IMR/PINRO

VOLUME 1

This report should be cited as:

Anon. 2005. Survey report from the Joint Norwegian/Russian ecosystem survey in the Barents Sea August-October 2005, Volume 1, IMR/PINRO Joint Report Series, No. 3/2005. ISSN 1502-8828. 99 pp.

SURVEY REPORT

FROM THE JOINT NORWEGIAN/RUSSIAN ECOSYSTEM SURVEY IN THE BARENTS SEA

AUGUST - OCTOBER 2005

Volume 1

Preface

The third joint ecosystem survey was carried out during the period $1^{\text {st }}$ of August to $5^{\text {th }}$ of October 2005. This survey encompasses various surveys that previously have been carried out jointly or at national basis. Joint investigations include the 0 -group survey, the acoustic survey for pelagic fish (previously known as the capelin survey), and the investigations on young Greenland Halibut north and east of Spitsbergen. Oceanographic investigations have always formed a part of these surveys, and studies on plankton have been included for many years. In recent years, observations of sea mammals, seabirds, bottom fishes, and benthos have been included. Consequently, from 2003, these surveys were called "ecosystem surveys".

The present report from the survey will cover many but not all the aspects of the survey. Main focus is on the hydrographical conditions of the Barents Sea, the results from the 0 -group investigations and from the acoustic investigation on pelagic fish (capelin, young herring, blue whiting and polar cod). Preliminary materials on sea mammals and seabird observations are also presented in volume 1 of the report. Results from the investigations on plankton, bottom fishes and benthos will not be fully covered in this volume of the report since the data has not been fully analyzed yet. The complete results from these investigations will be presented in volume 2 of the survey report. The $1^{\text {st }}$ volume of the report was made during a meeting between scientists participating in the survey, in Murmansk 10-14 $4^{\text {th }}$ October.

A list of the participating vessels and aircraft with their respective scientific crews is given in Appendix I.

Besides the participants on the vessels, the following specialists took part in in preparing the survey report: K. Drevetnyak (PINRO), I. Trofimov (PINRO), E. Orlova (PINRO), G. Rudneva (PINRO), V. Nesterova (PINRO); J. E. Stiansen(IMR), B. Bogstad (IMR), M. Mauritzen (IMR).

Synopsis

The main aim of the ecosystem survey was to map the distribution and abundance of the young and adult stages of several demersal and pelagic fish species, and in addition to gather information about hydrographical features, zooplankton, benthos, seabirds and sea mammals.

The water temperature in all observed areas was higher $\left(+0.5-1{ }^{\circ} \mathrm{C}\right)$ than the long term mean but somewhat lower than in the same period 2004.

The 2005 haddock yearclass is very rich. The 2005 yearclass of cod, herring, capelin and is near the average level. 0 -group of the western component of polar cod is below the average level. 0-group of Greenland halibut, redfish, saithe and the eastern component of polar cod were estimated to be poor.

The total capelin stock was estimated to be 0.3 million tonnes, which is 50% lesser than last years estimate. About 0.17 million tonnes were assumed to be maturing.

The polar cod stock was estimated to be 1.8 million tonnes, which is 0.7 million tonnes higher then last year.

Juvenile Norwegian spring spawning herring was estimated in the southern part of the Barents Sea to be 2.8 million tonnes.

Blue whiting of age groups 1 to 9 were observed in the western and southwestern parts of the surveyed area, and the biomass of this stock component was estimated to be 1.1 million tonnes.
SYNOPSIS 2
1 METHODS 5
1.1 Hydrography 5
1.2 0-GROUP FISH INVESTIGATIONS 5
1.2.1 Stratified sample mean estimator 5
1.3 ACOUSTIC SURVEY FOR PELAGIC FISH 7
1.3.1 Area coverage 7
1.3.2 Computations of the stock sizes. 8
1.4 BotTOM TRAWL SURVEY 8
1.4.1 Swept area analysis of bottom fishes 9
1.4.2 Strata system used 11
1.5 PLANKTON INVESTIGATIONS 11
1.6 Stomach investigations 12
1.7 SEA MAMMALS and birds investigations 13
1.8 BENTHOS OBSERVATIONS 14
1.8.1 Purpose 14
1.8.2 Criteria for selection of sampling locations 14
1.8.3 Gears and methods 14
1.8.4 Bottom trawl 15
1.8.5 van Veen grab 15
1.8.6 Epibenthos trawls 15
1.8.7 Epibenthic sled (RP-sled) 15
1.8.8 Video survey 16
2 RESULTS AND DISCUSSION 17
2.1 Hydrographical conditions 17
2.2 DISTRIBUTION AND ABUNDANCE OF 0-GROUP FISH AND Gonatus FABRICII. 18
2.2.1 Capelin 18
2.2.2 Cod 18
2.2.3 Haddock 18
2.2.4 Herring 18
2.2.5 Polar cod 18
2.2.6 Saithe 19
2.2.7 Redfish 19
2.2.8 Greenland halibut 19
2.2.9 Long rough dab 19
2.2.10 Wolffish 19
2.2.11 Sandeel 19
2.2.12 Gonatus 19
2.3 DISTRIBUTION AND ABUNDANCE OF PELAGIC FISH 20
2.3.1 Capelin 20
2.3.2 Polar cod 21
2.3.3 Herring 23
2.3.4 Blue whiting 24
2.4 DEmERSAL FISH 24
2.4.1 Cod (Fig. 2.4.1 and Table 2.4.1) 24
2.4.2 Haddock (Fig 2.4.2 and Table 2.4.2) 24
2.4.3 Saithe (Fig 2.4.3) 25
2.4.4 Greenland halibut (Fig 2.4.4 and Table 2.4.3) 25
Report from the joint Ecosystem survey of the Barents Sea in 2005, Vol. 1
2.4.5 Redfish (Sebastes marinus and Sebastes mentella) (Fig. 2.4.5-2.4.6 and Table 2.4.4-2.4.5) 25
2.4.6 Long rough dab (Fig. 2.4.7 and Table 2.4.6) 25
2.4.7 Wolffishes (Fig. 2.4.8-2.4.10 and Table 2.4.7-2.4.9) 25
2.4.8 Non-target species (Figs 2.4.11-2.4.15, Tables 2.4.10-2.4.12) 25
2.5 PhYtoplankton 26
2.6 Zooplankton 26
2.7 Sea mammals and birds 27
2.8 Benthos investigations 28
3 ECOLOGICAL CONSIDERATIONS 30
4 EXPERIMENTAL WORK. SWEPT AREA METHOD FOR CAPELIN ESTIMATION BY PELAGIC TRAWL 31
5 REFERENCES 33
TABLES 34
FIGURES 55
APPENDIX 1 91
APPENDIX 2 92
APPENDIX 3 93
APPENDIX 4 94
APPENDIX 5 97

1 Methods

1.1 Hydrography

The hydrographical investigations consisted of measurements of temperature and salinity in depth profiles along sections and distributed over the total investigated area. All vessels used CTD-zondes. For the first time it was agreed to carry out Norwegian and Russian oceanographic section by the vessels operating in the same area. Russian vessel sampled Norwegian sections in REEZ, but unfortunately the Russian Bear island-west section was not sampled by R/V "Johan Hjort". This cooperation should be improved and continue in future.

1.2 0-group fish investigations

The geographical distribution of 0 -group fishes was estimated with a small mesh mid-water trawl ("Harstadtrål"). All vessels, which participated in the survey in 2005, used this type of mid-water trawl which was first recommended in 1980 (Anon. 1983). The standard procedure consisted of tows at 3 depths, each of 0.5 nautical miles, with the headline of the trawl located at 0,20 and 40 m . Additional tows at 60 and 80 m , also of 0.5 nm distance, were made when the 0 -group fish layer was recorded deeper than 60 m or 80 m on the echo-sounder. Trawling procedure was standardised in accordance with the recommendations made in 1980. A smaller sized pelagic trawl was used during the first 20 years of the 0 -group investigations. After 1985 the present gear has been used regularly. In the mid 1990s, Nakken and Raknes (1996) recalculated the indices from the first 20 years. Their new indices are based upon an estimate of how many 0 - group cod and haddock that would have been caught if the new equipment had been used during the whole period from 1965. The indices of cod and haddock recalculated by Nakken and Raknes (1996) have been incorporated in the 0 -group reports since 2001. Prozorkevich (2001) calculated abundance indices for 0 -group herring since 1993. The new type of 0 -group indices was presented for the first time in volume 2 of last years report and are revised and presented in this report. These indices, which are given both with and without correction for catching efficiency, are calculated by the method of stratified sample mean. This new method allows for confidence limits to be calculated, and makes better use of the total data than the indices used hitherto have made. When the new method has been carefully scrutinized and compared to previous methods, the new indices are meant to replace the Area Index after a short period of overlap between the two methods. The Logarithmic Index is discontinued from this year.

Most of the stations this year were taken 32-35 nautical miles apart. Area based abundance indices (ABI) were estimated by using the computer program Map Viewer. Mean values of abundance indices were calculated both for the period 1985-2005 and for the whole period 1965-2005.

1.2.1 Stratified sample mean estimator

The number of fish per $\mathrm{nm}^{2}, \rho_{s, l}$, at length, l, at each station, s, are estimated by the following equation

$$
\rho_{s, l}=\frac{f_{s, l} \cdot \operatorname{Keff}}{a_{s}}
$$

where $f_{s, l}$ is the calculated frequency of length l at station s, Keff is the correction functions defined below, and a_{s} is the swept area found by

$$
a_{s}=\frac{d_{s} \cdot w s}{1852}
$$

where $w s$ is the wingspread of the trawl and is set to 20 m and d_{s} is the effective trawl distance found as trawl total distance divided on the number of depth steps.

The stratified swept area estimate, is given by

$$
\bar{y}_{s t}=\sum_{i=1}^{L} A_{i} \bar{y}_{i}
$$

where L is the number of strata, A_{i} is the covered area in the i-th stratum, and \bar{y}_{i} is the average density in stratum i. The estimated variance of the stratified mean $\bar{y}_{s t}$ is

$$
\operatorname{var}\left(\bar{y}_{s t}\right)=\sum_{i=1}^{L} A_{i}^{2} \frac{s_{i}^{2}}{n_{i}}
$$

where

$$
s_{i}^{2}=\frac{\sum_{s=1}^{n_{i}}\left(y_{i, s}-\bar{y}_{i}\right)^{2}}{n_{i}-1}
$$

The standard error of $\bar{y}_{s t}$ is given by

$$
\operatorname{se}\left(\bar{y}_{s t}\right)=\sqrt{\operatorname{var}\left(\bar{y}_{s t}\right)}
$$

and the confidence limits $C L$ are found by

$$
C L=\bar{y}_{s t} \pm 1.96 \cdot \operatorname{se}\left(\bar{y}_{s t}\right)
$$

The area is stratified by 22 strata (Fig. 2.5). To find the coverage of a stratum, the station positions are loaded into GIS software. A buffer zone of 20 nm is added to the border of the outer trawl points. The conic projection Albers equal-area, with center latitude at $75^{\circ} \mathrm{N}$, center longitude at $30^{\circ} \mathrm{E}$, and standard latitudes at 70° and $80^{\circ} \mathrm{N}$, is used for area estimation.

The sampling trawl is highly selective for 0 -group fish according to its species and length. It is possible to estimate the special correction function Keff for trawl capture efficiency by regressions on fish densities received during trawling and acoustic registrations of relatively "pure" concentrations. Correction functions for three species types are:

$$
\begin{aligned}
\text { Keff }_{\text {gadoids }} & =17.065 * \exp (-0.1932 * l) \\
\text { Keff }_{\text {capelin }} & =7.2075 * \exp \left(-0.1688^{*} l\right) \\
\text { Keff }_{\text {herring }} & =357.23 * \exp (-0.6007 * l)
\end{aligned}
$$

where l is the length in cm . These correction functions can be applied directly to the observed length frequencies at each station. But since the functions above give unreasonably high numbers as l decreases, it was decided to set for $l<4 \mathrm{~cm}$ Keff gadoids constant to 8 , Keff herring constant to 30 and Keff capelin constant to 4 . There is currently no correction function for other fish species.

1.3 Acoustic survey for pelagic fish

A team consisting of N.G. Ushakov (PINRO) together with S. Aanes, E. Olsen and then H. Gjøsæter (IMR) on board "G.O. Sars" conducted a joint leadership over the investigations, undertaking a day-to-day planning of survey grid.

Data on cruise tracks, hydrography, trawl catches, integrator values etc. were exchanged by use of e-mail, and these data were used during the day-to-day planning of the survey.

The survey area was chosen based on general knowledge of the distribution of the target species, and on information about fish distribution from the first parts of the ecosystem survey.

The main area of capelin distribution were surveyed with course lines $32-35$ nautical miles apart. In area of maximal capelin densities there were made extra tracks with course lines 15 nautical miles apart. All regions of the Barents Sea and adjacent areas of the Norwegian Sea were covered.

All participant vessels used ER-60 echo sounders (with ER-60 software, version 2.1.1). The Norwegian vessels had BEI, while the Russian vessels used FAMAS and BI-60 postprocessing system. Also "G.O. Sars", "J. Hjort" and "Jan Mayen" was equipped with transducers on adjustable keels that can be lowered in rough weather to avoid the damping effect of bubbles. Echo intensities per nautical mile were integrated continuously, and mean values per 5 nautical miles were recorded for mapping and further calculations. The echograms, with their corresponding s_{A}-values, were scrutinised every day. Contributions from the seabed, false echoes, and noise were deleted.

The corrected values for integrated echo intensity were allocated to species according to the trace pattern of the echograms and the composition of the trawl catches. Data from pelagic trawl hauls and bottom trawl hauls considered representative for the pelagic component of the stocks, which is measured acoustically, were included in the stock abundance calculations.

The echo sounders were watched continuously, and trawling was carried out whenever the recordings changed their characteristics and/or the need for biological data made it necessary. Trawling was thus carried out both for identification purposes and to obtain biological observations, i.e., length, weight, maturity stage, stomach data, and age.

In total, the Norwegian vessels carried out 706 trawl hauls and the Russian vessels carried out 402 trawl hauls, so in total 1108 hauls were made during the survey (while 1000 hauls were made in 2004). The vessels gave the s_{A}-values in absolute terms based on sphere calibrations, that is, as scattering cross section in m^{2} per square nautical mile. The acoustic equipment of the vessels was calibrated by standard spheres (see Appendix II).

1.3.1 Area coverage

The weather conditions were favourable during most parts of the survey, and consequently, an almost total coverage of the Barents Sea by a dense survey grid was achieved. In 2005 the
survey was started from the south. "Smolensk" and "F. Nansen" surveyed the eastern, northeastern areas, central part of the Barents Sea and shallow areas to the south and north-east of Spitsbergen. "G.O. Sars" and "Johan Hjort" surveyed the western, north-western and central parts while "Jan Mayen" observed northern, north-western and north-eastern areas of Spitsbergen. Altogether, total survey carried out 208 vessel/days that is one week less than in 2004.

1.3.2 Computations of the stock sizes

The computations of number of individuals and biomass per length-and age group of the pelagic fish stocks were made using the stock size estimation program "BEAM" built on SAS GIS and developed at IMR. A strata system, dividing the Barents Sea in squares of 1° (latitude) $\times 2^{\circ}$ (longitude), was used as basis for the calculation.

The mean s_{A}-value in each basic square was converted to fish area density p_{A} using the relation

and number of fish was found by multiplying with the area of the square. Numbers were converted to biomass by multiplying with observed mean fish weight in each length group.

The target strength relation for capelin is given by:

corresponding to a σ-value of $5.00 \cdot 10^{-7} \cdot L^{1.91}$

The target strength relation for polar cod and blue whiting is given by:

$$
\mathrm{TS}=10 \cdot \log \left(\frac{\sigma}{4 \pi}\right)=21.8 \cdot \log \mathrm{~L}-72.7
$$

corresponding to a σ-value of $6.7 \cdot 10^{-7} \cdot L^{2.18}$
The target strength relation for herring is given by:

$$
\mathrm{TS}=10 \cdot \log \left(\frac{\sigma}{4 \pi}\right)=20.0 \cdot \log \mathrm{~L}-71.9
$$

corresponding to a σ-value of $8.1 \cdot 10^{-7} \cdot L^{2.00}$

1.4 Bottom trawl survey

The number and biomass of fish per length group were calculated from bottom trawl catches using the "swept-area" method with a strata system developed at IMR. Number at age of cod, haddock and Greenland halibut will be presented in Vol. II of the report.

Acoustic registrations of bottom fish were carried out along all cruise tracks, with division of s_{A}-values by species based on trawl catches data.

1.4.1 Swept area analysis of bottom fishes

Length based indices for each sub-area was estimated using the method of (Jakobsen et al. 1997). For each trawl station and length, fish density was estimated by:

$$
P_{s, l}=\frac{f_{s, l}}{a_{s, l}},
$$

where:
$P_{s, l}$ is the number of fish/n.m. ${ }^{2}$ observed at station s (length l)
$f_{s, l} \quad$ is the estimated frequency of length l
$a_{s, l}$ is swept area given by

$$
a_{s, l}=\frac{d_{s} * E W_{l}}{1852}
$$

d_{s} is towed distance (n.m.) and $E W_{l}$ is the length dependent effective swept width.

For Greenland halibut, redfish, long rough dab and the wolffishes, there is no available estimate of the length dependent effective swept width, so it was set to 25 m , independent of fish length and trawl depth.

Based on (Dickson 1993a; Dickson 1993b), length dependent effective fishing width for cod and haddock was included in the calculations where EW was:

$$
\begin{aligned}
& E W_{l}=\alpha * l^{\beta} \quad \text { for } \quad l_{\min }<l<l_{\max } \\
& E W_{l}=E W_{l_{\min }}=\alpha * l_{\min }^{\beta} \quad \text { for } \quad l \leq l_{\min } \\
& E W_{l}=E W_{l_{\max }}=\alpha * l_{\max }^{\beta} \quad \text { for } \quad l \geq l_{\max }
\end{aligned}
$$

The parameters used for cod and haddock are given in the following table:

Species	α	β	$\boldsymbol{l}_{\min }$	$\boldsymbol{l}_{\max }$
Cod	5.91	0.43	15 cm	62 cm
Haddock	2.08	0.75	15 cm	48 cm

Point observations for fish density based on length (l) was summed up in 5 cm length groups denoted by $p_{s, l}$. Stratified abundance indices for each length group and strata were generated using

$$
L_{p, l}=\frac{A_{p}}{S_{p}} * \sum P_{s, l}
$$

where:
$L_{p, l}$ is the index for stratum p, length group l

$$
A_{p} \text { area (n.m. }{ }^{2} \text {) of stratum } p
$$

S_{p} is the number of stations in stratum p

For each subarea, the total number of fish in each 5 cm length group was estimated by summing over all strata in the sub area, and the total number of fish in each age group in the area was estimated using an age/length key. Finally, the total index for each length and age class is the sum of the values for all sub areas.

For each year, an age/length key was estimated for each stratum. All age samples for a stratum were used. Age samples from a length group was weighted by the index of the number of fish in the 5 cm length group within a stratum divided by the number of age samples in the length group:

$$
w_{p, l}=\frac{L_{p, l}}{n_{p, l}},
$$

where $n_{p, l}$ is the number of age samples in stratum p and length group l.

The proportion of age a at length l was estimated using

$$
P_{a}^{(l)}=\frac{\sum_{p} n_{p, a, l} * w_{p, l}}{\sum_{p} n_{p, l} * w_{p, l}}
$$

where $P_{a}^{(l)}$ is the weighted proportion of age a in length group l in stratum p,
and $n_{p, a, l}$ is the number of age samples of age a in length group l.

The sum of the weighted factors in a sub area is the abundance index for the total number of fish in the sub area. The number of fish at age was estimated by:

$$
N_{a}=\sum_{p} \sum_{l} L_{p, l} * P_{a}^{(l)}
$$

Average length and weight at age was estimated using (only shown for weight):

$$
W_{a}=\frac{\sum_{p} \sum_{l} \sum_{j} W_{p, a, l, j *} w_{p, l}}{\sum_{p} \sum_{l} \sum_{j} w_{p, l}},
$$

where $W_{p, a, l, j}$ is the weight for sample j in length group l in stratum p and age a.

1.4.2 Strata system used

A new strata system was constructed in 2004 covering the whole Barents Sea to include the total survey area. The new geographic system is also depth stratified using GEBCO depth data. Since this is the second total coverage of bottom fishes, it is not possible to compare the indices to corresponding indices in years before 2004. However, for the species cod, haddock and Greenland halibut, there are indices from approximately the same period in earlier years, at least for some regions of the Barents Sea. These indices will be presented in Vol. II of the report together with the age-based indices for 2005.

1.5 Plankton investigations

Data on phytoplankton abundance was obtained in several ways during the joint RussianNorwegian Survey. On the Norwegian vessels G.O. Sars and Johan Hjort samples for chlorophyll \boldsymbol{a} were obtained at nearly all CTD stations through filtration of water from water bottles at discrete depths from $0-100 \mathrm{~m}$, the number of samples varying slightly depending on bottom depth at the specific localities. Phytoplankton was filtered using GFC filters, and samples were frozen for later analysis of chl a content at the IMR laboratory. For both vessels mentioned above phytoplankton nutrient samples were obtained from the same water bottles on most CTD stations, at depths from the surface to the bottom according to a predefined scheme as determined for the Ecosystem cruise and specific bottom depth of each station. On G.O. Sars a fluorometer was used as an additional instrument, connected to the CTD, logging chl \boldsymbol{a} fluorescence as a continuous vertical profile along with temperature and salinity for all CTD stations. These data must however be calibrated with the help of chl \boldsymbol{a} determined from the water bottle samples obtained at the same stations.

For the first time this year, samples for phytoplankton species composition and abundance have been obtained from the Norwegian vessels G.O. Sars and Johan Hjort. For every second or third station additional quantitative water samples were obtained from the water bottles at $5,10,20$ and 30 m depth. Immediate upon retrieval of the seawater rosette sampler, two 20 ml phytoplankton samples were taken from each bottle at the above mentioned depths. The samples from the two series were kept separate as they were pooled in two dark lightprotected 100 ml flasks. The first series was fixated by adding 2 ml lugol, while the second series was fixated using $2.5 \mathrm{ml} 20 \%$ formaldehyde. Slightly less frequent a $10 \mu \mathrm{~m}$ meshed phytoplankton net with a $0.1 \mathrm{~m}^{2}$ opening was vertically operated from $0-30 \mathrm{~m}$ to obtain a qualitative phytoplankton sample. If the net itself showed no greenish colour (sign of phytoplankton) after retrieval, it was re-deployed once or twice to obtain a sufficient amount of phytoplankton to trace less abundant, but potentially important species. After gentle mixing of the water from the net cod-end two dark light-protected 100 ml flasks were filled, each with approximately 80 ml seawater, then adding 2 ml lugol and $4 \mathrm{ml} 20 \%$ formaldehyde for fixation respectively.

On board the Russian vessels information on phytoplankton abundance was obtained through a semi-quantitative approach. The phytoplankton conditions were analyzed from the zooplankton samples by visual estimation of micro-algae concentration and frequency of cell occurrence using a 5-unit scale - single (1) to mass (5) occurrence. Phytoplankton composition was determined to genus.

