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SUMMARY 

This report to the Chesapeake Bay Stock Assessment Committee details the results 

of research conducted by the University of Maryland Center for Environmental and 

Estuarine Studies (UMCEES) between 1 October 1992 and 30 September 1993. The winter 

dredge survey was conducted from January 7 through March 27 by UMCEES and the 

Maryland Department of Natural Resources, in conjunction with the Virginia Marine 

Resources Commission and the Virginia Institute of Marine Science. 

Our research during FY 1993 has focused on: 1) optimizing the winter dredge survey 

for estimating abundance and population characteristics; 2) developing methods for 

obtaining more accurate estimates of catching-efficiency for the sampling gear; and 3) 

implementing efficient estimators for density, along with estimators for size/sex composition 

accounting for the effects of intra-cluster correlation. 

The spatial distribution of blue crab is highly patchy across the Chesapeake Bay, but 

tends to be more homogeneous on a local scale. As a result, the observations of numbers 

of crabs from neighboring area units are less variable than observations for units with larger 

spatial separation. In previous years double-tows were taken at each station; the correlation 

between catches within a station was typically greater than r = 0.5. By taking one dredge 

tow at each station, instead of two, we were able to increase the number of stations sampled 

per boat-day by more than 30%. Furthermore, the survey stratification scheme was 

modified; the sediment stratification employed in 1991/92 was not used. As a result, the 

relative precision of density for the 1992/93 survey was higher (lower k=cv/Yn) than for 

the 1991/92 survey even though the survey cost (number of boat days) was reduced by 

approximately 30%, and the survey area was expanded. The allocation of stations in the 

various strata was conducted so that data analysis was simplified. At the same time, the 

survey design had near-optimum properties in terms of obtaining precise. estimates of 

abundance and sex/size composition at minimum cost. 
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Average number of crabs caught per area-unit swept during the winter dredge survey 

provides an estimate of the relative density for the blue crab population. Results suggest 

that blue crab abundance (for all size categories combined) in 1992/93 has increased by 

approximately 50 % from the previous year. The population is highly segregated by size and 

sex, with a large proportion of the mature females in Virginia waters. This population 

structure compares with results from previous studies, providing further evidence that 

females are significantly more vulnerable than males during the winter dredge fishery which 

only takes place in Virginia waters. 

Estimates of proportions of crabs in different size/sex categories by strata are based 

on the ratio estimator; stratified estimates for the entire population are based on the 

combined ratio estimator. The binomial or multinomial distributions, which are based on 

the assumption that individual crabs are sampled randomly, can severely underestimate the 

variance of proportion-estimates. This is due to between station variability in density, 

combined with intra-haul correlation with respect to size and sex of individual crabs. 

A new method for estimating gear-efficiency is proposed, yielding more realistic 

estimates which are also consistent between years. Our estimated catchability coefficients 

indicate that the standard Virginia crab dredge employed in the winter surveys on average 

catch less than 15% of the total number of crabs in the area swept by the dredge. Thus, the 

absolute density of crabs is nearly 7 times greater than the survey indices of density (average 

catch per 1000m2
). In comparison, the method used in· previous studies resulted in a 

catchability estimate of 26 %. Survey estimates of absolute abundance of the winter 

population of blue crabs for 1990/91-1992/93 are provided, along with estimates of number 

of crabs landed in the commercial hard-crab fishery. Sources of errors in these estimates 

are discussed. 

.. 
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1. INTRODUCTION 

The blue crab ( Callinectes sapidus) in the Chesapeake Bay has supported a significant 

fishery since the early 1880's. Reported catch from the Maryland-Virginia fishery for 1880 

was approximately 4 million pounds (Tang, 1983; Knotts, 1988). Fishing effort and catch 

levels increased rapidly in subsequent years, as result of increased consumer demand and 

improved technology. Estimated total landings (baywide) of hard and softshell crabs peaked 

at 97 million pounds in 1966 (Knotts, 1988). During the 1980's the average harvest of 

hardshell crab from Maryland's commercial fishery is estimated at approximately 45 million 

pounds. Historic catch data reveal fairly wide fluctuations in catch levels over the last 

century due, in part, to natural changes in recruitment related to environmental conditions 

such as temperature and salinity. However, there has been a declining trend in reported 

commercial landings of hardshell crabs in Maryland during recent years, dropping to 

approximately 31 million pounds in 1992. This decline has led to concern about causal 

factors, including pollution and over-fishing. 

In order to maximize long term landings from the blue crab fishery, it is important 

to determine how the population is affected by harvesting. Accurate estimates of population 

abundance, and size/sex composition over time, together with estimates of precision, is 

crucial for effective management. In addition, reliable estimates of total landings, including 

recreational catches, are important. Models for assessing the impact of pollution and other 

environmental effects (e.g., temperature, salinity) on stock size over time also require 

precise estimates of population abundance and composition. 

Since 1987, the National Oceanographic and Atmospheric Administration (NOAA) 

has sponsored a program to estimate key statistics for the blue crab population in the 

Chesapeake Bay, through a grant to the Chesapeake Bay Stock Assessment Committee 

(CBSAC). During the first year of the study, a comprehensive program of data collection 

on-board commercial fishing vessels was developed by the University of Maryland Center 

for Estuarine and Environmental Studies (UMCEES), in cooperation with the Maryland 
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Department of Natural resources (MDNR). These data have provided information on catch 

rates, size-distribution, and ratios of males to females in the commercial harvest. Since 

1988, statistics have also been collected from commercial crab dealers. 

Catch per unit fishing effort (CPUE), e.g., catch per day for each gear type in the 

entire fishing fleet averaged over a month (or an entire fishing season), is often used to 

monitor monthly (or yearly) changes in the abundance of a fish stock. Increases or 

decreases in stock abundance should result in similar changes in measures of CPUE, 

assuming that they reflect the true population size. However, estimates of fish stock 

abundance based solely on commercial catch data may be extremely inaccurate. For 

example, if the population is concentrated in a few areas of high density, that are 

successfully located by the fishermen, then high CPUE may be sustained regardless of a 

more general stock decline. Furthermore, due to the patchy distribution of marine 

populations, it is not reasonable to assume that catches at locations chosen by fishermen are 

representative for the entire Bay. Thus, estimates of the precision of CPUE abundance 

indices can generally not be obtained. 

In 1987, direct observations were made of commercial operations for 60 crabbers 

participating in the pot, scrape and trotline fisheries (Rothschild et al. 1988). In this study 

it was observed that CPUE increased or remained stable as the season progressed, for all 

gear types. This was also observed in the estimates of commercial harvest by month (see, 

also, Cronin 1982). This phenomena, not commonly observed in fisheries, could be 

explained if the availability of legal sized crabs increased as the seasori progressed, perhaps 

the result of growth and/or immigration (see Rothschild et al. 1988). The catching 

efficiency might also increase during the season, from increased skill by crabbers in locating 

high density areas. 
I 

In 1988, a fishery-independent survey and tagging study was conducted by UMCEES 

in order to provide information on growth, mortality, and migration patterns. The utility of 

crab dredges for sampling the blue crab population during the winter months was evaluated. 
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From November through March blue crabs are largely inactive, and bury themselves in the 

bottom sediment (Van Engel 1958). They are, therefore, less likely to escape the dredge 

by swimming. Also at this time, fishing activity is at a minimum; only crabs in the Virginia 

mainstream are harvested during winter. During the summer months blue crabs are active 

swimmers, and easily caught by otter trawls. However, it may be difficult to obtain 

representative samples across the Bay during summer, due to obstructions from fishing gears 

(crab pots and trotlines) placed throughout the Bay. 

A pilot winter dredge survey was conducted by UMCEES from December 1988 

through March 1989. This survey has since evolved to a multi-institutional sampling 

program conducted annually throughout the entire Chesapeake Bay during the coldest 

winter months (see Rothschild et al. 1991; 1992). The field work is conducted by UMCEES, 

MDNR and VIMS, through dredging contracts with local watermen. These dredge surveys 

provide abundance estimates for the winter population of blue crab, along with estimates 

of population composition by size and sex. Presently, there is no technique available for 

obtaining accurate information on the age of individual blue crabs. Standard tagging 

techniques, for example, fail as a result of molting. However, distinctive modes in the size 

frequency distributions may be used as a proxy for age classes. For effective management 

it is equally important to estimate numbers of crabs being harvested, with respect to their 

size, sex, and age distributions. Only then, can the relationship between levels of abundance 

and harvest, within a predictive framework, be determined (V 0lstad and Patrick, 1993). The 

winter dredge survey for 1992/93 was conducted between January 7 and March 27. 

2. SURVEY DESIGN AND PLANNING 

Observations from the winter dredge surveys conducted in the Chesapeake Bay are 

used to estimate abundance, size/sex composition, and to quantify the dynamics of the blue 

crab population. Due to survey errors, there may be discrepancies between these estimates 

and the "true" status of the population. Survey errors result from: 1) sampling errors related 

to the survey design employed in selecting a subset of the target population; and 2) non-
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sampling errors encompassing all other factors that contribute to the survey error (see Lessler 

and Kalsbeek 1992). Small sampling errors result in high precision; i.e. each observation 

is close to the average over repeated samples (see Jessen 1978). The second type of error 

is often referred to as bias. Accuracy is a measure of closeness of survey estimates to the 

targeted population value (J essen 1978), and is often measured by the means square error: 

MSE = bias2 + variance. 

