The fi xed ovaries were weighed and their volume deter-

mined using a displacement method (Scherle, 1970). 

Transverse sections approximately 0.5 cm thick were dis-

sected out from the midpoint of each ovary and dehydrated 

in ethyl alcohol prior to embedding in hydroxymethyl 

methacrylate resin (Technovit 7100 Taab). Each resin 

block was sectioned at 5 µm using a motorised microtome 

cooled in a refrigerated cabinet at -12°C and the sections 

were then stained with periodic acid Schiff’s (PAS) and 

Mallory’s trichrome to identify the oocyte development 

stages present in the ovary.

To study ovary morphology just prior to and during spawn-

ing freshly-caught whole fi sh, caught in 1984 (Table 1) were 

clamped fl at on a metal plate and dipped into isopentane 

cooled to -150°C by liquid nitrogen on board ship. After 1 

h the surrounding tissue was removed from the ovaries 

that were then mounted in a block of 2% (w/v) sodium 

carboxy-methyl cellulose and stored in the vapour phase 

of a liquid nitrogen refrigerator at about -100°C. They 

were transferred to a deep freeze at -20°C for transport 

and sectioning. Sections of 25 µm were cut from the block 

using a whole body cryostat (Bright LKB 2250) and sup-

ported on adhesive cellulose acetate tape whilst staining 

with Harris’ haematoxylin and eosin. The distribution of 

hydrated oocytes was then described to illustrate how the 

batch fecundity was organised prior to and during spawn-

ing and to determine whether the hydrated oocytes were 

aggregated or homogenously packed in the ovary . 

Oocyte staging

Nomenclature for staging developing oocytes (Fig. 1) 

in histological section within the follicle followed that 

Figure 1. 
A series of images taken from 
hydroxymethyl methacrylate 
sections of sole ovary stained 
with Periodic acid Schiffs rea-
gent and Mallory’s Trichrome 

are presented to illustrate 
oocyte morphology used in 

the study of sole fecundity. 
Maturation proceeds from pre-

vitellogenic oocytes (vertical 
arrow from top left) to fi nal 
maturation and ovulation 

(Horizontal arrow bottom). 
Examples of atretic follicle 

oocyte breakdown are shown 
for cortical alveoli and yolk 
granule oocyte (horizontal 

arrows centre) showing 
the progression through 

early alpha stage, starting with 
breaks appearing in the cho-
rion (arrow), to the late alpha 

stage. The scale bar (top right) 
represents 0.2 mm in all images 

except previtellogenic oocytes 
(0.1 mm) and migratory nuclei 

and hydrated oocytes (0.5 mm). 

Previtellogenic oocyte cut through nucleus (n) Scale bar

Early alpha atresia cortical

alveoli stage oocytesCortical alveoli oocyte

cut through nucleus (n) Late alpha

Yolk granule oocyte cut

through nucleus (n)
Early alpha atresia yolk

granule stage oocyte

Post ovulatory follicle remaining

in the ovary after ovulation

f

Free

egg

Hydrated oocyte in follicle (f)

Late alpha

Final maturation

Migratory

nucleus (n) 
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used for Solea solea by Ramos (1983), which was based 

on Carassius auratus (Yamamoto and Yamazaki, 1961). 

Oocytes that contained only cortical alveoli were included 

with yolk granule stage oocytes in the fecundity estimates 

(Khoo, 1979). 

Atretic oocyte stages follow descriptions from Bretschnei-

der and Duyvene de Wit (1947) and Lambert (1970). In the 

present study only oocytes in the fi rst part of alpha atresia 

(Fig. 1) were included to estimate atretic oocyte abundance 

because their boundaries and identity were more distinct 

for scoring using the stereometric method described below. 

Normal cortical alveoli and yolk granule stage oocytes show 

the fi rst indications of regression into early alpha atresia as 

one or more breaks appear as the chorion starts to fragment. 

In the cortical alveoli stage the breaks are also accompanied 

by a more wrinkled chorion and intense blotches of PAS 

staining. Atretic oocytes in which the breaks in the chorion 

appear to be more than 3 times its width are not included in 

the estimate of atresia and the oocyte is classed as in the late 

alpha stage. The chorion continues to fragment and like the 

yolk granules completely disappears leaving large vacuoles 

in the ooplasm and the oocyte has degraded to beta stage 

atresia. 