Zooplankton sampling on the Norwegian vessels was carried out by WP-2 plankton nets with a $0.25 \mathrm{~m}^{2}$ opening and $180 \mu \mathrm{~m}$ mesh size. Usually two hauls were made at each station, one
was taken from the bottom to the surface and the other one from 100 m to the surface. Additional stratified sampling was carried out daily by the Mocness multinet planktonsampler. During the last part of the Norwegian vessel RV G.O. Sars survey, a Russian Juday net having a $0.106 \mathrm{~m}^{2}$ opening area was also used along with WP2 net as part of a sampling comparison exercise.

The sampling on the Russian vessels was carried out by Juday-nets with $0.1 \mathrm{~m}^{2}$ opening and $180 \mu \mathrm{~m}$ mesh size in depth intervals, bottom-100m, 100-50m and $50-0 \mathrm{~m}$. Additional sampling was carried out by WP-2 on "F. Nansen".

On board the Norwegian vessels samples were normally split in two, one part was fixated in 4\% borax neutralized formalin for species analysis and the other one was size-fractioned as follows; $>2000 \mu \mathrm{~m}, 2000-1000 \mu \mathrm{~m}$ and $1000-180 \mu \mathrm{~m}$ size categories. These size-fractionated samples were weighed after drying at $60^{\circ} \mathrm{C}$ for 24 hours. Large organisms like medusa, krill, shrimp, fish and fish larvae were counted and their length or size measured separately before drying and weighing.

Zooplankton samples collected onboard the Russian vessels at the stations where both WP-2 and Juday net was taken were size-fractionated and dried as on the Norwegian vessels. Otherwise, the processing of Juday net samples from the Russian vessels included preliminary species identification and abundance determination, including wet weight determination of biomass from each haul. A more detailed processing of species and stage composition as well as numerical abundance will be undertaken in the laboratory according to standard procedures. Dry weights will be derived using a conversion factor of 0.2 . All zooplankton data will be presented as biomass or numbers per $1 \mathrm{~m}^{2}$ surface.

In 2005 it was the intention from the research vessel G.O. Sars to conduct a restricted experiment on acoustic classification and categorization of zooplankton using a Linux implementation of the Bergen Echo Integrator system (BEI). The aim was to sample selected echo registrations by a variety of sampling gear, including a newly developed macro-plankton trawl with the Multisampler mounted, Mocness, WP2 and pelagic trawl and compare catches from these various gears with independent categorization derived by the BEI system. However, due to an incomplete implementation of specific modules of the Linux BEI system, this exercise could not be undertaken as planned. The macro-plankton trawl was however, used on three occasions with the Multisampler mounted to verify acoustic registrations in various parts of the water column.

Final plankton results will be presented in $2^{\text {nd }}$ volume of the survey report.

1.6 Stomach investigations

According to agreement at the Russian-Norwegian meeting in March 2005 capelin stomachs were collected at the Norwegian (G.O. Sars) and Russian vessels (Smolensk and F. Nansen) in August-September 2005. Near 400 capelin stomachs were collected by Norwegian and Russian vessels. The samples were collected and treated as was discussed at the Meeting in April 2005. All samples were fixated in 4\% formalin until later analysis in the laboratory at PINRO. Stomachs will be processed by PINRO zooplankton specialists according to standard procedures. The results will be presented in March 2006.

Stomach samples of blue whiting were sampled on the Norwegian vessels. At each station one stomach pr. 5 cm length category was sampled and frozen for later analysis at the IMR lab.

Also stomach samples of cod were taken according to standard protocol on all participating vessels.

1.7 Sea mammals and birds investigations

Marine mammals and bird observations (species and numbers observed) were registered onboard R/V "G.O. Sars", "J. Hjort", from Norwegian side, and "F. Nansen", "Smolensk", from Russian side.

Onboard Norwegian R/Vs observations were made by three observers (one sea bird and two marine mammal observers) simultaneously from vessel bridges, the marine mammal observers covering a 180° sector (90° each) and the sea bird observer covering one 90° sector. The ship-following sea bird species, such as gulls and northern fulmars, were counted every half hour.

Onboard Russian R/Vs, observations of marine mammals and sea birds were carried out onboard "F. Nansen" and of marine mammals only onboard "Smolensk". Observations onboard both vessels were carried out by one observer from the vessel top point about 12-15 m above sea surface covering 360°.

Observer activity was limited by weather conditions. When the weather conditions were not sufficient for good quality observations (wave height more than 6 on the Beaufort Scale or reduced visibility due to fog or precipitation) observations were not carried out. Observes were active along transects only, and not during station work.

During September 19. - 29. observations of marine mammals and birds (distribution, specified and counted) were carried out onboard Russian research aircraft An-26 "Arktika", as in previous years. Two observers covered both sides of the aircraft sides along swaths equivalent to two flight altitudes. Methods for aerial observations for marine mammals and birds, including requirements for weather conditions, are described in detail in the 2004 Survey Report ($2^{\text {nd }}$ Volume).

1.8 Benthos observations

1.8.1 Purpose

The purpose of the benthos investigation was to

1) sample material for description of benthic habitats and communities in the Barents Sea,
2)evaluate different sampling methods, and
3)to continue established time series of benthic community monitoring.

This should lead to criteria for selection of suitable monitoring locations in the Norwegian EEZ and improved procedures for providing results on benthos relevant for an ecosystem approach to management of marine resources in the Barents Sea.

1.8.2 Criteria for selection of sampling locations

In general the distribution of locations for benthic sampling was integrated in the survey lines of the different vessels. Bycatch of invertebrates were recorded from all bottom trawl hauls. Criteria for the selection of locations for special benthic sampling varied between the ships and the two institutions. For the Russian part of the Ecosystem survey the locations were already decided from previously established monitoring stations. The main part of the Norwegian benthic survey was carried out with RV GO Sars. The three most important criteria for selection of locations along the survey line were representation of 1) different geographic regions, 2) different topographic structures, and 3) areas with different degrees of fishing intensity. Additionally, in the eastern part of the survey area locations were selected where red king crab previously had been recorded.

A detailed topographic map (based on a compilation of available bathymetry data from Olex) of the Norwegian sector was used to identify topographic structures (sea floor elevations, breaks and trenches, etc), whereas VMS satellite tracking data from the Norwegian Fisheries Directorate was used to identify areas with high fishing activity.

1.8.3 Gears and methods

PINRO and IMR had a slightly different approach to the benthic survey due to different history of benthic research. In the Norwegian part of the Barents Sea mapping is essential to evaluate the representativity of results on the benthos. It was decided to use a set of different gears with different sampling characteristics in order to provide a broad picture of the benthos. GO Sars was selected for this purpose since it could operate seabed inspection equipment as well as grab, sled, and trawl.

Table 2.8.1 gives an overview of the different gears used onboard the five research vessels involved in the ecosystem survey.

The following gears were used during the ecosystem cruise:

- Video rig (documents benthic habitats and megafauna),
- Beam trawl and Sigsby trawl (collect animals that live on the seafloor),
- van Veen grab (provides samples to quantify animals that live upon and in the sediments),
- RP-sled (samples organisms that live right above and on the seabed).

The combination of different sampling gear provides a good picture of the sampled habitats and their fauna.

1.8.4 Bottom trawl

For most hauls with bottom trawl (Campelen) benthic invertebrate bycatch was processed onboard, but a few samples from GO Sars were preserved or documented photographically for later identification.

Large forms of invertebrates (Asteroidea, Holoturoidea, Ophiuroidea and Porifera) were sorted out from the fish catch on deck onboard F Nansen. Smaller forms were sorted into species and taxonomic groups from the whole or a fraction of the remaining bycatch. The sorted organisms were counted and weighted (wet weight). Onboard GO Sars only Porifera was sorted out on deck. Other benthic invertebrates were sorted out from the whole or a fraction of the total catch.

1.8.5 van Veen grab

Quantitative collecting of macro-zoobenthos was carried out with van Veen grabs. The grab used onboard F. Nansen had a standard size covering a seabed area of $0.1 \mathrm{~m}^{2}$, whereas a larger grab (sampling area of $0.25 \mathrm{~m}^{2}$) was used onboard GO Sars. Five replicate samples were collected with the small grab, and three replicates with the large. The size of the samples was recorded either as filling degree (F. Nansen) or volume (GO Sars). Type of bottom sediments was examined visually and a small subsample was collected from each grab onboard GO Sars. The samples were sieved in running seawater using a smallest mesh size of 0.5 mm (F Nansen) and 1 mm (GO Sars). Sieved bottom organisms with remains of sediments were fixed in 4% neutralized solution of formaldehyde. Borax was used as a buffer. Onbord F Nansen, dominating species and forms of macro-zoobenthos were recorded in the observation log during sieving and fixing of the samples.

1.8.6 Epibenthos trawls

Qualitative sampling of zoobenthos was carried out with a modified Sigsby trawl (F Nansen) and a small beamtrawl (GO Sars). The Sigsby trawl had a steel frame of $1 \times 0.35 \mathrm{~m}$. The mesh size of the inner cover in the net was 10 mm , with a codend part with 5 mm mesh size knotless netting.

The beamtrawl had an opening of 2 m and a net similar to the Sigsby trawl (inner cover in the net $=10 \mathrm{~mm}$ mesh, codend $=4 \mathrm{~mm}$ mesh size).

Trawling duration was set to 5 or 10 min at a vessel speed of 1,5 knots. The samples were sieved trough 10 and 5 mm (F Nansen) or 5 and 2 mm (GO Sars) sieves. Organisms collected in the Sigsby trawl were sorted out and processed onboard. Dominating invertebrates were counted and length measured. Organisms that required further taxonomic identification were fixed in 75% ethyl alcohol and 4% formalin for later examination. The samples from the beamtrawl were fixed on 4% formalin for sorting and faunistic identification in the laboratory on land.

1.8.7 Epibenthic sled (RP-sled)

For a description of the RP-sled (Rothlisberg-Pearcy epibenthic sled) collects epibenthic organisms from the sediment surface to height of about 50 cm above the sedbed. The net $($ mesh size $=0.5 \mathrm{~mm})$ has a cod end similar to large plankton nets. Sampling was performed
with a wire length of $1,5-2$ times water depth with a speed close to 1 knot. The duration of the hauls standardised to 20 min . The sample was carefully washed out from the cod end and net in to a large bucket. The samples were sifted using 0.5 mm as the smallest mesh size. Most of the crustaceans were separated from the sample by repeated procedures of flotation (decantation) of the water trough fine $(0.5 \mathrm{~mm})$ sieve. The remaining sample was fractionated using different sized sieves (e.g. $8 \mathrm{~mm}, 4 \mathrm{~mm}, 2 \mathrm{~mm}, 500 \mathrm{um}$) depending on the composition of the sample. The fractions were fixed separately in 4% formaldehyde.

1.8.8 Video survey

Video records were provided onboard GO Sars with IMR's own tethered video camera (TVC). This is a platform consisting of a video-camera with pan and tilt control, two lights, and a metal frame with weights, connected to a cable from the ship. The TVC is deployed while the ship is allowed to slowly drift with the current, and was kept close ($1-2 \mathrm{~m}$) to the seabed for at least 20 minutes. Logs for the deployments included GMT time, geographic positions, depth and general description of the habitat (substrate type and dominating epifauna).

2 RESULTS AND DISCUSSION

Survey routes with trawl stations; hydrographical stations, plankton stations and benthos sampling stations are shown in Fig. 2.1, 2.2, 2.3 and 2.4 respectively.

2.1 Hydrographical conditions

Figs. 2.1.1-2.1.4 show the temperature and salinity conditions along the oceanographic sections: Kola, Kanin, North Cape-Bear Island and Bear Island-West. The mean temperatures in the main part of these sections are presented in Table 2.1.1. Anomalies have been calculated using the long-term mean for the period 1954-1990. Horizontal distribution of temperature and salinity are shown for depths of $0,50,100,200 \mathrm{~m}$ and near the bottom in Figs. 2.1.5-2.1.14.

In general the temperature was above the long-term mean throughout the Barents Sea. The surface water temperatures were higher than the long-term mean by $0.8-1.3^{\circ} \mathrm{C}$ on average in the whole investigated area. Maximum positive anomalies were observed near Sørkapp and to the west of Cape Kanin. However, in the south-western part of the survey area the temperatures were slightly higher than normal, and in the south-eastern part negative anomalies (on average $-0.5^{\circ} \mathrm{C}$) were found. The distribution of the bottom temperature had the same features as at the surface but with smaller anomalies. In the bottom layer, positive anomalies of water temperature were found practically in all the observed areas except in the south-eastern part, where waters with negative temperature anomalies (down to $-1.2^{\circ} \mathrm{C}$) were distributed to $46^{\circ} \mathrm{E}$ and $72^{\circ} \mathrm{N}$.

The water salinity in the survey area was in general close to the long-term mean except for saltier surface waters in the south-eastern and northern parts of the Barents Sea, and also near the Kanin Peninsula.

The maximum horizontal temperature gradients $\left(0.20-0.35^{\circ} \mathrm{C}\right.$ per nautical mile) were observed for the Polar Front south-east of Bear Island and west of Sørkapp at 50 m depth.

The Kola section is divided into three parts. The inner part represents the Murmansk Coastal Current and contains mostly coastal water masses, the central part represents the Murmansk Current and usually contains both coastal and Atlantic water masses, and the outer part represents the Central Branch of the North Cape Current and contains mostly Atlantic water masses. In the three parts the temperature anomalies in the $0-50 \mathrm{~m}$ layer were $1.1,0.8$ and $0.7^{\circ} \mathrm{C}$, respectively. In the $0-200 \mathrm{~m}$ layer the corresponding anomalies were $0.9,0.7$ and $0.7^{\circ} \mathrm{C}$. The Kanin section is divided into two parts. The inner part represents the Kanin Current and had positive temperature anomalies of $1.0^{\circ} \mathrm{C}$ in both the $0-50 \mathrm{~m}$ and $0-200 \mathrm{~m}$ layers. The outer part represents the Novaya Zemlya Current and had positive temperature anomalies of $0.6^{\circ} \mathrm{C}$ in the $0-200 \mathrm{~m}$ layer. The North Cape-Bear Island Section represents the North Cape Current, which mostly contains Atlantic water masses. The temperature anomalies in $0-50 \mathrm{~m}$ and $0-200 \mathrm{~m}$ layers were 1.1 and $0.9^{\circ} \mathrm{C}$, respectively. The Bear IslandWest Section is divided into three parts representing the middle, east-marine and east-coastal branches of the Norwegian Current. Temperatures in the $0-50,0-200 \mathrm{~m}$ and $0-500 \mathrm{~m}$ layers were all high. The anomalies in all three parts for all three depth layers ranged between 1.0 and $1.3^{\circ} \mathrm{C}$.

Compared to 2004 the surface temperature generally was lower (on average $0.5-1.5^{\circ} \mathrm{C}$), with the highest deviation in the south-western part (more than by $2^{\circ} \mathrm{C}$ lower in 2005). Contrary,
the bottom temperatures were between approx. 0.1 and $1.2^{\circ} \mathrm{C}$ higher in 2005 than in 2004 in most of the Barents Sea.

The high temperature in the Barents Sea is mostly due to the inflow of water masses with high temperatures from the Norwegian Sea. In addition, prevailing southern, southwestern and southeastern wind in the north of the sea during the survey promoted the penetration of the warmer and saltier water masses northward.

2.2 Distribution and abundance of $\mathbf{0}$-group fish and Gonatus fabricii.

The distribution of various species of 0 -group fish are shown in Figs 2.2.1-2.2.9. Abundance indices are shown in tables 2.2 .1 to 2.2.3. The density grading is based on catches, measured in number of fish per square nautical mile. More intensive colouring indicates denser concentrations. Length frequency distributions of the main species are given in Table 2.2.4. The coverage of 0 -group fish distributions towards the north was good, but the western borders for some of the 0 -group distributions were not completely allocated.

2.2.1 Capelin

Capelin was distributed mainly in the eastern areas, but scattered concentrations were also observed south of Spitsbergen. Dense concentrations were found in a wider area than last year. Total abundance of 0 -group capelin is above 2004, but again below the long-term average level.

2.2.2 Cod

0 -group cod had a wide distribution area, but compared to 2004 there was a displacement to the west and north-west. Dense concentrations were found between $12^{\circ}-38^{\circ}$ E. Low densities in the eastern areas were found in patchy distributions only. Abundance of 0 -group cod was on an average level and near the same as in 2004.

2.2.3 Haddock

The total distribution of 0 -group haddock was similar to last year, but with higher densities. Dense concentrations of 0 -group haddock were registered in large areas in the western Barents Sea and west of Spitsbergen. Both the area index and the stratified sample mean index shows that haddock, once again, has produced a yearclass at a record high level.

2.2.4 Herring

0 -group herring was distributed in scattered concentrations mostly. Dense concentrations were found in a small area in the central Barents Sea and only one catch south-west of Spitsbergen Distribution area in the central Barents Sea and west of Spitsbergen has slightly decreased compared to last year. Only patchy distributions were observed to the east and along the coast. Abundance of herring 0 -group is much lower than in 2004 and slightly below the average level for the period 1980-2005.

2.2.5 Polar cod

The eastern component has near the same distribution as in 2004 but at lower densities. The distribution of 0 -group polar cod seems to extend even further north than the covered survey area. However, abundance of eastern polar cod seems to be poor.

Western component of 0 -group polar cod had near the same distribution west of Spitsbergen as last year, with a small area of dense concentration. South and east of Spitsbergen, both scattered and dense concentrations were found in a wider area. Results from the two methods differ regarding to the long term mean, but the abundance of the western component of polar cod was stronger than in 2004.

2.2.6 Saithe

Total distribution area of 0-group saithe was drastically decreased compared to the last year. Saithe was found in the central area in scattered concentrations only. The yearclass is below the long term average and can be characterised as weak.

2.2.7 Redfish

Gradual increasing of dense concentrations as well as total distribution area was observed in the central part of the Barents Sea and to the west and north of Spitsbergen. The abundance was higher than in the last ten years but not above the long-term average.

2.2.8 Greenland halibut

0 -group Greenland halibut were only found in low concentrations west and north of Spitsbergen. The total abundance index is much weaker than in 2004 and below the average level. Although the distribution is not completely covered, the 2005 yearclass of Greenland halibut seems to be poor.

2.2.9 Long rough dab

No areas with dense concentrations were found. Scattered densities were distributed mainly in eastern part of the Barents Sea and in larger areas than previous years. A slight increase of scattered distributions in the Spitsbergen area were also observed. The 2005 yearclass seems to be weak.

2.2.10 Wolffish

As in 2004, wolffish were only found in scattered concentrations around Spitsbergen, and in the south-eastern part of the Barents Sea. Additionally, a small area was found near the Norwegian coast. No index is calculated for these species and due to the low concentration, a distribution map was not found necessary.

2.2.11 Sandeel

In the south-eastern part of the Barents Sea, areas with dense and scattered registrations had increased significantly increased compared to 2004 and was similar to the distribution in 2003. In the central region there was only one area with scattered concentration. No index is calculated for this species and due to the low concentration, a distribution map was not found necessary.

2.2.12 Gonatus

0 -group Gonatus fabricii were found only in two small areas, one west of Spitsbergen and another in the western part of the Barents Sea. No index is calculated for this species and due to the low concentration, a distribution map was not found necessary.

2.3 Distribution and abundance of pelagic fish

Appendix 3 lists the number of fish sampled during the survey.

2.3.1 Capelin

2.3.1.1 Distribution

The geographical density distribution of the total stock and for age 1 fish are shown in Figs. 2.3.1 and 2.3.2. Total distribution of capelin was located in the central and south-eastern parts of the Barents Sea. The main concentrations were found between $74^{\circ} 40^{\prime}$ and $78^{\circ} \mathrm{N}$ and from 26° to $45^{\circ} \mathrm{E}$. Small isolated areas with very scattered echo recordings were located to the west of Spitsbergen and northwards of $79^{\circ} \mathrm{N}$ between 38° and $47^{\circ} \mathrm{E}$. The northern boundary of the main distribution area was located at near the same latitude as it was found last year and extended north to $78^{\circ} 40^{\prime} \mathrm{N}$ to the east of Spitsbergen. Small scattered echo recordings were observed even further north; up to $81^{\circ} 40^{\prime} \mathrm{N}$ near $40^{\circ} \mathrm{E}$. In areas with higher densities of larger capelin large numbers of harp seals and humpback whales were observed. Young capelin were distributed mainly to the south of $76^{\circ} \mathrm{N}$ in scattering layers near the bottom at daytime and near surface during night. In south-eastern part there were often caught significant quantity of young capelin, where echo-recordings were absent. (See section 4, experimental issues).

Echogram of capelin distribution is shown in Figure 2.3.3.

2.3.1.2 Abundance estimate and size by age

A detailed stock size estimate is given in Table 2.3.1, and the time series of abundance estimates is summarized in Table 2.3.2. The main results of the abundance estimation in 2005 are summarised in the text table below. The 2004 estimate is shown on a shaded background for comparison.

Summary of stock size estimates for capelin.

Year class		Age	Number ($\mathbf{1 0}^{9}$)		Mean weight (g)		Biomass ($10^{\mathbf{3}} \mathrm{t}$)	
2004	2003	1	26.9	51.2	3.7	3.8	99.6	195.3
2003	2002	2	13.0	24.8	14.3	11.9	185.9	293.9
2002	2001	3	1.8	5.6	20.8	21.5	36.8	121.4
2001	2000	4	0.07	0.7	25.8	24.2	1.7	17.4
Total stock in:								
2005	2004	1-4	41.8	82.3	7.8	7.6	324.0	628.0
Based on TS value: $19.1 \log \mathrm{~L}-74.0$, corresponding to $\sigma=5.0 \cdot 10^{7} \cdot \mathrm{~L}^{1.91}$								

The total stock is estimated at about 0.3 million tonnes, about 50% lesser than the stock estimated last year. About 54% (174 thousand tonnes) of this stock is above 14 cm and considered to be maturing. The 2004 year class (1-group) consists, according to this estimate, of about 27 billion individuals. This estimate is about 50% lower than that obtained for the 1 group last year. The mean weight is estimated at 3.7 g , which is near the same as that measured last year, and the long-term average. The biomass of the 2004 year class is about 0.1 million tonnes. It should be kept in mind that, given the limitations of the acoustic method concerning mixed concentrations of small capelin and 0 -group fish and near-surface distribution, the 1 -group estimate might be more uncertain than that for older capelin.

The estimated number of fish in the 2003 year class (2-group) is about 13 billion, about half the size of the 2002 year class measured last year. The mean weight at this age is $14.3 \mathrm{~g}(11.9$ g in 2004), and consequently the biomass of the two years old fish is about 0.2 million tonnes. The mean weight is higher than in recent years and is 3.9 g above the long-term average (Table 2.3.2).

The 2002 year class is estimated at about 1.8 billion individuals with mean weight 20.8 g , giving a biomass of about 0.04 million tonnes. The mean weight is lower than that for the 2004, but is 2.2 g above the long-term average. The 2001 year class (now 4 years old) is estimated at 0.07 billion individuals. With a mean weight of 25.8 g this age group makes up only about 2 thousand tonnes. A few capelin older than four years were found.