A carefully designed survey yields more representative samples and, therefore, 

reduces sampling errors. Realistic estimates of precision, or the magnitude of sampling 

errors, can generally be obtained by employing probability sampling, i.e. selecting each 

sampling unit from the frame with known probability (see, e.g., Srerndal at al. 1992). The 

frame is the list (or population) of units to which the probability sampling scheme is applied 

(see Kish 1965). The population of sampling units may differ from the target population 

of the investigation. In marine surveys the sampling unit is typically a fixed volume or unit 

of area swept by a standard tow (see Pennington and V0lstad 1994a). As result, it is 

generally not feasible to sample individuals randomly from the target population. The frame 

from which sample units are selected consists of a list of area units, or a collection of 

geographic coordinates, covering every possible sampling location in the survey area. This 

sampling method is often referred to as area sampling (see Jessen 1978, p. 171). 

Although no comprehensive theory exists for assessing the impact of non-sampling 

errors (Lessler and Kalsbeek 1992), bias in survey results may be substantially reduced by 

careful planning. Two apparent sources of bias in the winter dredge survey for blue crab 

are: 1) failure to cover the entire distribution area of the target population; and 2) low 

catching efficiency of the sampling gear. A comprehensive coverage of the survey area 

should minimize errors from source number (1). The bias resulting from source number (2) 

can, in part, be corrected for by obtaining accurate estimates of gear efficiency. 

Size selectivity of the sampling gear is another source of non-sampling errors, 

particularly critical in estimating the absolute number of recruits (size class 0). The 
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standard Virginia sampling dredge has an inner lining of 12 mm mesh size; crabs less than 

15 mm are retained only sporadically. For larger crabs ( ~ 15 mm), it is reasonable to 

assume that the catchability is constant across different size/sex classes during the winter 

months, since behavioral ~ffects are negligible during cold winter months. Furthermore, if 

catchability is constant overtime, such bias would not effect estimates of changes in 

abundance. In contrast, inadequate sampling in some years of shallow ( ~ 5 ft) or deep ( > 

40ft) areas of the Bay is likely to bias the estimates of yearly changes in abundance. An 

additional complicating factor is that the direction and magnitude of such bias may change 

between years, resulting in increased errors in estimates of abundance changes. The 

comprehensive coverage in 1992/93 provides insights on the magnitude of errors which can 

result from using such incomplete sampling frames. 

2.1. Use of historic data in survey design 

Studies by Van Engel (1958), Lippson (1971), and Sulkin (1973), for example, provide 

information on the geographic distribution of blue crabs and their depth range during 

winter. Commercial harvest data from the Virginia fishery in the Bay provide additional 

information. However, previous studies are generally not obtained by random sampling, 

and only covers part of the entire distribution area for the blue crab. Since the present 

winter survey's inception, as more detailed information has become available, the survey has 

been modified to provide more comprehensive coverage of the blue crab population. A 

summary of sampling effort, stratification schemes and areas surveyed during 1988/89 

through 1991/92 is given in Rothschild et al. (1992). The area surveyed has increased 

yearly. Since 1990/91 areas of the Bay with depths greater than 40ft have been sampled; 

shallow waters ( ~ 5 ft) have also been sampled since 1991/92. ·whereas only limited 

sampling, on an ad hoc basis, had been conducted in these deeper and shallow waters during 

earlier years. 

Planning/design for the 1992/93 survey was based primarily on data from the two 

preceding years. These were stratified random surveys, conducted with comprehensive 
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coverage. If we assume the survey area include the entire target population, and constant 

catchability, then estimates of (relative) population mean density, and its variance for each 

strata, are unbiased if stations within each strata are randomly allocated. The efficiency of 

these past surveys may be assessed by estimating the (relative) precision (k=cv/Yn) of the 

stratified mean catch per m2 for the survey design used, and then comparing this estimate 

with: 1) expected precision from a design with sampling allocation proportional to strata 

size; and 2) expected precision from optimum allocation. If one stratum has twice the area 

of another, sample allocation proportional to strata areas results in twice as many stations 

being allocated to the larger. For optimum allocation, often referred to as Neyman 

allocation (see, e.g., Cochran 1977), the number of stations in stratum h (nh) is chosen 

proportional to the standard deviation times the stratum area (nh ex ShAJ. Neyman 

allocation yields the maximum precision (minimum standard errors) obtainable when the 

total sample size is fixed. In 1990/91 and 1991/92, two tows were taken at each location. 

Since station locations were chosen at random, the analyses are based on the average of the 

two tows at each station. In effect, two 1 minute tows at a station is analogous to using a 

larger sampling unit (i.e. 2 minute tows) at each station. 

In previous surveys, the number of stations sampled in each stratum was not selected 

proportional to strata areas; some strata were sampled more intensely than others. Since 

the probability of a station being selected varied significantly among strata, the total number 

of stations can not be assumed to form a simple random sample from the entire survey area. 

Therefore, the resulting relative precision of estimates for the design actually used in the 

blue crab survey can not be compared with expected values for a simple random sampling 

scheme. However, a crude comparison might be based on simulation studies. For example, 

a resampling scheme taking into account the actual survey design could simulate a situation 

where each station had the same probability of being selected (i.e. random sampling). 

Although such simulations may provide some insights, we do not expect that estimates based 

on random sampling would differ much from proportional allocation. 
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Our evaluation of survey designs is based on the sampling stations taken as part of 

the standard stratified random winter survey. For example, the additional stations sampled 

by VIMS to monitor the winter dredge fishery in Virginia waters were not analyzed, since 

their inclusion probabilities were not known. Tables 1 and 2 provide estimates of mean 

catch per area swept, and its standard error, for 1990/91 and 1991/92 surveys, along with 

expected values from optimum and proportional-to-size allocation schemes. Details on the 

actual stratification schemes used in past surveys, are given in Rothschild et al. (1992). The 

s.e.'s of stratified means for the actual designs are similar or slightly lower than the expected 

s.e.'s from proportional allocation; similar results hold for different size and sex classes. 

An allocation scheme proportional to strata size may have advantages over other 

designs, particularly for marine surveys. The spatial distribution of marine populations is 

generally influenced by environmental and behavioral factors; such factors are difficult to 

incorporate in the survey planning phase. Furthermore, the time series of survey data for 

blue crab is short, thus it becomes difficult to verify if the spatial distribution among years 

is consistent, or related to key environmental variables. If spatial distribution changes 

significantly between years, for example as a result of changes in temperature or salinity 

levels, the estimated variability of crab density in a given strata is also likely to be affected. 

Hence, allocation of stations made proportional to strata area times the standard deviation 

of mean catch per tow for the previous year, may yield much lower precision than allocation 

proportional only to the strata area. In this allocation scheme, relatively fewer stations may 

be allocated to a stratum if variability was low in previous years. If variability has increased 

significantly the next year, a low sampling fraction in this stratum may significantly increase 

the variance in stratified estimates of overall density. Proportional allocation is a safe guard 

towards such changes in spatial distribution (see Cochran 1977). For many marine 

populations, the coefficient of variation (cv) is fairly constant between strata. In that case, 

station allocation proportional to strata area would be near optimal, i.e., the relative 

precision would be maximized (minimum k=cvf/n) for fixed number of stations. 
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In the 1991/92 survey, the study area was divided into 3 geographic strata, each of 

which was partitioned into two sub-strata based on sediment type (see Rothschild 1992). 

Mean catch per tow and its standard deviation for this survey was higher for sandy bottom 

than for bottom types with higher percentages gravel ( > 80%); extra stations were allocated 

to sub-strata with sandy bottom. This survey design resulted in a relative precision that was 

only slightly higher (lower k=cvfln) than would be expected for proportional allocation 

(Table 2). Furthermore, stratification by sediment type may introduce non-sampling errors 

since the bottom type in every part of the Bay is not known prior to dredge sampling. For 

example, if the sediment type observed during the survey at some locations actually differs 

from the information in the data base, this must be taken into account in the estimation 

procedure. The weight assigned to each observation must be determined from the selection 

probability for each unit, and not on the probability attached to units with the sediment type 

being observed in the sample (see Srerndal et al. 1992). If stratification by sediment is 

based on the sediment type actually observed in the survey, the resulting estimates will be 

biased. The simplicity and self-weighing feature of proportional allocation reduces such 

error, and probably justifies a small increase in variance (see also Cochran, 1977, p. 103). 

Furthermore, if the correlation between observed sediment type and abundance is high for 

a particular survey, this auxiliary information might be used to increase precision by using 

a regression estimator or a post-stratification procedure (see Srerndal et al. 1992). 

2.2. Determination of sample size 

An important aspect of the planning of a survey is to determine the sample size, so 

that ineffectual or over-expensive surveys can be avoided. Sample size directly effects the 

precision of survey estimates, i.e., sampling error, but does not effect the magnitude of bias 

resulting from other sources such as inadequate coverage of the population. The following 

discussion refers to sampling errors that can be controlled through sampling design. In 
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order to obtain an estimate of average density (Y) with acceptable confidence limits, the 

number of stations, n, needs to be determined so that 

If we chose 9 = (acceptable 95% confidence-interval half-width)/1.96, say, then n > S2/92 

would yield a satisfactory estimate of mean density. This requirement involves S2
, the 

population variance which is generally unknown. Estimates of S2 may be obtained from 

pilot surveys, or comparable studies from other areas. The above formulation is based on 

the assumption that we are primarily interested in absolute precision. For marine 

populations, the variance is generally related to the mean density. For high population 

abundance, achievement of a fixed and low standard error of mean catch per tow is likely 

to be overly expensive. In many circumstances, relative precision (k = cv f./ n) may be a more 

relevant consideration. In that case, we require that k < e, or n ~ cv2 /92 for suitable e. 
The between stations variance in number of crabs per area swept can be approximated by 

where y is average number of crabs per area swept. Hence, the coefficient of variation, 

CV = 1/y + b, 

is fairly constant for average levels of density, and has asymptotic value b for high density. 