Post ovulatory follicles (POFs)

Identifi cation of post ovulatory follicle follows morphologi-

cal criteria described by Hunter and Macewicz (1985a). No 

attempt was made to age the postovulatory follicles (Fig. 1) 

based on the stages described by the above authors because 

POF ageing process has not been studied in Solea solea in 

experimental conditions refl ecting the ambient sea water 

temperatures of the collection sites. Data on the persistence 

of POFs in cod at similar water temperatures (9° C) suggest 

they can be identifi ed using PAS stain up to 6 weeks post 

spawning (Witthames et al., 2000). 

Oocyte development studies

Maximum oocyte size was measured in ovaries collected 

monthly to identify a sub set of the vitelleogenic oocyte 

population from when they commenced vitellogenesis 

until fi nal maturation. This data was used to determine 

oocyte growth rate from the start of fecundity recruitment 

(Ramsay and Witthames, 1996) and to quantify ovary 

development in relation to the likely onset of spawning 

(West, 1990). 

To measure the maximum oocyte size (Method 1) a tissue 

sample from the centre of the preserved ovary was placed 

on a microscope slide and the oocytes teased apart with 

forceps to form a dispersed layer (whole mount prepara-

tion). The largest oocyte in the sample was measured, using 

a visual display system attached to the microscope, across 

its longest and shortest bisecting axis and the mean taken. 

The procedure was repeated three times and the largest of 

the three values used. Hydrated oocytes were noted but 

not measured. Measurements of oocytes in histological 

section (Method 2) were only taken when the oocyte was 

transected through the nucleus (ie equatorially cut). The 

possible inaccuracy of the whole mount technique (Method 

1) when applied to sole due to extreme values was examined 

and it was shown that the technique has a standard error of 

between 8.9 and 18.2 µm. Comparison (linear regression) 

of estimated maximum oocyte sizes with an alternative 

method (Method 2) based on 50 random measurements 

of oocytes in a histological section from the same ovary 

showed a high degree of consistency.

Method 2 = 0.856 * Method 1 – 0.619 (r2 = 0.95, 

P < 0.0001).

The intercept was not signifi cantly different from zero: 

P>0.97.

The oocyte size frequency distribution, from a mini-

mum diameter of 150 µm, was measured manually using 

Gravimetric Fecundity Analysis software written by 

Pilkington Image Analysis Systems (PIAS). The resolution 

of the video measurement system was 0.003 mm per pixel 

and a calibrated bar 150 µm long was used to identify and 

measure all oocytes larger than the bar.

Fecundity studies

A stereological technique (Emerson et al., 1990) was carried 

out using Software written by Pilkington Image Analysis 

systems (PIAS) to estimate the standing stock of vitello-

genic oocytes from when the fecundity started to develop 

in pre-spawning fi sh (from July 1993 until February 1994: 

Table 1). The same approach was also used to measure the 

decline in the standing stock of oocytes in spawning fi sh 

(1994 and 1997 samples ). Using this technique it was possi-

ble to determine independently the number of vitellogenic, 

atretic and hydrating / hydrated follicles but not ovulated 

oocytes at all maturity stages excluding stage 6 running 

fi sh. The software provides a means to measure vitellogenic 

oocyte size frequency using 4 dots to defi ne oocyte diameter 

and overlays a Weibel grid (M162) on a colour video image 

of the section fi eld to perform point and profi le counts. This 

was repeated in a number of separate fi elds depending on 

the ovary weight spread across both the dorsal and ventral 

ovary to determine the mean partial area and number of 

oocytes per fi eld. The data was stored for analysis in a spread 

sheet template to calculate the numbers of oocytes in each 

class. Numbers of each class of oocyte were expressed inde-

pendently of length or total weight by dividing the oocyte 

count by the length ^3 and referred to as fecundity, atretic 

or hydrated oocyte condition. This approach, using length 
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^3 rather than relative fecundity (fecundity / total weight), 

to normalise for the effect of fi sh size on fecundity was pre-

ferred because total weight declines by 15% or more as the 

fi sh sheds its annual fecundity.

The rate of increase in the standing stock of oocytes was 

studied over a period after the fi rst signs of maturation but 

before spawning commenced and restricting the analysis to 

fi sh of 5 years or older which were very likely to spawn. The 

fecundity data from selected months was modelled using a 

changepoint regression (Quandt, 1958) or ‘two line’ model 

by fi tting the fecundity condition (fecundity / length ^3) 

data using the algorithm in Julious (2001). This is a linear 

regression where the coeffi cients are allowed to change at a 

given point. The model was:

       

     Equation 1

where x
 i
 is the time in days and ∂ the unknown change-

point.