Since 2003 the joint Russian-Norwegian 0-group and pelagic fish surveys became a part of an ecosystem survey. In addition to pelagic trawl stations a lot of bottom trawl stations were included. It allows to investigate to what extent the biomass of capelin is underestimated due to that especially older fish are distributed close to the bottom and could not be seen by echosounder. A new time series of capelin assessment which has been started in 2004, and including the "bottom" component of the stock has been continued. Results of capelin bottom component assessment by a swept area method will included in volume 2 of joint survey report. "Traditional" capelin index time series based on acoustic estimation only and used for capelin stock assessment and reference points were continued without changes.

2.3.1.3 Mortality

Table 2.3.4 shows the number of fish in the various year classes, and their "survey mortality" from age one to two. As there has been no fishing on these age groups, the figures for total mortality constitute natural mortality only, and probably reflect quite well the predation on capelin. As can be seen from the table, the mortality was high prior to 1988, but then a substantial decrease occurred in 1988-89. This coincided with a considerable increase in the stock size caused by the rich 1989 year class. From 1990, the mortality again increased, up to 85% in 1992-93. This increase is in accordance with the observation of an increasing stock of cod, which were preying on a rapidly decreasing stock of capelin. The mortalities calculated for the period 1996-2002 varied between 20 and 52\% and indicate a somewhat lower level of mortality. In 2003 a considerable increased natural mortality was observed, at the level (around 85\%) observed in 1985-86 and in 1992-93 and this high level was continued from 2003 to 2005. The results of the calculation for the year classes 1988, 1992, and 1994 shows, however, that either the one-group are underestimated or the two-group is overestimated these years. Knowing that the measurement of the 1 -group is more uncertain than the older age groups due to limitations in the acoustic method, the first mentioned possibility is the most probable.

2.3.2 Polar cod

Compared to recent years, the polar cod distribution was almost completely covered. Only in the northern areas a definite boundary of the polar cod distribution area was not found. During the trawl survey for Greenland halibut in the areas around Spitsbergen and between Novaja Zemlja - Frans Josef Land, considerable amounts of polar cod was caught in bottom trawl in the studied areas. This situation is common during the autumn, when the polar cod stock is widely distributed in the northern part of the Barents Sea.

2.3.2.1 Distribution

The geographical density distribution of the total stock and for age 1 fish are shown in Figs. 2.3.4 to 2.3.5. The densest registrations of polar cod were found in a wide area between 73° $76^{\circ} \mathrm{N}$ and $42^{\circ}-53^{\circ} \mathrm{E}$. Main centres of gravity were observed along $74^{\circ} 30^{\prime} \mathrm{N}$ between $42^{\circ}-$ $53^{\circ} \mathrm{E}$ and at $75^{\circ} 30^{\prime} \mathrm{N}, 43^{\circ} \mathrm{E}$. This species had a wide distribution, mainly to the east of $37^{\circ} \mathrm{E}$. Local concentrations were registered around Spitsbergen also. Figure 2.3 .6 shows typical acoustic registrations of polar cod.

2.3.2.2 Abundance estimation

The stock abundance estimate by age, number, and weight was calculated using the same computer program as for capelin. The geographical density distribution of polar cod is shown in Figs. 2.3.4-2.3.5.

A detailed estimate is given in Table 2.3.5, and the time series of abundance estimates is summarized in Table 2.3.6. The main results of the abundance estimation in 2005 are summarised in the text table below. The 2004 estimate is shown on a shaded background for comparison.

Summary of stock size estimates for polar cod

Year class		$\frac{\text { Age }}{1}$	Number (10^{9})		Mean weight (g)		Biomass ($\left.10^{3} \mathrm{t}\right)$	
2004	2003		71.7	99.4	8.7	6.3	626.6	627.1
2003	2002	2	57.1	22.8	18.0	17.8	1028.2	404.9
2002	2001	3	3.7	2.6	32.5	31.3	120.2	82.2
2001	2000	4	0.2	0.4	43.6	55.3	7.6	24.6
Total stock in								
2005	2004	1-4	132.9	125.3	13.6	9.1	1803.3	1143.8
Based on TS value: $21,8.1 \log \mathrm{~L}-72.7$, corresponding to $\sigma=6.7 \cdot 10^{7} \cdot \mathrm{~L}^{2.18}$								

The number of individuals in the 2004 year class (the one-year-olds) is about 28% lower than the one- group measured last year, but their mean weight is 2.4 gram higher. The biomass is, therefore, near the same level as that of the one-year-olds measured last year. The abundance of the 2003 year class (the two-year-olds) is 57.1 billions. This is almost 2.5 times higher than the two-group found last year with about the same mean weight. The biomass has, therefore, increased 2.5 times compared to the 2002 year class estimated last year. The three-years-old fish (2002 year class) is about 3.7 billions that is 42% larger than the three-group estimated last year and has 1.2 g higher mean weight. Consequently, the biomass of this age group has increased with about 46% compared to that for the corresponding age group during the 2004 survey. The four-year-olds (2001 year class) are scarcely found and even less than in last year. The total stock, estimated at 1.8 million tonnes, is at the same level as in 2001 and 1.6 times larger than the biomass estimated last year. The reason for the dramatic increase in biomass for polar cod might be that the area of distribution was much better covered this year compared to last year.

2.3.2.3 Mortality

Table 2.3.7 shows the "survey-mortality rates" of polar cod in the period 1985 to 2005. The mortality estimates are unstable during the whole period. Although unstable mortalities may indicate errors in the stock size estimation from year to year, the impression remains that there is a considerable total mortality on young polar cod. Prior to 1993, these mortality estimates
represent natural mortality only, as practically no fishing took place. In the period 1993 to 2005 catches were at a level between 0 and 50000 tonnes. Since there has been a minimum landing size of 15 cm (from 1998, 13 cm) in that fishery, a considerable amount of this could consist of two- and even one-year-olds, and this may explain some, but only a small part of the high total mortality. From 2003 to 2004 there are negative survey mortalities both for age groups 1-2 and for 2-3, confirming the impression expressed in the 2003 report that the 2003 estimate for various reasons was an underestimate.

2.3.3 Herring

The youngest age groups (age $0+$ to $3+$) of the Norwegian spring spawning herring stock are found in the Barents Sea at irregular intervals. It is difficult to assess the stock size during autumn, due to various reasons. The age groups 1-3 are found mixed with 0 -group herring and other 0 -group fish, and these age groups are difficult to catch in the sampling trawl used during this survey. Besides, the herring schools are partly found near the surface, above the range of the echo sounders. The stock size estimates of herring are therefore considered less reliable than those for capelin and polar cod.

2.3.3.1 Distribution

The distribution of young herring is shown in Figure 2.3.7. According to the distribution herring was divided into east and west components. Eastern juvenile herring with predominance of 1 year olds were distributed over a large area between 25° and $44^{\circ} \mathrm{E}$ and up to $75^{\circ} \mathrm{N}$. West of $25^{\circ} \mathrm{E}$ there were dominated 3 year olds and older herring dominated. Aggregations with highest density of young herring were recorded in the southern part of the sea between 32° and $43^{\circ} \mathrm{E}$. Further east of $46^{\circ} \mathrm{E}$ as in 2004 there were not found any registrations east of $46^{\circ} \mathrm{E}$. The distribution area of herring in 2005 resembles that of the past few years.

2.3.3.2 Abundance estimation

The estimated number and biomass of eastern (east of $25^{\circ} \mathrm{E}$) herring from the Barents Sea per age- and length group is given in Table 2.3.8. The main results of the abundance estimation in 2005 are summarised in the text table below. The 2004 estimate is shown on a shaded background for comparison.

Summary of abundance estimates of the portion of the herring stock found in the Barents Sea.

Year class		$\frac{\text { Age }}{1}$	Number ($\mathbf{1 0}^{9}$)		Mean weight (g)		Biomass ($10{ }^{\mathbf{3}} \mathrm{t}$)	
2004	2003		46.4	12.3	21.2	28.5	983.7	406.4
2003	2002	2	16.2	36.5	65.2	74.7	1054.5	2.725 .3
2002	2001	3	7.0	0.9	114.0	118.3	795.2	106.6
Total stock in:								
2005	2004	1-3	69.5	51.7	40.8	62.9	2833.4	3.251 .9

Based on TS value: $20.0 \log \mathrm{~L}-71.9$, corresponding to $\sigma=8.1 \cdot 10^{-7} \cdot \mathrm{~L}^{2.00}$
Total abundance was estimated at 69×10^{9} fish and biomass at $2.8 \times 10^{6} \mathrm{t}$. The majority of fish (about 67% by number) was from the 2003 year class. According to these results, the 2001 year class has left the Barents Sea and was found during survey in Norwegian Sea. Incompatibility between age 2 in this year and age 1 in the previous year may be explained by underestimation of young herring below 12 cm length in 2004. It has been strong mix with 0 group, so this length limit (12 cm) was determined.

2.3.4 Blue whiting

In the southwestern part of the Barents Sea blue whiting were observed as in last year. In recent years, the blue whiting have seemingly expanded its distribution area towards northeast, partly entering the Barents Sea. A quantitative estimation of this species has normally not been attempted during this survey, since only a small part of the total distribution area of this species is covered. Nevertheless, this species is now a major component of the Barents Sea ecosystem, and consequently, it was decided to make a stock size estimate of the covered part of the stock during the current survey. The target strength used for blue whiting is uncertain, and the estimate should to a greater extent than the other estimates be considered as a relative quantity only.

2.3.4.1 Distribution

The distribution of blue whiting (all age groups) is shown in Figure 2.3.8. As in 2004 the distribution area stretches from the western border of the covered area east to a line between North Cape and Spitsbergen. In addition, lower concentrations were detected along the coast of Finnmark east to Vardø.

2.3.4.2 Abundance estimation

The estimated number and biomass of blue whiting per age- and length group is given in Table 2.3.8. Total abundance was estimated at 15×10^{9} fish and biomass at $1.1 \times 10^{6} \mathrm{t}$, compared to $1.4 \times 10^{6} \mathrm{t}$ in 2004. The main bulk of this stock component consisted of 20002004 yearclasses at age 1-5. Older fish at age 6-9 were found in small quantites and insignificant numbers of fish up to 15 years of age were found.

2.4 Demersal fish

Figures 2.4.1-2.4.15 and Tables 2.4.1-2.4.11 show the distribution and abundance of demersal fish. Appedix 3 lists the numer of fish sampled during the survey.

2.4.1 Cod (Fig. 2.4.1 and Table 2.4.1)

The total distribution area of cod in the Barents Sea was covered. At this time of the year, towards the end of the feeding period, the distribution of cod is wide. Cod reach the limits of its natural habitat and single fishes were caught as far north as $80-82^{\circ} \mathrm{N}$. Two main concentrations were observed; one in the south-eastern areas from Murman Shallow to the slope of Goose Bank and Novaya Zemlya archipelago, and the other in the northern area south-eastwards and eastwards of Spitsbergen archipelago. Compared to the observations last year very small changes were found in the distribution patterns in 2005 . The abundance of cod between 10 and 40 cm was about the same as last year, while the abundance of cod >40 cm was considerably lower than last year.

2.4.2 Haddock (Fig 2.4.2 and Table 2.4.2)

The haddock distribution was covered well by the survey. Haddock were distributed in the warm water masses and along the coast of Norway and Russia between $17-47^{\circ} \mathrm{E}$ and to a lesser degree to the west of Spitsbergen. Dense concentrations were found between $35-44^{\circ} \mathrm{E}$ along Murman Coast and to the north of Norwegian coast. The catches of haddock as well as the distribution area increased considerably in 2005 comparing to the survey in 2004 . The
abundance of haddock increased considerably from last year. Most of the increase is in the length groups $15-24 \mathrm{~cm}$, corresponding mainly to age 1 fish.

2.4.3 Saithe (Fig 2.4.3)

Saithe were distributed in the warm water masses and along the coast of Norway and Russia between $18-40^{\circ} \mathrm{E}$, with a single observation as far east as $47^{\circ} \mathrm{E}$. The catches of saithe were observed near Spitsbergen ($77-78^{\circ} \mathrm{N}$). Compared to the survey in 2004, the eastern border of its distribution and the area with the highest densities moved eastwards in 2005.

2.4.4 Greenland halibut (Fig 2.4.4 and Table 2.4.3)

Mainly young age groups of Greenland halibut were observed because the adult part of the stock was distributed outside of the survey area. Main concentrations were located in the deeper part of the Spitsbergen slope and in the area between Spitsbergen and Franz Josef Land archipelago, as well as between Bear Island and Hopen Island. Catches of Greenland halibut were taken as far east as $61^{\circ} \mathrm{E}$ and north as $82^{\circ} \mathrm{N}$. The catches of Greenland halibut increased in all areas in 2005 compared to the survey in 2004. The abundance of Greenland halibut increased considerably, mainly due to an increase in the abundance of $10-19 \mathrm{~cm}$ fish.

2.4.5 Redfish (Sebastes marinus and Sebastes mentella) (Fig. 2.4.5-2.4.6 and Table 2.4.4-2.4.5)

Redfish were only distributed in the western and northern parts of the survey area. Most dense concentrations were located along the shelf slope from the Norwegian coast to west of Spitsbergen. In all other areas, including the area between Spitsbergen and Franz Josef Land archipelago, redfish was only found in scattered densities. The abundance of S. mentella was close to that estimated last year. The abundance of S. marinus was slightly higher than last year, but is very low compared to the abundance of S. mentella.

2.4.6 Long rough dab (Fig. 2.4.7 and Table 2.4.6)

The distribution of long rough dab was wider than the distribution of other species. It was practically found in all areas, and its catches were quite significant in most cases. Catches of LRD were taken as far east as $62^{\circ} \mathrm{E}$ and north as $82^{\circ} \mathrm{N}$. The abundance of long rough dab decreased slightly compared to 2004.

2.4.7 Wolffishes (Fig. 2.4.8-2.4.10 and Table 2.4.7-2.4.9)

The abundance of Atlantic wolffish was the same as last year, while the abundance of spotted and northern wolffish decreased slightly.

2.4.8 Non-target species (Figs 2.4.11-2.4.15, Tables 2.4.10-2.4.12)

Totally 89 fish species from 30 families occurred in the trawl catches during the survey. A list of the species and ecological and zoogeographic characteristics is given in Appendix 4. The highest number of species was observed in the families Zoarcidae (11 species), Gadidae (9 species), Cottidae (8 species) and Pleuronectidae (7 species).

Five species were chosen as indicator species to demonstrate the distribution patterns of fishes from the different zoogeographic groups - mainly Arctic sea tadpole Careproctus reinhardti, arcto-boreal Atlantic poacher Leptagonus decagonus, mainly boreal hook-ear sculpin

Artediellus atlanticus and thorny skate Amblyraja radiata and boreal european Norway pout Trisopterus esmarkii.

2.4.8.1 Sea tadpole (Fig. 2.4.11)

This species was distributed mostly in the central and northern Barents Sea. The biggest catches were observed near the southern and eastern coast of Spitsbergen and in the area between Spitsbergen and Franz Josef Land archipelago.

2.4.8.2 Atlantic poacher (Fig. 2.4.12, Table 2.4.10)

The species was distributed mostly in the central and northern Barents Sea. The biggest catches were observed near the southern and eastern coast of Spitsbergen and in the central open part of the Barents Sea. The species is practically absent in the warm water in the southwestern part of the sea. Its distribution is similar to the distribution of cold water. The abundance decreased slightly from 2004 to 2005.

2.4.8.3 Hook-ear sculpin (Fig. 2.4.13)

The species is widely distributed in the Barents Sea. The biggest catches were observed in the northern Barents Sea (near the southern and eastern coast of Spitsbergen and in the area between Spitsbergen and Franz Josef Land archipelago).

2.4.8.4 Thorny skate (Fig. 2.4.14, Table 2.4.11)

The species was widely distributed in the Barents Sea excluding the northern areas near Franz Josef Land archipelago, as well as the western Norwegian coast. The biggest catches were observed in the central part of the Barents Sea, in the area between Spitsbergen and the Bear Island as well as in the southeastern part of the Barents Sea near the Kanin Peninsula.

2.4.8.5 Norway pout (Fig 2.4.15)

The species was distributed only in the southwestern part of the Barents Sea near Norway and to a lesser extent along the Murman coasts. Its distribution is similar to the distribution of the warmest Atlantic water. Single specimens were found near the southern coast of Spitsbergen.

2.5 Phytoplankton

Data on fluorescence, chlorophyll a, nutrients and phytoplankton species composition data are now being processed and analyzed at the IMR laboratory. A summary and some preliminary results will be available for volume 2 of the report.

2.6 Zooplankton

The map of zooplankton sampling localities and sampling gear (Russian and Norwegian vessels) is shown in figure 2.3. The main results of zooplankton observations will be presented in volume 2 of Joint Ecosystem Survey Report after working up data in the laboratories.

From figure 2.3 it is apparent that the investigated area is covered reasonably well as seen from a zooplankton point of view. The table below gives an overview of total zooplankton hauls for different types of zooplankton sampling gear during the Ecosystem survey.

Total number of zooplankton hauls obtained during the Norwegian and Russian surveys in the Barents Sea in August-October 2005.

Net	Norwegian ships		Russian ships	
	«G.O.Sars»	«J.Hjort»	«F.Nansen»	«Smolensk»
WP-2	201	123	21	-
Juday	10	-	228	101
MOCNESS	34	27	-	-

In figure 2.6.1 an overview of zooplankton biomass (wet-weight $\mathrm{mg} / \mathrm{m}^{3}$) from the Russian vessel Fridtjof Nansen in the upper $0-50 \mathrm{~m}$ by Juday net is shown. We observe that biomass from mid August to September in different areas of the survey were rather high and that a marked downward seasonal shift in the vertical distribution of zooplankton also took place (not shown).

Biomass data collected by Norwegian and Russian vessels from stations where WP2 and Juday both have been used will be compared as soon as all relevant data are available. Secondly, species composition and abundance from WP2 and Juday nets collected at the same stations in 2004 and 2005 will be analyzed and compared. Preliminary analysis has shown a significant variability in stage composition of key species of Calanus. A more extensive comparison and analysis should therefore be undertaken to help quantify this variability, based on data from 2004 and 2005. The agreement on comparative collection of zooplankton samples by WP-2 and Juday net on Norwegian and Russian vessels (c.f. Meeting in April 2005) will be followed up by both parties with regard to working up samples, exchange of raw data, analysis and publication in relevant reports or international refereed journals. It is suggested that the agreement is strengthened with additional sampling and also new approaches in future surveys with the ultimate goal of a unified sampling approach.

It is recommended, based on experience during field sampling in 2005 and from preliminary comparisons based on data from 2004, that a Bongo-like rig should be built that can hold both a WP2 and a Juday net for better performance and more efficient comparisons between the sampling gear. This way the problems concerning variability between consecutive net hauls can be reduced.

2.7 Sea mammals and birds

A total of 622 observations of 5564 individuals of marine mammals comprising 17 species were recorded from RVs "Johan Hjort", G.O. Sars, "F. Nansen", "Smolensk" and the aircraft "Arktika". Number of marine mammals observed by species is listed in Table 2.7.1. The most abundant species in terms of individuals were harp seals (49% of total number of individuals observed), due to one observation of 2000 individuals made on board "F. Nansen", and dolphins, of which white-beaked dolphins were the predominant species (23% of total number of individuals observed). Of the baleen whales (10% of total number of individuals observed), minke and fin whales were most numerous (Table 2.7.1).

Minke whales had the widest distribution among the baleen whales as they were observed both on and off the shelf and throughout the survey area (Fig. 2.7.1). Humpback and fin whales were observed on the shelf or the shelf break west of Spitsbergen, and while humpback whales were observed both in the northern and southern Barents Sea, fin whales were more restricted to the central and northern Barents Sea. Sei whales, normally considered as a southern deep-sea species, were observed both west and east of Svalbard and in the
$\overline{\text { central Barents Sea. Finally, one observation of the rare bowhead whale was recorded east of }}$ Svalbard in the northern Barents Sea. Both sei and bowhead whales were observed in open water, about 120 nautical miles from the sea ice edge. The dolphins, predominantly comprising white-beaked dolphins, were observed throughout the Barents Sea. In contrast, sperm whales were only observed off the shelf break, mainly south of Bear Island (Fig. 2.7.2). Harp seals were observed east of Svalbard only, close to the sea ice edge (Fig. 2.7.2).

Around 6000 observations of 115218 sea birds comprising 29 species were recorded onboard the vessels "G. O. Sars", "Johan Hjort", "F. Nansen" and the aircraft "Arktika" (Table 2.7.2). The procellarids were the most abundant species group in terms of individuals observed (59 586) due to high abundances of northern fulmars, while the alcids were the most abundant group in terms of observations (7773). The most abundant single species was the northern fulmar with 59499 individuals recorded (Table 2.7.2).

The alcids were observed throughout the study area, but the abundance and species distribution varied geographically (Fig. 2.7.3). Number of individuals increased northwards and eastwards. In the south-western Barents Sea puffins and common guillemots dominated, the central areas were dominated by brünnich's guillemots and the northern areas by brunnich's guillemots, little auks and black guillemots. Little auks were generally closer to Svalbard than the brunnich's guillemots. Furthest north black guillemots were observed in high concentrations.

The gulls and the northern fulmars are ship-followers, and hence their observed distribution will be influenced by the presence of the ships. Figure 2.7.4 show the distribution of these species as observed from the aircraft "Arktika" (mainly northern fulmars and kittiwakes) and the vessels "G.O. Sars" and "Johan Hjort" (based on counts every half-hour). Northern fulmars were observed in most of the study area, although they dominated the abundances in the western part. Kittiwakes dominated the abundances in the eastern and northern areas. Great black-backed gulls and herring gulls were observed in the southern Barents Sea, while ivory gulls were observed only in the extreme north. A few glaucous gulls were observed in the central Barents Sea, around Bear Island and southern Svalbard.

Four species of skuas were observed; great, pomarine, long-tailed and arctic skua (Fig. 2.7.5). Numbers of skuas increased towards the north and east, with arctic skuas dominating the southern areas and pomarine and great skuas dominating the northern areas.

The observed distributions of marine mammals and birds shown in Figs. 2.7.1-2.7.5 are not effort corrected. Due to unfavourable weather and light conditions observers were active parts of the survey time only, which may yield biased distribution maps.

2.8 Benthos investigations

The five vessels involved in the ecosystem survey sampled in different areas of the Barents Sea. Bottom trawl (Campelen) was used on all ships (see table below) in the whole survey area, but only F. Nansen and GO Sars had taxonomic experts participating on the cruise. The southeastern part of the survey area and the area around Svalbard was sampled with grab (van Veen) and small trawls (Sigsby and Beam trawl). Video rig and epibenthic sled (RP sled) were only used onboard GO Sars (see table 2.8.1).

The samples collected with all gears except bottom trawl are currently being processed at PINRO and IMR. The bycatch data from the Russian vessels is already punched into databases. Unfortunately, the recorded bycatch data from GO Sars is not completely finished
at this point. A preliminary species list of bycatch invertebrates recorded onboard the different ships is provided in Appendix 5.

There was a tendency to decreased number of species in larger trawl samples (Fig. 2.8.1).
This can best be explained by the fractionation of large samples. More analysis of the bycatch data is needed to understand the potential and limitation of this survey technique.

The number of identified taxa in the bycatch material was in total 313 (see table below). Only 10 taxa were recorded on all five vessels. Of these, only two were identified to species level (Pandalus borealis and Sclerocrangon ferox).

