\tophe Institute of Marine Research operates a wideranging programme of monitoring our marine resources. The knowledge obtained by the monitoring programme is essential input for the provision of advice about how best to manage our natural resources, which is one of our most important asks. This requires us to know as much as possible asks. This requires us to know as much as possible bout how species are distributed among individual stocks, how these stocks migrate and where they are located at different times of the year. We also need to know how they change in size over time, how the various stocks affect each other, how they are affected by fishing activities, and so on. Monitoring gives us a picture of the situation at a particular moment in time, as well as a basis for making both short- and long-term prognoses. These efforts provide a foundation for our ability to exploit our oceans in a sustainable and sensible way.

Large quantities of data are collected by means of a wide range of techniques, and are used to estimate stocks of fish, marine mammals and shellfish. This brochure attempts to illustrate some of the methods that we use to collect data in connection with monitoring our marine resources

For the sake of resources management it is interesting to know the size of stocks at a given point in time, as well as the distribution of individuals in terms of sex, age-group and size. This is why we sample individual fish in order to determine their age, length, weight, sex and so on. All these data are used as input for various stock models, which enable us to analyse how stocks have volved under the influence of fishing activities,
 vironmental impacts and other species. Models also elp us to analyse how stocks are likely to evolve in the hort or long term if we stop fishing them, or if we harvest them at different intensity levels. On the basis of hese analyses, we advise the fisheries authorities about how individual species should be managed through quotas and other mechanisms.
havForskningsinstituttet
wstitute of marine research
Nordnesgaten 50 - P.O. Box 1870 Nordnes
N-5817 Bergen - Norway
Tel: +4755 238500 - Faks/Fax: + 4755238531
SENTER FOR MARINE RESSURSER
department of marine resources
Tel.: +4755 238650 - Faks/Fax: +47 55238687

SENTER FOR MARINT MILJo

department of marine environyent
Tel.: +47 55238496 - Faks/Fax: +47 55238584

SENTER FOR HAVBRUK

DEPARTMENT OF AQUACULTURE
Tel.: +4755 236350 - Faks/fax: +47 55236379

ENTER FOR KYSTSON

el.: +47 37059000 - Faks/Fax: +47 3705900

ISKERIFORSKNING U-LAND
ISHERIES DEVELOPMENT RESEARCH
Tel.: +47 55238578 - Faks/Fax: +47 55238579
HAVFORSKNINGSINSTITUTTET TROMS
NSTITUTE OF MARINE RESEARCH TROMSO
P.0. Box 6404
N.9294 Tromse - Norwa

Tel.: +47 77609700 - Faks/Fax: +47 7760970
FORSKNINGSSTASJONEN FLQDEVIGEN flodevigen marine research station
N-4817 His - Norway
el.: +47 37059000 - Faks/Fax: +47 3705900
AUSTEVOLL HAVBRUKSSTASJON
aUSTEVOLL AQUACULTURE RESEARCH STATION
N-5392 Storebo - Norway
Tel.: +4755238500 - Faks/Fax: +4756 182222
MATRE HAVBRUKSSTASJON
matre aquaculture research station
N-5984 Matredal - Norwa
Tel: + 4755238500 - Faks/Fax: +4756.367585

REDERIAVDELING

Research vessels depariment
Tel.: +47 55238535 - Faks/Fax: + 4755238532

NFORMASJONEN

NFORMATION
Tel: $+47552385 \quad 21$ - Faks/Fax: +47 55238586

www.imr.no

Since the middle of the previous century fishermen and fisheries scientists have bee using echosounders and sonar to seek our and survey fish populations. Thes instruments transmit pulses of sound through the sea; the echosounder face
downwards below the vessel, while sona "looks" ahead. Fish, and any other organisms which reflect the beam of sound, produce an echo which is picked up again by the instrument. This is recorded in the form of an echogram, which can be printed out on paper or displayed on a screen.

The strength and duration of the echoes depend on the type of fish that are being registered, and on the size of schools and individual mish. These form for so well mapped out for many species that amount of fish (the biomass) as long as w know which species has produced the echoes. A special instrument known as the echo integrator has been developed for this purpose.