For such reason, the relative precision (k=cvf./n) is less sensitive than the standard error 

to changes in population abundance. Note that k simply is the percentage of standard error 

relative to the mean. 

In many marine surveys, the number of stations that can be sampled is limited by 

available resources. Due to high variability in density for most marine populations, and high 

cost associated with conducting sampling surveys, the precision of the resulting estimates of 
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density and other population characteristics may be lower than required for effective 

fisheries management. Hence, the issue is usually 1) to maximize precision (k) at a fixed 

cost, or 2) minimize cost for a fixed level of precision (see Pennington and V0lstad 1991; 

1994a). 

2.3. Selecting number of tows at a station 

Measurements of density and other characteristics for marine populations are 

generally highly variable between locations, but tend to be relatively more homogeneous on 

a local scale. If so, it may be inefficient to take more than one dredge tow at each location. 

By reducing the time at a station, the number of locations sampled can be increased, 

resulting in more precise estimates of density and other population parameters (Pennington 

and V0lstad 1991; 1994a; 1994b). 

The effect of local homogeneity on the efficiency of various survey designs for 

estimating density can be evaluated as follows: Suppose that m non-overlapping tows of 

fixed duration are taken at each of nm locations chosen randomly in an area. For fixed 

survey cost, the number of stations that can be sampled depends on the time spent at each 

station and, hence, on number of replicate tows (m) at a station. Let Yi denote the number 

of animals caught in the j'th tow at the i'th station. The average of the Yi/s is 

Y.. = L LYiilnnrn, (1) 

and the variance of (1) can be estimated by 

V(Y..) = (S2/n,Jn)[1 + (m-1)p], (2) 
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where p, the intra-class correlation coefficient, is a measure of within station homogeneity 

for Yij (see, e.g, Cochran, 1977; Jessen, 1978; Srerndal et al., 1992). An expression for p is 

where S2 w is the (weighted) average of the within-station variances of Yu, and S2 is the 

overall variance (see Srerndal et al., 1992, p 130). In the following, we will refer top as the 

homogeneity coefficient. A positive p means that observations from replicate tows at a 

station tend to be more siri:rllar than observations from tows that are taken further apart, 

i.e. the spatial distribution of animals is locally homogeneous. It follows from equation (2) 

that the mean catch per tow from n1 single-tow stations would be more efficient for 

estimating the population density than the mean from nm stations with m replicate tows if 

n1 ;;:: nn!1l/[l+(m-1)p]. (3) 

An evaluation of historic winter dredge surveys reveal that catches from double-tows 

at each station are more similar than catches from tows that are taken further apart. For 

example, for the winter dredge surveys in Virginia waters the average homogeneity 

coefficient, p = .6 (Marcel Montane, College of Williams and Mary, VIMS, pers. comm.). 

The estimate for the Maryland part of the Bay is similar, varying from .5 - .7 between years. 

For p = .6, 125 independent tows would achieve approximately the same precision as 200 

tows from 100 randomly selected stations. 

In Pennington and V0lstad (1994a,b) it is demonstrated that the variance of estimates 

of population characteristics such as age-length distributions is greatly inflated in the 

presence of intra-cluster correlation for size and age. 
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2.4. Design of the 1992/93 winter dredge survey 

The standard dredge survey for blue crab in the Chesapeake Bay during the winter 

of 1992/93 was conducted in a stratified random design, with 3 geographic strata: 1) Upper 

Bay and Rivers; 2) Below Cove Point; and 3) Lower Virginia Bay (see Rothschild et al. 

1992). A map of the survey area and geographic strata is in Figure 1. In Figure 2 is a map 

of the effort allocation between UMCEES, MDNR and VIMS. In the Maryland waters, 

dredging were conducted in waters deeper than 3 ft. In Virginia waters the minimum deptb 

for dredging was 5 ft; a suction sampling technique was employed in waters with depths less 

than 4 ft. The total area sampled by the dredge was approximately 11,000 km2
• The 

selection of sampling locations was conducted in two steps. Firstly, 939 stations were 

allocated within the entire survey area, in a stratified random design with number of stations 

in each geographic stratum proportional to the stratum area. These stations simplify 

analytical studies based on the survey data, since they can be treated as a random sample 

over the entire survey area (see Skinner et al. 1989). 

Dredging in shallow ( < 5 ft) and deep (;;:: 40ft) waters has been limited in previous 

years. Hence, it was decided to conduct additional studies in these waters in order to gain 

more knowledge on abundance and size/sex composition by depth. For this study, strata 

1 and 2 where further divided into three sub-strata according to the following depth 

intervals: A) less than 5 ft; B) greater or equal to 5 ft and less than 40 ft, and C) greater or 

equal to 40 ft. Stratum 3 was divided into two depth intervals; B and C. In the shallow 

waters (A) a total of 38 extra stations were allocated; and 110 extra stations were allocated 

in the deeper waters (C). Highly accurate information on depth topography of the survey 

area are obtained from NO AA, the National Geological Survey, and from previous dredge 

surveys. A bathymetric contour map is presented in Rothschild et al. (1992); sample 

location and abundance levels are mapped in V0lstad and Patrick {1993). 

Total survey effort for the entire Chesapeake Bay was 126 boat-days, including 20 

days used for gear efficiency experiments. With the exception for some experimental studies 
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for assessing gear saturation effects, one dredge tow of 1 minute duration was taken at each 

location. Standard towing speed was approximately 3 knots. A standard sampling unit is 

defined as the area swept (in m2
) by a standard tow. The towing distance was determined 

by the Loran C navigation system. The 1087 stations sampled altogether can be analyzed 

as a stratified design with 3 main (geographic) strata, each of which is divided into sub-strata 

according to depth. Within each stratum, extra stations in shallow and deep waters were 

approximately randomly selected within depth boundaries in the computerized map of the 

Bay. A limited number of stations falling outside the boundary, as a result of inaccuracy in 

the map, were not sampled. For simplicity, the weighing factors for the 8 strata were based 

on the fractions of the proportionally allocated stations falling in each depth interval. 

Shallow areas (3-5ft) in strata 1 and 2 were sampled using a modified oyster dredge 

(1.05 m wide); a standard Virginia crab dredge (1.83 m wide) was used for sampling in 

waters with depths ;;:: 5 ft (see Rothschild et al. 1991; 1992). Stations were randomly 

allocated within each stratum and depth-interval. In Maryland waters, double-tows were 

taken at 77 randomly selected stations; one tow of 0.5 min and one tow of 1 min duration 

in random order (selected by flipping a coin). These experimental tows were conducted in 

order to evaluate possible gear-saturation effects on the CPUE. 

Sampling stations were selected the following way: Using a computerized map of 

Chesapeake Bay, the survey area was divided into 15 by 15 sec rectangular units. The list 

of units constitute the sampling frame from which samples are selected. Units were 

randomly selected within each stratum (and sub-stratum), and x-y coordinates (in seconds) 

for the site to be dredged within a 15 by 15 sec unit was randomly selected. Strictly 

speaking, this selection procedure may cause a slight bias in the estimates of average catch 

per tow. Since the area of each 15 by 15 sec rectangle decreases with increasing latitude, 

locations further north will have a slightly increased probability of being selected. However, 

the maximum difference in area of the rectangles across the survey region is less than 3%, 

and hence we consider this bias to be negligible. 
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2.5. A model for suiTey cost 

At each station it takes on average a certain time, c1, to conduct one haul of fixed 

duration. If time for other studies at a station, such as collecting environmental data, is t., 

the total time at a station with m replicate tows is c1m + t,. If n stations are selected 

randomly in a survey region, and a cruise track of approximately minimum length is chosen, 

then the total travel time between stations will be approximately proportional to vn (see, 

e.g., Cochran 1977, pp. 96, 244; Pennington and V0lstad 1991). Let total survey cost, C, be 

the effective time for sampling, measured as the time elapsed (in minutes) between the first 

and last tow. 

For a random survey with fixed cost, C, the number of stations, nm, that can be 

sampled if m tows of fixed duration are taken at each location, is approximately determined 

by 

or 

(4) 

where c2 is a constant which depends on the survey area and the cruising speed between 

stations (see also Cochran 1977, p244; Pennington and V0lstad 1991). If the survey design 

is a grid of equally spaced stations, then the travel time will also be approximately 

proportional tovn (Hansen, Hurwitz, and Madow 1953, p. 273), and formula (4) will hold. 

It is apparent from equations (2), (3) and (4) that more than one tow at a station is 

inefficient if: time associated with each tow, eh is relatively large; the travel time parameter, 

c2, is relatively small as a result, e.g., of a small survey area; and if the similarity between 

observations from replicates at a station, as measured by the homogeneity coefficient p, is 

high. 
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2.6. Computer software for station selection 

A system for allocation of stations in the winter dredge survey has been developed. 