Figure 2.8 .2 shows the biomass distribution of benthic invertebrates in the Barents Sea caught as by-catch in the bottom trawl.

Number of identified and unidentified invertebrate species recorded in the bycatch onboard the five research vessels involved in the ecosystem survey.

Vessels

Equipment	GO Sars	Johan Hjort	Jan Mayen	Fritjof Nansen	Smolensk
Number of identified taxa	117	72	40	176	77
Identified species (\% of total taxa number)	34	42	7	71	58

King Crab (Paralithodes camtschaticus) - figure 2.8.4

The distribution area for king crab was mainly located close to the coast (between $27-45^{\circ} \mathrm{E}$). High catches of king crab were caught in the eastern area. The westernmost record was from north of Porsangerfjorden.

Snow crab (Chionoecetes opilio) (figure 2.8.3)

Snow crab was registrated only on two stations between 30° and $40^{\circ} \mathrm{E}$, and 71° and $73^{\circ} \mathrm{N}$. Standardised to hours of trawling the catch was around $2-3 \mathrm{~kg}$.

Shrimp (Pandalus borealis) figure 2.8.5

Shrimp was distributed practically all over the surveyed areas. The larger size shrimp were mainly found in the northern part of the survey area.

3 ECOLOGICAL CONSIDERATIONS

During the ecosystem survey major components of the ecosystem are monitored synoptically. Traditionally the results of these are presented and treated separately, but then the potential to gleam insight into the ecology of the Barents Sea ecosystem is not utilized to the full extent. The synoptic data from this ecosystem survey provides a unique opportunity to study ecological interactions between species and the relationships between the physical processes and species distribution.

There is a great need for such ecological knowledge when implementing ecosystem-based management. Therefore preliminary analyses of ecological interactions will be included in volume 2 of the survey report. However, the ecological analysis cannot be started until data from surveyed components of the ecosystem are available. In volume 2 of the cruise report we plan to carry out the following preliminary ecological analyses: 1) Estimate and map species overlap between for key prey and predator species, 2) Map biodiversity, also in relation to physical processes, 3)Estimate and map species distribution in relationship to physical processes and habitat for key species and processes.

4 EXPERIMENTAL WORK. SWEPT AREA METHOD FOR CAPELIN ESTIMATION BY PELAGIC TRAWL.

As known, the acoustic method possibilities for fish detection as in "near the bottom", as in "near the surface" layers, are too much limited according to "the echosounder acoustic dead zone". In this connection the trawl method (or swept area method) is often applied for the density estimation of fish, distributed close to bottom or close to surface.

As in previous years, for the south-east part of the Barents Sea in August 2005 the "close to surface" capelin distribution was typical, especially at night time. It often brought to the situations when the catches of capelin in the near-surface pelagic hauls had achieved several hundreds specimen but acoustic s_{A} values was being about zero. So the using of the trawl method for capelin estimation in the near-surface layers looked enough adjustable in this case. Based on the r / v "Smolensk" data, the near-surface capelin estimations by the trawl and acoustic methods were made for the south-east part of the Barents Sea.

Acoustic estimation was made by the classical method using the mean s_{A} values per WMO squares and of summarized capelin length distribution for the all area. The trawl estimation was made by using of the usual "swept area method", taking in attention the regular distribution of the pelagic hauls positions 35 nm each from other by the formula for each $35 \times 35 \mathrm{~nm}^{2}$ square:

$$
\mathrm{N}_{\mathrm{i}}=\frac{\text { Catch }_{\mathrm{i}} \cdot 1852 \cdot 35 \cdot 35 \cdot \mathrm{~K}_{\mathrm{i}} \cdot \mathrm{~K}_{\mathrm{TR}}}{\mathrm{~L}_{\mathrm{eff}} \cdot \mathrm{D}_{\mathrm{TR}}}
$$

where N_{i} - abundance of the i-length group fishes inside of each $35 \times 35 \mathrm{~nm}^{2}$ square;
Catch $_{i}$ - the number of the i-length group fishes in the trawl catch;
K_{i} - theoretical length-dependant catchability index assumed for the sampling trawl (Mamylov, 2004);
$\mathrm{K}_{\mathrm{TR}}=\left(\mathrm{H}_{\mathrm{TR} \max }+\mathrm{dH}_{\mathrm{TR}}-\mathrm{H}_{\mathrm{TR} \min }\right) / \mathrm{dH}_{\mathrm{TR}}$ (the number of trawl horizons for each haul);
Leff - the horizontal trawl opening assumed to be equal 15 meters
D_{TR} - distance of trawling (nm).
The results of the capelin estimation by the acoustic and trawl methods are in the table below.

It's seen that the trawl method gives more than 3 times higher capelin abundance compared to the acoustic method.

Capelin estimation results in the south-east part of the Barents Sea by the acoustic and the pelagic trawl methods (Total area 127088 sq.nm)

L,cm	q	w, g	Acoustic estimation		Trawl estimation	
			N, 10^6	w, tonn	N, 10^6	W, tonn
5.7	92	0.5	47.9	25.6	163.8	87.5
6.2	1128	0.7	513.3	367.5	1754.9	1256.4
6.7	3771	0.9	1497.8	1404.4	5120.9	4801.5
7.2	5704	1.2	1935.6	2331.1	6617.5	7969.8
7.7	5526	1.5	1672.1	2543.5	5716.7	8696.0
8.2	5898	1.9	1558.7	2951.0	5329.0	10089.2
8.7	6517	2.3	1508.3	3508.3	5156.6	11994.5
9.2	7182	2.8	1448.8	4092.9	4953.2	13993.2
9.7	6454	3.4	1242.4	4219.3	4247.7	14425.2
10.2	5725	4.0	964.9	3902.9	3299.0	13343.7
10.7	3874	4.8	570.1	2723.5	1949.1	9311.3
11.2	2409	5.6	309.2	1731.2	1057.0	5918.9
11.7	1054	6.5	118.1	770.0	403.9	2632.7
12.2	478	7.5	46.6	351.5	159.4	1201.8
12.7	148	8.7	12.7	109.8	43.3	375.3
13.2	68	9.9	5.8	57.7	19.9	197.2
13.7	65	11.3	5.6	62.8	19.0	214.6
14.2	152	12.8	13.0	166.3	44.5	568.4
14.7	74	14.4	6.3	91.3	21.6	312.1
15.2	117	16.2	10.0	162.1	34.2	554.4
15.7	76	18.1	6.5	117.9	22.2	403.0
16.2	40	20.2	3.4	69.2	11.7	236.5
16.7	4	22.5	0.3	7.7	1.2	26.3
17.2	9	24.9	0.8	19.2	2.6	65.6
17.7	0	27.5	0.0	0.0	0.0	0.0
18.2	0	30.3	0.0	0.0	0.0	0.0
18.7	1	33.3	0.1	2.8	0.3	9.7
TOTAL:			13498.3	31789.7	46149.2	108685.1

5 REFERENCES

Anon., 1983. Preliminary report of the International 0-group fish survey in the Barents Sea and adjacent waters in August/September 1980. Annals biol., Copenh., 37:259-266.

Dickson, W. 1993a. Estimation of the capture efficiency of trawl gear. I: Development of a theoretical model. Fisheries Research 16: 239-253.

Dickson, W. 1993b. Estimation of the capture efficiency of trawl gear. II: Testing a theoretical model. Fisheries Research 16: 255-272.

Dingsør, G. E. 2005. Estimating abundance indices from the international 0-group fish survey in the Barents Sea. Fisheries Research 72:205-218.

Jakobsen, T., Korsbrekke, K., Mehl, S. and Nakken, O. 1997. Norwegian combined acoustic and bottom trawl surveys for demersal fish in the Barents Sea during winter. ICES CM 1997/Y: 17, 26 pp.

Mamylov, V.S. 2004. About the comparison of fish distribution densities estimated using trawl and acoustic methods. Improvement of Instrumental Methods for Stock Assessment of Marine Organisms In: Proceedings of the Russian-Norwegian Workshop, Murmansk, 11-14 November 2003. Edited by Dr. V. Chernook. PINRO Press, Murmansk, 2004, p:114-132.

Nakken, O. and Raknes, A. 1996. Corrections of indices of abundance of 0 -group fish in the Barents Sea for varying capture efficiency. ICES CM 1996/G:12.

Prozorkevich, D. 2001. Prediction of commercial fish recrutment based on 0-group survey data. PINRO press, 2001

Tereshchenko, V.V. 1992. Some results from long-term oceanographic observations during 0group surveys in the Barents Sea. ICES CM 1992/C:18.

Ushakov, N.G. and Shamray, E.A. 1995. The effect of different factors upon the Barents Sea capelin year classes. Pp. 75-84 in Hylen, A. (ed): Precision and relevance of prerecruit studies for fishery management related to fish stocks in the Barents Sea and adjacent waters. Proceedings of the sixth IMR-PINRO symposium. Bergen, 14-17 June 1994. Institute of Marine Research, Bergen, Norway.

Tables

Table 2.1.1. Mean water temperature ${ }^{1)}$ in the main parts of standard oceanographic sections in the Barents Sea and adjacent waters in August-September 1965-2005. The sections are: Kola ${ }^{2)}$ (column 1-3), Kanin (column $4^{3)}-5^{4)}$), North Cape-Bear Island (column $6^{5)}$), Bear Island - West (column 7^{6}), Vardo - North (column 8), Fugløya - Bear Island (column 9).

Year	Section and layer (depth in metres)								
	1	2	3	4	5	6	7	8	9
	0-50	50-200	0-200	0-bot.	0-bot.	0-200	0-200	0-200	0-200
1965	6.7	3.9	4.6	4.6	3.7	5.1	-	-	
1966	6.7	2.6	3.6	1.9	2.2	5.5	3.6	-	-
1967	7.5	4	4.9	6.1	3.4	5.6	4.2	-	-
1968	6.4	3.7	4.4	4.7	2.8	5.4	4	-	-
1969	6.7	3.1	4	2.6	2	6	4.2	-	-
1970	7.8	3.7	4.7	4	3.3	6.1	-	-	-
1971	7.1	3.2	4.2	4	3.2	5.7	4.2	-	-
1972	8.7	4	5.2	5.1	4.1	6.3	3.9	-	-
1973	7.7	4.5	5.3	5.7	4.2	5.9	5	-	-
1974	8.1	3.9	4.9	4.6	3.5	6.1	4.9	-	
1975	7	4.6	5.2	5.6	3.6	5.7	4.9	-	-
1976	8.1	4	5	4.9	4.4	5.6	4.8	-	-
1977	6.9	3.4	4.3	4.1	2.9	4.9	4	3.6	4.9
1978	6.6	2.5	3.6	2.4	1.7	5	4.1	3.2	4.9
1979	6.5	2.9	3.8	2	1.4	5.3	4.4	3.6	4.7
1980	7.4	3.5	4.5	3.3	3	5.7	4.9	3.7	5.5
1981	6.6	2.7	3.7	2.7	2.2	5.3	4.4	3.4	5.3
1982	7.1	4	4.8	4.5	2.8	5.8	4.9	4.1	6.0
1983	8.1	4.8	5.6	5.1	4.2	6.3	5.1	4.8	6.1
1984	7.7	4.1	5	4.5	3.6	5.9	5	4.2	5.7
1985	7.1	3.5	4.4	3.4	3.4	5.3	4.6	3.7	5.6
1986	7.5	3.5	4.5	3.9	3.2	5.8	4.4	3.8	5.5
1987	6.2	3.3	4	2.7	2.5	5.2	3.9	3.5	5.1
1988	7	3.7	4.5	3.8	2.9	5.5	4.2	3.8	5.7
1989	8.6	4.8	5.8	6.5	4.3	6.9	4.9	5.1	6.2
1990	8.1	4.4	5.3	5	3.9	6.3	5.7	5.0	6.3
1991	7.7	4.5	5.3	4.8	4.2	6	5.4	4.8	6.2
1992	7.5	4.6	5.3	5	4	6.1	5	4.6	6.1
1993	7.5	4	4.9	4.4	3.4	5.8	5.4	4.2	5.8
1994	7.7	3.9	4.8	4.6	3.4	6.4	5.3	4.8	5.9
1995	7.6	4.9	5.6	5.9	4.3	6.1	5.2	4.6	6.1
1996	7.6	3.7	4.7	5.2	2.9	5.8	4.7	3.7	5.7
1997	7.3	3.4	4.4	4.2	2.8	5.6	4.1	4.0	5.4
1998	8.4	3.4	4.7	2.1	1.9	6	-	3.9	5.8
1999	7.4	3.8	4.7	3.8	3.1	6.2	5.3	4.8	6.1
2000	7.6	4.5	5.3	5.8	4.1	5.7	5.1	4.2	5.8
2001	6.9	4	4.7	5.6	4	5.7	4.9	4.2	5.9
2002	8.6	4.8	5.8	4	3.7	-	5.4	4.6	6.5
2003	7.2	4	4.8	4.2	3.3	-	-	4.7	6.2
2004	9	4.7	5.7	5	4.2	-	5.8	4.8	6.4
2005	8	4.4	5.3	5.2	3.8	6.7	-7)	5.0	6.5
Average	7.5	3.9	4.8	4.3	3.3	5.8	4.7	4.2	5.8

${ }^{1)}$ Earlier presented temperatures have been slightly adjusted (Tereshchenko, 1992).
${ }^{2)}$ Murmansk Current; Kola section ($70^{\circ} 30^{\prime} \mathrm{N}-72^{\circ} 30^{\prime} \mathrm{N}, 33^{\circ} 30^{\prime} \mathrm{E}$)
${ }^{3)}$ Kanin section $\left(68^{\circ} 45^{\prime} \mathrm{N}-70^{\circ} 05^{\prime} \mathrm{N}, 43^{\circ} 15^{\prime} \mathrm{E}\right)$
${ }^{4)}$ Kanin section $\left(71^{\circ} 00^{\prime} \mathrm{N}-72^{\circ} 00^{\prime} \mathrm{N}, 43^{\circ} 15^{\prime} \mathrm{E}\right)$
${ }^{5)}$ North Cape Current; North Cape-Bear Island section ($71^{\circ} 33^{\prime} \mathrm{N}, 25^{\circ} 02^{\prime} \mathrm{E}-73^{\circ} 35^{\prime} \mathrm{N}, 20^{\circ} 46^{\prime} \mathrm{E}$)
${ }^{6)}$ West Spitsbergen Current; Bear Island - West section ($74^{\circ} 30^{\prime} \mathrm{N}, 06^{\circ} 34 \mathrm{E}-15^{\circ} 55^{\prime} \mathrm{E}$).
${ }^{7)}$ The temperature wasn't evaluated because the Bear Island - West section was carried out with station positions that differed from the conventional.

Table 2.2.1. Abundance indices (area method) of 0 -group fish in the Barents Sea and adjacent waters in August-September 1965-2005

Year	Capelin ${ }^{1}$	Cod^{2}	Haddock ${ }^{2}$	Herring ${ }^{3}$	Polar cod		Redfish	Greenland halibut	Long rough dab
					$\begin{array}{r} \text { Wes } \\ \mathrm{t} \end{array}$	East			
1965	37	11	13	-		0	159	-	66
1966	119	2	2	-		129	236	-	97
1967	89	62	76	-		165	44	-	73
1968	99	45	14	-		60	21	-	17
1969	109	211	186	-		208	295	-	26
1970	51	1097	208	-		197	247	1	12
1971	151	356	166	-		181	172	1	81
1972	275	225	74	-		140	177	8	65
1973	125	1101	87	-		26	385	3	67
1974	359	82	237	-		227	468	13	93
1975	320	453	224	-		75	315	21	113
1976	281	57	148	-		131	447	16	96
1977	194	279	187	-	157	70	472	9	72
1978	40	192	110	-	107	144	460	35	76
1979	660	129	95	-	23	302	980	22	69
1980	502	61	68	-	79	247	651	12	108
1981	570	65	30	-	149	93	861	38	95
1982	393	136	107	-	14	50	694	17	150
1983	589	459	219	-	48	39	851	16	80
1984	320	559	293	-	115	16	732	40	70
1985	110	742	156	-	60	334	795	36	86
1986	125	434	160	-	111	366	702	55	755
1987	55	102	72	-	17	155	631	41	174
1988	187	133	86	-	144	120	949	8	72
1989	1330	202	112	-	206	41	698	5	92
1990	324	465	227	-	144	48	670	2	35
1991	241	766	472	-	90	239	200	1	28
1992	26	1159	313	-	195	118	150	3	32
1993	43	910	240	188	171	156	162	11	55
1994	58	899	282	120	50	448	414	20	272
1995	43	1069	148	73	6	0	220	15	66
1996	291	1142	196	378	59	484	19	5	10
1997	522	1077	150	390	129	453	50	13	42
1998	428	576	593	524	144	457	78	11	28
1999	722	194	184	242	116	696	27	13	66
2000	303	870	417	213	76	387	195	28	81
2001	221	212	394	77	110	146	11	32	86
2002	327	1055	412	315	179	588	28	34	173
2003	630	694	705	277	164	337	57	9	58
2004	288	983	977	639	62	355	98	29	35
2005	348	972	1103	205	154	273	247	8	89
1985-2005	315	698	352		114	295	305	18	111
1965-2005	290	494	243		106	247	368	18	94

${ }^{1}$ Assessment for 1965-1978 in Anon. 1980 and for 1979-1993 in Ushakov and Shamray 1995
${ }^{2}$ Indices for 1965-1985 for cod and haddock adjusted according to Nakken and Raknes (1996)
${ }^{3}$ Calculated by Prozorkevich (2001)

Table 2.2.2 0-group abundance indices (in millions) with $\mathbf{9 5 \%}$ confidence limits, not corrected for catching efficiency.

	Capelin			Cod			Haddock			Herring			Redfish		
Year	Abundance index	Confidence limit													
1980	217454	149174	285735	66	38	94	67	42	93	5	1	9	282673	0	707218
1981	110142	59430	160855	49	34	65	14	7	22	3	0	9	156507	0	371639
1982	181125	45504	316745	498	359	638	537	390	683	49	12	87	169453	10618	328287
1983	100817	54303	147331	3979	1746	6213	1362	895	1830	32830	12326	53334	53589	26931	80247
1984	73228	45396	101061	5905	1900	9911	1285	877	1692	4258	1570	6946	43094	14054	72133
1985	24191	0	48833	15113	7622	22605	692	397	987	7858	1389	14328	319308	119797	518818
1986	13519	668	26370	1870	1289	2450	472	273	672	9	0	18	110738	0	228698
1987	600	134	1066	167	85	250	128	77	179	2	0	5	24678	13351	36006
1988	28826	5975	51678	526	301	751	393	155	630	8946	3366	14526	68636	43844	93429
1989	258741	205163	312318	718	412	1024	175	120	230	4113	1407	6819	16016	7667	24364
1990	36041	24438	47643	6616	3550	9682	1139	838	1440	4541	0	9493	92985	50944	135025
1991	55879	25342	86417	11082	7997	14166	3961	2966	4956	79417	41631	117203	38620	0	78044
1992	116	0	248	45546	24813	66278	1678	1200	2155	39073	22509	55636	13810	0	36539
1993	257	72	442	26917	14421	39414	1217	824	1611	68077	4138	132016	5717	0	13927
1994	9237	905	17569	26762	13870	39654	1940	1025	2854	18918	0	40609	53599	0	123179
1995	614	0	1412	89604	45220	133988	540	275	805	1700	611	2790	16516	3373	29660
1996	47055	24214	69896	70783	46761	94804	1066	796	1336	59120	29516	88724	27	8	47
1997	57585	24634	90535	68060	50188	85932	626	432	819	46833	21013	72652	147	0	296
1998	35881	23090	48671	6798	4310	9287	5993	3739	8247	79577	44037	115118	746	9	1483
1999	88855	48623	129088	1364	151	2577	1154	378	1931	16525	2116	30934	41	15	66
2000	39380	590	78170	26112	13948	38276	2945	1883	4008	49710	3342	96078	7539	0	16907
2001	5212	639	9786	981	188	1775	2016	1293	2739	852	152	1553	6	1	11
2002	20722	11632	29811	19128	11086	27170	1848	1274	2421	23494	12217	34772	132	22	243
2003	130672	68070	193273	19098	11174	27021	8643	4481	12805	31400	17390	45410	192	0	412
2004	20737	5641	35834	22420	16392	28448	20081	13354	26808	138995	98698	179291	1024	0	2105
2005	47256	16240	78272	21427	14610	28245	33785	24796	42774	26361	1151	51571	12370	665	24074
Mean	61698			18907			3606			28564			57237		

Table 2.2.2 continued

Year	Saithe			Gr halibut			Long rough dab			Polar cod (east)			Polar cod (west)		
	Abundance index	Confidence limit													
1980	3	0	5	57	17	97	1183	869	1497	0	0	0	14767	0	35894
1981	0	0	0	69	42	95	517	253	780	302	140	464	5398	2108	8689
1982	137	0	364	40	11	70	861	577	1146	0	0	1	308	0	680
1983	244	83	404	39	20	57	433	263	603	1406	0	3256	6180	0	13218
1984	760	221	1299	31	18	45	45	31	59	123	0	313	3236	788	5684
1985	14	0	28	45	28	63	282	120	445	20346	5399	35292	839	0	1692
1986	1	0	2	115	62	167	7218	5149	9288	8490	2873	14107	2113	129	4096
1987	1	0	1	37	24	50	837	436	1238	7791	0	18096	77	33	122
1988	17	4	29	8	3	13	198	111	285	403	8	798	4722	0	10104
1989	1	0	3	2	1	3	175	95	254	228	0	489	17293	2350	32236
1990	10	1	20	3	0	5	54	25	83	384	97	671	32403	0	72485
1991	4	2	5	3	0	7	83	49	118	62589	28607	96572	40526	0	116372
1992	162	88	237	9	0	18	130	20	239	7153	0	14371	10083	1542	18624
1993	372	0	927	4	2	7	51	22	80	13235	3458	23012	8380	1385	15376
1994	3	0	5	39	0	93	1823	1155	2490	189989	100120	279857	5485	0	12090
1995	172	75	269	19	5	32	261	43	478	0	0	0	28	2	53
1996	146	63	228	6	3	9	43	2	84	74321	46479	102162	4925	0	12253
1997	81	38	124	5	3	7	97	44	150	32700	17919	47481	7711	623	14799
1998	78	33	123	8	3	12	27	13	42	12442	7336	17549	10307	0	23356
1999	134	66	202	16	10	23	107	1	212	131108	83614	178601	3134	502	5766
2000	209	114	304	39	14	65	216	105	327	112525	64870	160179	24526	15767	33286
2001	21	0	46	52	11	93	78	0	165	0	0	0	16492	0	36246
2002	322	186	457	61	0	142	755	352	1158	97154	57155	137153	30117	5580	54654
2003	348	0	824	14	0	30	122	66	178	10821	5700	15943	2739	197	5281
2004	1426	859	1993	81	23	140	37	19	55	33277	14843	51710	317	88	546
2005	54	36	73	9	4	13	189	95	283	5823	2526	9119	3367	1269	5464
Mean	181			31			609			31639			9826		

Table 2.2.3 0-group abundance indices (in millions) with $\mathbf{9 5 \%}$ confidence limits, corrected for catching efficiency.

