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Population dynamics is the science describing the forces acting

INTRODUCTION

on an animal population and how the population react to these

forces.

Within general ecology we study population dynamics with the
purpose of increasing our understanding of the forces and
interactions in an ecosystem. Within fisheries biology our

goal is more specific. We want to study population dynamics

to be able to predict what will happen to a population, or

a stock as we usually call it, when it is subjected to speeific
external forces. If we can predict what will happen, we may

also be able to lead the development in the direction we want.

"What will happen" to the stock means:
1) What will the size of the stock be, i.e. what will
be its recruitment, growth and mortality.
2) What will be the structure of the stock, i.e. age
and size composition etc.
3) What will be the yield, or in other words net

production.

"External forces" here means:

1) Natural forces:
a) biotic environment (other stocks who can be

prey, predators or competitors).
b) abiotic environment (temperature, currents etc.).
2. Human activities. Here fishery is our main concern,

but pollution etc. can also fall in this group.

A simple drawing can illustrate what we are talking about.
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. stock
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size
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This drawing gives the simplest possible picture of how a stock

can increase or decrease in size.

In addition to those factors mentioned, immigration and
emigration could be included. We can also subdivide the
factors mentioned by i.e. splitting natural mortality into
death caused by ©1d age, by deseases . by spawning stress,

by being eaten etc. We could also take growth and show how
it depends on temperature, on food available and on the stock

structure (e.g. age composition).

We can go on like this and make the picture more and more
complicated, but simultaneously it will give an increasingly

good picture of what is really going on in the nature.

A drawing like the one we showed above is a model, but when we tal
about models in population dynamics we usually think of

mathematical models.

A mathematical model could be anything from the simple
equation relating weight and length of a fish

b when w is the weight of fish,
w=al 1 = length, a, b = coefficients
to the complicated sets of differential equations used in

an ecosystem model.

Basically there are two reasons for makihg models:

1. They can help us to understand the nature, because
they can help us to select some few important factors
and leave out the rest. By simulation we can find

out which factors are important and how they influence

the system.
2. They can help us to make predictions Instead of

trying and failing with various exploitation patterns
we can use a model to compute what is the best

selection under a given set of conditions.



When making a model we want it to

1) be as simple as possible
2) fit the realities as closely as possible

3) be as general as possible.

These demands can never be fulfilled simultareously, -and

we always have to make a compromise between them.

To make the model simple is important because of the compu-
tations involved, although with a large computer, this pro-
blem can be overcome. But if we want to use the model to
get a deeper understanding of the nature it is important that
it is not too complex. A comblex model with many parameters

also takes a lot of data to be fitted.

It is Q@bvious that the model should fit nature as closely
as possible, but as a closer fit usually means larger com-

plexity this will set . the limits for how far we should go.

We must always consider

1) what we want to use the model for

2) how accurate answers we need and

3) which data we can base it on before we decide
how simple and how well fitted to reality the
model gshould be.

It is also obvious that we want the model as general as
possible, but acain the complexity will usually set the

limits.

The models we use in population dynamics can be groumed in

several ways:
They can first be divided in

l) deterministic models and

2) stochastic models

A deterministic model will give an estimate, i.e. a point,
a line or even a multidimentional surface, sometimes with
an estimate of fidudal limits. A stochastic model gives a

probability distribution. In population dynamics determinis-



tic models have been used almost exclusively, although
in recent years stochastic models have been introduced
especiallv in situations where there is a large random

variation.
We can also group models as

1) analytical and
2) descriptive.

An analytical model aims to explain, and analyse what is
going on in nature. A descriptive model shows an empirical
relation. The distinction between these two tvpes is not
absolute. The von Bertelanffy growth equation ( sée GROWTH)
was originally evolved from physiological hypothesis, and
could therefore be classified as analytical. Today, we use
it, however, because it shows a good empirical fit to age-

length relation of fish, i.e. as a descriptive model.
We can also group models according to their use, i.e.

growth models
recruitment models
stock models

ecosystem models,

In the present course we will mainly be coneerned with

population models of explrited fish stocks.
Two general types of population models are commonly used.

1) Surplus Production models, often referred to as
descriptive population models
2) Dynamic Pool models, usually referred to as

Analytic stock models.

In the surplus production models the stock is the basic
unit subjected to the simple laws of population growth as
developed by Volterra (1931) and Leslie (1957). Fishing
acts as a predator in a predator/prey system. Graham made
a model of this type in 1939 and the most well-known one

was described by Schaefer in 1954,
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In the dynamic pool models the individuals are the basic
units, and the stock size is a function of number of in-
dividuals recruited to the stock, and their growth and mor-
tality. The fishery is considered an additional mortality
factor. Baranov (1918) first used these principles in fish
population dynamics. Later Ricker (1948, 1958) has developed
models of this kind. The model presented in the classical
work of Beverton and Halt ( 1957 ) is, however, the most

applied model today.

We have also multi-stock models which could either be an
extention to one of the two types of models decribed above,

or they could be based on other approaches.

When we want to use a population model we should ask two

questions.

1) What do we want to get from the model?
2) Which data can we put into it?

Usually we want to get estimates of stock productioh which
can be used to give advice for optimal management of the
stock in question. Generally the analytical model gives
the best and most reliable results, but they also have a
greater demand for imput data, and usually it is the avail-
able input data which will decide which model we can use.

A descriptive model only uses data on catch and effort. An
analytical model also needs data on age, growth and mor-
tality, and for many stocks, these data are not readily
assessable. For a proper management we also need estimates

of stock size and recruiltment.

Mathematical modelling of popiilations has two sides: the
biological and the mathematical and to make a model . input
from both sides is needed. The biologists must first pre-
sent information or hypothesis on the mechanisms- and laws
which are operating. The mathematician must describe it in
mathematical language and find analytical or numerical ways
of solving the equations involved. Then the biologist must
supply data so that the parameters of the model can be fitted.



Then the model must be tried.If it gives results which Joes
not deviate -'significantly from reality the model can be

accepted and used for prediction.

If a significant deviation is found three questions

must be asked:

1) Are the biological assumptions underlying
the model correct?
2) Are important factors left out?

3) Are the parameters correctly estimated?

As in all hypothesis testing, it is important to use a new
set of data for testing a model, not the same data as those
used for parameter fitting. The mathematical and statisti-
cal sides of model making are, however, beyond the scope of

this course.



STOCK

Fish are separated into species and races but these taxonomic
categories are usually not adequate for population dynamics.
We require an ecological unit which should be both a) homogeneous

and b) self-contained. Such a unit is called a "stock".

There are many definitions for the concept of stock. In 1960
ICNAF, ICES and FAO defined it this way:

"A stock is a relatively homogeneous and self-contained
population whose decrease by emigration and increase by
immigration are insignificant in relation to the growth

and mortality rate".

This definition is not particularly stringent. There are terms
such as "relatively homogeneous" and "insignificant in relation
to". However, in practice this definition is useful as it

gives room for the important quality of sound judgement.
In 1971 Gulland put forward a definition which states:

"A stock is a self-contained and self-perpetuating group
without mixing from outside the group, and for whom the
biological characteristics and the effect of fishing are

uniform. Such a stock will also be a genetic unit”.

However, the value of requiring genetic isolation when deter-
mining what is a stock for fisheries biology is still in doubt.
The important point is that the unit one chooses should be
useful in practice. A definition given by Gulland (1969) made

this point wvery clear:

"A group of fish can be regarded as a stock when the
results one obtains from assessment and other population

dynamics studies which regard the group as a stock do
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not differ significantly from reality".

This method of looking at the problem can be very useful when

it is difficult to determine what should be considered as a

stock.

Determination of stock membership

Usually one cannot pick up a fish and say which stock it
belongs to. A sample is usually taken and the distribution
of one or more characteristics is examined to determine
stock membership. We shall look at some of the types of
characteristics which can be of use in this context.

1. Morphological characteristics - i) morphometric,
"characteristics which can be measured", for example
the eye diameter of Norway haddock or the ratio
between carapace length and overall length of shrimp;
or 1ii) meristic, characteristics which can be
counted, such as the number of vertebrae in herring.

A disadvantage of these morphological characteristics
is that fhey vary not only between stocks but also

between age groups, yearclasses etc.

2. Physiological characteristics - a typical example is
growth patterns, which are used to differentiate
stocks in both herring and cod. Most often otoliths
are used since this is where an individual's growth

history is written down.

Spawning time is also an important characteristic
and can be used to distinguish between autumn-

spawning and spring-spawning stocks of herring.

3. Biochemical characteristics - when speaking of bio-
chemical characteristics one thinks primarily of
blood types and serum proteins but a long list of
other characteristics can also be used. These latter
are of increasing significance in recent years since
they have the advantage of not being influenced by



the immediate environment, in contrast to vertebrae

counts and growth patterns.

4. Ecological characteristics - this group is not
uniform and contains such traits as behaviour, age
distribution, degree of parasitic infestation etc.
In practice these methods are not commonly used but
a few of them, such as degree of parasitic infestation,

have given promising results.

Tagging experiments can often give a clearer picture of the
divisions between stocks. Using mackerel as an illustration
(Fig. 1) we see that it has spawning grounds in the North
Sea and west of Ireland. Fish from both spawning grounds
have feeding areas north of Shetland. The degree of inter-
change between these two groups while they are in the
feeding area will determine whether we can separate them
into two stocks or not. If we tag fish on the two spawning

grounds, the outcome will approach one of two extremes:

i) all fish tagged at one spawning ground are found
again in the same area
ii) fish tagged at one spawning ground appear at both

areas with equal frequency

As in most other corresponding situations, one finds neither
of these extremes in mackerel. Thus the deciding factor is
how one interprets the phrase "insignificant exchange" in

the definition of stock.

In most cold and temperate regions a stock will usually
have a spawning ground, a nursery ground and a feeding
ground (Fig. 2). The fish usually swim against the current
from the feeding ground to the spawning ground. From there
the eggs and larvae will drift to the nursery ground

whereas the adults will swim back to the feeding area.

In addition to these grounds a stock may also have an over-
wintering area, a feeding ground for young fish etc. It can
be the migration from the nursery ground to the feeding

area which constitutes recruitment. It is important to
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note that the migration pattern is intimately linked with
the currents. This is essential for transportation of the

larvae from the spawning grounds to the nursery grounds.

More than one stock may spawn in the same geographical
location, as in Lofoten where two types of cod spawn -
the coastal cod and Norwegian—~Arctic cod. In much the same
way the Finnmark coast and the Barents Sea are nursery

grounds for a large number of species.

That which is normally regarded as a single stock may have
several feeding areas. Norwegian-Arctic cod, for example,
has a feeding ground near Bear Island (Bjdrngya) and one
eastward in the Barents Sea. Fish from these two territories
display a few differences in growth patterns but are

considered as one stock for practical purposes.

The distribution and migration patterns of a stock are not
fixed - the Atlanto-Scandian herring has changed its

migration pattern several times in the last twenty years.

In our waters the stock structure is clear for most species
but there are important exceptions. We know that both
winter- and summer spawning capelin exist but we are un-
able to differentiate these stocks by anything other than

spawning season.

There are also examples where the stock structure is well
known but several stocks are placed together for practical
assessment. Such is the case with herring in the North
Sea = it is known that several stocks exist but although
they are not completely independent units it has proven
both difficult and impractical to regulate each stock
separately because they are fished simultaneously.

Plaice in the North Sea possess similar problems.
If we leave our waters and go to tropical and subtropical

regions, much less is known about the stock structure

nor do we find familiar migration patterns.
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During récent years, some information on stocks and their
distribution and migration in tropical areas have, however,

been collected.

We can look at North-West Africa as an example. Fig. 3 and 4
show the geographical and temporal distribution of upwelling.
Fig. 5 shows the distribution of Sardinella aurita in the same
area. The adult fish seem to have a migration pattern following

the upwelling. They spawn, however, in several positions, and

there are no distinct spawning areas and feeding areas. The
nursery areas on the other hand are distinct, and the juveniles
also are at least partly separated from the adult stock. It
could also be noted that the adult stock is closer to the

shore during the cold than during the hot season.

In coral reef fishes we find a completely different picture.

The adult fish stay éonstantly in the reef where they first
settled, but the eggs and larvae are usually pelagic and it
seems that they join a general pool of pre-recruits which

could settle in any reef which they are 1led to by the currents.
Therefore one reef can usually not be regarded as a stock unit.

The data available are insufficient for drawing general
conclusions but it seems that usually
1) the adult has less regular migration patterns in tropical
than in temperate waters.
2) the spawning grounds are not as distinct.
3) the larvaé and juveniles have a more shallow and more

coastal distribution than the adults.
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GROWTH

The term growth can be used in two contexts in population

dynamics

1. population growth i.e. change in the size of the popu-
lation, usually the difference between the rates of
natality and mortality

2. individual growth i.e. change in the size (lenght, weight

etc.,) of an individual.

Growth can be both positive and negative. Here we will take up

the concept of individual growth.

Unlike the higher vertebrates, a fish will continue to grow
throughout its life. Growth in length will go toward an asymp-
tote but it will not usually stop completely nor will it become
negative (Fig. 1). This growth rate is most often highest when
the fish is young and decreases with time, usually exhibiting a
sharp decrease when the fish becomes sexually mature. This

applies to fish of short life cycles in particular.

Usually there are seascnal variations in the growth rate - in
temperate waters growth is often high in summer and low in
winter. These variations are critical for the annual rings

found in otoliths and other hard structures (bones, scales,

etc.).

Weight also approaches an asymptote. A typical growth curve for
weight has a turning point i.e. is S-shaped (Fig. 1). Weight
can display large seasonal fluctuations and, as in mackerel,

may decrease in winter (Fig. 2).
Growth is often divided into

a) somatic growth

b) gonad growth
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Length
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Fig. 1. Typical patterns of growth in length and

weight of fishes
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Fig. 2. Growth of mackerel (Scomber scombrus) .The

broken line shows the seasonal fluctuations in weight.



In many species the somatic growth slows down or almost ceases

when maturation is reached and the gonads start growing fast.

Length (1) and weight (w) can be related using the expression

1gW a'+ b log 1 or
b

W= al

The regression coefficient b is often used as a measure of fish
condition. Usually it is close to 3. In mature fish there are

cyclical changes, i.e. b > 3 during gonad development and b < 3

after spawning.

In growth studies we are usually concerned with growth rates,

that is increase in weight or length per unit time:

W, - W dw

If the time period considered is small the rates can be
expressed as instantaneous rates.

We can use
dw
absolute growth rates —
dt
or relative growth rates L dw
W dt

In principle, the growth of fish can be determined in three

different ways:

1. measuring the length of the same individual at several

points of time
2, estimate from the average length of fish of a known age

3. back calculation of growth from marks in the otoliths,

scales etc.

The first method is of little practical use in fishery biology,

so we shall instead examine the second and the third one.
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Usually when the fish have a limited spawning period, as it is nor-
mally 1in temperate waters, the number of eggs hatched per unit
time will approximate a normal distribution. After hatching,

samples will show the larvae to have a normal distribution in

length (Fig.3a).

A group of fish born in the same time interval is called a
cohort. In temporate waters this is equivalent to a year class

whereas, in tropical regions, there can be several cohorts per

year,

/\/\’ -

1

Fig. 3. a: Size distribution of a cohort at four diferent
times. b: Sample obtained if the cohorts occure simulta-

nously.



Some individuals grow slowly and some gquickly. Therefore the
range in length will increase and the variance becomes larger
but generally the length of a cohort will continue to be

normally distributed.