The system is written in IDL ("Interactive Data Language"), and presently runs on a work

station. IDL can also be installed and run on PC's. Graphical software for mapping and 

exploratory data analysis has been completed. The present implementation is a command

line version that requires familiarity with IDL. The next stage of the development of the 

system will be an implementation using a graphical user interface. Under the current 

budget and program plan the implementation in a user friendly configuration could not be 

funded. The current implementation provides the following functionality: 

1. Generates and displays a gridded map of Chesapeake Bay at any desired 

resolution, in latitude-longitude co-ordinates. Universal Transverse Mercator (UTM) 

and other co-ordinates are partially implemented. Typical gridding is 15 sec by 15 

sec as used in the 1992/93 survey. Gridding by 10X10 or 7.5X7.5 sec is straight 

forward. 

2. A data-base and overlay of all Bay partitions used through the survey development. 

Partitions from this collection can be interactively selected and overlaid on the map 

of the Bay. New partitions can be interactively drawn and subsequently stored in a 

file. With a full partitioning of the Bay selected, a random or stratified random 

sampling design can be interactively generated using arbitrary effort allocation. 

3. Physical features, including depth, sediment and salinity, can be used interactively 

to generate strata. Currently depth is fully implemented. Data-bases of historical 

salinity observations along with sediment measurements are on-line, and can be 

implemented. These features can be used to generate sub-strata within existing 

geographical strata, or entirely feature based strata. 

15 



4. Bottom areas for strata (e.g., for use in the stratified mean estimator) are 

automatically calculated. 

5. Cursor interrogation is fully implemented for position, depth, and area of the 

strata. 

6. User interactively selects strata weights and total effort, and the stratified random 

station allocation is automatically. The program also generates a map of station 

positions, along with a hard-copy report of co-ordinates, depth, sediment and 

historical average salinity. 

3. ESTIMATION THEORY 

Mean catch per area swept from randomly selected locations provides an (unbiased) 

estimate of the relative abundance of blue crab in the survey area. Nevertheless, this 

abundance index is likely to be substantially lower than the true density of the population 

since the dredge catches only a small fraction of crabs in the area swept. However, 

estimates of catching efficiency of the sampling gear (q) from depletion experiments may 

be used to correct such bias. For simplicity, we omit the correction factors for catchability 

in the following estimators for density. It is generally assumed that the catchability is 

constant for all crabs with carapace width greater than or equal to 15 mm. Note that a 

significance level of 5% is used in all statistical tests in this study. 

3.1. Stratified mean density and its variance 

Suppose independent samples of size nh are taken within each of L strata indexed by 

h = 1,2, ... ,L. We attach an extra suffix so that Yh,ll yh.2, Yh, 21 ... , Yh,nh are the observations (e.g. 
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number of crabs per area swept) for the nh samples from stratum h, the population values 

for which are Yh,I' Yh,2! Yh,3, ... , Yh,Nh' The overall (11true11
) population mean per unit is 

- L Nh
Y=E(-)Yh 

h=t N 

which is a weighted mean of stratum means. Similarly in the sample 

An estimator of Y is provided by 

- L nh
y=E(-)yh 

h=t n 

(5) 

(6) 

(7) 

where for stratum h, Wh = Nh/N is the proportion of the survey area in the stratum. In the 

case of proportional allocation, i.e. with equal sampling fraction in all strata, the sample is 

self-weighing and 

- -
Ysr = Y· 
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An estimator for the variance of (7) is 

(8) 

where fh = nh/Nh is the sampling fraction, and sh2 = [ (yhj - y h?/(nh-1) is the sample 

variance in the h'th stratum (for details, see, e.g., Cochran 1977). In marine surveys the 

sampling fraction is generally very small, and, hence, can safely be ignored. 

The above estimators are unbiased with respect to the survey design and, hence, do 

not depend on any assumptions about the target population itself (see, e.g., Thompson 

1992). If the same population is sampled repeatedly, using identical survey design, the 

survey estimates may be higher or lower than the "true" values. However, the mean of 

estimates for all possible samples equals the true population values. In the statistical 

literature, estimators with this important property are often referred to as design-unbiased. 

3.2. The delta estimator 

Data on number of crabs caught per tow (or area swept) from the winter dredge 

surveys typically contain a large proportion of zero-values. The distribution of catch-per-tow 

is generally highly skewed, and as a result the ordinary sampling estimates of the mean and 

its variance may not be efficient, especially for small sample sizes. It may be assumed that 

the fraction of the samples with zero-catch provide an estimate of the fraction of the Bay 

with unsuitable habitat for overwintering. The delta method (Pennington 1983), which in 

effect is a post-stratification scheme, separates the zero-values and the positive catches in 

the estimation procedure. For simplicity, the strata indexes have been omitted in the 

equations to follow. Let x = x1, x21 x21 ... , Xm be the vector of observations from the m 

samples with positive catches in stratum h. If the loge·transformed values of x follow a 

normal distribution, and the variance of In (x) is large, then an estimate of the population 
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mean (i.e. the mean of Yh,1, Yh,2, Yh,2l ... , Yh,Nh) based on the delta-distribution may be 

considerably more efficient than the ordinary sample mean (Pennington 1983). Unbiased 

estimates of the mean and its variance from the delta-distribution is given by (Pennington 

1983) 

and 

(a) m= 1 

m=O 

(9) 

_ { (m/n)exp(2Z){(m/n)G!(s2 /2) -[(m -2)/(n-1)]G ,.[s2(m-2)/(m -1)] }. m > 1 

Var(y .1) = (x1/n)2, m = 1 (10) 

~ m=O 

where z and s2 are the sample mean and sample variance, respectively, of the log of the x's 

and 

1 .. ( 1)2j-1 j 
G (t)=1+n- t+E n- x!__, 

11 
n i=2 ni(n+ 1)(n+3) ... (n+2j-3) jl 
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3.3. Estimation of proportions 

In order to characterize the size and sex composition of the population, the 

proportions (p) of crabs falling in 3 size groups, by sex, are estimated. The size categories 

(carapace width, CW) are as follows: group 0: CW < 50 mm; group I: 50 ~ CW < 120 

mm; and group IT: CW > 120 mm (see Rothschild et al. 1992). It is believed that size 

group 0, I and IT approximately correspond to 0, 1 and 2 + year old crabs, respectively. Due 

to the size selectivity of the standard sampling gear, number of crabs in size category 0 is 

biased: crabs less than 15 mm are caught only sporadic. 

Since crabs are caught in clusters, statistical methods based on the assumption that 

samples of individuals are independent, identically distributed (liD), such as the binomial 

or multinomial distributions for estimating proportions, are not valid (see Brier 1980; Fay 

1985; Roland Thomas and Rao 1987; Skinner et al. 1989). The sampling unit in the blue 

crab survey is the individual tow, and not the individual crab (see Pennington and V~lstad 

1994a). Hence, a ratio estimator is used for estimating the proportion of blue crabs within 

a specific size or sex group (see Cochran 1977). 

Assume that in each of L strata (indexed by h = 1, 2, 3, ... , L ), nh stations are 

randomly chosen, and Yi,h crabs are caught at the z'111 station (yi,h can equal 0). Let ai.h be the 

number of crabs at the z'1ll station in stratum h falling in class C (e.g. females of age-group 

IT), and let Pi,h =ai,h/Yi,h· A sample estimate of the proportion, ph, falling in class C in the 

population in stratum h (Cochran 1977, p.66) is 

(11) 
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and an estimate of the variance of Ph is 

(12) 

where summation is over all stations (nh) in stratum h. 

The ratio estimator is slightly biased, but the bias is small for large sample sizes. For 

sample sizes of, say, less than 30 a jackknife estimator would be more efficient (see, Efron 

and Gong 1983; Wu and Deng 1983; Pennington and V~lstad 1994a). For estimating the 

proportion falling in class C in the entire population (i.e. in all strata), the areal 

stratification of dredge stations needs to be taken into account. In order to take into 

account the areal stratification, we use the combined ratio estimator ( Cochran 1977) to 

estimate proportions of the overall population (p.t) in class C. 

Or 

(13) 

where for the hth stratum wh is the proportion of the survey area in the stratum, ah is the 

total number of crabs in class C caught in the stratum, and yh is the total number of crabs 

(all classes) caught in the stratum. The variance of p st is estimated by jackknifing (Srerndal 

et al. 1992, p440). 
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3.4. Depletion estimates of gear efficiency 

For management purposes estimates of the total harvestable stock size is important, 

especially for short-lived species. Average catch per square meter from the winter survey 

provides an estimate of the relative density of blue crabs over the survey area. If 

catchability is constant between years, estimates of changes in stock size in the survey area 

would be unbiased. However, in order to obtain absolute estimates of the stock size it is 

necessary to know the catchability of the dredge (q), i.e. what percentage of the crabs 

existing in the area covered by a dredge tow is actually caught, on average. Depletion 

experiments may provide reliable estimates of catchability for a closed population, i.e. with 

no new crabs coming in to the area, and no loss of crabs due to natural mortality or 

emigration. The general concept of such gear-efficiency experiments is to measure the 

effect of removal of crabs from the study area on the catch per unit effort (see Hilborn and 

Waiters 1992). 

