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SHORT REPORT

Microsatellite DNA used for parentage identification of partly digested
Atlantic salmon (Salmo salar) juveniles through non-destructive diet
sampling in salmonids

ØYSTEIN SKAALA1*, KEVIN A. GLOVER1, BJØRN T. BARLAUP2 &

REIDAR BORGSTRØM3

1Institute of Marine Research, Bergen, Norway, 2Laboratory of Freshwater Ecology and Inland Fisheries (LFI),

Uni Environment, Bergen, Norway, and 3Department of Ecology and Natural Resource Management, Norwegian

University for Life Sciences, Ås, Norway

Abstract
Predation during early life history is an important component of fitness in salmonids. Farmed Atlantic salmon display lower
survival in the wild in comparison to wild salmon; however, the underlying mechanisms remain unknown. Salmon eggs from
69 families of farmed, hybrid and wild parentage were planted into a river. Following swim-up, 760 brown trout predators
were non-lethally sampled. Of the trout, 4.2% had ingested salmon fry (0�15 fry/trout). From a total of 48 salmon fry
recovered from trout stomachs, 46 were successfully identified to family using microsatellites. Of the 69 planted families,
29 were represented among the predated salmon fry; however, there were no significant differences in susceptibility to
predation between the three groups (farm, wild and crosses), but the power of resolution was low due to small sample sizes.
Nevertheless, we have successfully demonstrated that microsatellites can be used to address natural selection via diet
analysis of predators in a natural system.

Key words: Stomach analysis, non-destructive sampling, parentage identification, predation mortality, salmonids

Introduction

Natural mortality is high in salmonid fishes,

especially during the early life stages (Wotton

1969). This starts immediately after swim-up, prob-

ably as a result of competition for territories and

food and predation mortality associated with this

behaviour (Elliott 1989, 1994). Mortality continues

throughout the freshwater period due to predation

from fish (Alexander 1979; Barstad et al. 1998; Vik

et al. 2001), mammals (Heggenes & Borgstrøm

1988, 1991; Doloff 1993) and birds (Lindroth

1955; Feltham 1995), as well as physical factors

like droughts (Elliott 1994) and freezing (Borgstrøm

& Museth 2005).

Differences in individual fish behaviour may

influence their risk of being preyed upon, as docu-

mented by Bachman (1984) in a study of local and

stocked brown trout (Salmo trutta Linnaeus, 1758).

Also, Skaala et al. (1996) found that offspring

resulting from natural matings between introduced

hatchery brown trout and wild sea trout in the

stream Øyreselv had a lower survival rate than wild

parr. Wild and farmed Atlantic salmon (Salmo salar

Linnaeus, 1758) display very different growth rates

under farming conditions (Glover et al. 2009).

Studies conducted with simulated predators under

artificial conditions showed that offspring of farmed

salmon displayed higher risk-taking behaviour than

offspring of wild salmon (Einum & Fleming 1997).

Furthermore, field studies have revealed that

offspring of native wild salmon display greater

survival in the wild than offspring of farmed salmon

(McGinnity et al. 1997, 2003; Fleming et al. 2000;

Skaala et al. 2012). Nevertheless, while it is likely

that observed differences in survival between salmon

of farmed and wild genetic background are at least in
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part due to differences in susceptibility to predation,

this still remains untested.

DNA-based methods have been applied to a wide

range of forensic applications on both human and

animal tissues. Basically, as long as the target sample

is not overly degraded, DNA methods will permit

identification of species and individuals. Looking

specifically at stomach content analysis, DNA

methods have permitted the identification of diet.