If we sample a population containing the cohorts shown in Fig.
3 we get a sample like that of Fig.3b. This arises by summing

the individual length distributions.

If we have such a sample and wish to calculate the growth, we
must try to split the length distribution into its components.
The first cohort can easily be distinguished but to separate
out the second cohort we must use various statistical methods
which assume a normal distribution (see for example Bagenal and
Tesch 1978). Cohorts 3 and 4 overlap to such a large dedgree
that they are not easily distinguishable with the abovg
methods. Thus it becomes necessary to determine the age of the

fish before proceeding further.

If we can separate the different components of a length distri-
bution as shown in Fig.3b and we know the time interval between
them (usually 1 year in boreal waters, but often shorter in

tropical ones) we can use this for growth calculations.

If we have two or more collections with a known time interval
between them we can calculate growth by examining the shift in

the peaks. This is actually a parallel to the first method but

instead of following an individual we follow a cohort.

The growth can be illustrated like in Fig. 4. The growth curve
should go through the means of the length distributions in the
samples but the length distributions in our samples will not

always reflect those of the population.

If we catch fish by trawl the smallest fish will easily slip
through the mesh and thus be under=xepresented. We will also get
an overestimation of the mean length of the youngest age group
and possibly inadequate representation of the largest group
since they can easily avoid the trawl. Thus the mean length of

the oldest year classes can be underestimated (Fig. 4).



Fig. 4. A: Size distribution and growth curve for a fish
population. B: True size distribution and growth curve
based on samples overestimating the size of the smailest

cohorts

Before going further we will briefly look at a mathematical
model for growth. The most popularly used equation for des-
cribing growth in fish is von Bertalanffy's growth curve:

1 =L (1 -e -K(t -t )y

Here L_ 1is the asymptotic length the fish go toward and
tO is the age at which the length would have been 0 if growth

followed von Bertalanffy's equation. Both these values are



mathematical parameters and say little about biology. L
also doesn't need to correspond particularly well to the

fishes' actual maximum length. K is an expression for growth
rate. We shall return to the derivation of this equation and

how it can be fitted to the data.

If we go back to the samples taken with selective gear, we see
that this will lead to an underestimation of K and L, and

give a negative to‘with relatively high value. A large nega-
tive to should always be interpreted as an indication that
something is wrong, even if there are many other causes beside

sampling error for such a result.

One of the other possible causes of a negative tO is selec-
tive mortality where the smallest fish of each age groupe have
the greatest chance of dying. This can occur when predation is
the most important cause of death,but as we shall see later,
mortality in an overfished population may more often be selec-

tive for larger individuals.

One should also note that the less the youngest age-group is
represented in the material, the less is the reliability of the
estimate of to. An underrepresentation of young fish will

most often result in negative tO even 1f there is no selec-

tivity.

Along with gear selectivity, behavioural differences between
guick-growing and slow-growing individuals can give variations

in the growth calculations.

Back calculation of growth

If the ratio between the fish length and some dimension of
otoliths, scales or other parts showing cyclical marks is
known, this can be used for back calculation. Annual, monthly
or daily marks can be used, and the ratiomakes it possible to

calculate the fish length at the time when a given mark was

formed (Fig. 5).



Fig. 5. Otoliths shbwing growﬁh‘zohés. A and B: Daily growth rings

in Benthosema fibulatum (From Gjgsater et al. 1984). C: Annual

rings in Hippoglossoides platessoides (From Isaksen 1977).

The following procedure could be used:

1.

Measure fish length and diameters, radii or another

simply measurable dimension in otoliths, scales, vertebrae
or other structure where cyclical marks are found. A wide
range of fish lengths should be used.

Plot corresponding values and fit a regression. If a
simple regeression cannot be fitted, try to measure
another dimension.

Measure the diameters (or other dimensions) of annual or
daily marks, and use the regression to calculate the fish

length when this ring was formed.



-3

Lee's phenomenon:

Fish caugth at older age often gives a lower back-calculated
length for a given age than fish caught at a younger age. This

is called Lee's phenomenon.

Possible causes are of three different types:

a) Technical - Use of incorrect scale:body relationships in
back-calculation of growth.

b) Biassed sampling - Where fish of different sizes are not
represented in samples of scales or otoliths in propor-
tion to their abundance. Usually it is the smaller fish
of an age-group that appear in samples less frequently
than larger ones. The reason may be either that the samp-
ling gear in use catches large fish more effectively, or
the larger fish may have a different distribution or
habits - often associated with the fact that more of them
are mature and so take part in migrations or spawning
manoeuvres that make them more easily caught.

c) Selective mortality - Where the mortality rate among the
larger fish of an age-group is different from that among
the smaller. Size-selective mortality may arise either
from natural mortality factors, or (when fishing is a
significant source of mortality in the population) from

differing catchabilities of fish of different sizes.

Selective mortality, unlike the other two causes of Lee's
phenomenon is a property of the fish population rather than of

the technique.

In a situation with sampling error the back calculated lengths
are usually close to the true lengths at age than those derived

by direct observations.

When there is a Lee's phenomenon caused by any of the other
factors listed above, the direct observations are usually

closest to the truth.



Growth variations between species

Maximum length in fish varies from 2-3 cm (Gambusia holbrookii)

to many meters (Rhincodon typus) and the time needed to reach

this length varies from a few months to many years.

Expressed as the constant K in von Bertalanffy's growth
equation, the growth rate varies from around 0.05 (Acipenser)

to approximately 5 (Benthosema fibulatum and Rastrelliger

kanagurta) .

There seems to be a negative correlation between growth rate
expressed by K and the maximum length L _ when the latter is
about 30 cm or less (Fig. 6). There seems to be little correla-

tion for larger species.

Often there is a positive correlation between L_ and the
age a fish may reach. Tropical fish typically have a more rapid

rate of growth than fish from temperate or cold waters.

L

Fig. 6. Relationship between K and L, (From Beverton and
Holt 1959)



Growth variation within species

There can be large variations in growth within a species as
well. These variations can be of a geographical or temporal

nature and may have many causes.

Some growth curves of northern lantern fish can illustrate how
great variation can be (Fig. 7). Here L_ varies, within a
limited area and over a relatively short time, between 70 and
87 mm: K varies between 0.20 and 0.45 and tO between +0.3 and
-0.6. If one looks at specimens of the same species from
Canadian waters, they show a growth pattern similar to that
found in western Norway. On the other hand, in the Meditter-
ranean the species have a maximum length of 30-40 mm. K is not
known exactly, but seems to deviate little from that of

northern waters.
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Fig. 7. Growth of Benthosema glaciale in Norwegian waters

(From Gjgsater 1973)
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For cod in the Northern Atlantic K varies between 0.06 and 0.40,

L, varies between 65 and 120 cm (Fig. 8).
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Fig. 8. Growth curves of North Atlantic cod.

In addition to geographic variations in growth, one often finds

9 shows how the growth of
Such

variations from year to year. Fig.
plaice in the North Sea has varied from 1935 to 1968.
temporal changes in growth may be connected to hydrographic

conditions or to density dependent factors such as food supply.

Both these factors appear to work their strongest influence on

young year-classes. We will come back to this.
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Fig. 9. Changes in growth of plaice, as shown by the trends in mean length of fish of
each age in year-classes between 1935 and 1969

Not all the food taken is available for growth. The rate at
which fish grow dependes on the amount of ingested food (I),

the amount excreted (E), and on metabolism (M) .

I =E+ M+ G



The amount excreted and the metabolism is found to vary little
in fishes, therefore growth rate depends mainly on the ingested
food amount (Pitcher and Hart 1983). An example of this is
given by them taken from the experiments done by Brett et al.
(1969) on sockeye salmon fingerlings. Three main ration sizes
are defined (Fig. 10), a) the maintenance ration - which is food
just sufficient to keep the metabolism of the fish going with
nothing to spare for growth, b) optimum ration which produces
maximum growth rate per unit of food. This amount of ration is
important from the point of view of economy, c) and the maximum

ration which produces highest growth rate.

Some other factors are also known to influence the growth rate.

These are:

1) temperature

2) hierarchical behaviour
3) genetic

4) maturity

5) density .
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Fig. 10. Growth rate as a function of ration size in

Sockeye Salmon. The tangent to the curve defines the
point of ‘'maximum growth (From Pitcher and Hart 1983)
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Temperature

Investigations have shown that both von Berterlanffy's

coefficients (K, L_, will be effected by the temperature

(Fig. 11).

Experiments on Cypridon macularius (Kinne 1960) showed that this

species showed maximal growth rate at an optimum temperature

(Fig. 12).
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Fig. 11. Relationship between L and temperature and K and

temperature (From Jones 1976)
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Fig. 12. Growth curves for Cyprinodon macularius at different

temperatures (From Kinne 1960) .
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Maturity

When a fish begins to mature the energy that has been used for
growth will be required for the developing of the maturing
gonad. Growth will also be influenced by the spawning
migrations of fishes. Pitcher and Hart (1983) propose that the
fish produce excess of material during the period of somatic
growth and store it in the body to be later used for gonadal
growth. An example of this is shown by the experiments of

€anadian pike by Diana and Mackay (1979) (Fia. 13).

They observed that although female production was twice as high
as male production (from May - March), expressed annually both

sexes produced similar amounts of somatic tissue. Immature pike
grew extremely fast in their first year of life, passing all

energy into somatic growth,

1000 FEMALES 1000 —
7] ° _* MALES
800 —
| Total Production 800
800 Tl o L‘ﬁ 600 —
_— ®
:\\o/ o= e &
400 \\ // S 400 -1\ /9\\\8,
7] Yo — T ° Somatic Production = \\9/
200 — 200
° S S 0 1§
AGE (Years) AGE (Years)

Fig. 13. Total and somatic production by Pike from
Lac Ste Anne, Canada. (From Pitcher and Hart 1983).
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Density dependance

Growth of fishes has been compared at different densities in
lakes and culture ponds (Cushing 1981). Reduction in the

specific growth rate of trout fry with increased density were

observed by LeCren (1965) (Fia. 14).

1 1 _t
0 100 200 300

Numbers per square meter

Fig. 14. Reduction in growth rate with increased density
of trout fry (From Cushing 1981).

Tles (1974) explains growth depensation as a density dependent
indicator. If two individuals compete for a single food
particle, the odds are heavily in favour of the larger one. He

Categorizes two types of competition which can occur at higher

densities:
a) Intra year class competition - lies within a yearclass
b) inter year class competition - occur between yearclasses

and is always in favour of older fish and against new

yearclasses.

Intra year class competition is applied to stocks which
produce a large number of zygotes, e.g. clupeiods. In this type
of competition death of one individual increases chance of

another (density dependent feed back) (Fig. 15 A).

Inter year class competition - applies in general to species
where there is no abrupt ecological transition as fish grow
older and larger, e.g most demersal species. In these types of
competition the older ones are directly competing with the

young - even cannibalizing (Fig. 15 B),
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dependence (From Iles 1980)

Von Bertalanffy's growth curve

We return now to von Bertalanffy's growth equation and will

look at how this can be adapted to the available data.

One can arrive at this growth equation from two starting

Von Bertalanffy assumed that growth was the difference
that anabolism

points.
between anabolism and catabolism and, further,
was proportional to surface area and catabolism proportional to

weight:

dw = H_ - Kw
dt

By replacing w with 13 and s with l: we get

dl =H - K1

t
This can be transformed to lt =L (1 - e_k(t-to))

The other possible starting point is to assume that length

increase is linearly related to length

dl =K (Le - 1)
dt
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For integration we write

dl = K dt

L, -1
therefore

- 1lg (L, - 1) = K t + konst,
or L, - 1= e ¥t | xonst.
oY 1l =1L_ - konst. e—Kt

o]

If we define tO as the age at which lt = 0 we get

0 =1L, - konst. e—Kto
konst. = L, eKto
subsequently
_ Kto =Kt
lt =L, - L, e e
or lt =L (1~ e_K(t B to))

If we have data from a period with an equal time interval

(T) in between, we can write

1 =1 (1 - e—K(t+T - to))
subtract

lt = L (i - e

to result in

lt + T - lt =L_ e o/ (1 - e )

-K(t - to))

or 1 - 1 = (L = lt) (1 - e

We can now plot lt+T - 1t to get a line with slope coefficient

1 - ¢ XT (rig. 16).

t+T t
its maximum length when it no longer grows.

Usually T is set to equal 1 (one year, one month or whatever

Also lt = L_ when 1 - 1 = 0 4di.e. the first has reached

scale we wish to use).
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[t+1

ln(Loo-lt )

Fig. 16: Plots used to fit von Bertalanffy's growth curve.

The last equation can also be given in an alternative form

_ __ =KT, . -KT
loyp =1L, (L-e )+ 1, e

If

If we make T 1 and plot lt + 1 against lt we get the

so~called Ford-Walford diagram. Here the slope constant is

-K . _ . .
e and L, is reached when lt+T = lt i.e. when the line

cuts diagonally through the axes (Fig. 16),

These plots give us an estimate of K and L_ . The only thing
lacking is to. In this case we can apply a method described
by Beverton and Holt (1957):

—K(t—to)

Given lt =L -L, e

we take its logarithm 1ln (L - lt) = In L +K tO - Kt

By plotting 1ln (L, - lt) against t we get a line with slope
coefficient -K which goes through a point with the coordi-

nates (to, In L) (Fig. 16),



The methods we have séen here are simple and can be used with-

out advanced aids.

Several computer programs have been developed which can
accommodate von Bertalanffy's growth curve and which also
calculate the variance of the parameters. These programs can
give greater accuracy than the simple methods we have looked
at but most often the largest source lies in sampling and
the added accuracy of the computer calculations is not

always realistic.

The above mentioned methods require a fixed time intervsal
between samples and that all samples be given equal weight
regardless of the number of fish. This particular problem

is solved in the more advanced methods but, in most practical

cases, this will have limited value.

When using growth data in models of population dynamics it
is often weight and not length that concerns us. It can be

shown that:

wt =W (1L - e “K(E~£),3

(o]

where W _ is found by the relation
W = alb where b 1is often near 3.
If we wish to apply von Bertalanffy's growth curve directly

to weight data, it can best be done by employing Wt 1/3

and using the same method as for length.

Growth equations for multiple population models

Von Bertalanffy's growth curve is good as an empirical
description of the course of growth of a fish but if one
wishes to model an ecosystem one reguires equations where
growth is also a function of what the fish eats. Andersen
and Ursin (1977) constructed a model which takes this

into consideration.
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We begin with this equation

m n

This equation says that growth is the difference between the
energy that comes in and that which goes out. Incoming

energy can be described as

= f hw m

QlQ
ity

where R 1is food consumed, w is body weight, £ 1is the
feeding level (0 < £ < 1) and h 1is a food assimilation
coefficient. h is a function of many things, including

temperature.

Of the food eaten, a portion B is absorbed. That which goes

in is therefore

BAR =8 £fhw'"
dt

Outgoing energy can be devided into two types of loss

1. loss due to feeding and assimilation (feeding

catabolism)aB dR
dt

2. loss due to processes independent of the fish's
eating (fasting catabolism) K w n

This all becomes a B8 dR + K w "= a g fhw" + Kw"

dt

a 1is possibly a function of feeding level and K a
function of temperature.