Gear efficiency may vary between years, areas and vessels. In order to obtain a more 

reliable time series for monitoring changes in the abundance of blue crab, catchability 

coefficients estimated from depletion experiments could possibly be used to correct for 

spatial and temporal changes in catchability. The spatial distribution of blue crabs is 

typically highly patchy, and a few tows with high catches may dominate the estimated 

average number of crabs per m2
• Hence, it is particularly important to have accurate 

estimates of catchability for areas with high density of crabs. 

From December through March, blue crabs are largely inactive, buried in the bottom 

sediments. Hence, they are less likely to escape the dredge by swimming. Orth and van 

Montfrans (1987) reported negligible catches from bottom trawls during winter, supporting 

the hypothesis that crabs are buried in the substrate (see also Rothschild et al. 1991). Also, 

fishery activity is at a minimum; only crabs in the Virginia mainstem are harvested during 

winter. Since each depletion experiment is conducted over a short time period (2-4 hours), 
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it is reasonable to assume that the population in the study area is closed for immigration 

or migration. 

3.4.1. Experimental design 

In Maryland waters with depth ~ 5 ft, an area of approximately 100 m by 5.5 m were 

covered 10 times (i = 10) by dredging (for details, see Rothschild et al. 1992, Appendix A). 

For the experiments conducted by VIMS, the area was 100 m by 9 m. Each coverage of the 

area consisted of 3 (UMCEES) or 5 (VIMS) parallel non-overlapping dredge tows 

conducted within an area marked by buoys. A maximum of 10 coverage of the area was 

completed for each experiment. In shallow waters (depth < 5 ft), UMCEES conducted two 

gear efficiency studies within an area of 100 m by 3.2 m. 

3.4.2. Models for estimating catchability 

Two models are used for estimating the dredge efficiency (q). Model1 is a standard 

Leslie model (Leslie and Davis 1939): 

(14) 

where Yi is the catch in the i'th coverage, and ~-t is cumulative catch taken prior to each 

coverage. P 0 is the initial population in the area, prior to the fishing experiment. The 

catchability coefficient q is simply the slope of the regression-line estimated from Model 1. 

In this model the basic assumption is that the depletion of the population by each dredge 

coverage is measured without error. An implication this assumption is that if the i'th 

coverage in a particular depletion experiment has zero catch, then the cumulative catch 

provide an absolute measure of the initial population P 0• However, some crabs may in fact 

remain in the experimental area although zero are caught in an individual coverage by the 

dredge, resulting in an under-estimate of P 0 and an over-estimate of catch efficiency (q). 
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A different technique (Model 2) may be used for estimating the dredge efficiency: 

For each coverage (i) of the experimental area, we can assume that a proportion q of the 

true population in the area are removed. Hence, the catch (y1) in the 1st coverage is q 

multiplied by P01 the initial population, and for the i'th coverage, we have: 

which is linear on the log-scale: 

log Yi = log(q) + log P0 + {log(l-q)}(i-1) + e. (15) 

In the following, eq. 15 is referred to as Model2. A simple regression of log Yi against (i-1) 

provide estimates of the slope, log(l-q), and the catchability coefficient (q) is obtained by 

a reutransformation. In this model, it is (perhaps more realistically) assumed that a 

proportion (estimated with an error e) of the population is removed in each coverage. 

If catchability is related to the number of crabs in the path of the dredge, then 

estimates of q from experimental areas with high abundance of crabs should have more 

weight than estimates from areas with low abundance. An estimator for the overall 

correction factor to employ for the dredge survey is 

lJ = Ecg.JC (16) 

where ci is the total number of crabs caught in the i'th experiment, qi is the corresponding 

estimated gear efficiency, and C is total number of crabs caught in then experiments. Since 

the number of experiments (n) is small, the jackknife estimate of the average gear efficiency 

and its standard error is used (Cochran 1977; Efron and Gong 1983). The jackknife 

estimator for standard error is 

a = {[(n-1)/n]E(,u<i) - .U<.i} 112 
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where 

is the weighted mean catchability deleting the nth experiment and 

is the jackknife estimate of iJ for the n experiments. 

4. THE 1992/93 DREDGE SURVEY: RESULTS AND CONCLUSIONS 

4.1. Estimates of cost-efficiency. 

Onboard one survey vessel contracted by UMCEES in 1992/93, data were collected 

daily on: 1) total survey cost, i.e., time elapsed (in minutes) between first and last station, 

C; 2) number of stations sampled, n; and 3) average time to conduct a tow, c1• Results for 

the 18 day survey period are in Table 3. The time required per station to collect sediment 

samples, t., is approximately 1 minute. A total of 388 stations were sampled, averaging 21.6 

stations per day. An estimated 287 stations could be sampled if double-tows were taken at 

each station, an average of 16 stations per day. This compares favorably with 1991/92 

survey results from the same area, when an average of 16.5 double-tow station were sampled 

per day using the same vessel and crew. 
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During the 1992/93 survey, 964 stations with single-tows were sampled in waters ~ 

5 ft. The precision (k=cvfln) of this survey's stratified mean catch per 1000 m2 swept is 

k = .09. In the 1990/91 survey, 823 stations were sampled in 25 strata using double-tows; this 

resulted in a precision of k=.07 for estimated stratified mean density. In the 1991/92 

survey, 1266 stations with double-tows were sampled in 6 strata, resulting in a precision of 

k = .13. Survey cost in 1992/93, measured in number of boat-days, was lowered more than 

30% from 1991/92. Furthermore, the survey area was increased more than 20% relative 

to previous years. 

4.2. Estimates of relative abundance and population characteristics 

The average numbers of crabs caught per 1000m2 swept (all size and sex groups 

combined) by geographic strata and depth intervals are in Table 4. Estimates of relative 

abundance for intermediate depths (5-40ft) is significantly higher than for deeper waters 

( ~ 40 ft). Tables 5 and 6 present relative abundance estimates for size classes 0 and I+ 11, 

respectively. Estimated relative abundance for any of these size classes does not 

significantly differ between the three depth intervals. These results suggest that abundance 

in shallow and deep waters is substantial. Therefore, surveys not covering these depths will 

result in biased estimates of abundance. 

On average, the delta estimator provides more precise estimates of relative 

abundance than the usual mean, or stratified mean estimator. However, due to relatively 

low variability in lo~ transformed non-zero values (x = x1, x2t x2t ... , xm), the estimator of 

mean density, based on the A-estimator, is only slightly more efficient than the ordinary 

sample mean. In contrast, if the variance of In x is high, the delta estimator could be 

substantially more efficient (see Pennington 1983). Nevertheless, the delta-estimator is 

recommended since the resulting estimates generally are more precise, at no extra cost. 

Although the distribution of catch-per-tow is highly skewed, the ordinary sample mean would 

have a fairly normal distribution for large sample sizes, according to the central limit theory. 
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Proportions of the population in size categories 0, I and Il, for males (M) and 

females (F), are in Tab~e 7. These results provide further evidence that the size and sex 

composition of blue crab is highly variable across the Bay, with a significant part of the 

mature female population (F2) in Virginia waters (see also Van Engel 1958, 1962). Such 

indications of areal stratification by size and sex is important for effective management of 

the blue crab fishery. For example, the female population may be particularly vulnerable 

to the winter dredge fishery in Virginia waters (Stratum 3). However, the ratio of males to 

females in the total population does not significantly differ from 1:1 for any of the three size 

classes. 

Since proportions (p) by sex and size vary significantly between strata, one expects 

stratified estimates (psJ for the entire Chesapeake Bay, based on the combined ratio 

estimator ( eq. 13 ), to be more precise than estimates from a simple random sample. 

Nonetheless, ratio estimates (eq. 11) of proportions of the population in different size and 

sex classes, based on the 854 "random stations", are as precise as estimates from the 

combined ratio estimator (Tables 7 and 8). Variances of the ratio estimates are based on 

eq. 12, and variances of the combined ratio estimates are based on jackknifing of eq. 13. 

One explanation for the relatively low efficiency of the combined ratio estimator, is that the 

total number of crabs (yh) by strata is unknown, and therefore has to be estimated. The 

uncertainty of these estimates counteracts the gain from area! stratification. 

Estimates of the number of crabs in size class 0 (CW < 50 mm) is negatively biased 

as result of size selectivity of the dredge. To reduce such bias, we have also estimated 

proportions by size and sex for size groups I and II (CW ~ 50 mm); results are in Table 

8. It is estimated that the population of crabs in size categories I and II consist of 45 % 

females. However, the ratio of males to females does not differ significantly from 1:1. If 

comparisons are made between different size and sex classes, it should be noted that 

variances for different classes are correlated, due to intra-haul correlation by size and sex 

(Table 9). Size frequency distributions by depth for each strata are in Figures 3-5. We have 

not tested for significant differences in these frequency distributions. Since crabs are 
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sampled in clusters, and the intra-cluster correlation for size is relatively high, the chi

squared or Kolmogorov-Smimof tests for differences in size frequencies are likely to yield 

extremely erroneous results (see Skinner et al. 1989). Resulting from such intra-cluster 

correlation, the s.e.'s of proportions in various size classes by sex, based on the ratio or 

combined ratio estimators, are significantly higher than the (erroneous) estimates based on 

binomial or multinomial distributions. The multinomial distribution typically yields 

estimates of proportions by size and sex with s.e.'s that are only half the size of the ratio 

estimates (Pennington and V0lstad 1994b). 