Year	Capelin			Cod			Haddock			Herring			Saithe			Polar cod (east)			Polar cod (west)		
	Abundance index	Confidence limit		Ab. index	Confidence lim.																
1980	809193	5538311	1064555	316	167	465	309	190	427	93	25	161	21	0	47	0	0	0	126699	0	307667
1981	428316	228724	627909	277	195	358	71	31	111	38	0	86	0	0	0	2479	1147	3810	48351	19163	77538
1982	611698	1526791	1070717	2581	1893	3269	2296	1690	2902	798	219	1378	266	0	665	3	0	6	2751	0	6070
1983	332287	173699	490875	15863	7716	24011	4453	3220	5686	121992	28954	215030	420	130	709	1406	0	3256	55760	0	120841
1984	168660	103049	234270	20342	5689	34995	3753	2572	4934	18193	1301	35084	1006	332	1680	123	0	313	26718	6475	46962
1985	73436	726	146146	63561	31160	95962	2463	1535	3392	30140	6135	54146	34	4	64	84185	23055	145316	6907	0	14133
1986	56472	4969	107976	9675	6654	12695	2071	1228	2915	112	31	193	4	0	9	64160	21966	106355	18414	0	37224
1987	2302	471	4133	1036	497	1574	749	459	1039	50	0	112	,	0	10	64879	0	148667	652	273	1032
1988	92075	16757	167392	2668	1547	3789	1687	616	2758	62354	21253	103455	31	11	50	2721	56	5386	41910	0	91010
1989	881764	702020	1061507	2781	1659	3903	665	461	868	17640	8202	27078	11	0	23	1593	0	3393	156778	17601	295955
1990	115198	77600	152796	23609	13304	33915	3081	2278	3885	7925	621	15228	28	3	53	2774	668	4880	250497	0	558091
1991	164819	73881	255757	41545	30446	52644	14216	10877	17556	270770	103481	438060	9	4	14	580649	262623	898675	293904	0	841007
1992	349	0	743	169569	92199	246939	4889	3343	6435	88619	51003	126236	332	161	504	47171	0	94701	81776	12754	150797
1993	776	161	1391	96425	52852	139998	3107	2141	4072	328180	2398	653963	1050	0	2551	97783	24623	170943	71105	12557	129653
1994	20987	1942	40032	86942	45935	127950	5191	2922	7459	131190	0	273976	6	0	13	1212620	548275	1876966	49512	0	109966
1995	2067	0	4743	279395	134482	424308	1366	694	2038	14320	5680	22960	473	210	735	0	0	0	217	12	423
1996	143826	73868	213783	278201	185042	371361	2618	1980	3257	568532	269319	867745	471	197	745	611412	383278	839546	46883	0	116490
1997	196013	84792	307235	298365	221488	375242	2058	1412	2704	468285	173000	763571	350	166	534	289215	155738	422691	63047	6053	120041
1998	88035	48283	127788	24066	15780	32352	14160	9429	18891	474513	274346	674681	164	80	249	17195	8796	25595	95558	0	220902
1999	294999	150183	439814	4406	987	7826	2782	1041	4523	36959	13919	59999	272	136	408	1164168	734544	1593792	26605	4450	48760
2000	140131	5619	274643	108728	58115	159341	11003	6913	15092	470181	23065	917297	863	456	1270	889767	509481	1270052	205736	141129	270343
2001	19895	3266	36523	4552	934	8171	5431	3719	7142	10243	1839	18646	48	0	107	0	0	0	144870	0	315443
2002	21887	12610	31164	33939	21774	46104	4380	2944	5816	93210	13660	172759	517	300	734	97154	57155	137153	234204	47674	420734
2003	458890	235602	682178	89964	52287	127641	33050	17840	48260	192343	69648	315038	2705	0	7090	82300	42482	122118	14595	1032	28157
2004	69251	22963	115539	77737	56183	99291	41646	28141	55152	799415	546550	1052281	4869	2786	6952	259201	113764	404638	2437	667	4206
2005	154692	54006	255378	71955	50378	93532	92889	68915	116862	125719	19941	231496	173	112	234	39715	18247	61183	27431	9833	45028
Mean	205693			69558			10015			166608			543			215872			80512		

Table 2.2.4. Length distributions (\%) of 0 -group fish in the Barents Sea and adjacent waters, August-October 2005.

Length, cm $1.5-1.9$	Cod	Haddock	Capelin	Herring	Saithe	Redfish 0.02	Polarcod 0.88	Grhalibut	$\begin{array}{r} \text { LRD } \\ 0.22 \end{array}$	Sandeel
2.0-2.4			0.02			0.05	4.07		8.21	
2.5-2.9	0.00		0.17	0.00		0.20	3.37		16.32	1.72
3.0-3.4	0.18	0.05	0.71			5.40	3.83		26.94	5.90
3.5-3.9	0.27	0.01	4.00			26.29	10.12	14.29	30.03	16.31
4.0-4.4	0.44	0.05	23.66	0.06	0.37	45.97	16.22	28.02	15.45	21.25
4.5-4.9	0.40	0.10	36.70	0.42		19.43	23.16	10.43	2.69	12.31
5.0-5.4	0.41	0.23	24.33	3.25	1.36	2.64	27.05	21.56	0.13	16.98
5.5-5.9	0.48	0.46	9.28	3.53	4.40		11.29	5.07		12.01
6.0-6.4	1.38	0.79	1.05	4.03	3.08			2.53		11.25
6.5-6.9	2.87	1.32	0.05	7.69	5.59			2.53		1.23
7.0-7.4	6.72	2.08	0.01	22.60	5.53			9.75		0.85
7.5-7.9	11.39	4.50	0.01	34.40	7.93			5.81		0.04
8.0-8.4	19.57	7.38	0.00	17.96	7.74					0.08
8.5-8.9	19.01	11.08		5.20	5.97					0.04
9.0-9.4	17.06	14.20		0.61	12.46					0.01
9.5-9.9	10.93	16.45		0.19	13.78					
10.0-10.4	4.36	12.81		0.04	5.09					0.01
10.5-10.9	2.81	11.72		0.00	6.94					0.01
11.0-11.4	1.27	8.60		0.00	6.80					0.00
11.5-11.9	0.23	4.36		0.00	7.25					0.00
12.0-12.4	0.03	2.08			4.02					
12.5-12.9	0.09	1.12			1.31					
13.0-13.4	0.09	0.38								
13.5-13.9		0.19			0.40					
14.0-14.4	0.02	0.05								
14.5-14.9		0.01								
Tot.catch	7512	8926	3250	2105	214	1100	4061	20	497	941
Mean length (cm)	8.55	9.65	4.73	7.42	9.06	4.11	4.38	5.05	3.23	4.53

Table 2.3.1. Acoustic estimate of Barents Sea capelin, August-September 2005

Table 2.3.2. Acoustic estimates of the Barents Sea capelin stock by age in autumn 19732005.Biomass (B) in 10^{6} tonnes, average weight (AW) in grams. All estimates based on TS = 19.1 Log L-74.0 dB.

Age	1		2		3		4		5		Sum 1+
Year	B	AW	B								
1973	1.69	3.2	2.32	6.2	0.73	18.3	0.41	23.8	0.01	30.1	5.14
1974	1.06	3.5	3.06	5.6	1.53	8.9	0.07	20.8	+	25.0	5.73
1975	0.65	3.4	2.39	6.9	3.27	11.1	1.48	17.1	0.01	31.0	7.81
1976	0.78	3.7	1.92	8.3	2.09	12.8	1.35	17.6	0.27	21.7	6.42
1977	0.72	2.0	1.41	8.1	1.66	16.8	0.84	20.9	0.17	22.9	4.80
1978	0.24	2.8	2.62	6.7	1.20	15.8	0.17	19.7	0.02	25.0	4.25
1979	0.05	4.5	2.47	7.4	1.53	13.5	0.10	21.0	+	27.0	4.16
1980	1.21	4.5	1.85	9.4	2.83	18.2	0.82	24.8	0.01	19.7	6.72
1981	0.92	2.3	1.83	9.3	0.82	17.0	0.32	23.3	0.01	28.7	3.90
$1982{ }^{1}$	1.22	2.3	1.33	9.0	1.18	20.9	0.05	24.9			3.78
1983	1.61	3.1	1.90	9.5	0.72	18.9	0.01	19.4			4.23
1984	0.57	3.7	1.43	7.7	0.88	18.2	0.08	26.8			2.96
1985	0.17	4.5	0.40	8.4	0.27	13.0	0.01	15.7			0.86
1986	0.02	3.9	0.05	10.1	0.05	13.5	+	16.4			0.12
$1987{ }^{2}$	0.08	2.1	0.02	12.2	+	14.6	+	34.0			0.10
1988	0.07	3.4	0.35	12.2	+	17.1					0.43
1989	0.61	3.2	0.20	11.5	0.05	18.1	+	21.0			0.86
1990	2.66	3.8	2.72	15.3	0.44	27.2	+	20.0			5.83
1991	1.52	3.8	5.10	8.8	0.64	19.4	0.04	30.2			7.29
1992	1.25	3.6	1.69	8.6	2.17	16.9	0.04	29.5			5.15
1993	0.01	3.4	0.48	9.0	0.26	15.1	0.05	18.8			0.80
1994	0.09	4.4	0.04	11.2	0.07	16.5	+	18.4			0.20
1995	0.05	6.7	0.11	13.8	0.03	16.8	0.01	22.6			0.19
1996	0.24	2.9	0.22	18.6	0.05	23.9	+	25.5			0.50
1997	0.42	4.2	0.45	11.5	0.04	22.9	+	26.2			0.91
1998	0.81	4.5	0.98	13.4	0.25	24.2	0.02	27.1	+	29.4	2.06
1999	0.16	4.2	1.01	13.6	0.27	26.9	0.09	29.3			2.78
2000	1.70	3.8	1.59	14.4	0.95	27.9	0.08	37.7			4.27
2001	0.37	3.3	2.40	11.0	0.81	26.7	0.04	35.5	+	41.4	3.63
2002	0.23	3.9	0.92	10.1	1.04	20.7	0.02	35.0			2.21
2003	0.20	2.4	0.10	10.2	0.20	18.4	0.03	23.5			0.53
2004	0.20	3.8	0.29	11.9	0.12	21.5	0.02	23.5	+	26.3	0.63
2005	0.10	3.7	0.19	14.3	0.04	20.8	+	25.8			0.32
Average	0.66	3.6	1.33	10.4	0.84	18.6	0.26	24.2	0.07	27.4	3.02

[^0]Table 2.3.3. Survey mortalities for capelin from age 1 to age 2

Year	Year class	Age 1 $\left(10^{9}\right)$	Age 2 $\left(10^{9}\right)$	Total mort. \%	Total mort. Z
$1984-1985$	1983	154.8	48.3	69	1.16
$1985-1986$	1984	38.7	4.7	88	2.11
$1986-1987$	1985	6.0	1.7	72	1.26
$1987-1988$	1986	37.6	28.7	24	0.27
$1988-1989$	1987	21.0	17.7	16	0.17
$1989-1990$	1988	189.2	177.6	6	0.06
$1990-1991$	1989	700.4	580.2	17	0.19
$1991-1992$	1990	402.1	196.3	51	0.72
$1992-1993$	1991	351.3	53.4	85	1.88
$1993-1994$	1992	2.2	3.4	-	-
$1994-1995$	1993	19.8	8.1	59	0.89
$1995-1996$	1994	7.1	11.5	-	-
$1996-1997$	1995	81.9	39.1	52	0.74
$1997-1998$	1996	98.9	72.6	27	0.31
$1998-1999$	1997	179.0	101.5	43	0.57
$1999-2000$	1998	155.9	110.6	29	0.34
$2000-2001$	1999	449.2	218.7	51	0.72
$2001-2002$	2000	113.6	90.8	20	0.22
$2002-2003$	2001	59.7	9.6	84	1.83
$2003-2004$	2002	82.4	24.8	70	1.20
$2004-2005$	2003	51.2	13.0	75	1.39

Table 2.3.4 Acoustic estimate of polar cod in August-September 2005

Length(cm)	Age/Year class						Biomass $\left(10^{3}\right)$	Mean Weight (g)
	$\begin{gathered} 1 \\ 2004 \end{gathered}$	$\begin{gathered} 2 \\ 2003 \end{gathered}$	$\begin{gathered} 3 \\ 2002 \end{gathered}$	$\begin{gathered} 4 \\ 2001 \end{gathered}$	$\begin{gathered} 5 \\ 2000 \end{gathered}$	$\begin{aligned} & \text { Sum } \\ & \left(10^{6}\right) \end{aligned}$		
$6.5-7.0$	14					14	0.0	2.2
$7.0-7.5$	68					68	0.1	2.0
$7.5-8.0$	168					168	0.4	2.5
$8.0-8.5$	539					539	1.7	3.2
$8.5-9.0$	1042	19				1061	3.9	3.7
$9.0-9.5$	2332	231				2563	11.8	4.6
$9.5-10.0$	5804	141				5946	32.8	5.5
$10.0-10.5$	11997	163	2			12162	84.3	6.9
$10.5-11.0$	13361	944	3			14307	113.7	7.9
$11.0-11.5$	15953	642				16595	156.0	9.4
$11.5-12.0$	9078	1566	9			10653	112.4	10.6
$12.0-12.5$	4888	4988	2			9878	111.9	11.3
$12.5-13.0$	4231	3789	5			8025	105.0	13.1
$13.0-13.5$	2063	5672	1			7736	110.3	14.3
$13.5-14.0$	100	6890	55	2		7046	114.5	16.2
$14.0-14.5$	12	9046	41	1		9101	158.7	17.4
$14.5-15.0$	20	6498	39	1		6558	127.5	19.4
$15.0-15.5$	3	6674	658			7335	161.9	22.1
$15.5-16.0$		4102	527			4629	112.4	24.3
$16.0-16.5$		2766	613	2		3381	86.3	25.5
$16.5-17.0$		1654	116			1770	55.4	31.3
$17.0-17.5$		594	462	7		1063	31.7	29.8
$17.5-18.0$		335	211	7		552	19.3	34.9
$18.0-18.5$		201	182	53		437	16.3	37.3
$18.5-19.0$		92	56	2		150	6.3	41.7
$19.0-19.5$		52	128	13		193	8.2	42.7
19.5 - 20.0		3	24	35		63	2.6	41.4
$20.0-20.5$		11	187	17	10	224	10.3	46.1
$20.5-21.0$			109	7		116	6.2	53.3
$21.0-21.5$			29			29	1.8	60.9
21.5 - 22.0			2		7	9	0.6	61.6
$22.0-22.5$			108	12		120	7.3	61.0
$22.5-23.0$			76	1		77	6.7	86.9
$23.0-23.5$			60	10	4	73	5.4	73.7
23.5 - 24.0					95	95	7.4	77.3
$24.0-24.5$				1		1	0.1	100.5
$24.5-25.0$							0.0	86.0
25.0 - 25.5					91	91	8.7	95.1
$25.5-26.0$							0.0	83.0
$26.0-26.5$					1	1	0.2	115.7
$26.5-27.0$					4	4	0.4	108.3
$27.0-27.5$								
$27.5-28.0$								115.9
28.0 - 28.5								
$28.5-29.0$	0	0	0	0	21	21	2.8	137.4
$\mathrm{TSN}\left(10^{6}\right)$	71675	57073	3703	173	234	132859		
$\operatorname{TSB}\left(10^{3}\right.$ tonnes)	626.6	1028	120.2	7.6	20.7		1803.3	
Mean length (cm)	11	14.1	17.2	19.4	24.6	12.6		
Mean weight (g)	8.7	18	32.5	43.6	88.4			13.6
Based on TS value: $21.8 \log \mathrm{~L}-72.7$, corresponding to $\sigma=6.7 \cdot 10^{-7} \cdot \mathrm{~L}^{2.18}$								

Table 2.3.5. Acoustic estimates of polar cod by age in August-September 1986-2005. TSN and TSB is total stock numbers (106) and total stock biomass (103 tonnes) respectively. Numbers based on TS = 21.8 Log L - 72.7 dB.

Year	Age 1		Age 2		Age 3		Age 4+		Total	
	TSN	TSB								
1986	24038	169.6	6263	104.3	1058	31.5	82	3.4	31441	308.8
1987	15041	125.1	10142	184.2	3111	72.2	39	1.2	28333	382.8
1988	4314	37.1	1469	27.1	727	20.1	52	1.7	6562	86.0
1989	13540	154.9	1777	41.7	236	8.6	60	2.6	15613	207.8
1990	3834	39.3	2221	56.8	650	25.3	94	6.9	6799	127.3
1991	23670	214.2	4159	93.8	1922	67.0	152	6.4	29903	381.5
1992	22902	194.4	13992	376.5	832	20.9	64	2.9	37790	594.9
1993	16269	131.6	18919	367.1	2965	103.3	147	7.7	38300	609.7
1994	27466	189.7	9297	161.0	5044	154.0	790	35.8	42597	540.5
1995	30697	249.6	6493	127.8	1610	41.0	175	7.9	38975	426.2
1996	19438	144.9	10056	230.6	3287	103.1	212	8.0	33012	487.4
1997	15848	136.7	7755	124.5	3139	86.4	992	39.3	28012	400.7
1998	89947	505.5	7634	174.5	3965	119.3	598	23.0	102435	839.5
1999	59434	399.6	22760	426.0	8803	286.8	435	25.9	91463	1141.9
2000	33825	269.4	19999	432.4	14598	597.6	840	48.4	69262	1347.8
2001	77144	709.0	15694	434.5	12499	589.3	2271	132.1	107713	1869.6
2002	8431	56.8	34824	875.9	6350	282.2	2322	143.2	52218	1377.2
2003	15434	114.1	2057	37.9	2038	63.9	1545	64.4	21074	280.2
2004	99404	627.1	22777	404.9	2627	82.2	510	32.7	125319	1143.8
2005	71675	626.6	57053	1028.2	3703	120.2	407	28.3	132859	1803.3
Average	33618	254.8	13767	285.5	3959	143.8	589	31.1	51984	717.8

Table 2.3.6. Survey mortalities for polar cod from age 1 to age 2 , and from age 2 to age 3.

Year	Year class	Age $1\left(10^{9}\right)$	Age 2 $\left(10^{9}\right)$	Total mort. \%	Total mort Z
$1986-1987$	1985	24.0	10.1	58	0.86
$1987-1988$	1986	15.0	1.5	90	2.30
$1988-1989$	1987	4.3	1.8	58	0.87
$1989-1990$	1988	13.5	2.2	84	1.81
$1990-1991$	1989	3.8	4.2	-	-
$1991-1992$	1990	23.7	14.0	41	0.53
$1992-1993$	1991	22.9	18.9	17	0.19
$1993-1994$	1992	16.3	9.3	43	0.56
$1994-1995$	1993	27.5	6.5	76	1.44
$1995-1996$	1994	30.7	10.1	67	1.11
$1996-1997$	1995	19.4	7.8	59	0.91
$1997-1998$	1996	15.8	7.6	52	0.73
$1998-1999$	1997	89.9	22.8	75	1.37
$1999-2000$	1998	59.4	20.0	66	1.09
$2000-2001$	1999	33.8	15.7	54	0.77
$2001-2002$	2000	77.1	34.8	55	0.80
$2002-2003$	2001	8.4	2.1	75	1.38
$2003-2004$	2002	15.4	22.7	-	-
$2004-2005$	2003	99.4	57.1	43	0.56

Year	Year class	Age 2 $\left(10^{9}\right)$	Age 3 $\left(10^{9}\right)$	Total mort. \%	Total mort Z
$1986-1987$	1984	6.3	3.1	51	0.71
$1987-1988$	1985	10.1	0.7	93	2.67
$1988-1989$	1986	1.5	0.2	87	2.01
$1989-1990$	1987	1.8	0.7	61	2.57
$1990-1991$	1988	2.2	1.9	14	0.15
$1991-1992$	1989	4.2	0.8	81	1.66
$1992-1993$	1990	14.0	3.0	78	1.54
$1993-1994$	1991	18.9	5.0	74	1.33
$1994-1995$	1992	9.3	1.6	83	1.76
$1995-1996$	1993	6.5	3.3	51	0.68
$1996-1997$	1994	10.1	3.1	69	1.18
$1997-1998$	1995	7.8	4.0	49	0.67
$1998-1999$	1996	7.6	8.8	-	-
$1999-2000$	1997	22.8	14.6	36	0.44
$2000-2001$	1998	20.0	12.5	38	0.47
$2001-2002$	1999	15.7	6.4	59	0.90
$2002-2003$	2000	34.8	2.0	94	2.86
$2003-2004$	2001	2.1	2.6	-	-
$2004-2005$	2002	22.8	3.7	84	1.83

Table 2.3.7. Acoustic estimate of young herring in the Barents Sea August-September 2005

Age/Year class								
Length (cm)		2004	2	3	Sum	Biomass	Mean Weight (g)	
		2003	2002	(106)	(103 t)			
10.5	- 11.0		50			50	0.4	7.0
11.0	- 11.5	1345			1345	11.4	8.5	
11.5	- 12.0	681			681	7.1	10.4	
12.0	- 12.5	1623			1623	19.4	11.9	
12.5	- 13.0	2732			2732	35.4	13.0	
13.0	- 13.5	3995			3995	66.7	16.7	
13.5	- 14.0	5018			5018	90.9	18.1	
14.0	- 14.5	7353			7353	139.9	19.0	
14.5	- 15.0	6326			6326	137.5	21.7	
15.0	- 15.5	5956			5956	140.3	23.5	
15.5	- 16.0	4085			4085	102.8	25.2	
16.0	- 16.5	2316			2316	64.4	27.8	
16.5	- 17.0	2792			2792	87.1	31.2	
17.0	- 17.5	689	18		706	23.4	33.1	
17.5	- 18.0	823			823	29.4	35.8	
18.0	- 18.5	429	201		630	25.5	40.5	
18.5	- 19.0	12	939		951	44.0	46.2	
19.0	- 19.5	78	1512		1590	78.7	49.5	
19.5	- 20.0		1690		1690	85.4	50.6	
20.0	- 20.5		2495	355	2850	162.2	56.9	
20.5	- 21.0		1776	110	1886	119.2	63.2	
21.0	- 21.5		2667		2667	182.7	68.5	
21.5	- 22.0		1551	177	1728	125.2	72.5	
22.0	- 22.5	77	1770	25	1872	156.8	83.8	
22.5	- 23.0		653	387	1040	90.3	86.9	
23.0	- 23.5		562	634	1195	112.6	94.2	
23.5	- 24.0		73	1008	1080	105.0	97.2	
24.0	- 24.5		196	786	982	102.0	103.9	
24.5	- 25.0		66	690	756	84.9	112.3	
25.0	- 25.5			938	938	116.1	123.8	
25.5	- 26.0			662	662	92.7	139.9	
26.0	- 26.5			569	569	87.6	154.1	
26.5	- 27.0			259	259	39.2	151.6	
27.0	- 27.5			274	274	48.9	178.5	
27.5	- 28.0			49	49	8.2	167.1	
28.0	- 28.5			52	52	10.0	193.4	
TSN(10		46380	16167	6973	69520			
TSB(103)) tonnes	983.7	1054.5	795.2		2833.4		
Mean le	gth (cm)	14.6	20.9	24.4	17.0			
Mean w	ight (g)	21.2	65.2	114			40.8	
						TS=20.0*	$\mathrm{g}(\mathrm{L})-71.9$	