A model with β
2
 fi xed at 0 was also fi tted to represent the 

hypothesis that fecundity condition does not change with 

time after the changepoint. Analysis of variance was used 

to test the change in fi t between this model and the model 

with β
2
 estimated. 

Spawning intensity assessment

The start and intensity of spawning was assessed by the 

prevalence of fi sh with ovaries containing either post 

ovulatory follicles (POF) or hydrating oocytes (HYD). The 

latter group included cases where hydration was complete 

but not ovulated or atretic hydrated oocytes. Prevalence is 

defi ned as the number of fi sh with POF or HYD divided by 

the number of fi sh in the sample. To identify when 50% of 

the population had commenced spawning a logistic regres-

sion was used (Rijnsdorp and Verthaak, 1997) fi tting the 

following model.

Mj/ Nj = a+bD    Equation 2

where Mj = number of fi sh with POF at day number j, Nj is 

the number of fi sh sampled at day j, D = the number of days 

elapsed since December 31 1996.

RESULTS

Histology and whole mount inter- calibration

Samples from the 1993 – 94 collections (Table 1) were used 

for this study and comprised of between 50 and 80 fi sh each 

month. The leading oocyte cohort was assessed by histology 

to determine its stage of development and the maximum 

oocyte diameter recorded in whole mount preparations 

from the same ovary (Table 3). In all the ovaries where 

the maximum oocyte size was less than 231 µm, histologi-

cal examination found only previtellogenic oocytes. If the 

maximum oocyte size was larger than 231 µm but smaller 

than 400 µm cortical alveoli were found and these inclu-

sions increasingly fi lled the oocyte cytoplasm indicating 

that preliminary maturation of the ovary had commenced. 

Oocytes larger than 400 µm contained cortical alveoli and 

yolk granules indicating the start of exogenous vitellogen-

esis leading to the later stages of maturation. The start of 

fi nal oocyte maturation, when the nucleus migrates to the 

oocyte periphery from a central position, occurs in smaller 

oocytes in 3 year old compared to 4 year and older fi sh (at 

742 and 800 µm, respectively). Based on this evidence it 

suggests that smaller fi sh, probably spawning for the fi rst 

time, will produce smaller eggs compare to those spawning 

at a larger size. 

Fecundity production and oocyte growth

This study started (day 1) on 18 July 1993 but the fi sh in 

samples taken in July (70%) and August (30%) were mostly 

at maturity stage 2 and their ovaries contained only pre-

vitellogenic oocytes. To focus on the rate of vitellogenic 

oocyte proliferation the change point regression analysis 

was therefore restricted to a period from September 1993 

until January 1994 when most fi sh had started producing 

their annual fecundity, but before the start of spawning. 

One of the 10 fi sh in the September sample had not com-

menced vitellogenesis therefore only the 9 most developed 

fi sh of each monthly sample were included in the regres-

sion. It was assumed that this selection would focus on the 

Oocyte histological stage
Whole mount size range (95%) 

(µm)
Mean 
(µm)

Previtellogenic 163 - 231 215

Cortical alveoli 231 - 400 296

Yolk granule 403 – 911 703

Migratory nuclei 742 - 1030 897

Table 3. Maximum oocyte diameter measured in whole mounts compared with the development stage of the leading cohort found in histological 
section based on 50 to 80 fi sh per month during 1993-94 (Table 1). The lower and upper 2.5% of each size range has been excluded.
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increase in fecundity in the sub set of the population that 

was mature in September through until January when the 

fi rst spawning fi sh was found. The parameters (Table 4) 

after fi tting Equation 1 suggests that fecundity condition 

increases quickly with time then fl attens off in the period 

between 85 and 207 days (Fig. 2). Changes in fecundity 

condition with time after the changepoint are not statisti-

cally signifi cant (ß̂
2
= 0.0089, p=0.40, Table 5).

The increase in maximum oocyte size with time was 

investigated using analysis of covariance, treating date 

as a covariate and year class as a factor for the months 

September to January (Fig. 3). To restrict this analysis to 

fi sh that were likely to spawn in 1994 and to remove non 

maturing fi sh from the data set (mostly in the 1991 year 

class) a fi xed percentile of each months data was excluded. 