4.3. Estimates of gear efficiency 

Table 10 presents estimates of gear-efficiency for the standard Virginia crab dredge, 

for 12 depletion experiments conducted by UMCEES, and 4 experiments conducted by 

VIMS, during 1992/93. The average catchability coefficient, and its standard error, is 

estimated to be q = 0.14 (s.e.=.03) using Model! (eq. 14), while Model2 (eq. 15) yields 

q = 0.15 (s.e.=.04). Four similar experiments conducted by VIMS yielded q = 0.20 

(s.e.=.02) and q = .19 (s.e.=.02) using the same models, respectively. Based on 28 

depletion experiments conducted by UMCEES during 1991/92, the estimates of average q 

and its s.e. (weighted by the cumulative catch in each experiment) is 0.13 (s.e.=.06) based 

on Model 1, and 0.13 (s.e.=.07) based on Model 2 (Table 11). The s.e.'s are based on 

jackknifing of eq. 17; the q's from individual experiments are assumed to be independent. 

In comparison, the method used by Rothschild et al. (1992) resulted in a gear efficiency, q 

= .26 for the 1991/92 experiments. 

Higher gear-efficiency for the Virginia experiments, although not significantly 

different from the UMCEES estimates, could be a result of the experimental design. In 

several of these experiments only 5 coverage were completed, while 10 coverage have 

generally been completed in the Maryland experiments. The slopes of the regressions from 

eqs. 14 and 15 provide estimates of gear effi~iency. Estimates of the slopes for Models 1 

and 2 are likely to be more accurate if the independent variables (i.e. cumulative catch, ~; 
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or coverage, i) have a wider range. For example, estimates of gear efficiency based on only 

the first 5 out of the 10 coverage completed in the Maryland experiments were generally 

higher than estimates based on all 10 coverage. This indicates that fewer coverage can 

result in a negative bias for depletion estimates of gear efficiency. Differences in gear 

efficiency may also result from vessels (and area) effects. Based on experiments conducted 

by two vessels in Maryland waters, we could not detect significant differences in catchability. 

A randomized block experiment, involving all 3 vessels, would be an efficient design for 

testing such differences in catchability. 

Two efficiency experiments conducted by MDNR and UMCEES to estimate 

catchability of the modified oyster dredge used to sample shallow waters, yielded a negative 

estimate of catchability. This could result from factors such as: 1) navigation errors; 2) 

unfavorable bottom conditions; 3) strong currents; or 4) crab behavior. 

We recognize that the number of crabs removed by dredging (yi), and the "true" 

abundance (P 0) in the experimental area is estimated from the same data, i.e. they are not 

independent (eqs. 14 and 15). For such reasons, estimates of q, and its s.e., for individual 

experiments must be interpreted carefully. Ideally, an independent measure of abundance 

would be available after each coverage of an area by the dredge. However, to our 

knowledge there is presently no available method for obtaining such independent estimates 

for depths greater than 5 feet. 

For shallow waters ( < 5 ft), the suction sampling method used by VIMS could 

possibly be used to obtain independent estimates of abundance in the experimental area 

between each coverage by the dredge. An effort was made by UMCEES and VIMS to 

combine suction sampling and dredging in the same experimental area. However, these 

experiments were not successful due to logistic constraints. Suction sampling is generally 

limited to depths less than 4 ft. Dredging is limited to depths greater or equal to 3 ft. This 

narrow overlap, combined with tidal affects, made it very difficult to conduct efficient studies 

using both sampling methods. 
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Gear-saturation effects 

For soft sediments, the dredge may be saturated before a one minute tow is 

completed. If so, the catch per minute (or area swept) would be expected to decrease for 

longer tow durations. To investigate such gear-saturation effects, double-tows were taken 

at 77 randomly selected stations in the Maryland part of the Bay. One tow of 1 minute 

duration, and one tow of 30 seconds duration were taken in random order at each station. 

Average catch per minute for the half-minute tows was 3.671 (s.e. = .799), compared to 2.342 

(s.e. = .738) for the 1 min tows. The higher CPUE for half-minute tows, although not 

significant, may also be explained if the dredge is towed along the bottom for some time 

after the start of haul back. Such a delay would have a relatively larger effect on shorter 

tows. 

4.4. Estimates of absolute abundance. 

Absolute abundance of blue crabs in the winter population (N.) are estimated by 

adjusting survey estimates of relative abundance (e.g., average catch per 1000m2 swept) for 

gear efficiency (q), and then extrapolating for the entire survey area. The total survey area 

with depth ;;::: 5 ft is approximately 10,000 km2
, and we have assumed that gear-efficiency, 

q = .15. Number of crabs landed, Ne, is based on the assumption that the average weight 

of an individual crab in the landings is 150g. Table 12 presents survey estimates of the 

absolute number of crabs (all size classes) for the winters of 1990/91- 1992/93, along with 

estimates of the commercial landings of hardshell crabs during the following fishing season. 

Due to size selectivity of the dredge, survey estimates of the exploitable population (Table 

12) in effect are for crabs with CW ;;::: 15 mm. In Table 13 are survey estimates of crabs 

in size classes I and II, i.e. crabs with CW ;;::: 50 mm. 

If only crabs with CW ;;:: 50 mm in winter can grow into legal size for harvest during 

the following fishing season, then estimates of (commercial) exploitation rate (last column 

in Table 13) seem unreasonably high. This is underscored by the fact that catches of peelers 
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and softshell crabs, along with recreational harvest, are not included in the landings 

estimates. Hence, the total number of crabs harvested may be significantly higher than the 

estimates in Tables 12 and 13. In addition, the exploitable population estimated during 

winter is reduced by natural mortality before, and during, the fishing season. The survey 

could, also, under-estimate the harvestable population if: 1) the catchability estimates are 

too high; or 2) a substantial fraction of the population is outside the survey area, and 

migrates into the area as the season progresses. In order to obtain accurate estimates of 

the exploitation rate, these potential sources of error require further investigation. In 

particular, we recommend that gear-efficiency studies be conducted as part of any future 

dredge surveys. 

Due to a lack of accurate methods for ageing blue crabs, little is understood about 

their actual growth rates in the wild. If, in fact, a significant fraction of blue crabs in size 

category 0 (CW < 50 mm) in winter actually do grow into legal size by the following fishing 

season, then survey estimates of absolute abundance in size groups I and IT could 

substantially under-estimate the harvestable population. If this is the case, survey estimates 

of the exploitable stock, based on size groups 0, I and II, would be more accurate (Table 

12). These estimates of the rate of exploitation seem more realistic, and more stable 

between years. This hypothesis is further supported by the stable, or increasing, catch rates 

commonly observed in the commercial fishery as the season progresses. 
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TABLE 1. Average numbers of crabs (all size classes) caught per 1000m2 swept ( y ), by strata (L) for the 
1990/91 winter survey for blue crab in the Chesapeake Bay. The actual standard error of the mean is 
s.e.(l); s.e.(2) and s.e.(3) are the expected standard errors for allocation proportional to strata areas and 
for Neyman allocation, respectively. The actual number of stations by strata is nh; n2 is proportional to 
area, and n3 is proportional to SD.xArea (Neyman allocation). Two tows were taken at each station; the 
estimates are based on the averages for the two tows at each station. The strata boundaries are defined 
in Rothschild et al. (1992). Strata areas are in km2

• 

L Area y s.e.(1) nh s.e.(2) n2 s.e.(3) nJ 

BCP 2420.7 8.27 1.31 92 .78 259 .96 170 
CHE 2.1 95.09 15.94 6 27.61 2 27.61 2 
CHP 181.0 29.88 4.66 23 5.13 19 4.76 22 
EAB 142.3 14.06 2.51 71 5.46 15 5.13 17 
FBY 2.6 54.79 8.96 11 21.01· 2 21.01 2 
GWI 17.1 22.17 4.73 16 13.38 2 13.38 2 
HON 29.1 98.34 24.47 17 58.25 3 25.22 16 
JAM 91.0 12.95 3.29 35 6.48 9 6.48 9 
LCP 38.1 37.95 7.93 19 17.28 4 13.06 7 
LVB 1364.9 7.37 1.39 53 .84 144 1.16 76 
LWI 2.1 119.45 24.81 7 46.42 2 46.42 2 
ACP 890.1 7.30 1.71 45 1.18 95 1.52 57 
MOB 91.0 19.66 2.65 55 6.55 9 6.21 10 
NDA 5.1 31.40 15.10 3 18.49 2 18.49 2 
NTC 27.1 54.09 8.70 10 15.88 3 13.76 4 
occ 1.7 10.74 4.00 8 8.00 2 8.00 2 
ONA 2.7 40.17 6.33 4 8.95 2 8.95 2 
PIA 29.8 36.46 5.06 33 16.78 3 14.53 4 
POC 158.1 8.63 1.78 81 4.05 16 4.28 14 
POT 767.4 12.70 3.02 16 1.33 82 1.69 51 
PAX 82.6 17.23 5.23 21 8.47 8 7.23 11 
RAP 208.7 12.75 5.96 38 7.83 22 5.67 42 
TNG 430.3 42.33 3.93 56 4.34 46 3.52 70 
UBY 613.9 20.71 7.50 70 7.78 65 4.28 215 
YRK 92.4 17.26 5.45 '33 9.90 10 7.83 16 

All 7691.9 13.38 .91 823 .86 826 .67 825 
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TABLE 2. Average catch in numbers of crabs per 1000m2 
( y ) by strata for the 1991/92 winter survey for 

blue crab in the Chesapeake Bay. Geographic strata (L): 1) Upper Bay and Rivers; 2) Below Cove Point; 
and 3) Lower Virginia Bay. The actual standard error of the means is s.e.(1); s.e.(2) and s.e.(3) are the 
expected standard errors for allocation proportional to strata areas and for Neyman allocation, 
respectively. The actual number of stations by strata is nh; n2 is proportional to area, and n3 is proportional 
to Sdxarea (Neyman allocation). Two tows were taken at each station. Area is in km2

• Sediment is in 
percent gravel. In the last row is the stratified mean and s.e.'s of the different allocation schemes. 