From this we get

dw = (1 - a) B dR - Kw @ =
dt dt

(1 - a) B fhw™ - Kw"

From an ecological viewpoint, feeding level f 1is the most
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interesting component of this expression. £ depends on the

available food ® and the relationship

f = ]
® + Q

where Q 1is a species specific constant (as suggested) @
is the quantity of food organisms, B = WN multiplied by a
factor G

b
as food for the organism under investigation

which expresses how well-suited these prey are

¢ = ZGb Wb Nb
Gy, initially appears to depend on the size of the prey in
relation to the size of the predator but the preferances
for demersal or pelagic organisms, for certain colours etc.

can also be important.
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MORTALITY

In fisheries biology mortality means removal of individuals
from the stock. Mortality can therefore be divided into
mortality sensu stricto and emigration. According to the
commonly used definition of a stock unit the emigration
should, however, be of minor importance compared to other

stock regulating factors.

The real mortality can also be grouped in various ways,

i.e. as

1. Natural mortality
a) due to predation
b) due to starvation
¢) due to diseases or pollution
d) due to spawning stress
e) due to old age

2. Mortality due to fishing

The relative importance of these sources of mortality
varies. Usually predation is supposed to be the most im-
portant factor, at least in small fishes. For the top pre-
dators, however, other sources must be more important.
Spawning stress is important, i.e. in Salmonidae most
individuals die after spawning, but it is probably of

some importance in other fish groups too (see e.g.

Andersen & Ursin, 1977).

Mortality is usually expressed as instantaneous rates of

change, i.e dn
Tt dt

where N is number and t time.

In practical fish stock assessment and management mortality
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is usually considered constant from recruitment to maximum

age.

This implies that one individual has a constant chance of

dying during a unit of time.
This can be expressed as

dN _
- ZN
To integrate this. differential equation, it can be written

in form (using arbitrary points N+ to)

Nt t
,fgg = j;z dt
No t
Nt
loge ( N ) = =z (t - to)
o
ﬁg - e -z (t - )
N
o -
N, = N e —z(t - to)
t o]

where No’ Nt are fish in numbers at time o and t respectively.

Then number at time t (N can be expressed as

)

N, = N e "2t 7 &)
t o]
This is a basic equation used in fishery biology for expres-

sing the mortality of a fish.

If M is the instantaneous natural mortality coefficient,

the rate at fish are dying due to natural causes;

AN

(Fg)m = ~MN



If F is the instantaneous fishing mortality coefficient,
the rate at fish are dying due to fishing;

N

at'y - N

(

If 72 is the total instantaneous mortality coefficient,

dN

(EE)F+M = =(F+M)N = -ZN

In a very short time interval the deaths due to fishing
will be equal to FNdt, natural deaths MNdt, and total deaths
ZNdt, therefore

P+ M=72

I.e. instantaneous mortality coefficients are additive, and
this is one of the reasons that they are preferred to abso-

lute rates or percentages.
An important task of fishery biologists is splitting total
mortality coefficient Z into its components M (natural

mortality coefficient) and F (fishing mortality coefficient).

It is usually most convenient to estimate Z (total mortality

coefficient), therefore it is considered first.

Methods of estimating the total mortality coefficient.

1.

The total mortality can be measured in a steady state
by the average age and length in the exploited population,
which will, if the fishery is not selective, be the same

as in the catch. If the ages and lengths of entry into the

exploited phase, and the averages’' in the catch, are tc’ 1,

c
t, and I respectively, the following expressions for Z can

be readily derived (cf Beverton and Holt, 1956).
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where K, L are the constants in the von Bertalanffy equation.

2. Construction of catch curves

A catch curve is a plot of natural logarithm of fish numbers
against their age, where Z (total mortality coefficient) is
the slope with sign changed, of the decending part of the
curve (Ricker, 1975). The number present is usually not
known. What we have at hand is catch data which can be used
as an index of abundance. In the case of different fishing
efforts acting in obtaining the catch, catch per unit effort
(C.P.U.E.) is used as an index of abundance (Fig. 1).

=7t

Nt = Noe

lnNt = lnNO - Zt
In short lived species, first step should be to make an

attempt to smooth out the recruitment pulses. This is done
by pooling the data, obtained at regular intervals during

a period of one year.

Since the growth of fish in length is not linear, and
generally slows down as length increases, there is a
tendency for the older size groups to contain more age
groups than younger size groups. Gulland (per.comm,)

in Pauly (1982) suggests this to be compensated for by
dividing the number of fish in each size group (cm-class)
by time it takes the fish to grow through size group (at).
The catch curve equation thus becomes

N

loge (E = logeNo - Zt



where t is the age corresponding to the midlength of
each class. At = time needed for the fish to grow

through each length class.

loge % (N/AY)
°T

4

,\/
® used
© \ o notl used

-5 L L. 1 - 1 J
| 2 3 4 5
Relative age (yrs)

Fig. 1. A length-converted catch curve. The term "relative
age" refers to the fact that tO is set equal to zero when

converting length to age. Note that for the computation of
7Z, one point, too far to the right was omitted, along with

the ascending part of the curve (see Pauly, 1982).

Identification of biased points is important in fitting
the catch curve. Only the points really belonging to the

descending part of the curve, and contained within a rea-



sonable age span are used. The scattered points in the
ascending part of the curve, in younger ages are due to
incomplete recruitment and are therefore not included in
the catch curve (Fig. 1). Few individuals which are close
to Lgo (asymptotic length) should also be excluded as it

can generate unrealistic high ages.

Estimation of natural mortality

This is a parameter very difficult to estimate. Natural
mortality estimates of tropical fish have been obtained

from estimates of total mortality in stocks known.

It has been estimated from a time series of values of Z
(total mortality coefficient) from the stock and plotted
against their corresponding values of f (fishing effort),
with M been obtained from the intercept of the lines
fitted to these datq (Ricker, 1975) (Fig. 2).

2 = M+ F
Z =M+ gq £
q = catchability coeff. of the gear in question
f = fishing mortality.
Z
5r 1973
90263 _ e '
4 - 1970 \ o
o —~ Br
- /D|974
—
3t —
o~ 1968 /
1962 1967 Dligss
— = independent ~ _
2" T N estimate of M
Mi{r
1 - 1 1 1 —)

o 1 1 ! i L
| 2 3 4 5 6 7 8 9 10

Effort (million of trawling hours)

Fig. 2. Example of plot of total mortality on effort for a
tropical stock (Selaroides leptolepis, Gulf of Thailand)

(From Pauly,1982).
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This method also provides an estimate of g. Once the M is
estimated, it is possible‘to get the value of fishing

mortality too.

Tropical multispecies stocks are often exploited, while
time series of 72 and effort are generally not available.
Therefore estimation of M for tropical fish stocks have

so far been a difficult task.

Pauly (1982) described a method of estimating natural
mortality coefficient from a knowledge of growth para-
meters of a given stock (L oo asymptotic length, L oo
asymptotic length and K growth constant) and of its mean

environmental temperature.

The empirical relationship obtained by him is described

as

loglOM = 0.0066 - 0.279 logloLoo + 0.6543 loglOK
+ 0.4634 loglOT

M = exponential rate of natural mortality
Loo = asymptotic length
T = mean annual temperature in Celsius

An important feature in this method is that reliable
estimates of M can be obtained, independently of estimates
of Z. In Fig. 2 independent estimate of M is obtained by

using this method.

Although natural mortality is usually considered as inde-
pendent of age, recent research has shown that this is not

SO.

Fig. 3 shows the natural mortality as a function of age

for cod (Gadus morhua) from the Barents Sea (Tretyak, 1983).
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Fig. 3. Change in natural mortality rate of Arcto-
Norwegian cod with age under different age composition
of catches and various values of parameters Es’ th
and te: 1 - mean age composition of catch for 1946~
1950, ts=10.5 vrs, th= 0.12, te=30 yrs; 2 - mean age
composition of catch for 1976-1979, ES=7.9 yrs,

th=0.06, te=30 VIS.

The cuive for 1946-50 shows the situation when the stock
size was large. The high mortality among young fish

(=< 10 years)is probably due to cannibalism:and otherxr-
means of predation. The increased mortality in old fish
could be due to old age and spawning stress (cod reach

maturity at an age of 8~11 years).

The curve for 1976-79 shows the mortality during a period

with very low stock size. There is a general reduction in
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mortality, which could be considered a density dependent
effect. Due to heavy exploitation the number of older
ﬁ}ﬁhes.wgrg'most strongly reduced. This may have caused
reduced cannibalism ahdréo‘expiain why the mortality of
the youngest age group shows the most pronounced re-

duction.

The situation in other species may be similar to that of
cod, but due to the great difficulties in estimating
natural mortality even when it is considered as a con-
stant makes it difficult to reveal age dependent or den-

sity dependent variation.

Munro (1974) found evidence that natural mortality
rate (M) reduces in exploited communities, whereas it in-
creases in some species in unexploited communities. The
total mortality rate appears to be lower in the exploited

areas than in the unexploited areas (Fig. 4).

Mcrtality rate —s

Fishing effort —»

Fig. 4. Theoretical interrelationships between natural

mortality rate (M), fishing mortality rate (F) and total |
mortality rate (Z=F+M) which will exist if natural morta- ?
lity rates in an exploited community decline as a result

of concurrent exploitation of predatory species and given

the assumption that natural mortality rates are proportio-

nal to predator biomass (from Munro 1974 ) .
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Estimation of F (fishing mortality coefficient).

Fishing mortality could be estimated by numerous methods.

Some of the main methods often used are

1) direct observations

2) swept area

3) marking

4) estimates of total mortality if natural mortality
data are available

5) VPA

None of the methods are entirely satisfactory. Therefore
it is best to obtain independent estimates of F by using
several methods. Marking experiments are one of the best
known methods of estimating fishing mortality and there-

fore dealt in detail here.

Estimation of F by tagging.

In this method we assume that the tagged fish are subjected
to constant fishing and natural mortality rates. These are

the same as in the natural untagged population.

If the initially tagged number of fish is NO, then the

number alive at time t (Nt) is

N =N e—Zt - Noe—(F+M)t

rate of tagged fish being caught

dn _ py = FNOe_(M+F)t

where n is the number of tagged fish recaptured.

The total number of returns from t=o0, the time of tagging

up to the time T is therefore obtained by integrating.
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T

T
dn - FN
=5 dt = (F+M) T dt _ (o) - (F+M
/dt t /FNoe = —E—'-TI\_/I l1-e ( Jt
o ,

O

If the returns are grouped in time intervals of length T,
naumber caught at time r

=N L (1-
r? = NO i (1l-e

-(F+M)rT)

naumber caught at time r + 1

(£+1)T = N_ =0 (l-e  (FHM) (zr+1)T

o F+M )

number caught between (r+1l)t and rt is = n,

= F e~ (F+M) (r+1)T, F_ ,_ ~(F+M) rT
Dy = Ny (Lme )= Nogm(l-e )

= F - -
n, = NJ 555 (1-e (F+M) (r+1)T _ 1+e (F+M)rT)

_ F = (F+M) (r+1)T - (F+M) rT
ny = Ny g (e t e )

_ F_ ~(F+M)xT ,,_  ~(F+M)T
ny =Ny 5 © (1-e )

FN
_ _©o _ .~ (F+M)T

logenr = - (F+M) rT + log e {F+M x {l-e }

By plotting logenr against r, a straight line is obtained
(Fig. 5). Slope of the line gives = (F+M)T. The intercept

is equal to

FN
o __—(F+M)T
1o9e 1w (l e }

Since (F+M) is known from the slope, and No’ the initial
number of tagged fish is known, F the fishing mortality

can be calculated.
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logenr slope = = (F+M)T

rth interval

Fig. 5. Relationship between logenr and the rth time

interval.

The assumptions made are not often fulfilled. Deaths of

fish immediately after tagging, incomplete records of tags
recaptured, non-random mixing of tagged and untagged fish
and change in vulnerability to fishing due to tagging may

influence the results.

Estimating survival rates.

If the number alive at time t is N and at time t+1

then

tl
1s Ny qv

_ - (F+M) (t+1 - t)
Ny = Nee

where F is the fishing mortality coefficient and M is

the natural mortality coefficient.

Yerl |- (Fe)

N¢

N
In(—=tLy - o (pem)

N

t
Niga ~ (F+M)
S = gurvival rate = N = e
t

Here we assume the two year classes to be equal size at
recruitment. The error from this source can be reduced

by taking average survival estimates for a series of

ages.



-50=

Chapman and Robson (1960) found that the best estimate

of S is the maximum likelihood expression, which is

given as
g = ‘T
SN+ T -1
where
T=N]_+21\72+3N3
IN = Ny + N + N, + - - - -

Density dependence

Le Cren (1965) showed that mortality was also density
dependent. The more individuals the more competition for
food, living space, etc., and the number of deaths will l
be higher. He showed that growth and mortality are linked

in such a way that numbers are reduced to match the den-

sity of the available food (Fig. 6).

° L 1
1n numbers \

b
Fig. 6. The relationship between the difference between
specific growth rate (G') and specific death rate (M)
and the logarithm of density in numbers. Data from Le

Cren, 1965, from Cushing and Harris, 1973).



Fig. 7 shows the relationship between growth rate and death

rate of fish larvae of plaice, haddock, and mackerel.

02 ;

N

Mackerel

,
s
-
”’

LHaddock <~
01~ \ -

Instantaneous mortality rate

P
Piaice

4
i

0 0.9 0.2
Instantaneous growth rate

Fig. 7. The dependence of the mortality rates of larvae on
their growth rates, comparing plaice, haddock, and mackerel.

(Cushing 1981, adapted from Ware 1975) .

Faster growing plaice larvae experience lower mortality rate

than the slow growing haddock and mackerel larvae.

When food is abundant fish larvae grow quickly through the

predatory fields (Fig. 8) and suffer less mortality than if
food is scarce.
food
ﬁ abundant
o
a
0
= food
=
predator - | scarce
preference g
size )
Rz
s/
/
/|
/
/
\_—V_ }
£y Tt ;
2 time

Fig. 8. Relation between growth rate of fish larvae and the
time period they are vulnerable to a given predator (predator

field).



tl predator field for the faster growing larvae

t 2 " L L " s low n "

Cushing and Harris (1973) showed that such mechanisms could
generate density dependent growth and density dependent
mortality.
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RECRUITMENT

Recruitment can be defined as the addition of new members to
a group. In fishery biology we usually mean admission to the

fishable part of the stock.

In this sense of the word recruitment does not mean the
number of fish hatched but rather the number of fish which
join the fishable part of the stock. This can occur when
young fish migrate from the nursery grounds to the adult
grazing grounds (e.g. many flounder species), when they
descend to the bottom (e.g. shrimps) or by altering their
behaviour in some form. However, it usually means that they

can be caught by conventional fishing gear.

There is therefore a close correlation between gear selec-
tivity and recruitment. We will not delve into gear selec-
tivity here, instead we will briefly explain what it is.

If we have a fish stock where all the size groups are
represented within the same area and have similar behaviour,
the use of a gill net to catch the fish will allow the very
small ones to slip through the mesh and the very large ones
will not be caught. The result would be a selection curve

with almost normal distribution.

However, the selection curve we are most interested in is
that for trawl. In this case the smallest slip through
whereas those fish over a given size will be caught.
Sometimes the result will be skewed because the largest
may manage to swim away from the trawl but this is of
little practical significance. In early stock models a
selection length was usually chosen to equal the length at
which 50% of the fish are caught, assuming that all the
smaller fish escape and all the larger fish are captured
(knife-edged selection). This is not always necessary any
more because the computers presently in use can easily

treat any selection curve.