For example, analysis of microsatellite DNA markers

have permitted the identification of partially digested

minke whale (Balaenoptera acutorostrata Lacepède,

1804) skin, ingested by Greenland shark (Somniosus

microcephalus Bloch and Schneider, 1801) to indivi-

dual whales included in a genetic register (Haaland

et al. 2011; Glover et al. 2012b). Similarly, analysis

of microsatellite DNA markers have permitted the

documentation of filial cannibalism in the wild by

identification of ingested larvae to the guarding

father by paternal match or mismatch at multiple

microsatellite loci (DeWoodyet al. 2001). Furthermore,

microsatellite DNA markers have been extensively

used to conduct parentage testing (i.e. identification

of both mother and father) in aquaculture and

livestock management (Taggart 2007), to conduct

parentage testing in experimental field studies of

survival (e.g. McGinnity et al. 1997, 2003), and

more recently to identify the origin of salmon escaping

from aquaculture farms (Glover et al. 2008, 2010).

However, until now they have not been used in full

parentage testing (i.e. identification of both mother

and father) of partly digested stomach content in

predators sampled within a natural habitat.

Given the above, we set three primary objectives

for the present study: (1) to quantify the frequency

of salmon juveniles observed in the stomachs of

brown trout predators in a natural environment; (2)

to evaluate whether microsatellite DNA analysis

would permit the identification of ingested salmon

recaptured from brown trout stomachs to family,

and thus their group of origin (i.e. farmed, hybrid or

wild parentage); and finally (3) to evaluate whether

salmon of farmed, hybrid and wild parentage dis-

played different exposure to mortality by brown

trout in the natural environment.

Material and methods

The River Guddalselva drains into the middle region

of the Hardangerfjord on the west coast of Norway.

The drainage area is 37 km2 and the water discharge

ranges from approximately 0.5 to 16 m3 s�1. The

length of the river available for the anadromous

species, Atlantic salmon and brown trout, is approxi-

mately 2 km, from the sea up to the waterfall at

Liarefossen, which acts as a barrier to ascending fish.

Above the waterfall, resident brown trout are the

only naturally occurring fish species. The brown

trout is a predator of juvenile fish in this section

of the River Guddalselva. The European dipper

(Cinclus cinclus Linnaeus, 1758), nesting along the

river, is also known to prey on salmonid fry (Haftorn

1971).

As part of an ongoing field experiment to inves-

tigate survival and growth of offspring of farmed

and wild Atlantic salmon, eyed salmon eggs from

known crossings were planted above the waterfall in

the River Guddalselva. There was no natural spawn-

ing by salmon in this area. Eggs and milt from

wild salmon were supplied from the Norwegian

Genebank for Atlantic salmon and transferred to

the Voss hatchery, as were eggs and milt of farmed

Figure 1. The number of eggs planted in each family (continuous line) and the number of salmon fry predated from each family identified

by DNA microsatellites (bars). Black bars: farm. White bars: wild. Hatched bars: crosses.

324 Ø. Skaala et al.
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salmon. Controlled family crosses were established

and eggs incubated as single family units. At the eyed

egg stage, eggs were shocked and the dead ones

removed before being accurately counted. Eggs from

different families and experimental groups were

thoroughly mixed by agitation in several containers

in order to ensure that families and experimental

groups were entirely randomized prior to being

transported to the River Guddalselva, where perfo-

rated plastic baskets (40�70�20 cm) were prear-

ranged with gravel and dug down in the river bed. In

each basket, eggs were divided into egg pockets

containing 500 eggs each to imitate a natural redd

(Barlaup & Moen 2001). In total, 205,266 Atlantic

salmon eyed eggs from 69 families were planted

in the winters of 2003, 2004 and 2005. After the

swim-up stage, baskets were dug up and dead eggs

counted to estimate egg survival. The planted stretch

of the river was then repeatedly electrofished for

resident brown trout. All captured fish were tranqui-

lized by benzocaine and all the stomach content was

flushed out by carefully inserting a thin soft plastic

tube through the mouth and down into the stomach

and then flushing the stomach with fresh water

(Hyslop 1980). Stomach contents were collected

from each trout and the remains of fish fry, digested

to a varying degree, were preserved in ethanol. In

order to obtain information about the size range

of predators, the total length of more than 80%

was measured. After the flushing and sampling of

stomach contents, predators were kept in an ob-

servation tank until fully recovered, after which they

were returned to the river.