Table 2.3.8. Acoustic estimate of blue whiting in the Barents Sea August-September 2005

Length (cm)		Age/Year class											
		1	2	3	4	5	6	7	8			Biomass Mean Weight$\begin{equation*} (103 \mathrm{t}) \tag{g} \end{equation*}$	
		2004	2003	2002	2001	2000	1999	1998	1997	1996-	(106)		
15.0	- 16.0	60									60	1.0	16.1
16.0	- 17.0	675									675	13.4	19.8
17.0	- 18.0	1411									1411	31.9	22.6
18.0	- 19.0	1470									1470	38.4	26.1
19.0	- 20.0	716	28								744	24.3	32.7
20.0	- 21.0	433	33	88							553	23.1	41.7
21.0	- 22.0	97	542	14							653	33.7	51.7
22.0	- 23.0		819	161							981	60.8	62.0
23.0	- 24.0	2	859	730							1591	110.0	69.1
24.0	- 25.0	6	431	960	5						1402	109.7	78.3
25.0	- 26.0		30	1210	340						1579	142.8	90.4
26.0	- 27.0		16	573	539	74	31				1233	126.1	102.3
27.0	- 28.0		14	390	360	96	0				859	98.3	114.4
28.0	- 29.0			74	323	279	0				676	86.3	127.7
29.0	- 30.0			6	175	249	96				526	72.1	137.3
30.0	- 31.0				61	178	26				265	41.4	156.3
31.0	- 32.0					85	78	7			170	28.5	167.5
32.0	- 33.0				4	64	45	4			116	22.0	188.5
33.0	- 34.0					9	14	27	4		53	10.5	196.1
34.0	- 35.0							10	13		23	5.3	224.7
35.0	- 36.0					3		5	3		11	2.8	256.9
36.0	- 37.0									5	5	1.4	272.8
37.0	- 38.0									1	1	0.2	253.3
38.0	- 39.0											0.1	367.0
39.0	- 40.0												336.0
40.0	- 41.0												
41.0	- 42.0												533.7
42.0	- 43.0												581.5
43.0	- 44.0												
44.0	- 45.0												
45.0	- 46.0												
46.0	- 47.0												
	- 48.0												
48.0	- 49.0											0.1	575.0
TSN(106)		4871	2770	4205	1807	1037	290	53	20	6	15058		
TSB (103t)		132	180	363	203	145	44.7	10.7	4.6	1.8		1084.1	
Mean length		18.3	23	25.1	27.3	29.4	30.5	33.6	34.5	40.4	23.2		
Mean weight		27	65	86.3	112	140	154	203	226	382			72
												$\mathrm{TS}=21.8 * \lg (\mathrm{~L})-72.7$	

TABLES

Table 2.4.1 Cod swept area estimate (millions) by region and length group from ecosystem survey in August-September 2005

Length/ Area	5- 9	$10-$ 14	$15-$ 19	$20-$ 24	$25-$ 29	$30-$ 34	$35-$ 39	$40-$ 44	$45-$ 49	$50-$ 54	$55-$ 59	$60-$ 64	$65-$ 69	$70-$ 74	$75+$	Total
I (NEEZ +SVA)	76.1	115.1	88.4	15.9	13.8	18.9	14.6	6.5	4.9	5.2	7.7	6.5	3.3	2.6	5.5	384.8
I(REEZ)	1.8	58.3	65.4	15.9	33.4	49.7	53.7	25.2	17.1	15.5	16.8	12.0	5.4	5.2	4.9	380.3
IIa	12.2	10.2	5.9	1.0	1.2	1.8	3.0	1.5	1.4	1.1	1.4	1.1	0.7	1.1	0.8	44.4
IIb	41.1	61.0	133.3	42.2	33.2	45.0	43.3	23.3	22.2	28.0	21.4	11.0	4.2	2.7	3.0	514.9
Total	131.2	244.5	292.9	74.9	81.5	115.4	114.7	56.5	45.7	49.8	47.2	30.6	13.7	11.6	14.2	1324.3

Time series of swept area estimates for the total distribution area (millions)

Length year	$5-$ 9	$10-$ 14	$15-$ 19	$20-$ 24	$25-$ 29	$30-$ 34	$35-$ 39	$40-$ 44	$45-$ 49	$50-$ 54	$55-$ 59	$60-$ 64	$65-$ 69	$70-$ 74	$75+$ Total	Biomass $(1000$ tonnes	
2004	444.3	307.0	168.1	203.2	109.3	58.4	95.9	170.1	184.8	117.3	56.2	44.2	41.2	29.8	35.3	2065.0	1328.3
2005	131.2	244.5	292.9	74.9	81.5	115.4	114.7	56.5	45.7	49.8	47.2	30.6	13.7	11.6	14.2	1324.3	680.3

Table 2.4.2 Haddock swept area estimate (millions) by region and length group from ecosystem survey in August-September 2005

Length/ Area	$5-$ 9	$10-$ 14	$15-$ 19	$20-24$	$25-$ 29	$30-34$	$35-39$	$40-$ 44	$45-$ 49	$50-$ 54	$55-$ 59	$60-$ 64	$65+$	Total
I(NEEZ+SVA)	30.1	35.5	52.6	42.7	8.7	7.1	6.1	3.2	2.5	1.4	0.9	0.3	0.1	191.2
I(REEZ)	0.0	1.7	173.9	58.9	46.5	184.6	135.1	60.9	30.3	14.8	5.6	0.6	0.4	713.2
IIa	13.4	7.1	116.7	115.6	13.4	10.1	5.4	5.1	3.8	2.8	1.3	0.3	0.6	295.6
IIb	20.0	26.3	101.0	71.4	4.0	3.6	4.2	6.1	3.0	2.9	1.8	0.8	0.2	245.2
Total	63.6	70.5	444.2	288.6	72.5	205.4	150.8	75.3	39.6	21.8	9.5	2.1	1.3	1445.1

Time series of swept area estimates for the total distribution area (millions)

Length/ year	$5-$ 9	$10-$ 14	$15-$ 19	$20-$ 24	$25-$ 29	$30-$ 34	$35-$ 39	$40-$ 44	$45-$ 49	$50-$ 54	$55-$ 59	$60-$ 64	$65+$ Total	Biomass $(1000$ tonnes	
2004	17.3	72.4	120.0	123.2	198.7	87.9	96.8	70.1	59.0	31.5	13.1	3.4	0.9	894.4	396.7
2005	63.6	70.5	444.2	288.6	72.5	205.4	150.8	75.3	39.6	21.8	9.5	2.1	1.3	1445.1	436.8

Table 2.4.3 Greenland halibut swept area estimate (millions) by region and length group from ecosystem survey in August-September 2005

Length/ area	$5-$ 9	$10-14$	$15-19$	$20-24$	$25-29$	$30-34$	$35-39$	$40-44$	$45-49$	$50-54$	$55-59$	$60+$	Total
I(NEEZ+SVA)	0.5	29.0	7.2	2.6	3.8	7.4	4.2	2.8	2.1	0.7	0.6	0.5	61.4
I(REEZ)	0.4	86.4	20.9	6.8	16.2	15.6	4.0	1.4	0.8	0.1	0.0	0.0	152.5
IIa	0.0	0.0	0.0	0.0	0.0	0.2	0.6	0.6	0.6	1.3	1.0	0.9	5.1
IIb	0.7	34.3	21.3	3.5	5.6	10.3	9.7	6.9	4.6	2.3	0.8	0.7	100.9
Total	1.6	149.7	49.4	12.9	25.6	33.6	18.5	11.8	8.0	4.5	2.5	2.0	319.9

Time series of swept area estimates for the total distribution area (millions)

Length/ year	$5-$ 9	$10-$ 14	$15-$ 19	$20-$ 24	$25-$ 29	$30-$ 34	$35-$ 39	$40-$ 44	$45-$ 49	$50-$ 54	$55-$ 59	$60+$	Total	Biomass (tonnes)
2004	9.3	13.1	21.5	42.9	27.4	10.1	7.0	4.6	4.8	3.9	1.4	1.9	148.0	34584
2005	1.6	149.7	49.4	12.9	25.6	33.6	18.5	11.8	8.0	4.5	2.5	2.0	319.9	57486

Table 2.4.4 Sebastes marinus swept area estimate (millions) by region and length group from ecosystem survey in August-September 2005

Length/ area	$5-$ 9	$10-14$	$15-19$	$20-24$	$25-29$	$30-34$	$35-39$	$40-44$	$45-49$	$50-54$	$55-59$	$60+$	Total
I(NEEZ+SVA)	0.11	0.00	0.00	0.23	0.51	0.42	0.21	0.46	0.37	0.00	0.00	0.08	2.39
I(REEZ)	0.09	0.04	0.32	0.00	0.64	0.49	0.70	0.65	0.18	0.00	0.06	0.00	3.18

IIa	0.10	1.31	2.21	5.62	1.89	0.95	0.82	1.27	0.55	0.06	0.00	0.08	14.85
IIb	0.00	0.04	0.00	0.03	0.22	0.37	0.28	0.19	0.19	0.04	0.00	0.00	1.35
Total	0.30	1.40	2.53	5.88	3.27	2.23	2.01	2.57	1.28	0.10	0.06	0.16	21.77

Time series of swept area estimates for the total distribution area (millions)

Length year	$5-$ 9	$10-$ 14	$15-$ 19	$20-$ 24	$25-$ 29	$30-$ 34	$35-$ 39	$40-$ 44	$45-$ 49	$50-$ 54	$55-$ 59	$60+$	Total	Biomass (tonnes)
2004	0.00	0.11	0.72	0.98	1.73	2.92	2.21	1.86	0.88	0.24	0.09	0.26	12.00	8450
2005	0.30	1.40	2.53	5.88	3.27	2.23	2.01	2.57	1.28	0.10	0.06	0.16	21.77	10177

Table 2.4.5 Sebastes mentella swept area estimate (millions) by region and length group from ecosystem survey in August-September 2005

Length/ area	$5-$ 9	$10-14$	$15-19$	$20-24$	$25-29$	$30-$ 34	$35-39$	$40-44$	$45-49$	Total
I(NEEZ+SVA)	3.00	1.28	2.38	2.94	5.49	3.58	3.16	0.09	0.00	21.91
I(REEZ)	3.38	0.66	0.13	0.04	0.06	0.00	0.06	0.00	0.00	4.34
IIa	2.84	3.09	4.26	11.30	78.54	61.59	0.99	0.04	0.00	162.64
IIb	5.50	1.82	6.98	9.39	15.18	57.16	36.78	0.90	0.00	133.71
Total	14.72	6.86	13.75	23.67	99.27	122.32	40.99	1.03	0.00	322.60

Time series of swept area estimates for the total distribution area (millions)

Length/ year	$5-$ 9	$10-$ 14	$15-$ 19	$20-$ 24	$25-$ 29	$30-$ 34	$35-$ 39	$40-44$	$45-49$	Total	Biomass $(1000$ tonnes
2004	2.45	19.22	15.80	14.49	31.16	153.56	76.85	3.20	0.02	316.75	124.9
2005	14.72	6.86	13.75	23.67	99.27	122.32	40.99	1.03	0.00	322.60	130.1

Table 2.4.6 Long rough dab swept area estimate (millions) by region and length group from ecosystem survey in August-September 2005

Length/ area	$5-$ 9	$10-14$	$15-19$	$20-24$	$25-29$	$30-34$	$35-39$	$40-44$	$45-49$	Total
I(NEEZ+SVA)	90.4	275.9	154.6	84.2	76.6	46.1	33.1	19.7	1.4	781.9
I(REEZ)	161.9	308.4	287.3	216.5	122.6	61.0	50.7	23.5	2.1	1234.0
IIa	3.5	18.8	13.5	14.4	28.6	15.6	2.8	0.7	0.1	97.9
IIb	71.8	153.5	145.7	121.7	95.1	62.2	33.0	8.7	0.3	691.9
Total	327.5	756.5	601.0	436.7	322.8	184.9	119.6	52.7	3.8	2805.6

Time series of swept area estimates for the total distribution area (millions)

Length/ year	$5-$ 9	$10-14$	$15-19$	$20-24$	$25-29$	$30-34$	$35-39$	$40-44$	$45-49$	Total	Biomass $(1000$ tonnes)
2004	237.6	824.6	681.4	519.6	407.9	222.7	133.5	61.6	7.4	3096.2	335.9
2005	327.5	756.5	601.0	436.7	322.8	184.9	119.6	52.7	3.8	2805.6	283.5

Table 2.4.7 Atlantic wolffish swept area estimate (thousands) by region and length group from ecosystem survey in August-September 2005

Length/ area	$10-$ 14	$15-$ 19	$20-$ 24	$25-$ 29	$30-$ 34	$35-$ 39	$40-$ 44	$45-$ 49	$50-$ 54	$55-$ 59	$60-$ 64	$65-$ 69	$70-$ 74	$75+$	Total
I(NEEZ+SVA)	115	763					47	21	78	39	34	90	22	144	1353
I(REEZ)	49	97							127	64	369	655	479	974	2814
IIa	1639	734	1089	323	121	29		16		106	107				4164
IIb	588	455	373	353	287	157	133	94	87	59	24	320	394	946	4270
Total	2390	2049	1462	676	408	186	180	132	292	267	535	1065	895	2064	12601

Time series of swept area estimates for the total distribution area (thousands)

Length year	$10-$ 14	$15-$ 19	$20-$ 24	$25-$ 29	$30-$ 34	$35-$ 39	$40-$ 44	$45-$ 49	$50-$ 54	$55-$ 59	$60-$ 64	$65-$ 69	$70-$ 74	$75+$	Total	Biomass (tonnes)
2004	2398	1695	1461	565	436	209	172	182	322	1200	700	1051	609	1537	12536	21489
2005	2390	2049	1462	676	408	186	180	132	292	267	535	1065	895	2064	12601	26518

Table 2.4.8 Spotted wolffish swept area estimate (thousands) by region and length group from ecosystem survey in August-September 2005

Length/ area	$10-$ 14	$15-$ 19	$20-$ 24	$25-$ 29	$30-$ 34	$35-39$	$40-44$	$45-49$	$50-54$	$55-59$	$60-64$	$65-$ 69	$70-74$	$75+$	Total
I(NEEZ +SVA)	112			196		273		82	376	90	575	324	163	614	2803
I(REEZ)	143	140		252	826		637	709	286	143	109		143	143	3530
IIa	766	601	99	165											1631
IIb	1258	1680	683	473	204	400	57	84	250	161	12	242		87	5591
Total	2279	2421	782	1085	1030	673	694	875	912	394	695	566	306	844	13555

Time series of swept area estimates for the total distribution area (thousands)

Length/ year	$10-$ 14	$15-$ 19	$20-$ 24	$25-$ 29	$30-$ 34	$35-$ 39	$40-$ 44	$45-$ 49	$50-$ 54	$55-$ 59	$60-$ 64	$65-$ 69	$70-$ 74	$75+$	Total	Biomass (tonnes)
2004	1635	828	1181	705	551	739	761	843	1663	1416	1068	1084	311	752	13535	20537
2005	2279	2421	782	1085	1030	673	694	875	912	394	695	566	306	844	13555	17092

Table 2.4.9 Northern wolffish swept area estimate (thousands) by region and length group from ecosystem survey in August-September 2005

Length/ area	<55	$55-59$	$60-64$	$65-69$	$70-74$	$75-79$	$80-84$	$85-89$	$90-94$	$95-99$	$100+$	Total
I(NEEZ+SVA)				181	102	102		369	82	305	47	1186
I(REEZ)					77				77	348		501
IIa				72	118	41					132	363
IIb	20		66	185	49	63	135	17	27	58	303	922
Total	20		66	438	345	206	135	386	186	710	481	2971

Time series of swept area estimates for the total distribution area (thousands)

Length $/$ year	<55	$55-59$	$60-64$	$65-69$	$70-74$	$75-79$	$80-84$	$85-89$	$90-94$	$95-99$	$100+$	Total	Biomass (tonnes)
2004	48	11	127	156	116	262	367	180	286	615	747	2913	30306
2005	20		66	438	345	206	135	386	186	710	481	2971	27138

Table 2.4.10 Atlantic poacher swept area estimate (millions) by region and length group from ecosystem survey in August-September 2005

Length/ area	<5	5	6	7	8	9	10	11	12	13	14	15	16	17	$18+$	Total
I(NEEZ +SVA)		0.0	0.1	0.1	1.0	2.5	8.5	6.9	15.8	21.8	35.7	35.5	15.4	4.7	1.5	149.4
I(REEZ)	1.5	3.2	2.8	4.6	6.7	10.0	9.1	14.2	14.3	14.8	9.1	3.9	0.9	0.5	0.3	96.0
IIa													0.0	0.1	0.1	0.2
IIb		0.0	0.1	0.2	0.1	1.4	2.4	2.5	3.3	5.5	6.7	7.1	4.5	4.1	3.6	41.6
Total	1.5	3.3	3.0	4.9	7.8	13.9	20.0	23.6	33.3	42.2	51.6	46.5	20.9	9.4	5.5	287.1

Time series of swept area estimates for the total distribution area (millions)

Length $/ ~$ year	<5	5	6	7	8	9	10	11	12	13	14	15	16	17	$18+$	Total	Biomass (tonnes)
2004	0.0	0.5	2.7	8.3	16.3	15.5	18.4	39.0	39.1	35.2	52.7	45.3	34.9	11.4	6.3	325.4	3020
2005	1.5	3.3	3.0	4.9	7.8	13.9	20.0	23.6	33.3	42.2	51.6	46.5	20.9	9.4	5.5	287.1	2252

Table 2.4.11 Thorny skate swept area estimate (thousands) by region and length group from ecosystem survey in August-September 2005

Length/ area	$10-13$	$14-17$	$18-21$	$22-25$	$26-29$	$30-33$	$34-37$	$38-41$	$42-45$	$46-49$	$50+$	Total
I(NEEZ +SVA)	361	402	290	534	822	1199	316	1852	1019	797	1702	9292
I(REEZ)	151	40	143	143	143	143	356	207	904	369	2676	5275
IIa	1180	28	0	0	76	205	271	60	421	658	791	3690
IIb	604	994	807	805	1095	906	779	874	582	1159	1895	10499
Total	2294	1464	1240	1482	2136	2453	1721	2992	2927	2983	7064	28756

Time series of swept area estimates for the total distribution area (thousands)

Length/ year	$10-$ 13	$14-$ 17	$18-$ 21	$22-$ 25	$26-$ 29	$30-$ 33	$34-$ 37	$38-$ 41	$42-$ 45	$46-$ 49	$50+$	Total	Biomass (tonnes)
2004	1928	2998	2637	2921	5207	4628	3932	4302	5060	5909	11491	51014	37867
2005	2294	1464	1240	1482	2136	2453	1721	2992	2927	2983	7064	28756	21546

Table 2.7.1. Number of marine mammal individuals observed from the research vessels Johan Hjort, G.O. Sars, Smolensk and F. Nansen, and the aircraft Arktika during the ecosystem survey 2005.

Class suborder	Name of species (english)	Johan Hjort	GOSars	Smolensk	Nansen	AN-26 "Arktika"	Total	\%
Cetacea / baleen whales	Minke whale Sei whale Fin whale Humpback whale Bowhead Whale Unidentified whale Unidentified large whale	$\begin{array}{r} 37 \\ 0 \\ 46 \\ 15 \\ 0 \\ 2 \\ 16 \end{array}$	$\begin{array}{r} \hline 73 \\ 0 \\ 60 \\ 22 \\ 0 \\ 0 \\ 16 \end{array}$	$\begin{array}{r} \hline 7 \\ 0 \\ 0 \\ 16 \\ 2 \\ 5 \\ 0 \end{array}$		$\begin{array}{r} 22 \\ 0 \\ 0 \\ 11 \\ 0 \\ 20 \\ 0 \end{array}$	$\begin{array}{r} 148 \\ 14 \\ 115 \\ 199 \\ 2 \\ 60 \\ 32 \end{array}$	2.66 0.25 2.07 3.58 0.04 1.08 0.58
Cetacea / toothed whales	Sperm whale Killer whale White-beaked dolphin Harbour porpoise Common dolphin Unid. dolphin	$\begin{array}{r} 35 \\ 28 \\ 0 \\ 0 \\ 0 \\ 252 \end{array}$	$\begin{array}{r} \hline 22 \\ 0 \\ 526 \\ 2 \\ 0 \\ 30 \end{array}$	0 0 42 0 1 0	$\begin{array}{r} 0 \\ 3 \\ 987 \\ 0 \\ 0 \\ 37 \\ \hline \end{array}$	$\begin{array}{r} \hline 0 \\ 2 \\ 45 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} 57 \\ 33 \\ 1600 \\ 2 \\ 1 \\ 319 \end{array}$	$\begin{array}{r} \hline 1.02 \\ 0.59 \\ 28.76 \\ 0.04 \\ 0.02 \\ 5.73 \end{array}$
Pinnipedia	Harp seal Ringed seal Bearded seal Walrus Grey Seal Unidentified seal	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 1 0		234 9 2 112 0 5	$\begin{array}{r} 2738 \\ 9 \\ 2 \\ 221 \\ 1 \\ 5 \end{array}$	$\begin{array}{r}49.21 \\ 0.16 \\ 0.04 \\ 3.97 \\ 0.02 \\ 0.09 \\ \hline\end{array}$
	Polar bear Unid. mammal							0.09 0.02
Total sum		431	751	74	3842	466	5564	100.00

Table 2.7.2. Number of sea bird individuals observed from the research vessels Johan Hjort, G.O. Sars and F. Nansen, and the aircraft Arktika during the ecosystem survey 2005.

Species (latin)	Species (english)	G.O. Sars	Johan Hjort	F. Nansen	Arktika	Total	Prop. of total
Alle alle	Little auk	968	0	452	0	1420	1,2
Cepphus grylle	Black guillemot	6	0	164	0	170	0,1
Fratercula Arktika	Puffin	228	306	33	0	567	0,5
Uria aalge	Common guillemot	58	34	85	0	177	0,2
Uria lomvia	Brünnich's guillemot	2308	627	1431	0	4366	3,8
Alca torda	Razorbill	1	0	3	0	4	0,0
Alcidae sp.	Unident. alcids	197	37	502	333	1069	0,9
Larus argentatus	Herring gull	208	0	38	0	246	0,2
Larus hiperboreus	Glaucous gull	13	12	175	0	200	0,2
Larus marinus	Great black-backed gull	291	0	48	0	339	0,3
Pagophila eburnea	Ivory gull	0	0	206	0	206	0,2
Rissa tridactyla	Kittiwake	1850	348	40996	1267	44461	38,6
Larus sp.	Unident. Gulls	0	0	0	81	81	0,1
Stercorarius longicaudus	Long-tailed skua	10	0	2	0	12	0,0
Stercorarius parasiticus	Arctic skua	155	27	18	0	200	0,2
Stercorarius pomarinus	Pomarine skua	278	29	93	0	400	0,3
Stercorarius skua	Great skua	150	1	11	0	162	0,1
Stercorarius sp.	Unident. skua	389	2	0	2	393	0,3
Fulmarus glacialis	Northern fulmar	1715	346	40564	16874	59499	51,6
Puffinus griseus	Sooty shearwater	42	36	9	0	87	0,1
Sterna paradisaea	Arctic tern	22	17	12	0	51	0,0
Sterna hirundo	Common tern	19	0	0	0	19	0,0
Phalacrocorax aristotelis	European shag	0	2	0	0	2	0,0
Phalacrocorax carbo	Cormorant	0	1	0	1	2	0,0
Sula bassana	Northern gannet	9	6	5	0	20	0,0
Branta leucopsis	Barnacle goose	0	0	4	0	4	0,0
Calidris maritima	Purple sandpiper	1	8	0	0	9	0,0
Charadrius hiaticula	Ringed plover	0	0	1	0	1	0,0
Gavia Arktika	Black-throated diver	0	0	2	0	2	0,0
Plectropenax nivalis	Snow bunting	1	0	0	0	1	0,0
Acrocephalus sp.	Warbler sp.	1	0	0	0	1	0,0
	Undident. birds	0	0	0	1055	1055	0,9
Total		8920	1839	84854	19613	115226	100,0

Table 2.8.1 Overview of benthos samples collected with different gear used onboard the five research vessels involved in the ecosystem survey. Number of replicates is given in parenthes.