We will also note that age at recruitment t is normally
r
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set equal to the lowest possible practical selection length.
As we will see later, the one used in practice is called tc
(c for catch). |

Recruitment to the studied fish stocks can vary by up
to a factor of 100 or more from one year to the next
(Table 1). The natural mortality also leads to a re-
duction in numbers from the egg stage to the age at

3

recruitment of the order of 10~ to 107. Regulation of

this requires very finely tuned mechanism.

Even though the relationship between parent stock and recruit-
ment is one of the most critical factors in the regulation

of a fishery, it is still not sufficient information to

formulate a satisfactory model to predict recruitment.

Table 1. Recruitment variation in North Sea fishes 1963-1975. Numbers adjusted to a
value of 100 for the most outstanding year class of each species. "Ratio"
is the ratio between the numbers in the strongest and weakest year classes.
After Ursin (1979b).

Year Gadoids rlatfishes Clupeids

Class | Cod [Haddock|[Whiting|Saithe{Norway Pout{Plaice|Sole |Herring,Sprat |[Sandeel] Mackerel
1963 52 1 14 17 4 100 | 100 100 10

1964 49 1 26 23 6 29 21 53 26

1965 70 2 30 18 5 28 1 47 43

1966 63 12+ 37 50 7 25 1 66 59 62

1967 20 100 100 51 21 18 65 62 10

1968 19 6 33 55 2 27 9 36 37 16

1969 82 2 30 29 32 26 78 41 100 | 100
1970 | 100 14 33 29 45 25 6 62 20 100 9 12
1971 18 21 68 30 7 20 14 41 19 21 17
1972 35 4 90 40 16 62 19 19 46 47 4
1973 N 21 63 100 100 40 18 47 91 28 15
1974 51 40 92 27 38 25 7 100 86 1
1975 27 9 37 50 18 37 22 79 4] 4
Ratio 6 100 7 6 200 5 17 5 5 5 N 25
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Ricker (1975) set up a few points which a stock(P)- recruit-
ment (R) model should fulfill:

l. the curve must pass through the origin, i.e. no
parents will result in no recruits

2. the curve should not reach the abscissa with large
parent stocks, i.e. irrespective of the size of
the parent stock, recruitment will not be
eliminated

3. the relative recruitment (R/P) should decrease
with increasing P

4., the recruitment must be larger than the parent

stock at some level of parent stocks' size.

A great number of models can be constructed from plausible

biological regulatory mechanisms which fulfill these require-
ments. We shall primarily examine two such classical models

without stating which of the two is better.

1. Ricker's recruitment model. In his work in 1954 Ricker

laid théifoundation for modern investigation of the stock-
recruit relationship. He developed an equation which states,

in its simplest form,:

R=APe

where R is the number of recruits, P is the parent stock

size. A is the coefficient of density independent mortality

and B the coefficient of density dependent mortality (Fig.1).

This model can be expressed also by the equation

R p P P
— = — exp — (1 - —)

Ry Py P Pr
where R, is the number of recruits which replaces the stock P
- i.e. the point of equilibrium. Pm is the stock size

which gives maximum recruitment.



RECRUITS {INDEX)

5000

A0 -

3000

2000

0on

£000

5000

_.56_.

A, f-0.00
R=Sexpl-AS)

| L ) i o
1000 2000 3000 SAOOO 5000 6000 7000

B, a=10

4000
3000
2000
o0 i 8:0002
A i 'l n 4
1000 2000 3000 Saooo 5000 6000 (000
20¢ a4
C, “Replacement adjusted” form
a0
15}
o6
.
10 a2
wz//
05 ‘ o 6
/// awo
. ™
L 1 1
0 05 10 16 20 25
STOCK (INDEX)

RECRUITS (INDEX)

A, o': 0003
B oo .
3000 b~ ﬁ o1k /:/—’/W_.._._ S
L e T
/{/ P
2000 |- e
For ()
7 a'+ S/
1000 }
1 1 1 A i 1 )
1000 2000 3000 S 4000 5000 6000 7000
5000 — B, B .01
4000 o 0on? —
e —
3000 -
2000
1000 +
1 1 4 i i A )
1000 2000 3000 S 4000 5000 6000 7000
C, "Replacement adjusted” form
B06
15—
803
o1
B 002

L. [

10

15 20

STOCK (INDEX)

Fig.1. Ricker (left) and Beverton & Holt (right) stock-

recruitment curves. (From Pitcher and Hart,

This equation was first used on salmon where almost all the

1982)

fish die after spawning. In this case the Rr replacing Pr

has a clear biological significance. Most other species

have several yearclasses

little meaning.

By deriving equation (1)
therefore 1

P = —_—

m B

in the spawning stock and Rr has

and we see



When Ricker developed this. model, the. blolochal assumptlon

. was that the den51ty dependent component of
tmortallty is caused by cannlballsm This is probably not
applicable to marine fish stocks. However, if one assumes
that the fish larvae are more vulnerable to predation if
they get less food, then the same model can be applied
(Cushing 1977). [

2. Beverton and Holt's recruitment model. - Beverton and
"Holt (1957) assumed that recruitment was governed by the
faden51ty dependent mortallty. If the mortality for eggs ana
’larvae is. proportional to:the number alive at any given

tlme and the mortality subsequently decreases continually
with the number of individuals, this can give a relation-

ship in the form of:

1

b
a + ——-
P

where a and b are constants (Fig.1).

Unlike to the Ricker curve, this model does not give a
maximum and recruitment approaches an asymptote when P

increases.

A curve of Ricker's type appears to be best when 1) canni-
balism (consumption of larvae by the adult fish) is an
important regulating mechanism or 2) when increased density
results in slower growth of the larvae through the stages
most vulnerable to predation or other types of mortality or
3) when there is a time lag in the reaction of predators
such that one can observe overcompensation for initially

high densities of larvae.

Beverton and Holt's type of curve is assumed best when there
is a maximum carrying capacity due to food supply or space
or when there can be immediate and constant predator

pressure.
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 .{Tab1e 2. Some attributes of r- and K-selected fishes

,,;XFer Lowe - McConnell, 1977).

Dominant type v’ (fecundity) ‘K’ (resource use

of selection. efficiency)

Where found upwelling zones coral and rock reefs
estuaries littoral/benthiczone of
continental shelf off African Great Lakes

large river mouth

Dominant groups pelagic

of fish clupeoids and their
predators
Diversity of less diverse
fauna with dominants
Seasonality of Auctuates with seasonal
environment influx of nutrients
varies from year to year
Environmental lacking
cover fish school
Schooling prey-fish school, often
with diurnal migrations
Growth fast
Longevity prey-fish have short
life cycles
Reproduction pelagic eggs, numerous
no parental care
protandry in polynemids
Production/ high

Biomass ratio

specializations to use foods
at low trophiclevels, or to
feed on fish which do so

Food sources

mav respond to increased
nutrients by increased
population size

Competition
for food

appears to be litle,

Competition for
not territorial

living space

Effect of
predation

leads to uniformity
? restricts speciation

demersal
acanthopterygian (spiny-
rayed) and eel-like forms

very diverse
lacks dominants

very stable throughout year

very stable year to year

plentiful
many territorial and
solitary fish

many fish school on reef
by day, dispersing away
from reefto feed by night

slower and variable

many have long life cycles
some with sex change

breeding displays, pairing

often parental care

protogyny in serranids and
cleaner wrasse

lower

adaptive radiations to use a
greatvariety of foods, but
species specialize and
may be stenophagous

appearsto be litde

very great

many territorial

diurnal/nocturnal change-
over

leads to aspect diversity
? promotes speciation



A curve of the Ricker type can only occur when the mortality
in some way is dependent upon the initial density, i.e. on the
number of eggs spawned or the number of parents producing these

eggs as in the case of cannibalism.

A curve of the Beverton and Holt type occurs when the mortality

depends on the current density of larvae only.

To further study the characteristics of the two types of curves

it is useful to have a look at the logistic equation

dN

] _X
a?—rNH K)

where N is stock size, K is carrying capacity or maximum stock
size and r is the intrinsic rate of increase (see Descriptive

stock models).

This equation can be used to illustrate two strategies of

stock growth.

The so-called r-strategists can produce a lot of offspring and
quickly fill up an empty niche. In a highly variable environ-
ment, i.e. an environment with changing carrying capacity
they can easily adjust their number. They can also quickly

colonize new habitats.

K-strategies reproduce more slowly. They are adapted to stable
environments where it is important to persist and out-compete

rivals.
The following relations have been derived.

Ricker curve A =e B = %

Beverton and Holt curve b = e a= (1 - e_r)/K

The density-dependent parameters of the two Eypes of curves

therefore show the following relation

A =

lo g B
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From this Erberhardt (1977) concluded that the Ricker type

of curves describe the recruitment in a typical r-selected
species. These have a rapid population growth. They frequently
overshoot the carrying capac1ty, K, and then oscillate about

that level.

The higher the hump is, the greater will the oscillations be.
It has been shown that stocks.having a Ricker curve with high
hump is less susceptible to extinction than stocks with lower

humps.

Beverton and Holt's type of model typically describes a
K-selected species where the population tends to remain near
the level of the carrying capacity. These models cannot
generate oscillations in the same way as the Ricker type of

models do.

Adaptation of the data

There are several methods with which to £it - these models
to the actual data. Here we will illustrate two simple
graphic methods: ’
1. Ricker R
R
—_— = Ae
p

R ,
If 1n P is plotted against P we get a straight line

with intercept equal to 1In A and a slope of =-B.

2. Beverton and Holt R = 1
a + 2
p
1 b
= = a + =
R p .

1 1
If R is plotted against P this gives a straight line with

intercept a and slope (direction coefficient) b.
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From a statistical viewpoint, neither of these methods are
satisfactory since the variables are not independent but i#
 would require too much to get into more advanced methods

here.

For tropical stocks Pauly (1982) suggested the folJOW1ng
method to get indirect estimate of recruitment which next

can be used to fit a P/R - curve:

1. Estimate growth and natural mortality

Compute Y/R for each year
Divide Y/R into the catch to get number of recrults

geveral of the assumptions which this method is based on
(will be treated later) are obviously violated by using

this procedure. However, the result might give a first

approximation.

Depensatory recruitment curves

All the curves we have looked at till now have been compen-
satory i.e. % has increased when P has decreased. There

are situations which imply that this is not always the case.
Instead, imagine a depensatory curve (Clark 1974, Gulland 1977).

The important characteristic here is that atsmall values of
R .
P, P will decrease with decreasing P i.e. relative

natural mortality increases (Fig.2)

In species which form schools it is reasonable to expect

such depensatory effects when predation is heavy. Schooling
is, of course, a means to avoid predation and, within certain
limits, the effectiveness of the school increases with

school size. Possibly Jjust such a mechanism is the reason

why herring stocks are so vulnerable to total collapse

during intensive fishing.
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depensation (From Ulltang, 1980).



Examples of recruitment curves

Some typical recruitment curves for tropical fish are
shown in Fig.3. Most of them show the great scattering
of points so characteristic to R/P curves also from temperate

waters.

They offer some evidence, however, that a Ricker type of
curve gives a better fit than a Beverton and Holt type.

Some of the curves have a very high hump suggesting great
fluctuations in stock size, but also lower susceptibility

to overfishing than stocks with lower humps.

All these curves should, however, be regarded as pre-

liminary, and the conclusions drawn are tentative only.

greater lizardfish (Sauridu tumbil)

1959
[

w

Recruits (x 103)

~n

Spawners (x10%)

Fig. 3. Stock-recruitment relationship for some tropical

fish stocks. (from Murphy 1982)
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Recruitment pattern

The temporal recruitment pattern of a fish is a function
of

1) spawning season

2) survival of larvae and juveniles

Even with a continuous spawning, the recruitment can be

concentrated to one or more distinct seasons.

Sharp (1980) used the concept "recruitment windows" which
were open only during brief periods. These periods could be
related to hydrography, availability of food and possibly

to presence of predators.,

It has i.e. been shown that several fish species from the
northern Indian Ocean have recruitment periods matching with

the monsoonal system. (Pauly and Navaluna, 1983)

Although it seems likely that spawning will be concentrated
to those seasons where the larvae have a fair chance of
surviving, there is in fact very little evidence to prose
this. Some data for maturity and recruitment pattern for

Sardinells gibbosa from Sri Lanka may be taken as evidence

for coinciding spawning and recruitment pattern (Fig. 4).

Recruitment patterns for some tropical fish stocks are given

in Fig. 5.
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Fig. 4. Gonad cycles indicating spawning periods in

Sardinella gibbosa from Sri Lanka (upper) and birth-

dates of the same species as calculated from daily growth

rings in the otoliths (lower). Dates given at the right-

hand side

Dayaratne and Gjgsater, 1984)

indicate when the samples were taken. (From
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(3,6,6,7,8,9,10,12,13, 14). (From Pauly 1982)
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ANALYTICAL MODELS.

The starting point of this type of model is the individual fish,
compared to the Schaefer type of model which regards the total

stocks as the basic unit.

In a stock the whole life span can be divided into periods.

For each period the number alive, the number caught, the number
dying of natural causes, and the number surviving to the be-
ginning of next period can be calculated, and the yield in
weight can be calculated if the number caught and the mean

weight of individual fish is known.

This process can be calculated mathematically. The parameters

of the stock concerned are given below.

Nt = number of fish at age t

Wt = average weight of fish at age t

R = no. of recruits, or no. of fish alive at time tr }
M = instantaneous natural mortality coefficient ‘
F = instantaneous fishing mortality coefficient

We first consider a time period before fishing operates. If

= age at recruitment

age at capture

then
tr<t <tc

the number alive at time t, Nt’ can be given as

N = R e_M(t_tr)
t B
The number alive at first capture, R’, can be given as
R’ =R e_M(tc_tr)
Therefore
Nt _ R,e—(F+M)(t—tc)
N - R e-M(tC—tr)—(F+M)(t—tc)

t
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The yield in weight is proportional to fishing mortality (F),
stock size in number (Nt) and mean weight of an individual at

age t (Wt)'
The yield in weight caught in a short interval

dye =
it FN, W

t't
dy, =FNWdt
The total weight caught throughout the life span of a cohort
(tc = age at first capture, t), = maximum age) is then
tx
Y = /{. FNtWtdt
c

W, can be expressed in the form of von Bertalanffy's growth

equation

- - 3
W, = W (L-eF(F78))
where k is the growth constant of the species concerned. This

equation can be written as

ssiin, A& E N
W, =(1 _ 3e kltmtl) L g 2k (-t ) e—3k(t—toij\dgg
3 -nk (t~t_)
W = Wo E_ e o
t n=0 n
u, = 1, ul= -3, u,= 3, u,= -1
therefore yield can be expressed
ta
- (F+M) (t-t_) 3 ~nk (t-t_)
Y = ‘{ F «- R'W e e’ 3 ue o’dt
t n=0

C

writing t—to=(t—tc)+(tc—to) and rearranging
t

3 A
Y = FR'W, 2. u, _f o~ (FHMInk) (b=t ) . o ~nk(t ~t,) q¢
n=0 t

Integration gives
3 u
— !
Y= FR'Wa 3 F+M+nk  ©
. n=0

-nk (t -t ) o~ (FM+nk) (£, —tc))

(1-
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If t) is sufficiently large, the last term can be neglected.