The percentile was based on the proportion of fi sh where 

the leading oocyte cohort in the months March and April 

was less than 400µm, which was 10% and 40% of the1990 

and 1991 year classes. A straight line was then fi tted to the 

data and the effect of year class tested. Separate lines were 

fi tted for three year classes: 1991, 1990 and oldest group fi sh 

pooled from 1989 or earlier classes. The analysis showed 

the lines were signifi cantly different in terms of intercepts 

and slopes (test for different intercepts P<0.01 and dif-

ferent slopes P<0.005). The possibility of pooling all year 

classes older than 1991 was also tested and found them to 

be signifi cantly different.

Oocyte size frequency distribution

Measurements of oocytes from an ovary collected in March 

1997 just prior to the main spawning in the Irish Sea (Table 

1) revealed a very asynchronous population of vitellogenic 

oocytes with the highest frequencies recorded in the larg-

est size classes (Fig. 4). The 2 size classes on the interface 

between previtellogenic and vitellogenic oocytes contained 

very few oocytes (<0.3%) and the smallest previtellogenic 

group (150-175 µm class interval) was the most abundant of 

any class by about 3 times. 

Maturity assessment and abortive maturation

Hydrated oocytes were found in one age 6+ individual by 

January and increasingly in the 4 year and older groups 

during February onwards (Table 6). Three year old fi sh had 

both the lowest prevalence and contained hydrated oocytes 

for the shortest time (from April to June) of any age group 

Model Parameter estimates for

δ α
1

β
1

α
2

β
2

β
2
 = 0 95.2 -7.60 0.153 6.93

β
2
 estimated 91.0 -7.60 0.153 5.48 0.0089

Table 4. Details of the parameters determined by the changepoint regression analysis from Equation 1.
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indicating their spawning was less productive that the older 

age groups. Some older age groups were spawning from 

February to June but all groups had fi nished by July and 

peak spawning months were in April and May.

The prevalence of alpha atresia was investigated in 3 year 

classes (3, 4 and 5 + years old) in ovaries at maturity stages 

2 to 7 (Table 2) grouping them according to the size of the 

leading oocyte cohort (<400 µm and > 400 µm) and into 

two monthly collection periods between February and July 

1994 (Table 1). A high proportion of three year old fi sh in 

each sample only contained oocytes smaller than 400 µm 

(Table 7) which were also associated with the highest preva-

lence of atresia increasing to 0.33 in the last period. As there 

was no sign of post ovulatory follicles, indicating spawning 

up to 6 weeks previously (Witthames et al 2000), it is very 

likely that most fi sh in this group failed to complete matu-

ration to spawning. In three year old fi sh, where oocytes 

had grown larger than 400 µm, atresia prevalence was low 

(0.07 or less) until the last sample period when it increased 

to 0.73 of fi sh sampled. Fish of 4 years upwards mostly 

developed yolk granule stage oocytes and atresia preva-

lence was low until the fi nal June to July sample group. 

Morphology of ovaries close to spawning

Cryostat sections of ovaries from fi sh at maturity stage 

5 and 6 (Fig. 5A –C) show the eye-side ovary is approxi-

mately twice the size of the blind-side ovary. In both ovaries 

the cross-sectional area increases from the tail forward 

to where they form a common oviduct leading into the 

cloaca behind the operculum ( Fig. 5C). Prior to a spawn-

ing hydrating oocytes in the stage 5 ovary (Fig 5A) appear 

to occur at random throughout the cross-section and this 

provides a homogenous distribution for sub-sampling to 

estimate batch fecundity. Following ovulation the hydrated 

Model
Residual 

degrees of 
freedom

Residualsum of 
squares

Test degrees 
of freedom

∆ Sum of 
squares in 
regression

F value Pr(F)

β
2
 = 0 51 196.50

β
2 
estimated 50 193.66 1 2.84 0.73 0.40

Table 5. Results of the Anova testing for changes in fecundity condition with time after the changepoint.

Figure 3. Change in maximum oocyte diameter with time. A linear 
regression was fi tted to the data after removing the x percentile of 
each month’s observations (hollow circles) where x is the percentage 
of fi sh containing advanced oocytes < 400 µm in March and April. 
5+ year old  O = 332 + 3.76 d, n=94 P<0.0001
4 year old O = 338 + 2.66 d, n=63 P<0.0001
3 years old O = 221 + 1.76 d, n=95 P<0.0001
where O = oocyte diameter (µm) and d = days after September 19.

 Figure 4 . Previtellogenic (clear bars) and vitellogenic oocyte (dark 
bars) frequency distribution found in a sole collected during March 
1999. The total number of oocytes measured was 307.