Partially digested salmon fry collected from trout

stomachs were distinguished from brown trout fry by

remaining external colouration and size and body

shape, as brown trout fry is usually larger and have a

deeper body shape than salmon fry. Salmon fry were

then subjected to DNA analysis for assignment of

parentage and experimental group. DNA was ex-

tracted from fish fry remains using a commercial kit

(Qiagen DNAeasy). Four microsatellite markers,

Ssa85, Ssa202, Ssa197 (O’Reilly et al. 1996) and

SSOSL85 (Slettan et al. 1995), were used to

genotype all parental fish used in the egg planting

and the partially digested fry samples. These ana-

lyses were conducted at the Institute of Marine

Research in Bergen on an ABI 3730 Genetic

Analyser. The microsatellite amplification condi-

tions are available from the authors upon request.

The four markers permitted �95% of offspring to

be identified unambiguously to one of the 69 families

using the family assignment program FAP (Taggart

2007). This meant that in theory, a low number of

salmon in the river may share a composite genotype

between two families, although this only occurred

within experimental groups (i.e. farmed, wild and

hybrid) and therefore would not bias estimations of

predation rates at the group level.

Results

Based on counts of dead eggs in baskets, the survival

to hatching was 99.1% (2003), 98.3% (2004) and

98.3% (2005). The total number of brown trout

captured and length measured between June and

August in 2003, 2004 and 2005 was 616. On

average, 4.2% of the brown trout had Atlantic

salmon fry and parr in the stomachs (Table I).

Occurrence of salmon fry in brown trout stomachs

varied among brown trout of different length,

and there was a slight tendency for fewer salmon

juveniles in the stomachs of smaller brown trout

(Table I). Altogether, 48 partly digested salmon

juveniles were identified in the brown trout sto-

machs. It was only possible to obtain a DNA profile

for 46 of these juveniles, as 2 displayed heavily

degraded DNA profiles. Of the 46 individuals

successfully genotyped, all were successfully identi-

fied to a single family (i.e. none of these individuals

displayed genotypes clashing between families). In

single stomachs, the number of eaten individuals

varied from 1 to 15. During July 2003, salmon

juveniles were found in 5 stomachs out of 144

analysed, but these predators are not included in

Table I, as length was not measured on all indivi-

duals. Therefore, altogether 760 predators were

checked. One salmon fry was found in the stomach

of a salmon parr 10.4 cm in length, out of 10 salmon

parr that were investigated in July 2005.

Fry originating from 29 of the total of 69 families

planted in the River Guddalselva were represented in

the stomach samples of brown trout and Atlantic

salmon (Table II). The number of identified salmon

juveniles in the stomach samples ranged from one to

four per family. The recorded numbers of fry from

farm and hybrid origin in the stomach samples were

higher than expected relative to the number of

planted eggs, and the number of fry of wild origin

was lower than expected (Table II). However, there

were no significant differences between the three

Table I. Number of brown trout stomachs flushed and examined

for fish and fish remains and number of stomachs with fish in the

period June�August in 2003, 2004 and 2005.

Length-

class (cm)

Number

examined

Number with fish

in stomach

Predator

frequency (%)

5.0�9.9 76 3 3.9

10.0�14.9 364 13 3.6

15.0�19.9 156 9 5.8

20.0�31.9 20 1 5.0

Total 616 26 4.2

Family identification of partly digested fry 325
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groups (Chi squared test, x2�1.08, df �2, P�
0.58), but the power of resolution was low due to

the small sample sizes. The 14 fry successfully

identified in one trout stomach originated from 12

different families, all of which originated from cohort

3 planted in winter 2005. Out of these, seven were of

wild origin, three were hybrids and four were farmed.

Discussion

The present study successfully identified the paren-

tage of partly digested salmon fry in stomach

contents of brown trout and, therefore, also the

number of prey of farm, hybrid and wild origin.

Thus, we have demonstrated that in combination

with stomach flushing of predators, DNA micro-

satellites can be used for parentage identification

even in partly digested stomach contents in fish by a

non-destructive sampling of predators.