Vessels					
Equipment	GO Sars	Johan Hjort	Jan Mayen	Fritjof Nansen	Smolensk
Grab $\left(0.1 \mathrm{~m}^{2}\right)$			$58(282)$		
Grab $\left(0.25 \mathrm{~m}^{2}\right)$	$12(50)$				
RP sled	11				
Video rig	23		60		
Sigsby trawl	18	80	20	90	154

FIGURES

List of figures

Figure 2.1 Trawl stations for "G.O. Sars" "Johan Hjort", "Jan Mayen", "Nansen" and "Smolensk" August October 2005.

Figure 2.2 Hydrographic stations for "G.O. Sars" "Johan Hjort", "Jan Mayen", "Nansen" and "Smolensk" August - October 2005
Figure 2.3 Plankton stations for "G.O. Sars" "Johan Hjort", "Jan Mayen", "Fr. Nansen" and "Smolensk" August - October 2005
Figure 2.4 Benthos stations for "G.O. Sars" "Johan Hjort", "Jan Mayen", "Fr. Nansen" and "Smolensk" August - October 2005

Figure 2.5 Strata-system used in 0-group stratified sample mean estimations.
Figure 2.1.1. Temperature (A) and salinity (B) in the Kola Section
Figure 2.1.2. Temperature (A) and salinity (B) in the Kanin Section
Figure 2.1.3. Temperature (A) and salinity (B) in the North Cape - Bear Island Section
Figure 2.1.4. Temperature (A) and salinity (B) in the Bear Island - West Section
Figure 2.1.5. Distribution of surface temperature (${ }^{\circ} \mathrm{C}$), August-October 2005
Figure 2.1.6. Distribution of surface salinity, August-October 2005
Figure 2.1.7. Distribution of temperature $\left({ }^{\circ} \mathrm{C}\right)$ at the 50 m depth, August-October 2005
Figure 2.1.8. Distribution of salinity at the 50 m depth, August-October 2005
Figure 2.1.9. Distribution of temperature $\left({ }^{\circ} \mathrm{C}\right)$ at the 100 m depth, August-October 2005
Figure 2.1.10 Distribution of salinity at the 100 m depth, August-October 2005
Figure 2.1.11 Distribution of temperature $\left({ }^{\circ} \mathrm{C}\right)$ at the 200 m depth, August-October 2005
Figure 2.1.12 Distribution of salinity at the 200 m depth, August-October 2005
Figure 2.1.13 Distribution of temperature $\left({ }^{\circ} \mathrm{C}\right)$ at the bottom, August-October 2005
Figure 2.1.14 Distribution of salinity at the bottom, August-October 2005
Figure 2.2.1 Distribution of 0-group capelin autumn 2005
Figure 2.2.2 Distribution of 0-group cod autumn 2005
Figure 2.2.3 Distribution of 0-group haddock autumn 2005
Figure 2.2.4 Distribution of 0-group herring autumn 2005
Figure 2.2.5 Distribution of 0-group polar cod autumn 2005
Figure 2.2.6 Distribution of 0-group saithe autumn 2005
Figure 2.2.7 Distribution of 0-group redfish autumn 2005
Figure 2.2.8 Distribution of 0-group Greenland halibut autumn 2005
Figure 2.2.9 Distribution of 0-group long rough dab autumn 2005
Figure 2.3.1 Estimated density distribution of one-year-old capelin ($\mathrm{t} /$ nautical mile2) August - October 2005.
Figure 2.3.2 Estimated total density distribution of capelin ($\mathrm{t} /$ nautical mile ${ }^{2}$) August - October 2005.
Figure 2.3.3 Echo-records of capelin.
Figure 2.3.4 Estimated density distribution of one year old polar cod ($\mathrm{t} /$ nautical mile ${ }^{2}$) August - October 2005.
Figure 2.3.5 Estimated total density distribution of polar $\operatorname{cod}\left(t /\right.$ nautical mile ${ }^{2}$) August - October 2005.
Figure 2.3.6 Typical echo-records of polar cod in east Barents Sea
Figure 2.3.7 Estimated total density distribution of herring ($\mathrm{t} /$ nautical mile ${ }^{2}$) August - October 2005.

Figure 2.3.8 Estimated total density distribution of blue whiting ($\mathrm{t} /$ nautical mile ${ }^{2}$) August - October 2005.
Figure 2.4.1 Distribution of cod.
Figure 2.4.2 Distribution of haddock
Figure 2.4.3 Distribution of saithe
Figure 2.4.4 Distribution of Greenland halibut
Figure 2.4.5 Distribution of Sebastes marinus
Figure 2.4.6 Distribution of Sebastes mentella
Figure 2.4.7 Distribution of long rough dab
Figure 2.4.8 Distribution of Atlantic wolffish
Figure 2.4.9 Distribution of spotted wolffish
Figure 2.4.10 Distribution of northern wolffish
Figure 2.4.11 Distribution of sea tadpole
Figure 2.4.12 Distribution of Atlantic poacher
Figure 2.4.13 Distribution of hook-ear sculpin
Figure 2.4.14 Distribution of thorny skate
Figure 2.4.15 Distribution of Norway pout
Figure 2.6.1 Zooplankton biomass wet-weight $\left(\mathrm{mg} / \mathrm{m}^{3}\right)$ in the layer 0-50 m during August (red) and September (blue) 2005 collected by Juday-net ("F. Nansen")..

Figure 2.7.1 Distribution of baleen whale observations from the research vessels Johan Hjort, G.O. Sars, Smolensk and F. Nansen, and the aircraft Arktika during the ecosystem survey 2005.

Figure 2.7.2 Distribution of seals and toothed whale observations from the research vessels Johan Hjort, G.O. Sars, Smolensk and F. Nansen, and the aircraft Arktika during the ecosystem survey 2005.
Figure 2.7.3 Distribution of Alcid observations from the research vessels Johan Hjort, G.O. Sars and F. Nansen, and the aircraft Arktika during the ecosystem survey 2005. The pie size reflects total number of individuals observed within 100x100 km grid cells (logarithmic scale).
Figure 2.7.4 Distribution of northern fulmar and gull observations from the research vessels Johan Hjort, G.O. Sars and F. Nansen, and the aircraft Arktika during the ecosystem survey 2005. The pie size reflects total number of individuals observed within $100 \times 100 \mathrm{~km}$ grid cells (logarithmic scale).
Figure 2.7.5 Distribution of skuas as observed from the research vessels Johan Hjort, G.O. Sars and F. Nansen, and the aircraft Arktika during the ecosystem survey 2005. The pie size reflects total number of individuals observed within $100 \times 100 \mathrm{~km}$ grid cells.
Figure 2.8.1 The relationship between number of species and size of trawl catch.
Figure 2.8.2. Distribution of biomass of invertebrate bycatch in Campelen bottom trawl within the survey area. Different dominant taxonomic groups are indicated with different colours.

Figure 2.8.3 Distribution of snow crab (Chionoecetes opilio) in Campelen bottom trawl. Standardised to kg /hour of trawling.
Figure 2.8.4 Distribution of king crab (Paralithodes camtschaticus) in Campelen bottom trawl. Standardised to kg /hour of trawling.
Figure 2.8.5 Distribution of northern shrimp (Pandalus borealis) in Campelen bottom trawl. Standardised to kg /hour of trawling.

Figure 2.1 Trawl stations for "G.O. Sars" "Johan Hjort", "Jan Mayen", "Fr.Nansen" and "Smolensk" August - October 2005.

Figure 2.2 Hydrographic stations for "G.O. Sars" "Johan Hjort", "Jan Mayen", "Fr. Nansen" and "Smolensk" August - October 2005

Figure 2.3 Plankton stations for "G.O. Sars" "Johan Hjort", "Jan Mayen", "Fr. Nansen" and "Smolensk" August - October 2005

Figure 2.4 Benthos stations for "G.O. Sars" "Johan Hjort", "Jan Mayen", "Fr. Nansen" and "Smolensk" August - October 2005

Figure 2.5 Strata-system used in 0-group stratified sample mean estimations.

Figure 2.1.1. Temperature (A) and salinity (B) in the Kola Section

Figure 2.1.2. Temperature (A) and salinity (B) in the Kanin Section

Figure 2.1.3. Temperature (A) and salinity (B) in the North Cape - Bear Island Section

Figure 2.1.4. Temperature (A) and salinity (B) in the Bear Island - West Section

Figure 2.1.5. \quad Distribution of surface temperature $\left({ }^{\circ} \mathrm{C}\right)$, August-October 2005

Figure 2.1.6. Distribution of surface salinity, August-October 2005

Figure 2.1.7. Distribution of temperature $\left({ }^{\circ} \mathrm{C}\right)$ at 50 m depth, August-October 2005

Figure 2.1.8. Distribution of salinity at 50 m depth, August-October 2005

Figure 2.1.9. Distribution of temperature $\left({ }^{\circ} \mathrm{C}\right)$ at 100 m depth, August-October 2005

Figure 2.1.10 Distribution of salinity at 100 m depth, August-October 2005

Figure 2.1.11 Distribution of temperature $\left({ }^{\circ} \mathrm{C}\right)$ at 200 m depth, August-October 2005

Figure 2.1.12
Distribution of salinity at 200 m depth, August-October 2005

Figure 2.1.13 Distribution of temperature $\left({ }^{\circ} \mathrm{C}\right)$ at the bottom, August-October 2005

Figure 2.1.14 Distribution of salinity at the bottom, August-October 2005

Figure 2.2.1 Distribution of 0-group capelin autumn 2005

Figure 2.2.2 Distribution of 0-group cod autumn 2005

Figure 2.2.3 Distribution of 0-group haddock autumn 2005

Figure 2.2.4 Distribution of 0-group herring autumn 2005

Figure 2.2.5 Distribution of 0-group polar cod autumn 2005

Figure 2.2.6 Distribution of 0-group saithe autumn 2005

Figure 2.2.7 Distribution of 0-group redfish autumn 2005

Figure 2.2.8 Distribution of $\mathbf{0}$-group Greenland halibut autumn 2005

Figures
ECOSYSTEM SURVEY OF THE BARENTS SEA AUTUMN 2005 vol. 1

Figure 2.2.9 Distribution of 0-group long rough dab autumn 2005

Figure 2.3.1 Estimated density distribution of one-year-old capelin ($t /$ nautical mile ${ }^{2}$) August October 2005.

Figures
Ecosystem survey of the Barents Sea autumn 2005 vol. 1

Figure 2.3.2 Estimated total density distribution of capelin (t/ nautical mile ${ }^{2}$) August - October 2005.

Figure 2.3.3 Typical echo-records of capelin in the northeastern Barents Sea.

Figure 2.3.4 Estimated density distribution of one year old polar cod (t/ nautical mile ${ }^{2}$) August October 2005.

Figure 2.3.5 Estimated total density distribution of polar cod (t/ nautical mile ${ }^{2}$) August - October 2005.

Figure 2.3.6 Typical echo-records of polar cod in eastern Barents Sea

Figure 2.3.7 Estimated total density distribution of herring (t/ nautical mile ${ }^{2}$) August - October 2005.

Figure 2.3.8 Estimated total density distribution of blue whiting ($t /$ nautical mile ${ }^{2}$) August October 2005.

Figure 2.4.1 Distribution of cod.

Figure 2.4.2 Distribution of haddock

Figure 2.4.3 Distribution of saithe

Figure 2.4.4 Distribution of Greenland halibut

Figure 2.4.5 Distribution of Sebastes marinus

Figure 2.4.6 Distribution of Sebastes mentella

Figure 2.4.7 Distribution of long rough dab

Figure 2.4.8 Distribution of Atlantic wolffish

Figure 2.4.9 Distribution of spotted wolffish

Figure 2.4.10 Distribution of northern wolffish

Figure 2.4.11 Distribution of sea tadpole

Figure 2.4.12 Distribution of Atlantic poacher

Figure 2.4.13 Distribution of hook-ear sculpin

Figure 2.4.14 Distribution of thorny skate

Figure 2.4.15 Distribution of Norway pout

Figure 2.6.1 Zooplankton biomass wet-weight $\left(\mathrm{mg} / \mathrm{m}^{3}\right.$) in the layer $\mathbf{0 - 5 0} \mathbf{m}$ during August (red) and September (blue) 2005 collected by Juday-net ("F. Nansen").

Figure 2.7.1 Distribution of baleen whale observations from the research vessels Johan Hjort, G.O. Sars, Smolensk and F. Nansen, and the aircraft Arktika during the ecosystem survey 2005.

Figure 2.7.2 Distribution of seals and toothed whale observations from the research vessels Johan Hjort, G.O. Sars, Smolensk and F. Nansen, and the aircraft Arktika during the ecosystem survey 2005.

Figure 2.7.3 Distribution of Alcid observations from the research vessels Johan Hjort, G.O. Sars and F. Nansen, and the aircraft Arktika during the ecosystem survey 2005. The pie size reflects total number of individuals observed within $100 \times 100 \mathrm{~km}$ grid cells (logarithmic scale).

Figure 2.7.4 Distribution of northern fulmar and gull observations from the research vessels Johan Hjort, G.O. Sars and F. Nansen, and the aircraft Arktika during the ecosystem survey 2005. The pie size reflects total number of individuals observed within $100 \times 100 \mathrm{~km}$ grid cells (logarithmic scale).

Figure 2.7.5 Distribution of skuas as observed from the research vessels Johan Hjort, G.O. Sars and F. Nansen, and the aircraft Arktika during the ecosystem survey 2005. The pie size reflects total number of individuals observed within $100 \times 100 \mathrm{~km}$ grid cells.

Figure 2.8.1 The relationship between number of invertebrate species and size of trawl catch.

Figure 2.8.2. Distribution of biomass of invertebrate bycatch in Campelen bottom trawl within the survey area. Different dominant taxonomic groups are indicated with different colours.

Figure 2.8.3 Distribution of snow crab (Chionoecetes opilio) in Campelen bottom trawl. Standardised to $\mathrm{kg} / \mathrm{hour}$ of trawling.

Figure 2.8.4 Distribution of king crab (Paralithodes camtschaticus) in Campelen bottom trawl. Standardised to kg/hour of trawling.

Figure 2.8.5 Distribution of deep-sea (Pandalus borealis) in Campelen bottom trawl. Standardised to kg/hour of trawling.

APPENDIX 1

Ecosystem survey 2005

Research vessel	Participants
$\begin{aligned} & \text { "Smolensk" } \\ & (09.08-26.09) \end{aligned}$	I. Goljak, V. IvshinV. Kapralov, V. Mamylov, N. Mukhina, T.Prokhorova, D. Prozorkevich (cruise leader), S. Ratushnyy, O.Sazhenkov, A. Trofimov, V. Zelinsky, G. Zuikov,
"F. Nansen" (17.08-05.10)	A. Amelkin, N. Anisimova, I. Dolgolenko (cruise leader), N.Epifanova, T. Gavrilik, V. Guzenko, V. Ignashkin, S.Kharlin, R. Klepikovsky, P. Lyubin (from 30/8), I. Manushin, I.Samsonova, V. Sergeev, F. Shevchenko, V. Skljar, V.Tataurov, O. Vavilina
"G.O. Sars" (06.08-30.09)	Part 1 (06/08-14/08): S. Aanes (cruise leader), J. Alsvåg, J. Alvarez, J. Andersen, M. Dahl, M. Fonn, T. Haugland, P.J. Helgesen, B. Skjold, H. Kaponen, T. Knutsen, G. McCallum, P. Pahr, S. Subbey, N. Ushakov. Part 2(15/08-23/08): S. Aanes (cruise leader), J. Alvarez, J. Andersen, M. Dahl, J. Erices, T. Haugland, P.J. Helgesen, B. Skjold, H. Kaponen, P. Liebig, G. McCallum, P.B. Mortensen, P. Pahr, L. Rey, S. Subbey, N. Ushakov. Part 3 (24/08-12/09): O.O. Amøy, L. Austgulen, L. Doksæller, E. Olsen (cruise leader), I.M. Beck, M. Dahl, J. Erices, A. Frydendal, H. Græsdal, T. HovlandL.L. Jørgensen, P. Liebig, U. Lindstrøm, G. McCallum, J. Røttingen, A.B. Skiftesvik, N. Ushakov. Part 4 (13/09-30/09): J. Alvarez, G. Dingsør, B. Endresen, E. Eriksen, K.A. Fagerheim, H. Gjøsæter (cruise leader), J. Gwynn, D. Howell, P.J. Helgesen, G. McCallum, T. KnutsenM. Mauritzen, B. Røttingen, A. Steinstand, B.V. Svendsen, T. Haugland, N. Ushakov.
$\begin{aligned} & \text { "J. Hjort" } \\ & (01.08-08.09) \end{aligned}$	Part 1 (01-14/08): J.C. Holst (cruise leader), Ø. Tangen, E.S. Meland, K.B. Eriksen, B. Ellertsen, B. Endresen, P. Dahl, C. Forså Part 2 (15.08-08/09): K. Nedreaas (cruise leader), K. Sunnannå, V. Anthonypillai, F. Midtøy, K.B. Eriksen, J.H. Nilsen, B. Ellertsen, M. Johannessen, P. Dahl, C. Forså, E. Grønningsæter, G. Bakke, G. Tveit, H.Ø. Hansen
$\begin{gathered} \text { "Jan Mayen" } \\ (04.08-20.08 \text { and } \\ 12.09-24.09) \end{gathered}$	Part 1 (04-20/08 O.T. Albert (cruise leader), A. Harbitz, T.D.L. Wenneck, S. Kleiven, H. Fitje, G. Langhelle, J. Kristiansen, A.K. Abrahamsen, J. Størkersen, Part 2 (12-24/09): \AA. Høines (cruise leader), F. Uiblein, T.D.L. Wenneck, L. Solbakken, H. Larsen, A. Sæverud, E. Hermanssen, A.L. Johnsen, W. Richardsen, W. Rafter
Aircraft "Arktika" (19.09-29.09)	V. Assioutenko, A. Lisovsky, I. Shafikov, V. Tereschenko, V. Zabavnikov (scientific leader)

APPENDIX 2

Ecosystem survey 2005

SPHERE CALIBRATION OF ECHOSOUNDERS EK-500, ER60
(on copper sphere CU60, TS $=33,6 \mathrm{~dB}$, at frequency 38 kHz)

Research vessel	G.O. Sars	Johan Hjort	Jan-Mayen	Smolensk	F. Nansen
Type of echosounder	ER60	ER60	ER60	EK60	EK60
Date	14.04 .2005	18.08 .2005	15.08 .2005	11.08 .2005	13.10 .2004
Place	Ugdalseide	Coles bay Spitsbergen	Coles bay, Spitsbergen	$69^{\circ} 13^{\prime} \mathrm{N}$ $35^{\circ} 10^{\prime} \mathrm{E}$	$69^{\circ} 13^{\prime} \mathrm{N}$ $35^{\circ} 10^{\prime} \mathrm{E}$
Bottom depth (m)	88		41	42	52
Depth to sphere (m)	20.8	19.0	37	30.57	27.4
Temperature ($\left.{ }^{\circ} \mathrm{C}\right)$	3.31	3.5	1.0	10.1	3,5
Salinity (\%)	31.96	32.7	34.0	32.6	33,9
TS of sphere (dB)	-33.6	-33.7	-33.6	-33.6	-33.6
Transducer type	ES38B	ES38B	ES38B	ES38B	ES38B
Transducer depth (m)	5.5	0		0	0
Real sphere depth (m)		19.0		30.57	27.40
Sound velocity (m/sec)	9.321	9.782	1464.0	1453.0	1485
Absorption coefficient (dB/km)	1.024	1.024	1.024	1467	
Pulse length (Short/Med./Long, ms)	2.425 kHz				9.76

APPENDIX 3

Sampling of fish

	Norwegian vessels	Russian vessels	Sum
Capelin			
No of samples	338	220	558
Nos. length measured	10155	12470	22625
Nos. aged	2600	1077	3677
Polar cod			
No of samples	405	220	625
Nos. length measured	14425	64085	78510
Nos. aged	2005	1414	3419
Herring			
No of samples	125	75	200
Nos. length measured	4048	2805	6853
Nos. aged	680	368	1048
Blue Whiting			
No of samples	196	7	203
Nos. length measured	8082	2403	10485
Nos. aged	812	205	1017
Cod			
No of samples	530	285	815
Nos. length measured	17548	8373	25921
Nos. aged	1615	1150	2765
Haddock			
No of samples	474	124	598
Nos. length measured	19825	4934	24759
Nos. aged	1069	283	1352
Redfish (Sebastes marinus)			
No of samples	65	15	80
Nos. length measured	363	39	402
Nos. taken for age	166	14	180
Redfish (Sebastes mentella)			
No of samples	200	60	260
Nos. length measured	5740	888	6628
Nos. taken for age	996	1	997
Saithe			
No of samples	78	37	115
Nos. length measured	527	87	614
Nos. taken for age	25	8	33
Greenland halibut			
No of samples	464	73	537
Nos. length measured	6327	12326	18653
Nos. taken for age	681	697	1378
Atlantic wolffish (Anarhichas lupus)			
No of samples	56	34	90
Nos. length measured	318	73	391
Spotted wolffish (Anarhichas minor)			
No of samples	48	34	82
Nos. length measured	103	99	202
Northern wolffish (Anarhichas denticulatus)			
No of samples	50	12	62
Nos. length measured	63	14	77
Long rough dab			
No of samples	388	343	731
Nos. length measured	9190	24238	33428

Length measurements include 0 -group samples. Demersal fishes will be aged after the survey.

APPENDIX 4

List of the Barents Sea fish species caught during the ecosystem survey 2005.