The echo integrator continuously adds up the fish echoes along the course of the research vessel, providing an ongoing
measure of the number and strength of the recorded echoes. By trawling for the fish that we have recorded, we can identify their
species and size; this enables us to estimate species and sizz; this enables us to estimate
both the number and weight of each species In some cases, even the appearance of the echo on the echogram can be used to identify the species, but this usually needs to be done by fishing.
In addition to the biomass measurements themselves, acoustic methods provide a first class overview of where individual species and stocks are to be found, and of how these measures vary during the day and in the
course of the seasons. Such measurements course of the seasons. Such measurement conditions into account.

Every year, we go on bottom-trawling cruises in the Barents Sea, the Svalbard region and N North Sea in order to map the state of, ctive fishing sear, which means that it is in active fishing gear, which means that it is in motion during the fish-capture process

We can find out how fish density varies by performing a large number of hauls of the trawl over the whole area of distribution of the stocks. During trawling of this sort it is essential to record exactly how long each rigged and used in the same way every time. rigged and used in the same way every time.
The intention is that each haul should provide an accurate picture of the species and size distribution of the fish in the area. Fish density is estimated by dividing the number of fish in the bottom trawl catch by the basis of how long the trawl net was fshing and the width of the trawl opening. These calculations are repeated for each ength group of the species we are interested

The trawling system consists of the vessel The traw, the towing cables, trawl doors or otter boards, bridles and the trawl net with its rawl bag or codend. The fish are guided into he codend by the trawl doors, bridles and the trawl net, but not all the fish that enter codend. This is partly because different pecies and length groups react differently to the various parts of the trawl system, which means that we are unable to obtain a ompletely accurate picture of the species and size distribution or

Since 1984 we have been trying to eliminate sources of error in the trawling process, and the different reaction patterns of individual pecies and sizes of fish.
onitoring marine mammals usually involves visual methods of determining their numbers. We use three methods: complete counts, strip transect counts and line
ransect counts. We have also carried out photographic identification of whales. dividual members of such species as the common seal and the grey seal are often
distributed over large areas of the coast. If e total stock is large areas of the coltr. ake a complete count. Aircraft are very efil in such cases, as they also help to eliminate double counting.

Only in a few cases are we able to count the whole stock. We usually have to count the number of individuals in a randomly selected b-area and then estimate the total number in the whole region. Strip transect counting ut course lines (transects) through the area. During the counting process we sail along the transects and register everything we see ithin a given distance of the vessel, and then stimate the density inside the strip

A line transect count is a generalisation of he strip transect method, and it requires every single individual along the transect to be seen, including those that are eventually
cared off by the vessel. This method is cared off by the vessel. This method is particularly useful for estimating stocks of observation platform. Many species of whale ave individual patterns of colour or other eatures that allow us to catalogue them. We have been following some of the oldest individuals for twenty or thirty years.

Visual techniques are also making their way into counts of individuals under water. The nost widely used technique is visual counting of king crabs and other benthic
(seabed) organisms. Trials have also been
 mackerel near the surface. This technique is still under development.

in the future, the ecosystem will be the focus of our monitoring activities, and this will increase the demands being made on the technological and strategic aspects of our fieldwork. Developments will take place in
four fields: sensors, platforms, strategy and modelling.

There will be powerful developments in coustic sensors, which will be capable of measuring both movements and species and size composition in addition to density. This requencies, broad-band techniques and measurements of speed of sound (Doppler techniques). Optical sensors will become more important. Image analysis will confirm acoustic signals and traditional techniques penetrate further and are more capable of judging size and distance.

Suitable platforms are of decisive importance or our ability to make observations at the right place and the right time. There will be and fixed installations, which will revolutionise our understanding of cosystem dynamics. Sensor development also opens up the prospect of installing dvanced acoustic sensors on board fishing vessels and ships in regular traffic. This will hat will enable us to monitor ecosystems throughout the year.
such developments will have impacts on our data-acquisition strategy. Our basic surveys will be carried out by our own vessels, boats. For the rest of the year, the ecosystem models will be provided with data from fishing vessels and stationary platforms. Discrepancies between models and bservations will mean gathering additio data in order to modify the models.
iven these large quantities of data of widely ranging origin and quality, we will have to develop modeling tools that will be capable of exploiting such information in an optimal fanner. Some information will give us the seal speles and will provide oly migration peed, for example. The new sensors will provide data that can be used to modify the models, while accumulated expe offer a basis for improving them

12VFO1088