Molecular-genetic methods, including PCR-based

techniques, have previously been used in a variety

of studies for the identification of prey species

(Scribner & Bowman 1998; Jarman et al. 2002;

Symondson 2002; Matejusova et al. 2008), but, to

our knowledge, the present study is the first to

identify individual prey to family level. It has been

argued that for identification of prey species,

molecular techniques may give a less biased picture

of the diet composition than what is obtained by

direct visual inspection of stomach or faeces content

(Symondson 2002). In a study of salmonid prey in

scats of grey seal (Halichoerus grypus Fabricius,

1791) and harbour seal (Phoca vitulina Linnaeus,

1758) Matejusova et al. (2008) consistently detected

the presence of prey in more scats by a DNA

technique than when only hard-part analysis was

used. In our study, only whole fish or partly digested

fish were analysed and this probably underestimates

the amount of prey fish eaten by brown trout, since

small juveniles without scales will be very quickly

digested (Brabrand 1995). Thus, the 4.2% of brown

trout observed with salmon fry in their stomachs

probably represents the level of predation displayed

by this species on salmon parr. Farmed escaped

salmon have successfully introgressed in some native

populations (Skaala et al. 2006; Glover et al. 2012a),

but their offspring generally displayed reduced

survival in the wild from eyed egg to smolts when

compared to the offspring of wild and hybrid salmon

(McGinnity et al. 1997, 2003; Fleming et al. 2000).

In a recent study on survival of farm, wild and hybrid

salmon from the eyed egg to the smolt stage in River

Guddalselva, Skaala et al. (2012) found pronounced

differences among families and that egg size had an

important impact on survival. However, the causal

explanations, such as different predation mortality,

have not been investigated. Bachman (1984) found

higher mortality of introduced trout compared to

native trout and explained the difference by in-

creased predation due to higher activity and more

exposure to predators. Similarly, in a laboratory

study Einum & Fleming (1997) found differences

between offspring from wild and farmed salmon in

aggression and in response to a predator, where

farmed salmon spent less time in shelter after

predator attack. Such differences may be caused by

selection for growth rate and possibly behavioural

changes following farming selection (Glover et al.

2009). It was expected that these differences would

change feeding behavior and predator avoidance in

the wild, thereby making farm and hybrid offspring

more vulnerable to predators like brown trout and

European dippers. However, although offspring of

farm and hybrid salmon were slightly over-repre-

sented compared to offspring of wild salmon, as prey

in brown trout stomachs in the present study their

occurrence was not significantly different to that of

wild fry. Clearly, despite extensive efforts to quantify

predation by brown trout, the frequency of sampled

individuals that had preyed upon the hatching

salmon fry was low and, thus, it was not possible to

gain large enough sample sizes to robustly test

whether differential mortality existed between the

groups. Nevertheless, these results demonstrated

that 29 of 69 families were preyed upon, and salmon

of farmed, hybrid and wild parentage were more or

less equally preyed upon. In order to gain a large

sample size, more extensive sampling of brown trout

would have to be conducted. Nevertheless, the

predation of brown trout on Atlantic salmon fry is

clearly demonstrated in this study.

In summary, the present study has demonstrated

the feasibility of predation studies by a combination

of non-destructive sampling of predators and DNA-

based parentage identification. This extends the use

of DNA microsatellites beyond traditional applica-

tions and may open up new studies on early life

history, predation mortality and comparisons of

survival and fitness among fish families and groups.

Table II. Number of farm, hybrid and wild salmon families and

eggs planted in the River Guddalselva and number of families and

fry identified by DNA microsatellites in stomach samples of

brown trout and salmon parr.

Farm Hybrid Wild Total

Planted families 26 23 20 69

Recaptured families 12 10 7 29

Planted individuals 75,600 66,153 63,513 205,266

Recaptured

individuals

19 16 11 46

Expected number of

individuals

16.9 14.8 14.2 45.9

326 Ø. Skaala et al.
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