№	Species	Ecologic group	Zoogeographic group
Cephalaspidomorphi			
Petromyzontiformes			
	Petromyzontidae		
1.	Petromyzon marinus Linnaeus, 1758	Anadromous	Southboreal atlantic
2.	Lethenteron camtschaticum (Tilesius, 1811)	Anadromous	Mainly boreal
	Elasmobranchii		
	Squaliformes		
	Squalidae		
3.	Somniosus microcephalus (Bloch et Schneider 1801)	Near bottom pelagic	Mainly boreal
	Rajiformes		
	Rajidae		
4.	Bathyraja spinicauda (Jensen, 1914)	Bottom	Mainly boreal
5.	Raja clavata Linnaeus, 1758	Bottom	
6.	Rajella fyllae (Lütken, 1888)	Bottom	Boreal atlantic
7.	Amblyraja hyperborea (Collett, 1879)	Bottom	Arctic
8.	Amblyraja radiata (Donovan, 1808)	Bottom	Mainly boreal
	Holocephali		
	Chimaeriformes		
	Chimaeridae		
9.	Chimaera monstrosa Linnaeus, 1758	Near bottom	Boreal european
	Teleostomi		
	Clupeiformes		
	Clupeidae		
10.	Clupea harengus Linnaeus, 1758	Nerito-pelagic	Mainly boreal
11.	Clupea pallasii suworowi Rabinerson, 1927	Nerito-pelagic	Mainly boreal
	Salmoniformes		
	Argentinidae		
12.	Argentina silus (Ascanius, 1775)	Bathypelagic	Boreal atlantic
	Osmeridae		
13.	Mallotus villosus (Müller, 1776)	Nerito-pelagic	Mainly boreal
	Salmonidae		
14.	Salmo salar Linnaeus, 1758	Anadromous	Mainly boreal
	Stomiiformes		
	Sternoptychidae		
15.	Maurolicus muelleri (Gmelin, 1789)	Bathypelagic	Boreal atlantic
	Aulopiformes		
	Paralepididae		
16.	Arctozenus risso (Bonaparte, 1840)	Bathypelagic	Widely distributed
	Myctophiformes		
	Myctophidae		
17.	Benthosema glaciale (Reinhardt, 1838)	Bathypelagic	Mainly boreal
18.	Myctophum punctatum		
	Gadiformes		
	Macrouridae		
19.	Coryphaenoides rupestris Gunnerus, 1765	Near bottom	Boreal atlantic
20.	Macrourus berglax Lacepede, 1810	Near bottom	Boreal atlantic
	Gadidae		
21.	Boreogadus saida (Lepechin, 1774)	Cryopelagic	Arctic
22.	Eleginus navaga (Pallas, 1811)	Near bottom pelagic	Arctic
23.	Gadiculus argenteus thori Schmidt, 1914		
24.	Gadus morhua Linnaeus, 1758	Near bottom pelagic	Mainly boreal
25.	Melanogrammus aeglefinus (Linnaeus, 1758)	Near bottom pelagic	Mainly boreal
26.	Merlangius merlangus (Linnaeus, 1758)	Near bottom pelagic	Southboreal european
27.	Micromesistius poutassou (Risso, 1826)	Nerito-pelagic	Mainly boreal
28.	Pollachius virens (Linnaeus, 1758)	Nerito-pelagic	Mainly boreal
29.	Trisopterus esmarkii (Nilsson, 1855)	Nerito-pelagic	Mainly boreal
	Lotidae		

Appendices
Ecosystem survey of the Barents Sea autumn 2005 vol. 1

30.	Brosme brosme (Ascanius, 1772)	Near bottom	Mainly boreal
31.	Enchelyopus cimbrius (Linnaeus, 1766)	Near bottom	Boreal atlantic
32.	Gaidropsarus argentatus (Reinhardt, 1838)	Near bottom	Arctic
33.	Gaidropsarus ensis (Reinhardt, 1837)	Near bottom	Boreal atlantic
34.	Molva molva (Linnaeus, 1758)	Near bottom	Boreal atlantic
35.	Phycidae Phycis blennoides (Bruennich, 1768) Lophiiformes	Near bottom pelagic	Southboreal european
36.	Lophiidae Lophius piscatorius Linnaeus, 1758 Gasterosteiformes	Bottom	Southboreal atlantic
37.	Gasterosteidae Gasterosteus aculeatus Linnaeus, 1758 Syngnathiformes	Nerito-pelagic	Mainly boreal
38.	Syngnathidae Syngnathidae spp. Scorpaeniformes		
	Sebastidae		
39.	Sebastes marinus (Linnaeus, 1758)	Near bottom pelagic	Mainly boreal
40.	Sebastes mentella Travin, 1951	Near bottom pelagic	Mainly boreal
41.	Sebastes viviparus Kröyer, 1844 Cottidae	Near bottom	Boreal atlantic
42.	Artediellus atlanticus Jordan et Evermann, 1898	Bottom	Mainly boreal
43.	Gymnocanthus tricuspis (Reinhardt, 1830)	Bottom	Mainly arctic
44.	Icelus bicornis (Reinhardt, 1840)	Bottom	Mainly arctic
45.	Icelus spatula Gilbert et Burke, 1912	Bottom	Arctic boreal
46.	Myoxocephalus scorpius (Linnaeus, 1758)	Bottom	Mainly boreal european
47.	Triglops murrayi Günther, 1888	Bottom	Boreal atlantic
48.	Triglops nybelini Jensen, 1944	Bottom	Arctic
49.	Triglops pingelii Reinhardt, 1837	Bottom	Arctic boreal
	Psychrolutidae		
50.	Cottunculus microps Collett, 1875	Bottom	Mainly arctic
51.	Cottunculus sadko Essipov, 1937	Bottom	Arctic
	Agonidae		
52.	Leptagonus decagonus (Bloch et Schneider, 1801)	Bottom	Arctic boreal
53.	Ulcina olrikii (Lütken, 1876)	Bottom	Arctic
	Cyclopteridae		
54.	Cyclopterus lumpus Linnaeus, 1758	Near bottom pelagic	Mainly boreal atlantic
55.	Eumicrotremus derjugini Popov, 1926	Bottom	Arctic
56.	Eumicrotremus spinosus (Müller, 1777) Liparididae	Bottom	Arctic
57.	Careproctus ranula (Goode et Bean, 1880)	Near bottom	Arctic
58.	Careproctus reinhardti (Kröyer, 1862)	Near bottom	Arctic
59.	Liparis fabricii Kröyer, 1847	Near bottom	Arctic
60.	Liparis gibbus Bean, 1881	Bottom	Mainly arctic
61.	Liparis liparis (Linnaeus, 1766) Perciformes	Bottom	Boreal european
	Zoarcidae		
62.	Gymnelus sp.	Bottom	Arctic
63.	Lycenchelys kolthoffi Jensen, 1903	Bottom	Arctic
64.	Lycodes esmarki Collett, 1875	Bottom	Mainly boreal atlantic
65.	Lycodes eudipleurostictus Jensen, 1901	Bottom	Arctic
66.	Lycodes frigidus Collett, 1878	Bottom	Arctic
67.	Lycodes pallidus Collett, 1878	Bottom	Arctic
68.	Lycodes polaris (Sabine, 1824)	Bottom	Arctic
69.	Lycodes reticulatus Reinhardt, 1835	Bottom	Arctic
70.	Lycodes rossi Malmgren, 1864	Bottom	Arctic
71.	Lycodes seminudis Reinhardt, 1837	Bottom	Arctic
72.	Lycodes vahli gracilis Sars, 1867	Bottom	Mainly boreal european
	Stichaeidae		
73.	Anisarchus medius (Reinhardt, 1837)	Bottom	Boreal atlantic
74.	Lumpenus fabricii (Valenciennes, 1836)	Bottom	Mainly arctic
75.	Lumpenus lampretaeformis (Walbaum, 1792)	Bottom	Mainly boreal european
76.	Leptoclinus maculatus (Fries, 1837) Anarhichadidae	Bottom	Mainly boreal atlantic
77.	Anarhichas denticulatus Kröyer, 1845	Near bottom	Mainly boreal atlantic
78.	Anarhichas lupus Linnaeus, 1758	Bottom	Mainly boreal atlantic
79.	Anarhichas minor Olafsen, 1772	Bottom	Mainly boreal atlantic

	Ammodytidae	Bottom	Bottom
80.	Ammodytes marinus Raitt, 1934		Mainly boreal european
81.	Ammodytes tobianus Linnaeus, 1758 Scombridae	Neritopelagic	Boreal european
82.	Scomber scombrus Linnaeus, 1758 Pleuronectiformes	Southboreal atlantic	
	Pleuronectidae	Bottom	
83.	Glyptocephalus cynoglossus (Linnaeus, 1758)	Bottom	Bottom
84.	Hippoglossoides platessoides (Fabricius, 1780)	Bottom	Mainly boreal atlantic
85.	Hippoglossus hippoglossus (Linnaeus, 1758)	Bottom	Mainly boreal european
86.	Limanda limanda (Linnaeus, 1758)	Bottom	Mainly boreal european
87.	Microstomus kitt (Walbaum, 1792)	Bottom	Boreal european
88.	Pleuronectes platessa Linnaeus, 1758		Mainly boreal european
89.	Reinhardtius hippoglossoides (Walbaum, 1792)	Mainly boreal atlantic	

APPENDIX 5

	$\underset{\substack{2}}{2}$	$\sum_{i=1}^{0}$	$\begin{aligned} & 0 \\ & \hline 0 \end{aligned}$	工	$\grave{ }$		$\frac{z}{z}$	\sum_{∞}^{0}	O	工	\sum		$\underset{\frac{z}{z}}{z}$	\sum_{∞}^{0}	$\begin{array}{\|l\|} \hline 0 \\ \hline 0 \\ \hline \end{array}$	工	\sum		$\frac{z}{z}$	\sum_{∞}^{0}	$\begin{aligned} & 0 \\ & 0 \\ & \hline 1 \end{aligned}$	工	\sum
PORIFERA						Alcyonacea g．spp．	＋			＋	＋	Sabellidae g．sp．	＋					Pandalidae g．sp．			＋		＋
Axinella sp．			＋			Alcyonium sp．					＋	Spiochaetopterus typicus	＋					Pandalina sp．			＋		
Calcarea g．sp．					＋	Anthozoa g．spp．				＋	＋	Spiochaetopterus typicus				＋		Pandalus borealis	＋	＋	＋	＋	＋
Geodia sp．			＋			Bolocera sp．				＋		Terrebelidae g．sp．			＋			Pandalus montague triden		＋			
Geodia barretti			＋			Capnella sp．			＋			Travisia forbesii	＋					Pandalus propinquus			＋		
Geodia macandrewii			＋			Drifa glomerata	＋		＋			HIRUDINEA						Pandalus sp．			＋		
Phakellia sp．	＋		＋			Duva florida	＋					Hirudinea g．sp．	＋					Paralithodes camtschatica		＋			
Phakellia ventilabrum			＋			Eunephthia sp．		＋				ECHIURA						Pasiphaea multidentata			＋		
Polymastia mammilaris		＋				Eunephthya sp．	＋					Echiura g．sp．				＋		Pasiphaea sivado	＋				
Polymastia thielei	＋					Flabellum sp．			＋			Bonellia viridis			＋			Pasiphaea sp．		＋			＋
Polymastia sp．			＋			Gersemia fruticosa	＋					Hamingia arctica	＋			＋		Pontophilus norvegicus		＋			
Radiella grimaldii	＋					Gersemia rubiformis	＋					SIPUNCULA						Pontophilus sp．			＋		
Porifera g．spp．	＋	＋	＋	＋	＋	Gorgonacea g．sp．					＋	Phascolosoma margaritaceum		＋				Sabinea sarsi		＋		＋	
Tentorium semisuberites	＋					Hormathia digitata	＋		＋			Sipunculida g．sp．	＋		＋			Sabinea septemcarinata	＋	＋	＋	＋	
CNIDARIA						Lophelia sp．			＋			PYCNOGONIDA（PANTOPODA）						Sabinea sp．	＋	＋	＋		
Cnidaria g．spp．				＋	＋	Metridium senile	＋					Nymphon glaciale			＋			Sclerocrangon boreas	＋	＋			
Hydrozoa						Umbellula incrinus		＋				Pantopoda g．spp．	＋	＋		＋	＋	Sclerocrangon ferox	＋	＋	＋	＋	＋
Abietinaria abietina	＋					Urticina（Tealia）felina lofotensis	＋					CRUSTACEA						Sclerocrangon sp．	＋		＋		＋
Abietinaria filicula	＋					NEMERTEA（＝NEMERTINI）						Crustacea g．spp．				＋	＋	Spirontocaris liljeborgi			＋		
Campanularia volubilis	＋					Nemertini g．spp．	＋		＋	＋		Euphausiacae						Spirontocaris sp．	＋		＋		
Dicoryne conferta	＋					PRIAPULIDA						Euphausiidae g．sp．		＋				Spirontocaris spinus	＋	＋		＋	
Eudendrium capillare	＋					Priapulopsis bicaudatus	＋	＋				Meganyctiphanes norvegica		＋				Amphipoda					
Eudendrium vaginatum	＋					Priapulus caudatus	＋					Cirripedia						Acanthostepheia behringiensis	＋				
Halecium beani	＋					Priapulus sp．	＋					Balanomorpha g．sp．					＋	Amathillopsis spinigera	＋				
Halecium marsupiale	＋					ANNELIDA						Balanus balanus	＋					Ampelisca sp．	＋				
Halecium muricatum	＋					Vermes indet．		＋	＋			Balanus crenatus	＋					Amphipoda g．spp．	＋		＋	＋	＋
Hydroidea g．sp．	＋		＋			POLYCHAETA						Balanus sp．	＋					Anonyx nugax	＋				
Lafoea fruticosa	＋					Aphroditidae g．sp．	＋					Decapoda						Anonyx sp．	＋	＋			
Modeeria plicatile	＋					Aphrotite aculeata			＋			Brachiura g．spp．			＋	＋	＋	Cleippides quadricuspis		＋			
Obelia Iongissima	＋					Brada granulata				＋		Bythocaris payeri		＋				Epimeria cornigera				＋	
Pennatulacea g．sp．				＋	＋	Brada inhabilis	＋		＋			Chionoecetes opilio		＋				Epimeria loricata	＋				
Rhizocaulus verticillatus	＋					Brada sp．	＋					Crangonidae g．sp．		＋	＋	＋	＋	Gammaridae g．sp．		＋			＋
Sertularella gigantea	＋					Brada villosa	＋		＋			Eualus gaimadi		＋				Gammarus wilkitzkii	＋				
Sertularia mirabilis	＋					Flabelligeridae g．sp．			＋			Gerion trispinosus				＋		Hyperiidae g．sp．		＋			
Sertularia tenera	＋					Harmothoe sp．			＋			Hyas araneus	＋		＋			Onisimus sp．	＋				
Staurophora mertensii		＋				Lumbrineris sp．	＋					Hyas coarctatus			＋			Rhachotropis aculeata	＋				
Symplectoscyphus tricuspidatus	＋					Nephthyidae g．sp．			＋		＋	Hyas sp．		＋		＋	＋	Rhachotropis sp．		＋			
Thuiaria articulata	＋					Nephtys sp．	＋					Lebbeus polaris	＋	＋				Stegocephalus inflatus	＋			＋	
Thuiaria breitfussi	＋					Nothria hyperborea	＋					Lithodes maja						Stegocephalus sp．	＋	＋	＋		
Thuiaria carica	＋					Paramphithoe hystrix				＋		Munida sarsi			＋			Themisto sp．		＋			
Thuiaria cupressoides	＋					Pectinaria hyperborea	＋					Paguridae g．sp．			＋	＋	＋	Isopoda					
Thuiaria laxa	＋					Pectinaria sp．			＋	＋		Pagurus bernhardus			＋			Cirolana borealis			＋		
Anthozoa						Polychaeta g．spp．	＋	＋	＋	＋	＋	Pagurus pubescens	＋	＋				Idothea sp．			＋		
Actiniaria g．spp．	＋	＋	＋	＋		Polynoidae g．sp．			＋	＋		Pagurus sp．	＋					Idotheidae g．sp．		＋			

TABLES，FIGURES AND APPENDICES
Ecosystem survey of the Barents Sea autumn 2005 vol． 1

	$\underset{z}{2}$	\sum_{∞}^{0}	0	工	$\grave{ }$		$\underset{z}{z}$	\sum_{∞}^{0}	Oi	工	\sum		$\underset{z}{2}$	\sum_{i}^{0}	$\begin{aligned} & 0 \\ & \hline 1 \end{aligned}$	工	$\grave{ }$		$\underset{y}{2}$	\sum_{∞}^{0}	$\begin{aligned} & 0 \\ & \hline 1 \end{aligned}$	工	\sum
Isopoda g．spp．			＋	＋	＋	Astarte crenata subaequilastera	＋					ECHINODERMATA						Poraniomorpha hispida	＋				
Saduria sabini	＋			＋		Astarte sp．			＋	＋		Echinodermata g．spp．				＋		Poraniomorpha sp．	＋				
Saduria sp．			＋			Astartidae g．sp．	＋					Holothuroidea						Poraniomorpha tumida	＋	＋		＋	
Cumacea						Bathyarca glacialis	＋			＋		Cucumaria frondosa	＋	＋				Pseudarchaster sp．			＋		
Cumacea g．sp．		＋				Bathyarca glacialis arctica	＋					Holothuroidea g．spp．			＋	＋	＋	Psilaster andromeda		＋			
MOLLUSCA						Bathyarca sp．			＋			Molpadia borealis	＋					Pteraster militaris	＋	＋			
Mollusca g．sp．	＋			＋		Bivalvia g．spp．	＋	＋	＋	＋	＋	Myriotrochus rinkii	＋					Pteraster obscurus	＋			＋	
Gastropoda						Cardium sp．			＋	＋		Myriotrochus sp．	＋					Pteraster pulvillus		＋			
Beringius ossiani	＋					Chlamya sp．			＋			Psolus phantapus	＋					Pteraster sp．	＋				
Buccinidae g．sp．			＋			Chlamys islandica	＋	＋			＋	Psolus sp．			＋			Solaster endeca		＋	＋	＋	
Buccinum elatior	＋					Clinocardium ciliatum	＋	＋				Stichopus tremulus			＋			Solaster glacialis				＋	
Buccinum finmarchianum	＋					Cuspidaria arctica	＋	＋				Thyonidium drummondi	＋					Solaster sp．	＋		＋	＋	
Buccinum hydrophanum	＋					Cuspidaria sp．			＋			Echinoidea						Solaster syrtensis	＋	＋			
Buccinum sp．	＋		＋			Cuspidaria subtorta			＋			Brisaster fragilis				＋		Urasterias linckii	＋	＋		＋	
Buccinum undatum	＋					Hiatella arctica	＋					Echinoidae g．sp．			＋			Ophiuroidea					
Capulacmaea radiata	＋					Musculus discrepans		＋				Echinoidea g．sp．		＋				Amphiuridae g．sp．				＋	
Colus altus	＋					Mya truncata			＋			Echinoidea g．sp．（irregularia）					＋	Gorgonocephalis caputmedusae			＋		
Colus holboelli	＋					Palliolum striatum			＋			Echinoidea g．sp．（regularia）				＋	＋	Gorgonocephalus arcticus	＋				
Colus islandicus	＋					Pecten sp．			＋			Echinus sp．			＋			Gorgonocephalus eucnemis	＋				
Colus sabini	＋			＋		Portlandia sp．			＋			Spatangoida g．sp．			＋	＋		Gorgonocephalus sp．	＋	＋	＋		＋
Colus sp．			＋			Psammobiidae g．sp．				＋		Spatangus purpureus			＋			Ophiacantha bidentata	＋				
Cryptonatica clausa	＋					Pseudomussium septemradiata			＋			Strongylocentrotus droebachiensis	＋			＋		Ophiocten sericeum	＋				
Gastropoda eggs	＋					Scaphopoda						Strongylocentrotus pallidus	＋					Ophiopholis aculeata	＋		＋	＋	
Gastropoda g．spp．	＋	＋	＋	＋	＋	Scaphopoda g．sp．	＋	＋				Strongylocentrotus sp．	＋					Ophiopleura borealis	＋				
Lunatia pallida	＋					Cephalopoda						Asteroidea						Ophioscolex glacialis	＋				
Neptunea antiqua			＋			Bathypolipus arcticus	＋					Asterias riubens		＋				Ophiura sarsi	＋		＋		
Neptunea denselirata	＋					Cephalopoda g．spp．					＋	Asterias sp．			＋			Ophiura sp．			＋	＋	
Neptunea despecta	＋			＋		Gonatus fabricii	＋	＋				Asteroidea g．spp．	＋	＋	＋	＋	＋	Ophiuroidea g．spp．	＋	＋	＋	＋	＋
Neptunea sp．			＋		＋	Octopoda g．sp．		＋				Astropecten sp．			＋			Crinoidea					
Nudibranchia g．spp．	＋	＋	＋	＋	＋	Rossia glaucopis	＋					Ceramaster granularis			＋			Antedonidae g．sp．			＋		
Onchidiopsis glacialis	＋					Rossia macrosoma		＋				Ceramaster sp．			＋			Crinoidea g．sp．		＋	＋	＋	＋
Philine finmarchica	＋					Rossia sp．	＋					Crossaster papposus	＋	＋	＋	＋		Heliometra glacialis					
Philine sp．	＋					Sepiola sp．			＋			Ctenodiscus crispatus	＋	＋	＋	＋		Poliometra prolixa	＋				
Polinices sp．			＋	＋		Teuthida g．sp．		＋				Henricia sp．	＋		＋	＋		HEMICHORDATA					
Scaphander lignaris			＋			BRACHIOPODA						Hippasterias phrygiana			＋	＋		Enteropneusta					
Scaphander sp．			＋			Brachiopoda g．spp．	＋		＋	＋		Hymenaster pellucidus	＋	＋				Enteropneusta g．sp．				＋	
Tachyrhynchus reticulatus	＋					Macandrevia sp．			＋			Icasterias panopla	＋	＋				CHORDATA					
Turrisipho lachesis	＋					Rhynchonella psittacea		＋				Korethraster hispidus	＋					Ascidiacea					
Velutina sp．	＋					Terebratulina sp．			＋			Leptasterias sp．	＋	＋				Ascidiacea g．spp．	＋	＋	＋		
Volutopsis norvegicus	＋					BRYOZOA						Lophaster furcifer	＋	＋				Ciona intestinalis	＋				
Bivalvia						Alcyonidium disciforme		＋				Luidia sarsi			＋			Hyalocynthia pyriformis	＋			＋	
Arctinula greenlandica	＋					Alcyonidium gelatinosum	＋	＋				Luidia sp．			＋								
Arctinula sp．						Alcyonidium sp．	＋					Marthasterias glacialis			＋								
Astarte borealis	＋					Bryozoa g．spp．	＋		＋	＋	＋	Pontaster tenuispinus	＋	＋	＋	＋							
Astarte crenata	＋			＋		Reteporella sp．			＋			Porania sp．			＋								

IMR/PINRO Joint Report Series

No. 1/2005
Anon. 2005. Extended survey report from the Joint Norwegian/Russian ecosystem survey in the Barents Sea August-October 2004, Volume 2, IMR/PINRO Joint Report Series, No. 1/2005. ISSN 1502-8828. 83 pp.

No.2/2005
Shibanov V. Ecosystem dynamics and optimal long-term harvest in theBarents Sea fisheries.
Proceedings of the $11^{\text {th }}$ Russian-Norwegian Symposium,
Murmansk, 15-17 August 2005. IMR/PINRO Joint Report Series, No 2/2005.
ISSN 1502-8828, ISBN 5-86349-138-8. 331 pp.

[^0]: ${ }^{1}$ Computed values based on the estimates in 1981 and 1983
 ${ }^{2}$ Combined estimates from multispecies survey and succeeding survey with "Eldjarn"