The yield equation becomes
3 -nk(t -t )

u_e c o

Y = FR e M(tc t-r) Woo > a

n=0

F + M + nk

Recruitment is unknown and often variable and therefore diffi-
cult to estimate. Therefore the yields are normally calculated

as yield per recruit.
3 -nk(t -t )
ue. ' c .o

Y/R _ peM(t_-t.) WS D

n=0

F + M+ nk

This model assumes that the stock is in equlibrium condition,

and that recruitment is independent of parent stock size.

The Beverton and Holt model gives the yield of one year-classg
throughout its life. If the stock is in equlibrium and the
recruitment is constant, it can easily be shown, as in the
following example that the same result can be obtained by look~
ing at the yield from all year-classes caught during a parti-

cular year.

YEAR
1976 1977 1978 1979 1980
1976| |1000 800 400 300| 100| 4 zﬁioizggu{eiisciiiz
1977 1000 800 400| 300| 3 span.
1978 1000 800 400| 2
1979 1000 8o00| 1
1980 1000 o

Year~classes 1976-1980 present in
the fishery in the year 1980.
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Variation of population and catch characteristics with fishing

mortality (F).

Fig. 1 shows the variation of annual yield in weight per re-

cruit of plaice with fishing mortality under equlibrium con-

300 T T T m

o
o
"

o : - R

(o) 05 oﬁ -0 I'5 oo
F

Fig. 1. Plaice: Yield against fishing mortality, 70 mm. mesh.
(Steady yield per recruit,YW/R, as a function of fishing mor-
tality coefficient ¥, with ty=3.72 yrs. The wvertical broken
line at F=0.73 indicates the point on the curve corresponding
to the pre-war fishing intensity, a procedure that is follo-
wed in subsequent diagrams where relevant. An important fea-
ture of this curve is that it has a maximum at a wvalue of F
considerably less than the pre-war wvalue). (From Beverton and

Holt 1957).

By examining the shape of yield curve (Y/R) Vs fishing morta-
lity (F) we can see that

1) The curve starts at the origin - that is yield is zero

when fishing mortality is zero.

2) As F increases from 0 — so does Y/R very rapidly at

first though at a continuously decreasing rate.

< . \ Y, .
3) If tc tcrit. a maximum value of the yield ( /R) is
reached at a certain value of fishing mortality. (tcrit

is the age when the year-class has its greatest biomass).
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4) Thereafter the curve decends comparatively slowly with
the slope decending towards an asymptotic yield as
F ——> o0 . This Y/R corresponds to weight at recruit-

ment.
It must be remembered that this curve relates to equilibrium

yvields and gives no information on the actual changes in yield

in time with changes in fishing mortality.

Variation of population characteristics and catch characteris-

tics with t .

500p = = = = == y
400}

300
"%
(gm)

2001

pre-recruit phase

—t i

o) 3725 10 ts
Ly

Ol= = v =

Fig. 2. Plaice: Yield against mesh, pre-war fishing intensity.
(Yield per recruit,YW/R, as a function of mean selection age,
te , with F=0.73. The maximum of the curve occurs at a value
of t. considerably above that for a 70 mm. mesh (3.72 yrs.)
(From Beverton and Holt 1957).

The curve begins at age tc at which fish enter an exploited
stage. The curve reaches zero at a value of tc = t5 , implying
that the mesh size is too large to catch any fish during their

life span.
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We can consider variation in yield simultaneocusly with F and

tc. This is called the yield isopleth diagram.

Since there are two variables present, this diagram is drawn

by plotting F and tc on x and y axes respectively and by drawing
lines through numerically equal values of yield. In this way a
form of contour map - which is referred to as "isopleth diagram",
is constructed (Fig.3).

Fig. 3. Plaice: Yield isopleth diagram. (This shows the steady
yield obtained from any combination of F and t. . Contours are
of yield per recruit at intervals of 25 gm. The top and left
hand borders of the diagram are the zero contour of YW/R. The
line AA' joins the maxima of yield-mortality curves, while the
line BB' joins the maxima of yield-mesh curves. The point P
indicates the pre-war values of F and t_. ). (From Beverton and
Holt 1957).



Sections parallel to the F axis at wvarious levels of t show
that Fmax (the value of F given the highest / for a glven

tc) increases as tc increases, and the curves of yvield with

respect to F at these higher values of tc become flatter, the
maxima eventually disappear (Figs.3 and 4). The changes of

Fmax with different values of tC is shown by AA' line.

Fig. 4. Different values of age at capture (tc) on yield
fishing mortality curves. ta<ftb<:td<<tc

In the yield/isopleth diagram given for plaice - by Beverton
and Holt (1956%) - the maximum possible yield is obtained when
F ———> o and t, = 13.35 (where AA' and BB' lines meet). This
is the age at which the total weight of year-brood is at its

greatest (which is referred to as critical age, Fig. 5).

The BB' line joins the maxima of yield - t curve (Fig. 3).
Sections parallel to the t axis show that / first increases
with F and then decreases. The value of t increases with

c max
F as does F with t .
max C
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Fig. 5.

Changes in numbers and weight of a year-class
during its life.

of fish
(From Gulland 1969 ).

Variation of other characteristics:

1) Natural mortality

(M)
2) Growth constant

(k)

o —

1) Effect of different M values on YW/R Vs F curve.
400 T

300r

R
(gm)
200K

100

Fig. 6. Plaice:

EBEffect of different natural mortalities on
yield-fishing mortality curves. (Yield per recruit, YW/R, as
a function of F with t¢ =3.72 yrs.,

taking M=0.05,
and 0.50) . (From Beverton and Holt 1957).

0.10, 0.15,



As M value increases the YW/R value decreases, but the curves
have the same general shape. With higher values of M (0.50)
the maximum in the yield curve no longer occurs within the

working range of F (Fig. 6).

1b) Effect of different M values on YW/R Vs t_ curve.

800{ ------
M =005
600} /’_\
Y, & .
R 5
(am) | & M =010
400 3
G
hd M =015
g
Q.
200}
=050
Ob e mram X oTmmaee
© 3725 10 15
Coyp [5Y
t,c(YFS)

Fig. 7. Plaice: Effect of different natural mortalities on
yield-mesh curves. (Yield per recruit, YW/R, as a function
of t¢ with F=0.73, taking M=0.05, 0.10, 0.15 and 0.50 res-
pectively) . (From Beverton and Holt 1957).

Taking the same range of M as before, and considering the
effect of M on YW/R curves against tc, we can see that the

level of the curve and tC nax decreases as M increases (Fig. 7).

2. Effect of k - von Bertalanffy growth parameter - on YW/R

Vs F curve.

Large changes in k have to be made before noticeable diffe-

rences in the shape of yield curves are caused (Fig. 8a). The
level of the curves differ greatly which is due to the diffe-
rence in weight of individual fish in the exploited phase (Fig.8b).
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Fig. 8a. Plaice: Effect of different growth rates on yield-
fishing mortality curves. (Yield per recruit, YW/R, as a
function of F with t =3.72 yrs. taking K=0.05,0.095 and

0.20 respectively) . (From Beverton and Holt 1957)-.

w

»
Y

Wweight 2103 (g m)

6] %) 30 =
Age (yrs)

Fig. 8b. Plaice: Curves of growth in weight given by the
values of K used in Fig. 8a. (In each case Wo and teo have

their usual values, i.e. 2867 gm. and 0.815 yrs. respecti-
vely) . (From Beverton and Holt 1957).
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Variations in some other parameters with F and t .

1. Biomass against F.

[

P.:/R %103 (gm)
N

T

1 H L - -
(o} 05 @73 1O I'5 ©o
F ]

Fig. 9. Plaice: Biomass against fishing mortality, 70 mm.
mesh. (Biomass per recruit of the exploited phéée;ﬂﬁ'W/R
(proportional to catch per unit effort) as a function of
fishing mortality‘coefficient F with te=3.72 yrs. With
a 70 mm. mesh this is also the curve of biomass of the
whole post-recruit phaée, since in these circumstances

ty, = t¢ ).(From Beverton and Holt 1957).

Biomass PW/R decreases continuously from a finite wvalue
at F = O, rapidiy at first and then flattening to an asymp-
tote at zero as F —> o (Fig. 9).

For plaice tr = tc; therefore this curve is the same as
that of annual mean biomass of the whole post recruited
phase. ﬁw/R as a function of F for haddock where t > t_

will be as shown in Fig. 10.
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~

23m)

wit 10
(o]

Biomass azr rycr

Fig. 10. Haddock: Biomass against fishing mortality, 70 mm.
mesh. (Biomass per recruit of exploited phase, §'W/R (pro-
portional to catch per unit effort) and total biomass per
recruit, §W/R, as functions of F with te =1.83 yrs.) (From
Beverton and Holt 1957).

2. Mean weight and length against F.

';f‘fb

140

600¢F

Fig. 11. Plaice: Mean weight and length against fishing mor-
tality, 70 mm. mesh. (Mean weight, Wy, and length, fy, of
fish in the catch as functions of F with t, =3.72 yrs.)
(From Beverton and Holt 1957).

The average weight of fish of the catch Wy also decreases

continuously from a finite value at F = 0 to an asymptote
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as P —> o0 . This asymptote is the mean weight of fish at
age tr; it is the same YW/R at F = o (Fig. 11).
The méan length of fish in the catch varies in a similar

way (Fig. 11).

Variation of biomass with age at recrgitment (tr)’ in the
total biomass per recruit (?W/R) phase, and of the exploited

phase (ﬁé/R).

The behaviour of §W/R with respect to tc is very different

from that with respect to F (Fig. 12).

4 = = .
N
E .
N ®
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@] a ~
x + .p:
m 5 R
phund [
clos
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g2 ¢ ]
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5 a.
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@ i
iy Il 1

t
e (yrs) A

Fig. 12. Plaice: Biomass against mesh, pre-war fishing in-
tensity. (Biomass per recruit of the exploited phase, f&/R,
and total biomass per recruit, fw/R, as functions of t¢

with F=0.73) . (From Beverton and Holt 1957).

When t_ = t_ as in the case of the plaice, §W/R = 5&/R. But
as t, is increased, the values of ﬁé/R raises to a maximum
(Fig. 12), and then falls to a zero as tc approaches ta

This is because, with tc very close to t, , the exploited
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phase is only a very small fraction of the total population.

But the total biomass per recruit §W/R increases continuously

i

to a finite value. The biomass at tC ta 1s the same as -
when F = 0 in Fig.9. (Refer Beverton and Holt 1957 for more

details).

Simultaneous variation of biomass (of the exploited phase

and total biomass) with F and t

In Fig. 13a we can see that 5&/R decreases with F at all

values of tc. This decrease is least when tc is large.

Fig. 13a. Plaice: Isopleth diagram for biomass of exploited
phase. (Contours are of ?&/R (proportional to catch per unit
effort) at intervals of 200 gm. (except the highest). The top
and right-hand borders of the diagram are the zero contour
of ?&/R. The lines AA' and BB' are drawn from Fig. 3, and
the point P indicates the pre-war values of F and ty .)
(From Beverton and Holt 1957).

The varietion in §W/R with tc depends however on values of
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F (Fig. 13b). At very low fishing intensities §W/R decreases

as tC increases, but at higher values of F a maximum occurs.

3')0-—1—""—“—}

\
>
AN
\
\
-

Fig. 13b. Plaice:Isopleth diagram for total biomass.(Contours
are of ?&/R at intervals of 500 gm. The top and left hand
borders of the diagram are the contour for maximum possible
biomass, i.e. in the virgin stock. The lines AA' and BB' are
drawn from Fig. 3, and the point P indicates the pre-war

values of F and ty ). (From Beverton and Holt 1957).

Immediate effects of regqulation.

Regulation of fishing intensity (f).

Transitional phases following a decrease in (f).

In Fig. 14 it is seen that

a) during the first year following the change in fishing

intensity (£f) there is a big and nearly proportional
drop in yield.
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Fig. 14, Plaice: Transitional phase following a reduction in
fishing intensity. (Annual yield (open histogram, left hand
scale) and catch per unit effort (shaded histogram, right
hand scale) during transitional phase following a reduction
of fishing intensity to half the pre-war level in one stage,
i.e. a sudden change in F from 0.73 to 0.37).(From Beverton
and Holt 1957).

b) the yield has recovered to its original value in this
case by the 3rd transitional year and the loss made up

“in this case after 7 years have passed.

c) although new steady state is not theoretically reached
until A B year (in this case the 11t

ges occurring after about the sixth year are very small.

year), the chan-

By a stepwise reduction of fishing intensity (£) (Pig. 15) it

is seen that

a) the yield does not decrease as much as in the first

case.

b) it takes a longer period to reach equilibrium.

In both the above examples, the catch per unit effort (cpue)
increases throughout the transitional phase. This is s general
characteristic, however the reduction in fishing intensity is

made.
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Fig. 15. Plaice: Transitional phase following a series of
reductions in fishing intensity. (Yield and catch per unit
effort following a reduction in fishing intensity to half
the pre-war level in five equal stages at yearly intervals,
i.e. a change in F from 0.73 to 0.37 in steps of 0.073).
(From Beverton and Holt 1957).

Transitional phases following an increase in (f).

\

ror | 0:73 N
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FO‘5~ :
!
o ',
"250} B
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no g // % ; /4
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1 234656 78910

Xth transitienal year

Fig. 16. Plaice: Transitional phase following an increase in
fishing intensity. (Yield (open histogram, left hand scale)
and catch per unit effort (shaded histogram, right hand scale)
following an increase in fishing intensity from 75% of the

pre-war level to the pre-war level, i.e. a sudden increase
in F from 0.55 to 0.73.
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a) In the example of plaice the fishing intensity is
increased from 0.55 to 0.73. The yield is increased

initially.

b) After some years (in this case 3 years afterwards)
the yield falls back to its original level (Fig. 16).

c) Initial gains are lost after 7 years have elapsed
and the final level of yield is lower than initial

level. In this case c¢/f is continuously decreasing.

This illustrates one of the main features to be found in
the unregulated fisheries, namely that as exploitation has
intensified, increase in vessel or gear efficiency has

brought only temporary improvements.

Mesh regulation.

An increase in mesh size from 70 mm to 134 mm in plaice
(Fig. 17) have the following effects

Tiezlah ilO \ 134 N
(mm) i
. |
3001 ! Y.
! R,
g i __{——* L. - —>
l e
200} . 1890
P
Y%Q I _— /R
100} R,_\ 1400
7*7'_'?, 272D
v %
e AN A /
Ghtiscoe Al

1t 23456780910

X™ transitional year

Fig. 17. Plaice: Transitional phase following an increase in
mesh. (Yield and catch per unit effort following a sudden
increase in mesh from 70 to 134 mm. as shown at the top of
the diagram. This increase in mesh is equivalent to a

change in t¢ from 3.72 to 5 yrs.) (From Beverton and Holt
1957) .
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a) A drop in yield is followed by the increase in mesh

size.

b) The original level of yield is attained after some
period, in this case 3 transitional years (when re-
i ducing £ it took 5 years to reach the original level).

c) The loss is made up within the 5th yvear in this

h

example (compared to 9t year when reducing f).

Note that cpue falls at first due to the fact that when
mesh is increased small fishes are let pass trough, but
after some time cpue increases again because small fishes

are allowed to grow.