L Sed. Area y s.e.(1) nh s.e.(2) n2 s.e.(3) n3 

1 0-80 804 9.98 1.70 47 1.05 123 1.50 60 

80-100 873 3.12 .88 33 .44 133 .96 28 

2 0-80 1469 5.80 .59 235 .60 224 .98 85 

80-100 1331 2.42 .52 102 .37 203 .78 44 

3 0-80 3258 9.25 1.83 723 2.21 499 1.54 1025 

80-100 553 3.72 .59 126 .72 84 1.38 23 

All All 8288 6.60 .76 1266 .88 1266 .67 1266 
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Table 3. Daily observations of the cost associated with dredge sampling conducted by Chesapeake 
Biological Laboratory during the 1992/93 winter survey for blue crabs in Maryland. The last two columns 
contain the actual number of single-tow stations and the predicted number of stations (from eq. 4) to be 
had if double-tows were taken at each location. 

c cl ~ nz n2 

408 2.0 68.6 24 20.1 

292 4.0 50.2 17 12.6 

295 4.5 58.3 14 10.6 

488 4.5 63.1 28 20.3 

390 4.0 53.0 25 18.2 

349 4.5 44.3 24 16.8 

170 4.0 29.1 13 9.1 

370 4.0 47.1 26 18.6 

415 4.0 97.1 13 10.7 

530 3.5 98.4 20 16.4 

365 3.5 85.0 13 10.8 

295 4.0 43.6 20 14.4 

280 3.0 33.1 27 19.3 

316 3.5 37.4 27 19.1 

50 3.0 13.4 5 3.5 

482 3.5 54.9 35 25.6 

567 3.0 70.5 36 27.8 

290 4.5 42.6 19 13.4 
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Table 4. Average number (all size classes) of crabs caught per 1000 m2 in the 1992/93 winter dredge 
survey for Blue crab in the Chesapeake Bay. Stations are randomly selected within each geographic strata 
(L) and depth interval. Geographic strata (L): 1) Upper Bay and Rivers; 2) Below Cove Point; and 3) 
Lower Virginia Bay. The strata weights are wh = nh/Enh; and k = cv f./ n is a measure of relative precision. 

L Depth 

1. <5 

[5-40) 

40+ 

2. <5 

[5-40) 

40+ 

3. [5-40) 

40+ 

L Depth 

1&2 <5 

All [5,40) 

All 40+ 

All ~5 

y 

4.33 

14.97 

10.09 

23.10 

5.40 

5.34 

3.93 

5.30 

y st 

6.10 

10.59 

6.99 

9.80 

Sample statistics 

S.E. k 

1.32 .39 

1.59 .11 

1.41 .14_ 

10.19 .44 

2.23 .41 

0.60 .11 

.83 .21 

.99 .19 

S.E. kst 

1.53 .25 

1.09 .10 

.59 .08 

.86 .09 

Delta-estimates 

nh n y .1 S.E. k 

77 105 4.01 1.02 .26 

379 379 15.03 1.69 .11 

65 94 10.11 1.48 .14 

8 18 22.59 10.49 .46 

175 175 4.67 1.51 .32 

95 157 5.29 0.60 .11 

113 113 3.74 .70 .19 

27 46 5.27 1.00 .19 

I1j n Y st S.E. k.t 

85 123 5.76 1.35 .23 

667 667 10.40 1.05 .10 

187 297 6.97 .62 .09 

854 964 9.65 .83 .09 

40 

m 

23 

181 

56 

10 

25 

78 

36 

25 

33 

242 

159 

401 



Table 5. Average number of crabs in size group 0 caught per 1000 m2 in the 1992/93 winter dredge survey 
for Blue crab in the Chesapeake Bay. Stations are randomly selected within each geographic strata and 
depth interval. Geographic strata (L): 1) Upper Bay and Rivers; 2) Below Cove Point; and 3) Lower 
Virginia Bay. The strata weights are wh=nh/Enh; and k=cvf/n is a measure of relative precision. 

L Depth 

1. <5 

[5-40) 

40+ 

2. <5 

[5-40) 

40+ 

3. [5-40) 

40+ 

L Depth 

1&2 <5 

All [5,40) 

All 40+ 

All ~5 

y 

1.66 

6.40 

6.49 

15.37 

3.28 

1.57 

.45 

0 

-y 11 

2.90 

4.57 

2.88 

4.24 

Sample statistics 

S.E. k 

.54 .34 

.84 .13 

1.10 .17 

8.74 .57 

1.59 .49 

0.34 .22 

.23 .52 

S.E. kst 

.96 .33 

.64 .14 

.39 .09 

.50 .12 

nh n y A 

77 105 1.54 

379 379 6.33 

65 94 6.23 

8 18 14.97 

175 175 2.83 

95 157 1.57 

113 113 .44 

27 46 0 

ni n Y st 

85 123 2.80 

667 667 4.41 

187 297 2.80 

854 964 4.10 

41 

Delta-estimates 

S.E. k 

.47 .31 

.86 .14 

.95 .15 

9.05 .60 

1.15 .41 

0.35 .22 

.23 .51 

S.E. kst 

.95 .34 

.58 .13 

.35 .09 

.46 .11 

m 

14 

105 

48 

6 

16 

24 

5 

25 

20 

126 

72 

198 



Table 6. Average number of crabs in size groups I+ caught per 1000 m2 in the 1992/93 winter dredge 
survey for Blue crab in the Chesapeake Bay. Stations are randomly selected within each geographic strata 
(L) and depth interval. Geographic strata (L): 1) Upper Bay and Rivers; 2) Below Cove Point; and 3) 
Lower Virginia Bay. The strata weights are wh = nh/Enh; and k = cv jV n is a measure of relative precision. 

L 

1. 

2. 

3. 

L 

1&2 

All 

All 

All 

Depth 

<5 

[5-40) 

40+ 

<5 

[5-40) 

40+ 

[5-40) 

40+ 

Depth 

<5 

[5,40) 

40+ 

::?:5 

y 

2.73 

8.57 

3.60 

7.73 

2.13 

3.77 

3.48 

5.30 

Y st 

3.20 

6.02 

3.93 

5.56 

Sample statistics 

S.E. k 

1.20 .44 

1.29 .15 

.84 .23 

2.72 .35 

.82 .38 

.45 .12 

.64 .22 

1.00 .19 

S.E. kst 

1.12 .35 

.77 .13 

.40 .10 

.61 .11 

nh 

77 

379 

65 

8 

175 

95 

113 

27 

ni 

85 

667 

187 

884 

42 

n y t.. S.E. 

105 2.38 .82 

379 7.79 .96 

94 3.56 .82 

18 7.60 2.64 

175 1.87 .61 . 

157 3.71 .43 

113 3.34 .64 

46 5.27 1.00 

- S.E. n Y st 

123 2.87 .77 

667 5.48 .58 

297 3.88 .39 

964 5.13 .46 

Delta-estimates 

k 

.34 

.12 

.23 

.35 

.33 

.11 

.19 

.19 

kst 

.27 

.11 

.10 

m 

15 

134 

24 

9 

19 

68 

33 

25 

24 

186 

117 

.09 303 



TABLE 7. The proportion of the blue crab population in distinctive sex and size groups by strata (L) for 
1992/93. The estimates of ph and its standard error for each class is based on the ratio estimator ( eqs. 
11 and 12). Geographic strata (L): 1) Upper Bay and Rivers; 2) Below Cove Point; and 3) Lower Virginia 
Bay. The overall population estimates for areas with depth ~ 5 ft are based on the combined ratio 
estimator (eq.13). The s.e. is estimated by jackknifing. In the last row is estimates from 854 stations 
selected proportional to strata area (depth ~ 5 ft.), treated as a random sample. 

MO Ml M2 FO Fl F2 

L D n p s.e. p s.e. p s.e. p s.e. p s.e. p s.e. 

1 < 5 105 .31 .10 .51 .10 .02 .02 .11 .05 .04 .03 .00 .00 

5-40 379 .21 .03 .22 .02 .16 .03 .20 .03 .16 .02 .05 .01 

40+ 94 .28 .04 .09 .02 .10 .04 .38 .06 .06 .02 .09 .03 

2 < 5 18 .48 .06 .24 .09 .00 .00 .21 .05 .07 .04 .00 .00 

5-40 175 .23 .06 .13 .07 .07 .04 .40 .10 .08 .02 .11 .07 

40+ 157 .10 .03 .07 .10 .10 .03 .20 .04 .11 .03 .43 .05 

3 5-40 113 .09 .04 .07 .01 .01 .01 .04 .01 .01 .01 .78 .09 

40+ 46 .00 .00 .04 .02 .02 .02 .00 .00 .00 .00 .94 .03 

A ~ 5 964 .20 .02 .18 .02 .13 .02 .23 .02 .13 .02 .13 .01 
11 

A ~5 854 .20 .02 .18 .02 .14 .02 .22 .02 .13 .02 .14 .02 
11 RS 
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TABLE 8. The proportion of the blue crab population in distinctive sex and size groups by strata (L) for 
1992/93, relative to total number of crabs of size class I+. Geographic strata (L): 1) Upper Bay and 
Rivers; 2) Below Cove Point; and 3) Lower Virginia Bay. The estimates of Ph and its standard error for 
each class is based on the ratio estimator ( eqs. 11 and 12). The overall population estimates for areas with 
depth > 5 ft are based on the combined ratio estimator ( eq.13 ). The s.e. is estimated by jackknifing. In 
the last row is estimates from the 854 stations selected proportional to strata area, treated as a random 
sample. 