Panel 2
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eggs become concentrated in the lumen. The eggs can now 

be extruded from the ovary and the ovary cross section (Fig. 

5B) show they lie in a band stretching from the outside 

ovary wall, appearing as a transparent window inwards 

to the centre of the ovary. In longitudinal section (Fig 5C) 

the mass of hyaline eggs stretches down the length of the 

ovary. In conclusion the stage 6 ovary contains a very heter-

ogenous distribution of oocytes and should not be used for 

fecundity studies.

Spawning and realised fecundity

Samples collected in 1997 from a more northerly popula-

tion (Table1) were used to study the dynamics of egg pro-

duction at the individual level from the start to almost the 

end of the population spawning season (Fig 6). Proportions 

of fi sh either hydrating a batch of oocytes or containing 

post ovulatory follicles rose rapidly from the date of the 

fi rst sample. The logistic regression model (Equation 2) 

predicted that 50% of the population had ovulated at least 

once by day 92 (April 2). After a period from day 92 until day 

140 (9 May) when a high proportion of fi sh were hydrating a 

batch of eggs their proportion dropped sharply over a week 

to less than 0.5 in the last two samples. The proportion of 

post ovulatory follicles never dropped below 1 after 110 days 

suggesting this stage has a life lasting several weeks at the 

prevailing water temperatures (10oC) expected in this area 

of the Irish Sea during the last two weeks of May. Atretic 

oocyte condition was high in the fi rst 4 samples reaching 

a maximum on the 9 April and then fell to low levels for 4 

samples taken over the next 33 days but increasing again 

in the last sample. Both the standing stock of fecundity and 

batch fecundity condition fell following the average start 

of spawning in the population with predicted numbers of 

each oocyte class falling from 303169 to 39745 and 27397 

to 5445 between days 92 to 156 respectively (Table 8) in a 

35-cm fi sh.

DISCUSSION

Selected methodology

Ovaries were preserved by freezing for the cryostat study 

of ovary morphology, and with buffered formaldehyde for 

the other studies. Initial experiments to develop protocols 

for preserving ovary tissue by freezing showed that cellu-

lar morphology was very damaged when blast frozen (to 

-30oC). Immersion in iso pentane cooled to -150 oC gave 

better results but this approach would not be practical 

for routine preservation of ovary tissue for population 

fecundity studies. Previously Gilson fi xative (Simpson, 

1951) has been used to preserve and separate oocytes from 

ovary tissue but all delicate cellular structure like POFs are 

probably lost and the survival of atretic oocytes is open to 

question. Gilson fi xative also contains mercuric chloride, a 

very poison substance, and the costs of disposal and risks 

to laboratory workers mean its use should be discontin-

Figure 5. Cryostat sections (25 µm) of whole ovaries from spawning 
sole, maturity stage 5 (A ) and 6 (B +C), stained with haemotoxylin 
and eosin. The scale bar represents 1 cm on the section. A, a transverse 
section showing a larger eye side ovary (ES) above the smaller blind 
side (BS) ovary and widely dispersed hydrated oocytes. B, a transverse 
ovary section showing the lumen (L) packed with ovulated eggs 
which stretches to the edge of the ovary wall forming a hyaline win-
dow (HW). C, a longitudinal section of the anterior end of the ovary 
showing an accumulation of ovulated eggs in the lumen and in the 
oviduct (O) leading to the cloaca.

Age (years)
Month (during 1994)

January February March April May June July

3 0 0 0 0.13 0.16 0.04 0

4 0 0.03 0.07 0.35 0.24 0.14 0

5 0 0.10 0.7 0.43 0.42 0.6 0

6+ 0.03 0.14 0.03 0.50 0.44 0.07 0

Table 6. Prevalence of fi sh observed with hydrated oocytes in their ovaries by month.



WORKSHOP ON MODERN APPROACHES TO ASSESS MATURITY AND FECUNDITY 133

ued. The buffered formaldehyde is also toxic but incurs 

much smaller disposal costs and preserves structure for 

histology and gravimetric fecundity analysis (Hunter 

and Mazewicz, 1985b, Hunter et al., 1989). For block 

preparation hydroxy methyl methacrylate was preferred 

to paraffi n wax because the quality of sections is superior 

for resolving different stages of follicular development. It 

is also possible to cut large ovary cross sections (up to 50 

mm x 50 mm) so the stereological method can be applied to 

a wider size range of ovaries and the change in dimensions 

on drying resin sections has been evaluated (Hansted and 

Gerrits, 1983).