Changes in mesh-size could also be done stepwise. In this
case the initial loss of yield following each change is
less, but it takes longer period to recover to its original
level (Fig. 18).

mesh| 70 18 134
size N) N >
(mm) | )
| ]
I ]
3°Or | | Yo
“R
| I R,
I I — SO
| e ==
200} g [ 4800
Yu B = Ry
%1 U %
{gm) Pwl/ (gm)
100} R . +400
: 7 ZOD
- P
L AN %7 7
5 A
: / AN,
(o] A Lo
1.2 34 567 8 910111213 14151617 181920

X transitional year

Fig. 18. Plaice: Transitional phase following two increases
in mesh size. (Yield and catch per unit effort following
increase in mesh from 70 to 118 mm. followed by a further
increase from 118 to 134 mm., as shown at the top of the
diagram. Each of these changes is equivalent to an in-

crease in t¢' of 0.64 yrs.) (From Beverton and Holt 1957).
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VIRTUAL POPULATION ANALYSIS

Virtual population was originally defined by Fry(1957) as the sum

of fish belonging to a given year class present in the water at any
given time that are destined to be captured in the fishery.
Presently the common meaning of VPA is a stepwise process developed
by Gulland(1965) to calculate N- population at each age, F- instant-

aneous fishing mortality for a year class.
The following data should be available to calculate these

1. Knowledge of catch in number at each age
2. M (natural mortality)
3. an estimate of N or F in the final year considered.

\ - ‘The number in a given year
class reduces due to natural

N mortality and fishing (Fig.l)

Number (N)

~

/due tofishing and
~ natural mortality
~

/ 1 ) We are used to go from ti
t 1 - to ti+l,but in VPA we go the

i i+1
Age in years

.

other way.

Fig.1.The number of fish of a

year class alive at time t.

Gulland's VPA is based on the following equations

_ ~(F, +M)
(1) Nj,p = Nye i
F.
_ i __—(F,+M)
(2) Ci = Ni FZ:M (l-e i
where
i = index for the year i

catch in numbers

2 0
i H

the size (in numbers) of the year class at the

beginning of the year i
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Fig. 3. Approximation to continuous survival curve assumed

in cohort analysis (N = number in sea, C = number caught).

Here M M
) 3
N2 = Nle - Nl = N2e
N3 = N2 - C
- M
- 2
N4 = N3e >
Therefore
M - M
N4 = Nle - C - e or
oy u
Nt+l = Nte + Cte

But we want to go the other way.

Then we can easily show:

M

Nt = Nt+le + Cte

N
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F, = instantaneous rate of fishing mortality on

a per year basis.

M. = instantaneous rate of natural mortality on
a per year basis.
N (F,+m) e~ (Fi
(3) i+l  _ i
Cy Fi(lFe—(Fi+M)

The input data is a list of catch in number by year and

year class (Fig. 2a).

Based on this we can calculate the size of a year class
(Fig. 2b), and the corresponding fishing mortality (Fig.2c).

The framed F in Fig. 2c¢ are guessed.

We do the calculations for one year-class at the time.
That is, we follow a diagonal row as indicated in the

figures.

give C, and M.

Guess F £

tl

So calculate Nt+l from (3)

- (F.+M)
Ni+l _ (Fi+M)e i

C.

i Fi(l—e

—(Fi+M))
It is not difficult to calculate Ni' The problems arise

when we want to calculate F. F has to be solved numerically
either by reference to tables or by iteration. Either methods

make the calculations somewhat laborious.

To overcome these problems Pope‘(1972) proposed a step func-
tion (instead of the usual exponential curve) by assuming

that catch of each age group is taken exactly half way through
each year (Fig. 3). It is an approximation to Gulland's (1965)
virtual population analysis which is usable up to the values
of M= 0.3 and F = 1.2 (Pope, (1972).
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mortality increases both types of errors are reduced.

100

-50°/s
501

Ni

]

error

=
a” T

Fy error

o/°

~100 | 1 1 ]
0 . 1 2 3 L
Cumulative fishing mortalities from year i to year t-1

Fig. 4. Graphs of the percentage error in Ni due to incorrect
values of Ft plotted against the cumulative fishing

mortalities from year i to year t-1 (Pope, 1972).

Example. If Ft was overestimated by 100 % from a.year c¢lass
and the cumulative fishing mortality was equal to 2.0, then
the percentage error in Ni would be -7% and the percentage

error on Fi would be +7%.

If, however, Ft was underestimated by 50 % and the cumulative
fishing mortality was equal to 2.0 then the percentage error
in Ni would be at the most +14% and the percantage error in
Fi would be -14%.



when we take N
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e+l @S present. This means that we consider a

year class from the last year it is present in the catches

and work-out backwards in time. As in the Gulland's VPA Nt+l
has two possible forms. In the first form Ct+l refers to as
the catch in year t+1 only, in this case
s el
+ -
e F, .(l-e Zt+l)
t+1

The second form of Nt+l is when Ct+l refers to catch in year
t+1 and subsequent years. This is usually the case with a

completely fished year class. Then

~Z

s M=o
t+1 Ft+l
We also need a fomula to calculate the Ft
We can use
_ - (F+M)
Nijp = Nee
or
N
- (F+M) _ “t+1
e =N
t
‘Therefore
Ny
- (F+M) = 1n -~
t
or N
F = 1ln 5 t . M
t+1

M
_ M 2
N5 = N6 e + C5 e
M
_ M . 2
i N4 = N5e + C4 e
\\N M
_ M 2
N3‘— N4e + C3 e

The difference between Gulland's VPA and Pope's cohort

analysis can be seen from Table 1 where the results of

both methods are compared. It can be seen that in no case
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Thus provided that Ft can be estimated within this range
and provided that cumulative fishing mortality is greater
than 2.0, the error in the estimates of Ni and Fi should

be small enough for most uses.

If, however, the cumulative fishing mortality is small,
which is the case when the number of recruits to a year
class is estimated from the catches of partially recrui-
ted age groups, then the accurate estimation of Ni and
Fi will require the accurate choice of Ft'
Table 2 shows the results of cohort analysis for the 1956
year class of Arcto-Norwegian cod (Pope, 1972) This
assumes that the true values of M and Ft are 0.3 and 0.8
respectively. The percentage error in Ni and Fi when Ft

is overestimated by 100% and underestimated by 50% is also
shown. (These errors were computed by running the data

with appropriate values of F, and are therefore precise).

t

Table 2. The percantage of Ni and Fi when Ft is overesti-
mated by 100% and when Ft is underestimated by
50% for the l1956year-class of the Arcto Norwegiaﬁ

cod, with M=0.3 and when the true value of Ft=0.8

(Pope,1972).,
% ervor when F, % ervor when F,
is taken a3 0.4 is taken 28 1.6
Age ‘ Cumulative
(years) N.-)(l()'6 F; F; in N; inF; inN; ‘inF;
12 0.2 0.80002 - +68.66 -3227
11 1.1 1.3670 1.3670 +17.50 . 26,44 - 822 +22.21
10 3.2 0.7806 2.1475 + 8.02 -10.77 - + 6.07
9 8.5 0.6747 2.8222 + 4.08 - 5.50 - 192 + 282
8 22,2 0.6570 3.4792 + 2,12 . 291 . 099 + 1.4
7 71.2 0.8657 4,3449 + 0.89 - 140 - 042 + 0.67 |
6 200.1 0.7333 5.0782 + 0.43 - 0.63 - 020 + 029
5 413.6 0.4261 5.5043 + 0.28 - 035 - 013 + 0.16
4 672.0 0.1854 3.6897 + 0.23 - 0.22 - 0.11 + 0.16
3 9447 0.0405 5.7302 + 0,22 .- 025 . 0.10 + 025
2 1278.2 0.0024 5.7326 + 022 . 0.00 - 0.10 + 0.00
1 17266 0.0007 5.7333 + 0.22 - 0.00 - 0.10 + 0.00
2 Assumed,

It can be-seen that these percentage errors are similar,

but in general smaller than their estimates in Fig.4 -
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do the estimates. given by the two methods differ more than

2 % (Pope, 1972).

Table 1. Comparison of the results of virtual population

analysis and cohort analysis. Arcto-Norwegian
.7l

cod, 1956 year-class, M=0.3 (Pope,1972),

Fishing mortality, F,, Population, N; X 107
re , Virltugl con Virtual
opulation ohort % population Cohort
(years) analysis analysis error analysis analysis cr‘:‘:)r
12 0.80002 0.80002
. 0.2
11 1.3400 1.3670 2 1.1 (1)12 0
10 0.7826 0.7806 - 3.1 3.2 2
9 0.6768 0.6747 - 8.3 8.5 2
8 0.6582 0.6570 - 21.7 22.2 2
7 0.8636 0.8657 - 69.6 712 2
6 0.7341 0.7333 - 195.6 200.1 2
5 0.4289 0.4261 ] 405.5 4136 2
4 0.1874 0.1854 ] 660.2 672.0 2
3 0.0411 0.0405 1 928.5 944.7 2
2 0.0024 0.0024 - 1256.4 1278.2 2
1 0.0007 0.0007 - 1697.1 1726.6 2
BAssumed,

Errors in Ni and Fi can be introduced by the incorrect

choice of Ft and sampling errors in Ci.

These two sources of errors are investigated in detail

by Pope (1972)
(1) Incorrect choice of Ft'

Fig. 4 shows percantage error of Ni against the cumulative

fishing mortality from year i to year t-1.

It can be seen that underestimation of Ft results in esti~
mates of Ni which are too large and estimates of Fi which
are too small, whereas overestimating Ft has the reverse
effect. It can also be seen that as the cumulative fishing



(2) Incorrect choice of M.

The effect of an error in M depends on how F_ is derived.

t
If Z is estimated i.g9. by a catch curve and Ft is taken as
7Z,-M then an error in M will give a similar error in F.

t
The error in N will be

(N, ﬁ, and f are estimated values, N, F, and M true values).

If Z is constant, the error will be constant, and the re-

lative change in stock size from year to year will be correct.

If Z varies, the relative changes in stock size will also be
in error, but usually the error will be small, and smaller

the higher F is compared to M.

For a more detailed discussion of the effects of error in M
Ulltang (1977) should be referred.
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DESCRIPTIVE STOCK MODELS

A descriptive stock model or a surplus yield model as it is
often called, regards the stock as a unit, following the
simple laws of population growth and where a fishery acts

as a predator in a predator/prey system.

To visualize how a surplus yield model works imagine we

put a few fishes into a pond. They will grow and reproduce.
The increase both in number and biomass will be faster and
faster, following an exponential curve. After some time
there will, however, be competition for food and space, and
the growth will decrease. When the carrying capacity of the
system is reached, the stock size will stabilize or show
more or less regular cycles around the maximum value often
called B or K (Fig. 1).

T

Fig. 1. Growth of biomass as a function of time. The

asymptote represent the carrying capacity.

dB

—

t

T

Fig. 2. Net growth of biomass as a function of time.

dB
dt

Fig. 3. Net growth (production) as a function of biomass.
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We can get the net growth per unit of time by differenti-
ating the curve in Fig. 2, This will give a parabola with
no growth for t=0 and when B=Bw , and a maximum growth for

some intermediate value.

If we look at stock size as the independent variable in-
stead of t we can look at the relation between %% and B

(Fig. 3).

This shows that a stock gives the highest net production
at some intermediate level. With the formulas most fre-

quently used maximum net production is obtained when
BEoo

B= 5

When we exploit a stock we usually want to take the net
production. If we take more, the stock will decrease, if

we take less the stock will increase.

If we start to exploit a virgin stock with stock size
Bw then the net production is near zero. If we take
Y'=AB1 the stock size will decrease with this amount and

we will get a production P1 (Fig. 4). Next year we can

8 RN

[

&

Q

a

O b P

% Phax. 1 2

o

AB]
BIOMASS

Fig. 4. Biomass and production of an exploited stock.

explanation see text.

For
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take Y=P1 and the stock will stabilize at the size
B09—41B1, or we can take V=P, +AB,. Then the stock size
will decrease again, and the new production will in-

crease again, and the new production will be P,.

We can go on taking more than the production till the
stock size reach %ﬂ and the net production P max. If
we allow the stock to stabilize at that level we get
the highest possible equilibrium yield (MSY). If we go
onh taking more than the production, the stock size will

decrease below %9 and then the production will decrease

too.

The relation between stock size, yield and time is illu-

strated in Fig. 5.

Yield =MSY

Bt N

Yield < MSY
Yield » MSY

TIME

Fig. 5. Biomass and yield as a function of time for three

levels of annual yield.
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We can get an equilibrium yield at any level below MSY,
but not above that level. It should be noted that the
same equilibrium level can be obtained for two levels of
B. Usually it is advisable to keep to the left of the
value giving MSY, as that gives the highest catch per

unit of effort, and it also stabilizes the stock.
The change in biomass can be written

dB _
ge = G(B)

In the Schaefer model this function is taken as

By —-B B
G (B) =Bk—é&m——=3k (1~ -B—;) (1)

where Bg 1s the maximum biomass under equilibrium and
k is a constant. This equation deést¢ribes the loagistic

arowth curve.

If there is a fishery we should substract a function H(f).
This function could be FB=fgB where F is instantaneous

rate of fishing mortality, f is fishing rate and g is a

catchability coefficient.

Then we have

dB S B -
a'—t_ = Bk (1 BOO) faB (2)
1 dB _ _ B, _

or  gar -k (g T (3)

Under conditions of equilibrium the growth is zero and

the equation becomes
0=k (1 - =—) - qgf (4)

where Be is the equilibrium biomass.



i AV

As
Y = FB = fgB

the equilibrium yield is

.Y = faB
e e

11

B - (5
or Ye qf < (k~-gqf) )

To find the maximum value of the equilibrium yield the

equation (5) can be differentiated giving

o
N

and Y = Beo (6)

e max

[\
te]

Equation (5) gives a parabola and if we have an
equilibrium situation this can be fitted by plotting

catch per unit effort against £

An equilibrium situation is, however, rare in practical

fisheries and then we must use other methods.

Schnute (1977) gives a good method for fitting the model
in non-equilibrium situations. We shall use a method de-
scribed by Walter (1975) - as this is easy to under-

stand, and easy to use without having a computer.

From equation (2) and (4) we can find

- 1 dB
Be =B * 38 A& (7)
_k
where a = E;T

Therefore, looking at a short time interval

>4
G

|

= q_
Ue U + 20

>
=

(8)

where AU is change in catch per unit effort over the

period AT.
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By integrating eqg. (2) and substituting U = gB we can
derive the eguation
U - U

_ q _'+1 i (9)
Ue—Ui+a ( . )

i+1
where the index refers to year.

Walter (1975) shows that Ue< Ui+1 < Ui

therefore, as a first approximation we can use Ui+1

instead of Ue'

. k
Using eg. (5) and introducing a = g== W€ get

- ) -
vy = gqf 3 (k qf)

Dl

or Ue = q

Therefore we can plot

U, = A - Cfi (11)

~

where A = Eg and C = %~ (11a, 11b)

This gives us two equations and three unknown.

There are several ways to proceed. One is to derive the

equation:

o (A - Ui —Cfi) (12)

The mathematics behind it is somewhat complicated, and
Walter (1975) should be consulted for details.

Equation (12) gives a line through the origin with

slope ©Or .,
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We can now find:

k =&XA q =&C, a =o’C and o< = £ (13)
Walter (1975) also shows that
U, - U
- i+1 i
Ug = Ugyy (1 g ) (14)
g “i+1
u; e Vi1

The procedure of fitting the Schaefer model to non-

equilibrium data is then:

Plot Ui+1

This gives estimates of A and C (egs. 11a, 11b).

against fi and fit a straight line (eq. 11).
Insert A and C into equation (12), and plot. This gives
an estimate of ox.