M1+M2 M1 M2 F1+F2 F1 F2 

L D n p s.e. p s.e. p s.e. p s.e. p s.e. p s.e. 

1 < 5 105 .92 .04 .88 .05 .04 .02 .08 .04 .08 .03 .00 .00 

5-40 379 .65 .03 .38 .03 .27 .03 .35 .03 .27 .02 .08 .01 

40+ 94 .57 .08 .27 .07 .30 .04 .43 .08 .18 .02 .25 .06 

2 < 5 18 .77 .12 .77 .12 .00 .00 .23 .12 .23 .04 .00 .00 

5-40 175 .52 .11 .34 .11 .18 .04 .48 .11 .20 .02 .28 .15 

40+ 157 .24 .04 .09 .04 .14 .03 .76 .05 .15 .03 .61 .05 

3 5-40 113 .19 .04 .08 .04 .01 .01 .90 .04 .01 .01 .89 .05 

40+ 46 .06 .03 .04 .03 .02 .02 .94 .03 .00 .00 .94 .03 

A ;;:::5 964 .20 .02 .31 .02 .23 .02 .22 .02 .22 .02 .24 .02 
11 

A ~5 854 .20 .02 .18 .02 .14 .02 .22 .02 .13 .02 .14 .02 
11 RS 

A 1027 .56 .02 .34 .02 .22 .02 .44 .02 .22 .02 .22 .01 
11 

A RS 942 .55 .03 .32 .03 .22 .02 .45 .03 .22 .02 .23 .03 
11 
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TABLE 9. Sample correlations between number of crabs per tow of males and females falling in size 
groups 0, I and IT. Estimates are from 942 stations allocated proportional to strata areas. 

I 11 PO I P1 I F21 MO I M11 M21 

PO 1.00 

P1 .14 1.00 

F2 -.03 .12 1.00 

MO .61 .10 -.03 1.00 

M1 .22 .56 .06 .23 1.00 

M2 .02 .53 .17 .02 .52 1.00 
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TABLE 10. Estimates of dredge efficiency (q) from depletion experiments carried out by UMCEES and 
VIMS in 1992/93, using the standard deep-water dredge. Estimates for Model 1 is based on eq. (14), and 
for Model 2 on eq. 15. For the UMCEES experiments, the jackknife estimates of average q and s.e., 
weighted by the cumulative catch in each experiment, is 0.14 (s.e.=.03) and 0.15 (s.e.=.04) from the two 
models, respectively (eqs. 16 and 17). For the VIMS experiments (in the last four rows), the weighted 
average q for the two models is .20 (s.e. = .02) and .19 (s.e. = .02). 

Model1 Numb. of Model2 

q s.e. R2 crabs Inst. q R2 DF 

.13 .04 .58 88 CBL .10 .38 9 

.06 .03 .30 327 .06 .31 9 

.07 .05 .18 67 .08 .22 9 

.13 .05 .39 19 .11 .39 8 

.14 .05 .51 121 .18 .56 9 

.01 .03 .02 88 .01 .04 9 

.10 .04 .42 180 .09 .37 9 

.22 .05 .66 223 .32 .73 9 

.30 .08 .65 73 .19 .36 9 

.30 .03 .91 102 .27 .77 9 

.12 .04 .55 106 .17 .62 9 

.79/ .04 .99 5 .55 .99 2 

.24 .05 .88 139 VIMS .22 .85 4 

.19 .15 .34 68 .24 .19 4 

.17 .06 .71 129 .17 .55 4 

.18 .05 .63 163 .16 .44 9 
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Table 11. Estimates of dredge efficiency (q) from depletion experiments carried out by UMCEES and 
MDNR in 1991/92, using the standard deep-water dredge. The jackknife estimates of average q and s.e., 
weighted by the cumulative catch in each experiment, is 0.13 (s.e.=.06) and 0.13 (s.e.=.07) from the two 
models, respectively. Estimates for Model 1 is based on eq. 14, and for Model 2 on eq. 15. 

Modell numb. of Model2 

q s.e. R2 crabs q R2 DF 

-0.14 .07 .48 518 -0.20 .61 5 
.03 .06 .09 106 .02 .05 4 
.22 .03 .93 235 .25 .90 5 
.01 .05 .00 128 .00 .00 5 
.13 .02 .89 180 .14 .87 6 
.66 .10 .96 76 .68 .82 3 
.29 .04 .93 175 .38 .88 5 
.45 .06 .94 76 .33 .38 5 
32 .03 .96 73 .27 .93 5 
.04 .09 .05 54 .04 .03 5 
.15 .03 .84 79 .15 .85 5 
36 .04 .94 29 .30 .60 5 
32 .09 .78 137 .21 .38 5 
.69 .09 .98 7 .59 .98 2 
.42 .13 .83 19 .52 .85 3 
.14 .10 32 159 .15 .14 5 
-.03 .11 .02 175 -.04 .04 5 
30 .13 .58 123 .47 .71 5 
.59 .07 .97 15 .55 .98 3 
.27 .06 .84 38 .33 .74 5 
.26 .09 .67 36 .24 .45 5 
.12 .06 .49 107 .17 .54 5 
.28 .06 .83 129 .26 .53 5 
-.11 .06 .55 318 -.11 .51 4 
.38 .09 .85 36 .48 .88 4 
.41 .12 .80 64 .53 .75 6 
.32 .33 .33 25 .44 .42 3 
.36 .09 .18 48 .26 .47 5 
.03 .13 .01 45 .00 .00 5 
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Table 12. Survey estimates of the abundance of crabs (all size classes) in Chesapeake Bay (depth ~ 5 
ft.) during winter, along with estimates of commercial landings of hardshell crabs the following fishing 
season. The survey indices, y, are average number caught per 1000m2 swept. Survey estimates of absolute 
number of crabs (N.) in the winter population are based on the assumptions that; 1) total area is 10,000 
km?, and 2) gear~efficiency, q = .15. Number of crabs landed, Ne, is based on the assumption that the 
average weight of an individual crab in the landings is 150g. Estimates of total number of crabs are in 
millions; landings are in million pounds. In the last column are total landings as percentage of the 
available population (not corrected for natural mortality). 

Survey estimates Maryland landings Virginia landings MD+VA 

Year y N. .e. Weight Ne,MD Weight Ne, VA Ne,tot/N. 

1991 13.4 893.3 60.7 48.0 144.0 43.5 130.5 .31 

1992 6.6 440.0 50.7 31.4 94.2 23.3 69.9 .37 

1993 9.8 653.3 57.3 51.0 153.0 NA NA > .23 

Table 13o Survey estimates of the abundance of crabs (size groups I+) in Chesapeake Bay (depth > 5 
ft.) during winter, along with estimates of commercial landings of hardshell crabs the following fishing 
season. The survey indices, y, are average number caught per 1000m2 swept. Survey estimates of absolute 

' number of crabs (N.) in the winter population are based on the assumptions that; 1) total area is 10,000 
km?, and 2) gear~efficiency, q = .15. Number of crabs landed, Ne, is based on the assumption that the 
average weight of an individual crab in the landings is 150g. Estimates of total number of crabs are in 
millions; landings are in million pounds. In the last column are total landings as percentage of the 
available population (not corrected for natural mortality). 

Survey estimates Maryland landings Virginia landings MD+ VA 

Year y N, .e. Weight Ne, MD Weight Ne, VI Ne,tot/N. 

1991 4.5 300.0 NA 48.0 144.0 43.5 130.5 .92 

1992 4.9 327.7 NA 31.4 94.2 23.3 69.9 .50 

1993 5.5 366.7 40.7 51.0 153.0 NA NA > .42 
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FIGURES 

....... ~ .. . 

Figure 1. Map of the Cbesapeake Bay and its tributaries. 
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Figure 2. Map showing the 3 geographic strata employed during the 1992/93 winter dredge survey for blue 
crab in the Chesapeake Bay: 1) Upper Bay and Rivers; 2) Below Cove Point; and 3) Lower Virginia Bay. 
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Figure 3. Size frequency of crabs caught in geographic Stratum 1, Upper Bay and Rivers. Substrata: A) 
depths < 5 ft; B) depths greater or equal to 5 ft and less than 40 ft; C) depth greater or equal to 40 ft. 
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Figure 4. Size frequency of crabs caught in geographic Stratum (2), Below Cove Point. Substrata: A) 
depths < 5 ft; B) depths greater or equal to 5 ft and less than 40 ft; C) depth greater or equal to 40 ft. 
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Figure 5. Size frequency of crabs caught in geographic Stratum 3, Lower Virginia Bay; Substrata: B) 
depths greater or equal to 5 ft and less than 40 ft; C) depth greater or equal to 40 
ft. Dredge samples were not taken from depths < 5 ft in Stratum 3. 
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