The stereological method (Emerson et al., 1990) has been 

evaluated (Kjesbu et al., 1998, Armstrong et al., 2001) in 

cod and sole respectively. In the fi rst case the fecundity 

estimate was 1.035  CV=26,7 %, (n=27), greater compared 

to the gravimetric fecundity analysis. The CV was high 

because cod ovaries are too large to prepare whole ovary 

cross sections and the stereological technique was adapted 

to estimate the number of oocytes in a weighed piece of 

tissue. Fragments of ovary have a much more irregular 

oocyte packing density compared to when the ovary was 

fi xed whole because the outer ovary tunica constrains the 

tissue from opening out. In the case of sole the stereometric 

estimate of fecundity was 8% higher (n=8) than fecundity 

determined by sub-sampling a suspension of oocytes sepa-

rated by digestion in Gilson fi xative (Walsh et al., 1990). 

However, Gilson fi xative induces a large amount of shrink-

age in oocyte diameter (Witthames & Greer Walker, 1987) 

and it is therefore diffi cult to assess the lower size limit of 

vitellogenic oocytes identifi ed by histology. In summary 

the advantages of the stereometric method is that a section 

provides a means to quantify oocytes of all classes following 

their morphological identifi cation and to determine spawn-

ing status by presence of markers such as POFs. However, 

in species with ovaries having a cross section diameter 

larger than 50mm (tunas, halibut and cod etc.) a sub-sam-

ple of tissue must be processed and more fi elds analysed to 

reduce the CV to acceptable proportions. The gravimetric 

method (Hunter et al., 1989) based on sub-sampling for-

maldehyde fi xed ovaries is very effective for estimating 

potential and batch fecundity, providing it is supported by 

analysis to show the oocyte density is uniform (Nichol and 

Acuna 2001). If criteria can be developed, either through 

selective staining or morphology to distinguish spawning 

markers and atretic from vitellogenic follicles in the course 

of gravimetric analysis of formaldehyde fi xed tissue this 

would also remove the need for expensive histology. An 

indirect method (Thorsen and Kjesbu, 2001) to estimate 

fecundity would also benefi t in this context.

Maturity assessment

The analysis of maximum oocyte size, atresia and the inci-

dence of spawning indicated by the presence of hydrated 

oocytes in relation to fi sh age and the annual maturation 

cycle showed that April was the optimum period to assess 

sole maturity. Many 3-year old fi sh appeared to only par-

tially mature with their ovaries containing small cortical 

Oocyte size 
µm

Age 
(years)

months

February & March April & May June and July

<400 3 0.16 (32) 0.28 (29) 0.33 (48)

>400 0.07 (28) 0.03 (33) 0.73 (11)

<400 4 ID (3) ID (4) 60 (10)

>400 0.16 (19) 0.15 (13) ID (4)

<400 5 -- (0) ID (5) 0.44 (9)

>400 0 (20) 0.11 (9) ID (4)

<400 6+ -- (0) ID (2) 0.31 (16)

>400 0.13 (16) 0.13 (16) ID (2)

 

Table 7. Prevalence of atretic oocytes in ovaries with either a leading oocyte cohort of cortical alveoli stage oocytes (<400µm) or with advanced 
yolk granule oocytes (>400µm) during three periods of two months in 1994. The total number of fi sh is appended in brackets (ID = insuffi cient 
data; 5 or less fi sh in the group).

Case a (se) b (se r^2 p

Standing 
stock 

fecundity 
condition

-0.096 
(0.013)

15.903 
(1.594)

0.918 0.0007

Batch 
fecundity 
condition

-0.008 
(0.003)

1.375 
(0.377)

0.590 0.04

Table 8. Details of the regression parameters and statistics after fi tting 
median values of either the standing stock of fecundity or batch fecun-
dity condition as values of y in a linear model y = ax +b where x = days 
after December 31 1996. The start day (92) was taken when 50 % of the 
population sample contained post ovulatory follicles calculated from a 
logistic equation (Equation 2) until the fi nal observation (156 days n=7).
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alveoli stage vitellogenic oocytes, which were also associ-

ated with a high prevalence of follicular atresia. The oocyte 

growth rates also appeared to be relatively slow in this 

group and it was therefore unlikely that they could pro-

duce viable oocytes before the end of the spawning season. 