By using equation (14) we can now estimate Ue for each
year, and this can be plotted against fi to give the

final estimate of A and C in equation (11).

As we have seen

2
_ k _ k”
Yhax - 4°® T 73
for f = §~
<
2
A
or Y = —— _ A
max 4C for f = 50
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The Schaefer model can be regarded as a special case of

the more generalized production model

1 dB _ _ m-1
Bag - &~ bB
introduced by Pella and Tomlinson (1969).

When m=2 this model reduces to the Schaefer model. If
m>2 the sustainable yield versus effort has its maximum
to the left of §§L . The catch per unit effort versus

effort curve is concave.

When m approaches 1 we get the Fox (1970) model:
1 = -1n —B-
Ba - @ (Fng)
For this model we get MSY for a stock size smaller than

Bes
2
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MULTISPECIES MODELS

Most of the models presently used in management of
fisheries are considering fish stocks as independent
units. In fisheries based on single species, and which

do not bring the biomass of the species concerned too far

down ,these models have given reasonable results.

When several species are taken in the same fisheries

these models are, however, not sufficient.
We should always expect two types of interactions:

Technological interactions:

That means that when we fish for one species, one or
more other species are also caught in appreciable

amounts.

Biological interactions:

This means that two or more species compete for food or
space, or that there is a predator - prey relationship
between them. These interactions may change with the
stage of the fish. ‘E.g. the larvae of species A and B
may compete for food, while fry of A may be food for
adult B etc. Therefore, a fishery changing the stock
size of one species will also change the living con-

ditions of other species.

Some examples of covariance in abundance of fish stocks,

probably caused by interaction are shown in Figs. 1 - 3.

Several types of ecosystem models are used, and they

show different levels of complexity:

1. Simple regression models

This type of models has mainly been used for lakes and
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reservoirs. Based on some lakes studied in details, a
regression of fish yield on depth, primary production
and other factors are made. Based on a regression like
this potential yield in other lakes can be estimated
when some other variables are known. An example is
shown in Fig. 4. More details about such models are

given by Anon (1978) and Jones (1982).

2. Multispecies surplus production models

These are descriotive models giving the interaction as
positive or negative factors without explaining the mecha-
nisms. These models, which will be treated in more de-
tails, are mathematically simple. But the task of para-
meter estimation is overwhelming if many species are in-
cluded. A more detailed description of this type of model
is given by Pope (1976) and Kirkwood (1982).

3. Menu type models

These models are based on a description of who eats

whom. A matrix of the probability ‘that one species will
be eaten by another species are used to simulate the bio-
mass variations in the stocks involved. Models of this
type have been used by e.g. Riffenburg (1968) and Adgger
and Nilsen (1972).

4. Multispecies dynamic pool models

Multispecies extentions of the Beverton and Holt model
and of VPA belong to this group. The most important
feature of these models is the description of growth
and mortality as a function of the biomass of prey and
predator species. Models of this type are described
by e.g. Andersen and Ursin (1977), Pope (1979) and

Helgason and Gislason (1979).
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5. Ecosystem models

These models are aiming at a description of the eco-
systems and the fish stocks are treated as a part of
this. As in the menu type models the food consumption
is an important part of these models, too, but other
parts of the ecosystem is also incorporated. Models of
this type have been described by Laevastu and Favorite

(1978) and Laevastu and Larkin (1981).

Which type of model one should choose depends on the
type of data available, on the expertice and .on the
computer facilities available and on the purpose of

modelling.

Multispecies surplus production models

The simplest way of extending this approach to a multi-

species situation is to consider the usual Schaefer

equation:
1 dB _ B, _

as describing the changing in the total biomass of all

species combined.

This approach has been used by several authors (for a
review, see Anon, 1978). Generally these overall
Schaefer models seem to fit the data better than the

sum of Schaefer models fitted to the single species.

Only further research can tell why, but the following
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explanations have been suggested:

1)

2)

3)

Total biomass react in a simpler way to over-
all fishing effort than do the individual

stocks.

The better fit is simply a result of the aver-

aging process.

The overall biomass/overall effort fit is an
artifact of the fitting process or of changes

in the fisheries.

In spite of the fairly good results obtained in several

situations, this approach has been criticized e.g. by
Pauly (1979). And there seems to be good biological

basis for this criticism, which mainly falls within two

groups:

1)

2)

Fishes, except some top predators as tuna and
sharks, are preyed upon bv other fishes, and are
therefore giving a "yield" to these predators,
i.e. they are not at the Beo level. (This point

applies to all Schaefer models.)

As stocks of different size, growth and pro-
duction will have different yield/effort relation-
ships (Fig. 5), on common yield/effort curve is

only an abstraction.

The second way of extending the Schaefer model is to in-

clude an explicit term to account for interaction.

We can look at a simple two-stock system:

148 _ _ _ _ _
-B' a—E = a bB cP qu (2)
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g - a' b'P - ¢'B - q'fy (3)

To account for real interaction, a timelag should be in-
cluded, but let us assume that equations (2) and (3) de-

1 _d'gng_.:
fine the steady state (when JE 3t OL.

When ¢ and c¢' has the same sign it means that one stock
increases when the other one decreases, i.e. a situation
with competition. If we change sign on one of the c, we

can simulate a predator/prey system.

Equations (2) and (3) could be extended to contain any
number of stocks. The number of parameters which has to
be fitted becomes, however, overwhelming if the number
of stocks is larger. For two stocks 8 parameters are
needed, for 4 stocks 24 and for 6 stocks 48 parameters.

(Parameters = (n + 1)2 - 1)

Therefore we shall analyse the two-stock situation only.

As Y = fgB we can write
Y, = aB - bB2 - ¢ BP (4)
Y —_ ] ] 2 ]
p =@ B ~ b'P®” - c' BP (5)
_ - ' 2 152
or Y=Y +Y_ = aB + a'P - bB” - b'P™ -
B P
(c + c') BP, (6)

Therefore, a diagram of total yield as function of the
size of the two stocks will give concentric ellipses.
Similarly, Y as a function of fishing mortality of the
two stocks will give concentric ellipses:

2 2

Y = AF_ + A%F_ + CF + C'F + DF_F
p B B p B p - (7)

Fig. 6 shows how the diagram looks in a situation with
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low competition, one with strong competition, and one
with a predator/prey situation. The straight lines in-

dicate when one of the stocks are eliminated.

Several conclusions can be drawn from the diagram.
First it is clear that whether interaction is present
or not the contours of equal yield gives ellipses centered

on the maximum yield of the system.

Therefore, as long as no stock becomes zero any fishery
which develops with the fishing mortalities on its
various component stocks in equal proportion, i.e. pro-
gressing along the straight line in the FB’ Fp plane,
will have a parabolic yield curve. These yield curves
will, however, give a lower maximum than the curve go-
ing through the joint maximum point. The effort re-
quired to achieve the maximum will in general also be

different.

If we know all the parameters of the model, finding
the maximum yield would be a question of solving the
following equations for the populations of the various

stocks (P).

For a two-stock model we could get:

o
=<

|

= a; - 2b1P1 - {cq + cz)PT = 0 (8)

o
av)
-

Oion
IS

, = a, - 2b2P2 - (c1 + CZ)PZ = 0 (9)

This will give maximum Y for

) a12b2 - a2(c1 + cz)
P, = 5 (10)
4b1b2 - (C1 + CZ)
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a, 2b, - a, (c, + c,)
P = 2 1 1 1 2 (11)

2 4b1b2 - (c1 + cz)

So , what can we do if we don't know a, b and c for the
stocks involved? Let us assume that we can vary the ratios
of the efforts applied to different species so as to
achieve certain desired population biomasses. Then it will
be interesting to see the effect of reducing the biomass
of each stock to half its virgin biomass. If there were no
interaction, this would obviously give the overall maximum

yield of the system.

Generally, fBr two stogks the ratio of the yield when P1

and P2 are ;“’ and 200 to maximum overall yield is
(01 = &) (12)
1 ' 1 12
4b1b2 - 4c1c2

Therefore, if the interaction terms are equal the ratio
will be 1 : 1. Also if <, and c, are small compared to
the parameters b1 and b2 the ratio will be close to 1 : 1.
Interaction terms with opposite signs, will give great

deviation (i.e. predator/prey situations). (see Fig. 6)

In conclusion it seems that aiming at a biomass for each
species which are about half a level of virgin stock size

seems to be a good first approximation to maximize the yield.

If one species is a predator on the other, the predator
should be brought to a level below half P oo while the prey

should be reduced less.

Usually maximum yield should not be the only goal for
fishery management and for the purpose of hicher stability
and conservation, and also to get a higher catch per unit
effort it has been recommended to keep the stocks around

2/3 Por instead of reducing them to 1/2 P oo .
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USE OF EGG AND LARVA DATA FOR CALCULATIONS OF SPAWNING
STOCK SIZE IN FISH

Determining the stock size is one of the fundamental
exercises in fishery biology, both when working with well-
regulated commercial stocks and when searching for new

resources.

A series of methods are at our disposition. The most
important of these can be classified into the following
system:
i) calculations from catch per unit effort
ii) tagging experiments
iii) acoustic investigations

iv) calculations from egg and larva data

All these methods have their advantages and disadvantages
so it cannot be stated that one method is generally best.

We shall examine only the last of these methods, the
“estimation of stock size from egg and larva data, taking
into account the principles for the method and the
biological background. Thereafter we shall look at the
methods of calculation and finish with some examples of

their application particularly for new resources.

It is assumed that a female of a given size spawns a

known number of eggs per unit time (usually per year).
Practically speaking, nearly all eggs are fertilized and

a certain amount - usually the majority - develop into
larvae. At the larval stage mortality is high and variable.
From the fingerling stage up to adulthood mortality
decreases and becomes constant. Thus if one takes as a
starting point the number of eggs or young larvae it is
possible to back-calculate to the size of the parent stock.
Thereafter one can directly estimate the size of the next

generation.
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The principle of stock calculations from egg and larva data
is therefore given‘in its simplest form. The number of eggs
and larva produced is estimated, and devided by the number

of eggs spawned per female to produce the number of females

in the spawning stock.

eggs produced
fecundity

v}
il
=

By also considering the sex ratio in the spawning stock the
total stock size may be estimated. This method was first
employed by Hansen and Apstein in 1897 in an attempt to
estimate the plaice stock in the North Sea. The method met
strong opposition and was largely ignored until the middle

of the present century.

In 1956 Beverton and Holt wrote that egg surveys were
probably the best method with which to estimate stock size.
Nonetheless the method still seems to be comparatively
poorly recognized by most fishery researchers, despite work
presented at a meeting of the International Congress for
the Exploration of the Seas in 1980 and a symposium at
Wood's Hole in early 1979 indicating an increase in use and

popularity.

When looking at the biological basis of the method it is
natural to begin with fecundity. This is a relatively
simple point when dealing with total spawners who lay all
their egygs over a short period of time each year. Fecundity,
defined as the eggs to be laid in the coming spawning
season, can be easily measured in mature fish which are

easily distinguishable by their size.

The problem becomes much larger when dealing with partial
spawners. A range of egg sizes can be found in the ovaries
(Fig. 1) and it is very difficult to determine the number
of eggs to be spawned in a given period. Much work has been
done on this problem but the conclusion seems to be that it
is necessary to conduct basic studies on the ovaries and
course of spawning for every single species one wishes to

work with.
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In practice only a few fish will be measured for fecundity
and the total egg production of the stock will be calculated
from the relationship between fecundity and length or weight.
Figure 2 illustrates that this relationship can vary greatly
between stocks within a species. As a rule the relationship
is reliable but there are exceptions such as herring and
other c¢lupeids where there seems to be no correlation

between fish length and egg number.

There are also many confounding variables. For example it

has been shown for a number of species that food availability
and stock density have considerable influence on fecundity.
Thus, fecundity is a parameter which cannot be measured

once and considered constant. Fig. 3 shows the calculated
fecundity and its range for different species of fish. For
the sake of efficiency, fecundity was estimated from a fish

of average size for each species.

So the eggs are spawned. The per cent fertilized is usuallv
near 100% for marine fish and therefore the next factor to
be considered is mortality at the egg stage. Here it becomes

necessary to distinguish between pelagic and demersal eggs.

For pelagic fish a mortality of between 2 and 10% per day
seems to be normal in boreal waters. In the tropics it may
be much higher - a mortality rate of about 25% per day has
been reported for sardines off California. However, because
of the much shorter incubation times, the total mortality
in tropical waters is not necessarily any greater than in
colder waters. It must also be remembered that sampling

problems make all such estimates of mortality very uncertain.

For species with demersal eggs such as capelin and herring
mortality generally seems to be much lower. For herring a
mortality rate of 1 - 10% during the entire incubation time
is common and capelin usually have less than 25% mortality.
The thickness of the egglayers may be a critical factor for
survival of herring whereas this seems to be of little

importance for capelin. If one uses larvae as the basis for
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estimates, such a correlation between egglayer thickness and
mortality can result in a systematic underestimation of the

size of large yearclasses since these often lay the thickest

deposits.

The low values given for capelin and herring do not include

mortality due to predation. For capelin, Satre and Gjgsater
have shown that predation usually plays a subordinate role.

Nonetheless it is clear that haddock and pollack can consume
a significant amount of the eggs laid by the individual

stocks of herring.

Mortality at the larvae stage is more difficult to survey.
The concept of critical period has stood central in the
debate. May (1974) went through the available data and
concluded that there was insufficient evidence to either
prove or disprove the hypothesis. It remains a fact that
larval mortality is high and variable but is probably
lowest in the period where the larvae are still nourished

by the yolksac.

During an investigation of plaice in the North Sea, Bannister
et al, (1974) found that larval mortality was of the same
order as egg mortality, that is, 2 - 10% per day. Dragesund
and Nakken showed that herring larvae had a mortality rate

of almost 20% per day during the first 14 days. All such
estimates, however, are in the meantime considered unreliable

because of the undetermined significance of "selection”.

We have now looked briefly at the relationship of parent
stock to number of eggs or larvae found in the sea at a
given time and shall go over to examine the sampling
problems involved. These can be separated into three
categories:

1. wvariation and systematic error in conjunction

with the individual samples

o

variation due to integration over an area

3. wvariation due to integration over time.
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In addition to these points we can include variation due to

age determination and the rate of larval development.

Many investigators have researched just how representative
a plankton tow is to the guantity of eggs or larvae in the
watermass it sampled. But because so many factors interact

it is difficult to achieve an unambiguous result.

The problem has a technical side: what percentage of the
available water is filtered by the equipment under differing
conditions and how great is the probability that an egg or
larva of a given size can escape the equipment or slip
through it? This is dependent on the shape of the gear,

the rate of tow, the towing angle (vertical, horizontal or
oblique) and the type of plankton found in the locality etc.

Modern plankton gear usually has good filtering capabilities
- in any case, when the clogging problem is not too great.
However, avoidance is a serious problem, especially for

larva sampling.

Figure 4 shows the catch in a specially constructed seine net
and in a plankton haul. There is a great difference in the
length distributions caught by the different gears, especi-
ally during daylight. These data refer to Engraulis larvae
but can be presumed to be relatively representative of

other species also.

Clearly the perfect plankton gear does not exist. In the
handbook "Standard techniques for pelagic fish egg and
larva surveys" published by the FAO in 1977, the use of
Bongo nets is generally recommended but this is certainly

not the last word on this topic.