This group could easily be confused with spent fi sh stage 7 

using macroscopic features. Thus some objective criteria 

is required so that partially mature fi sh are not included 

with the spawning stock biomass when assigning maturity 

stage by macroscopic assessment (Table 2). If this key was 

modifi ed so that the stage 4 ovary, the most advanced pre 

spawning stage, must contain yolk oocytes visible to the 

unaided eye (about 0.5 mm diameter) this would prob-

ably prevent such error. Ovaries from 3-year old fi sh with 

oocytes larger than 400 µm appeared to behave more 

like the older fi sh with generally low prevalence of atresia 

until the end of spawning in June and a higher incidence 

of spawning. Samples in this study were collected from 

an area characterised by both high stock abundance and 

high egg production and to obtain a population maturity 

assessment the total geographic distribution of the stock 

should be taken into account. In this context fl atfi sh matu-

rity (plaice Pleuronectes platessa) at age varies spatially by 

depth (Rijnsdorp, 1989) and over relatively short distances 

(150 km) in the same depth band (Nash et al., 2000). To 

integrate this variability over the distribution range it is 

necessary to weight the results according to the abundance 

of mature / immature fi sh by the area of biologically rel-

evant strata (Armstrong et al., 2001) and include the vari-

ance determined by replicate samples.

Figure 6. 
Plots illustrating the spawning process in Solea solea collected between 17 March and 5 June 1997. Panel 1 shows the prevalence of fi sh with hydrat-
ing oocytes (ο right vertical axis) and post ovulatory follices ( POF) (+ left vertical axis) as data points for each sample and also, for prevalence of POF, 
as a trend line fi tted by a logistic regression: Mj/Nj=a+bD where Mj = number of fi sh with POF at day number j, Nj is the number of fi sh sampled at day 
j, D = the number of days since December 31 1996. The values for parameters a and b were -9.2646 and 0.1026, respectively. The other three panels 
show box plots (25 and 75 percentiles span the grey bands) and 5 and 95 % percentiles as bars for the number of atretic oocytes (Panel 2), batch 
fecundity (Panel 3) and standing stock of fecundity (Panel 4), all expressed as condition indices. Outliers are only shown when the sample number 
was larger than 6 fi sh and the median value as a horizontal line within each grey box. Parameters to fi t trend lines to the median values in Panel 3 and 
4 are shown in Table 8. The number of fi sh used to construct the box plots are shown in Panel 2 (fecundity and atresia) and panel 4 (batch fecundity).
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Estimation of realised fecundity for application 
in fi shery independent stock assessment

The study of fecundity production in wild sole found that 

the standing stock of vitellogenic oocytes accumulate 

rapidly at the start of maturation and the process was com-

pleted early in the maturation cycle up to 100 days before 

any fi sh were found with hydrated oocytes. This fi nding is 

supported by laboratory studies investigating fecundity 

regulation in trout Oncorhyncus mykiss and cod where 

the change in egg size and fecundity was observed follow-

ing unilateral ovariectomy (Tyler et al., 1994; Andersen et 

al., 1999). In both experiments fecundity compensation 

depended on the maturity of the ovary when it was removed 

and if it, in the case of trout, contained advanced oocytes 

the remaining ovary produced larger rather than more 

eggs. Just prior to spawning low numbers of oocytes were 

found (Figure 4) in wild sole at the interface between pre-

vitellogenic and vitellogenic follicle populations suggesting 

no further enhancement of fecundity during spawning. 

This conclusion is supported by a study using traditional 

Gilson fi xed tissue (Horwood and Greer Walker, 1990) and 

more recently with stereometric methods (Witthames and 

Greer Walker, 1995). In both instances low to zero numbers 

of oocytes were found in several size classes at the interface 

between pre-vitellogenic and vitellogenic oocyte popula-

tions and the gap between the two populations continued 

to expand prior to spawning. Contra indications to this 

conclusion have been made (Urban, 1991), but this maybe 

due to regional differences asserted by the author or non 

representative sampling. Only 6 small fi sh at the end of 

the spawning season were used in the Urban study and the 

histograms presenting the oocyte frequency data had a low 

resolution of 0.1 mm per class interval. The size and mor-

phology of atretic oocytes, when they are most abundant at 

the beginning of spawning, suggest they originate mostly, 

but not always, from the smallest vitellogenic oocytes 

(Witthames and Greer Walker, 1995), so that potential 

fecundity is reduced rather than enhanced at this time. In 

conclusion it is possible to apply the annual egg produc-

tion method without the uncertainty that potential fecun-

dity will be enhanced by further recruitment of vitellogenic 

oocytes during spawning, but signifi cant reduction might 

occur through atresia. It is therefore necessary to interpret 

the instantaneous values of atresia shown in Figure 6 in 

terms of lost potential fecundity. This has been done in two 

assessments of sole (Horwood, 1993 and Armstrong et al., 

2001) using Equation 3 below.

R = F
p
 – (F

a
 • P • D /A

d
)     

     Equation 3

where

R= realised or spawned relative fecundity (g-1 female)

F
p
 = potential relative fecundity (g-1 female)

F
a
 = Geometric mean intensity of atresia g-1 female exclud-

ing fi sh with no atresia

P = Prevalence of early alpha atresia in the spawning 

population

D = the average spawning period of an individual female 

(Horwood, 1993) or the duration when 

data was collected for the atresia assessment (Armstrong 

2001).

A
d
 = duration in days that an early alpha stage atretic fol-

licle persists in the ovary

It has been assumed that atretic follicles persist in the ovary 

for 9 days by extrapolation from data on anchovy (average 

9 days with a range of <3 to 20 days at 16oC, Hunter and 

Macewic, 1985a) and cod (10 days at 8 oC Kjesbu et al., 1991). 

In the two assessments above it was estimated that 40 and 

28 % respectively of the annual potential fecundity was lost 

through atresia. Parameters F
a
 and D will interact because 

individuals with high atresia will very likely spawn for a 

shorter period than on average and there will be a tempera-

ture effect on atretic follicle duration. In plaice (Nash et al., 

2000) atresia is much less common, but all species prob-

ably regulate their realised fecundity output to some extent 

depending on their environment either through natural 

causes (Kurita and Kjesbu and also Hardardottir et al., this 

volume) or in response to pollution (Johnson, 1998). More 

work is therefore required to develop a more objective way 

of assessing atresia and to investigate the dynamics of the 

process during the annual cycle. In mammals the process 

has been associated with apoptosis or programmed cell 

death and this has also been investigated in fi sh (Wood 

and Van der Kraak, 1999, Witthames et al., 1999). In each 

case the studies failed to fi nd elevated signs of the apopto-

sis markers (characteristic oligonucleotides or apoptotic 

nuclei) in association with high levels of atresia.

The standing stock of fecundity declined signifi cantly from 

the average start of the spawning process (Fig. 6) and by 

fulfi lling this basic requirement it could be the Fecundity 

Reduction Method (Lo et al., 1992), would provide some 

advantages over the Annual Egg Production Method 

(Lockwood et al., 1981). Working over a selected period dur-

ing the annual egg production cycle would provide a means 

to avoid the highest period of atretic fecundity loss and there 

would be no requirement to estimate spawning duration. 

The Daily Egg Production Method (Parker, 1980) would 

not be effected by atresia and at least one of the parameters, 

batch fecundity, is easy to determine. The method used to 

provide the data in Figure 6 has not previously been applied 

to batch fecundity determination but the results were very 

similar to that reported previously (Urban, 1991). Spawning 

fraction however is more diffi cult and would require 

research on post ovulatory follicle duration and would be 
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more sensitive to aggregation of the population in different 

parts of the water column (e.g., trawl effects on cod repro-

ductive parameters: Armstrong et al., 2001).

Samples for this study were collected in the Eastern 

Channel and from the Irish Sea but from previous work the 

production and regulation of sole fecundity follows a simi-

lar pattern (Horwood 1993, Witthames et al., 1995). These 

surveys both indicated that fecundity varies signifi cantly 

between areas and probably between years as in other spe-

cies such as plaice (Horwood et al., 1986) or cod (Kjesbu 

et al., 1998). It must be strongly advised that maturity and 

fecundity data is collected at the relevant situation until 

there is a suffi cient body of data to show the likely error in 

using a mean value.

In conclusion the paper describes the methods and their 

application to assess maturity and realised fecundity and 

the issues needing further research to reduce the bias in 

fecundity and maturity estimates. The need for this work 

is quite apparent because reproduction underpins fi shery 

independent stock assessment based on egg production 

methods where the data collection is totally under scientifi c 

control. Further work is required to understand the reasons 

underlying the large disparity of 2 to nearly 5 fold between 

fi shery dependent (agebased population assessment) and 

fi shery independent methods (Horwood 1993, Armstrong 

et al., 2001).
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