The distribution of eggs and larvae in space and time is of
fundamental significance to the sampling program. We will

first examine spatial distribution:

Spatial distribution is a complex problem but eggs and
larvae will usually be spread so that they can be representa-

tively sampled from one depth interval. Thus the spatial
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distribution becomes a distribution along a plane.

Fish eggs and larvae are not evenly spread throughout a water
mass. Usually the sampling will give a distribution with
patchiness i.e. a small per cent of the samples will
contain a large per cent of the total eggs and larvae. The

younger the stage under observation the more obvious this

becomes.

Smith (1973) dealt with this phenomenon relatively deeply
in sardines. He points out that the fish spawn in schools,
resulting in a patchy distribution of newly-spawned eggs.
Around such nucleii of freshly spawned eggs is an area
devoid of eggs, into which the eggs will soon diffuse and
create a corona around the tight nucleus. This diffusion
will eventually result in a more even distribution. For
sardines, Smith found that the nucleii could have a dia-
meter of tens of meters whereas the corona could fluctuate

from one hundred meters to several hundred meters.

Other distributions exist for other species, despite certain
common characteristics. It is therefore recommended that the
distribution be investigated for each species and life

stage concerned before making assumptions based on a given

distribution.

If one wishes to use common statistical methods for various
types of hypothesis, one must know the distribution of the
data. If the theoretical distribution is known, it becomes
possible to evaluate the number and size of the samples one
should take.

In "Standard techniques for pelagic fish egg and larva
surveys" it is recommended that the distribution fulfill

the following requirements:

1. has patchiness, s > m

2 has 0 observations

3. goes toward Poisson distribution for low values of m
4 m and s2 are not assumed to be independent



25=

A negative binomial distribution fulfills these requirements
and is sufficiently flexible to be adapted to many circum-

stances.

The variance and median are related as in the expression

s? = m+

NFM
L8]

where K is the expression for the degree of patchiness in
the distribution. There are also examples of log normal
distributions being used but these assume that the 0 -~ obser-

vations are ignored.
If the distribution is strongly skewed, the transformation

xl = log (x + a)

may be used, where "a" is .often made equal to 1. The object
is to make the data fit the requirements of the most common
statistical analyses such as analysis of variance, t-tests
etc. Thus the transformation can normalize the data and

stabilize the wvariance.

For mackerel eggs, Ulltang (1978 note) showed that the best
result would be obtained by setting a = 0 and ignoring

the 0 - observations. This illustrates the significance of
evaluatin® the transformation to be used in each case
instead o% using one formula uncritically. In many cases
suéh tranéformations are unnecessary because non-parametric

statistics can be used to test the hypothesis.

Suppose we have a series of stations sampled on a cruise
which we consider synoptic, We have estimates for the

number of larvae per square meter of surface at each station
and the next step is to integrate them over the whole area.

Three methods can usually be applied:

1. averaging all the stations within an area or
subarea. If the stations are randomly distributed,

this method will give a result free from systematic

error
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Fig. 5. Construction of polygon for estimating size

of area representative for station 4. The figures indicate

station numbers.

260 28°
Fig. 6. Example of station grid and isolines to estimate

larval abundance of Capelin.



2. weighting each station by the area of a polygon
which arises from the drawing of perpendiculars
through the midpoints of transects between each
station and the surrounding stations. This method
corresponds to linear interpolation between each
station and its surrounding area. Setre and
Gjgsater have developed a computer program using
integration of this type to calculate the number
of capelin larvae. (Fig. 5)

3. the third and most used method is to draw iso-
metric lines between the stations and measure the
area contained. Usually these lines are drawn by
rule of thumb but Buchanan-Wollaston (1923, 1926)
developed a graphical method, enabling the lines
to be plotted objectively. (Fig. 6)

Sette and Ahlstrom (1948) used all of these methods to
estimate egg production in Pacific sardines. The difference
in results was insignificant when compared to the other
sources of error. In other cases the differences can be
larger especially if the stations were chosen with knowledge
of the probable location of most of the larvae (this renders

the first method inapplicable).

If there are no estimates of the number of eggs on the
spawning grounds over a series of time intervals, then the
next problem becomes to calculate egg production over time.

Here there are two possible methods:

1. surveys which cover the entire spawning period,
allowing integration over time as well as over
area

2. constructing a spawning curve to indicate the
proportion of the stock's total egg production
spawned at any given time. Thus back-calculation
from the number of eggs found at any given time
will lead to the total egg production. Such a
spawning curve can be constructed from gonad
studies or by regular sampling of representative
stations. (Fig. 7, 8)
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As we shall see later the hatching curve can be applied in a

corresponding manner,

Some researchers have assumed that the course of spawning
follows a normal distribution or a parabola and have adjusted
such functions to their data. The useable calculation of the
time integral can be aided by a theoretical curve, particu-

larly if there is a long period between successive cruises.

Irrespective of which method is chosen, the presumption is
that one knows how long the stages under study will last in
the ambient temperature regiones. Age determination on the
egg can be accomplished through the degree of development

of the embryo. Ageing becomes somewhat more complicated for
larvae but yolksac size seems to be a reliable determinant
(in capelin, for instance). Daily rings in the otolith may
also be used but are far too time consuming for a routine
investigation. Counting the number of eggs up to three days

old will correspond to three days production.

An interesting application of theoretical distributions in
time and space is found in the work of Bagge and Muller from
1977. They studied cod eggs in Bornholm Basin but on some
of the cruises the spawning grounds were only partially
covered. Thus they assumed that there was a spawning center
and that the eggs were normally distributed around this. On
this basis a computer adjusted a two-dimensional normal
distribution to the data. They also constructed a mathe-
matical model which presumed that the spawning intensity
followed a parabola throughout the season as well as a
model which illustrated the hatching and mortality of the
egg stage.

A number of investigations have been conducted to determine
the best division of effort when one has a limited amount
of ship time. Saunder English (1964) studied flounder eggs
in Puget Sound and found that coverage over time - i.e.
repetitive surveys - were most important, followed by
coverage of area and finally by the grid density of stations

per survey. Taking many stations in the same position gave
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the least reduction in the variance. Of course, these con-
clusions cannot be directly applied to other species or
areas but it is probable that they correspond to many

situations.

We can summarize what we have said thus far in the formula

P = 1 ngli d A dat
FS (1 - Kd) 3

where P is the parent stock, Eij 1s the number of eggs

at station i on cruise j, K is the egg mortality per
vday and d 1is the number of days the eggs are in the stage
under investigation. d is the median age of the eggs,

F is the fecundity and S 1is the sex ratio of the spawning

stock.

Generally this is applied to pelagic eggs but can also be

used on larvae with a few simple modifications.

When working with fish with demersal eggs the problem of
sampling becomes somewhat different. To illustrate a solution
we will go through a method that Satre and Gjgsater described

in 1974 to estimate the size of the capelin stock:

Capelin lay eggs wich are well mixed with the sand and
gravel on the bottom at depths between 25 and 50 meters.

The incubation time is about one month.
The following data are prerequisite for the method:

1. localization of the spawning ground - this is
done by grabs

2. calculation of the number of eggs e spawned on
one of these spawning grounds B. This is done
primarily by scuba divers

3. calculation of the number of larvae 1 younger
than d days old hatched from this spawning

ground at the time t
1
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4. calculation of the number of larvae L younger
than d days o0ld hatched from the entire
spawning ground at time t2

5. construction of a hatching curve for the entire

area and for spawning ground B.

The number of eggs spawned on ground B can be expressed as

e = 1
(1=K (1=K, (1=K,

ay

where 1 is the larvae younger than d days old at time tl’

a is the proportion of all hatched larvae from this

1
spawning ground which are from 0 to d days old at

time t;. K;, K, and K

1 2 3 are respectively egg mortality,

hatching mortality and larva mortality up to time of sampling.

Systematic sampling error during the larva collection is
included in K3.

In a similar manner we can apply this relationship

E = L

(1 - Kl) (1 - K2) (1 - K

a2 3
where E and L are eggs and larva number for the entire

spawning ground or, more precisely, a part of that area.

If one assumes that mortality and sampling error are similar
for both the well-investigated part of the spawning ground
and for the rest of the spawning ground, the relationship

can be expressed as

and the parent stock size becomes
P = L e ay

F s 1 a2
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where F is the fecundity and S the sex ratio of the

spawning stock.

Determination of the stock size of unconventional resources
can, in principle, be carried out with the aforementioned
methods. However, in practice, we often run into problems
which make it necessary to perform a simplification.

Typical of such problems are:

1. incomplete knowledge of the fecundity and
spawning course of the species in question

2. use of larva data instead of egg data because
eggs are difficult to identify or the eggs
cannot be found

3. the cruises are often planned with other aims
and sampling grid is seldom optimal in both

time and location.

The best one can do in such cases often is to create a
relative measure. If the larval production is larger in one
area than in another, it may be assumed that the parent

stock is also larger.

Useful indicators of this can be found by comparing species
which have similar fecundity and spawning course., As an
example, we shall examine some data from the Gulf of

California published by Ahlstrom and his coworkers in 1971:

At the larval stage the following proportion was found:
Gonostomatids 22%
Myctophids 16%
Clupeids 14%

Among the Gonostomatids the dominant species was

Vinciguerria lucetia and we will look a little closer at

this. This fish has an average weight of approximately 0.7 g
and a fecundity around 430 eggs per gram. The area investi-

gated was lOl2 m2.

The number of Vinciguerria larvae per haul showed large
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fluctuations. I have calculated the arithmetic mean for
the period to be 95 larvae m—2 surface. By doing the same

for Sardinops one gets an average of 14 larvae m surface.
There usually was about seven times as many Vinciguerria

larvae as Sardinops larvae.

If we temporarily disregard egg and larva mortality we can
perform a loose evaluation. If we now consider the larval
abundance in June 1957 260 mﬁz, we can calculate the

numbexr of fish needed to produce these larvae:

260 * 102 * 2 g =1.2 * 10%%g = 1.2 * 10° tons
430

If we accept the mean larval density previously calculated
and assume that the larvae are catchable for a week and
that each fish spawns twice a year (something revealed by

gonad studies) we get

95 * 1072 " 2 " 52 g =11 * 10° tonms

430 ° 2

This entails quite a few assumptions but now we have an

idea of the size order of the stock.

We can also use another method - on the basis of the egg
tally (not the larva) from the cruise, Ahlstrom and his
coworkers calculated the Sardinops stock to be 48.000
tonnes in February 1956, 505.000 in April 1956 and 74.000

in February 1957. If we assume that Sardinops and Vinciguerria

produce larvae at the same rate, we can estimate the

amount of Vinciguerria to between 0.2 and 1.2 million tonnes.

There were much fewer Vinciguerria larvae found on these

three cruises than average, indicating that the result can be

close to that expected from the direct calculations.

What we have looked at so far are methods to get an absolute
measure for stock size but often a relative measure will
suffice. Thus if one has a few years of estimates of egg
production and stock size from other methods - such as

back calculations from virtual population analyses = it is
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possible to establish a regression which can be used to

predict absolute stock size.

This method has several advantages. If the fecundity,
mortality and equipment selectivity are constant from year
to year these will no longer be sources of error. However,
it is still vitally important to have adequate data to
create a picture of the entire course of spawning in time

and space.

The determining factor is that the material is collected
each year at relatively the same time and place of spawning.
Nonetheless, the sampling effort saved can be considerable
and it is probable that the results obtained by these
relative methods are satisfactory. The assumption is that
one has data from enough years to give a reasonably good

regression.

We have hitherto said very little about the confidence
intervals around the estimates we are making. The main
reason for this is the lack of literature on this topic.
Furthermore the models found in the literature are concerned
only with the variance of the number of eggs found in the
sea. I think there are no satisfactory treatises of the
variance due to rate of development or age determination

of the stages under investigation.

Even without taking this last source of error into consider-
ation, it seems that the confidence intervals are usually

more than 50% of the stock estimates.

The determination of (parent) stock size from egg and larva
data will therefore not give particularly high precision

in the estimates. I will, however, conclude that the method
is useful, both as a supplement to other methods and where

other estimates are not available.
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USE OF PROBABILITY PAPER TO ANALYSE NORMAL DISTRIBUTIONS

If we plot the cumulative freguencies of a normal distribution
on a probability paper we get a straight line. The crossing of

50% gives us the mode of the distribution,
If we add several distributions, we get a line with an inflection-

point corresponding to each of the crossing points between two

distributions (Fig. 1),

Harding (1949) described a method for analysing the normal
distributions which are representing the components of a
polymodal distribution. The method was refined by Cassie

(1954) and the following gives a short account for his method.
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Fig.>l. A three-modal normal distribution split into

its components.
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Take the size distribution of a fish, and plot the comulative

frequency distribution (the circles in Fig. 2.).

-~

Find the inflection points. This may take some experience, and

some trial and error may also be envolved.

In Fig.2 the following inflection points were found:

10%, 66%, 91% and apparently 98.6%.

The segments of the curve is supposed to represent the 0, 1, 2,

3 and 4 year old fish respectively.
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Fig. 2. A comulative frequency distribution split

into its normal components. For explanation, see text.



The percentage of each age group is:

0 10% -0% = 10%
1 66% -10% = 56%
2 91% -66% = 25%
3 98.6% -91% = 7.5%
4 100% -9B.6% = 1.4%

The 0O-group show probably little overlap with older fish, and
should be analysed first.

The first point A represents 2.3% of the whole distribution,

i.e. 2.3% of the fish has the size corresponding to this point

or smaller.

We want to find the proportion of the 0O-group fish who has this

size or smaller:

2.35 220 - 239
10
as the O=-group represents 10% of the total sample. This is

marked A'.

The next point B gives

5.0% 100 _ 50% giving point B'.

10

We can go on like this and construct the line marked 0 in

Fig. 2,

Next we look at point C representing 10.9% of the whole sample.
Subtracting the 10% accounted for by the 0-group we get 0.9%

which 1s the commulative frequency of the 1l-group which is smaller
than C.

Therefore this point represent

0.9% 100 _ 1.6% of the l-group.

56
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As we go on there will be an increasing overlap between 1 and
2, and the points we fit using this procedure will be expected

to lay to the right of the curve 1.
Therefore we have to modify the method. Take point D corres-

ponding to 64.8%. This point corresponds to point D" repre-

senting 97.0% of the I-group.

The percentage of the total represented by the l-group will
then be

978 285 = 54.3%

100

To this we must add the 10% represented by the O0-group.
Therefore, point D represents 64.8% 0of this 0- and 1l-group
represents 54.3% + 10% = 64.3%.

Therefore, 64.8% -~ 64.3% = 0.5% represents the II-group.
The point D' for the II-group line is then

0.5% — = 2.0%

Summary of the method.

Using the left limb of a component to construct the percentage

distribution for that component.
A. If there is no overlap with lower components:

1. Read percentage from the comulative curve: (P)

2. Subtract the percentage of all lower components (L)

3. Calculate the percentage within the component studied:
10

C.
1

p = (P-L)

(Ci is the percentage of the component in question in the

whole sample).

4. Plot p values to get a straight line.
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When there is overlap between C1 and C2.

Read the percentage P from the comulative curve.

Find the corresponding percentage P1 from the component

l1-curve,

The percentage of the total represented by this component
will be T

©1
T = Pl 100
Subtract T and L from P. P-L-T represent the percentage

of component C, (as percentage of the total material).

2

Calculate the corresponding point on the component 2

curve:

(p-1-T) 199

g
It
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