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Abstract

Otoliths are biocalcified bodies connected to the sensory system in the inner ears of fish. Their layered, biorhythm-following
formation provides individual records of the age, the individual history and the natural environment of extinct and living
fish species. Such data are critical for ecosystem and fisheries monitoring. They however often lack validation and the poor
understanding of biomineralization mechanisms has led to striking examples of misinterpretations and subsequent
erroneous conclusions in fish ecology and fisheries management. Here we develop and validate a numerical model of
otolith biomineralization. Based on a general bioenergetic theory, it disentangles the complex interplay between metabolic
and temperature effects on biomineralization. This model resolves controversial issues and explains poorly understood
observations of otolith formation. It represents a unique simulation tool to improve otolith interpretation and applications,
and, beyond, to address the effects of both climate change and ocean acidification on other biomineralizing organisms such
as corals and bivalves.
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Introduction

Otoliths, biomineralized aragonite bodies in the fish inner ear,

have long been recognized as key biological archives. Many

species deposit seasonally alternating opaque and translucent

zones (Fig. 1) that provide proxies of age critical in fish population

dynamics [1]. By providing dated morphological, structural and

chemical signatures, otoliths are also keys for past and present

environment reconstructions [2] and life trait characterization

[3,4,5,6]. Such data are critical for marine ecosystem and fisheries

monitoring. Due to the poor understanding of biomineralization

mechanisms, otolith proxies however often lack validation and are

open to subjective interpretations [1,7]. Inaccurate otolith-based

age estimation of orange roughy off New Zealand [8] and walleye

pollock in the Bering Sea [9] are among the most striking

examples of misinterpretations that have contributed to the

overexploitation of fish populations.

Both metabolism and temperature are known to play key roles

in otolith biomineralization [1,10,11]. As highlighted by meta-

analyses [1,12], disentangling these two factors is however

challenging. In temperate waters, the formation of translucent

zones is generally considered to occur during winter whereas

opaque zones would be formed during rapid growth periods in

spring and summer (Fig. 1). However, this statement is often not

valid. Opposite patterns have been reported as well as additional

non-periodical zones that may lead to erroneous age and growth

estimations [13]. Neither experimental studies monitoring tem-

perature and feeding conditions [10,11] nor proposed otolith

biomineralization models [14,15,16] have been able to explain the

complex interplay between fish metabolism and temperature on

otolith formation. In particular, consideration of mineral factors

alone [15] has been challenged by recent characterizations of the

role of organic compounds in otolith biomineralization [17].

We here propose a bioenergetic model of otolith biomineraliza-

tion in the framework of the Dynamic Energy Budget (DEB)

theory [18] (Fig. 1). This general theory for metabolic organization

describes how an organism assimilates and utilizes energy

throughout its life cycle. The key feature here is the application

of the concept of metabolic product, as defined by DEB theory

[18]. The mineral and organic fractions of the otolith are regarded

as individual metabolic products involving contributions from

somatic growth (pG) and maintenance (pM) DEB energy fluxes

(Fig. 1), and otolith opacity variations result from variations in the

ratio between these two fractions [19]. Given that in vitro

aragonite precipitation is temperature-dependent [15], tempera-

ture variations also directly act on the dynamics of the mineral

fraction (Fig. 1). Mathematically, given the parameterization of

metabolic fluxes pG and pM defined by DEB theory [18], otolith

growth (Eq. 1) and opacity (Eq. 3) can be regarded as functions of

the state of the individual (reserves and length) and of its

environment (temperature and food density). The 1D simulation

of otolith formation may be transformed into a 2D transverse

PLoS ONE | www.plosone.org 1 November 2011 | Volume 6 | Issue 11 | e27055



section image of a growing otolith using calibrated shape

deformation algorithms for otolith images [20].

Results and Discussion

Model calibration and validation were carried out from two

experimental cod otolith datasets. The calibration relied on a 300-

day experiment on juvenile cod which experienced a shift to lower

feeding conditions and varying temperatures (Fig. 2a; Fig. S1 & S2

and Table S1 & S2). The validation involved a 800-day

experiment on juvenile cod which experienced seasonal temper-

ature variations and constant feeding (Fig. 2b; Fig. S3 & S4).

Metabolic effects alone induced most of the opacity variations in

the first experiment but could not explain seasonal opacity signals

in the second experiment (Fig. 2; Fig. S2 & S4). Temperature

factor cC(T) was negatively correlated to opacity in the first

experiment (Fig. 2, left column) and could not account for the

overall decreasing opacity trend in the second experiment (Fig.

S4). Only the interplay between the metabolic and temperature

factors led to a reliable prediction (R2.0.9, p,0.001 in both

cases). These results also outlined the different dynamics of feeding

and temperature effects. Whereas temperature acted immediately

through the regulation factor cC(T), food-induced effects were

typically smoothed out, the reserves of the individual acting as a

buffer.

The proposed model opens up new prospects for the

understanding of differences in otolith patterns of a given species

within different ecosystems (Fig. 3). As an illustration, we

considered two cod populations respectively in the Barents Sea

(BS) and in the southern North Sea (NS) (Fig. 3). Their otoliths

depict antiphasic seasonal opacity patterns (Fig. 3B). BS cod

follows the general pattern with a winter translucent zone and an

summer opaque zone, while NS cod forms an opaque zone in

spring and a translucent one in late summer [21]. In addition,

NS cod otolith images are much more contrasted than BS cod

ones (Fig. 3C). By forcing the calibrated model with population-

specific feeding and temperature scenarios stated from data

available in the literature (Fig. S5, and Video S1), we explained

these two population-specific characteristics. The smaller vari-

ations in both feeding and temperature conditions experienced

by the BS cod result in otolith images with a lower contrast well

redrawn by the model (Fig. 3C). Observed seasonal patterns

(dashed lines, Fig. 3B), given as the relative proportions of

opaque edges in monthly sampled otolith sets [21], were

compared to normalized versions of the simulated opacity

patterns (solid lines, Fig. 3B; Fig. S6). The model convincingly

reproduced the seasonal patterns (R2.0.96 p,0.001). Neither of

the two populations conforms to the generally assumed

interpretation, i.e. slow-growth winter translucent zones and

fast-growth summer opaque ones [1]. BS cod forms a late winter

translucent zone which is induced by migration to warmer

waters rather than slow-growth conditions (Fig. S8). The

opposite pattern of the NS cod results from the late summer

formation of a translucent zone due to low feeding activity with

simultaneous high temperatures (Fig. S7). Besides, we showed

that similar seasonal opacity patterns for different populations,

here Barents sea cod and Norwegian coast cod populations,

might not necessarily refer to similar feeding and temperature

conditions but might also be observed with different population-

specific scenarios (Fig. S9). These results highlight the complex

interplay between temperature and feeding conditions each of

Figure 1. Model for otolith biomineralization. Otolith formation corresponds to an accretion of successive layers of calcium carbonate (CaCO3)
embedded in an organic matrix (OM) which precursors are synthesized by the saccular epithelium. At a yearly scale seasonal environmental and
physiological variations induce opacity changes with an alternated deposition of translucent (TZ) and opaque (OZ) zones appearing respectively as
dark and bright zones under reflected light. We here state the otolith as a metabolic product as defined by the Dynamic Energy Budget (DEB) theory
for metabolic organization [18]; Otolith formation is driven by fish growth (pG) and maintenance (pM) metabolic fluxes which depend on the
individual state and the temperature and feeding conditions the fish experiences. We also account for the temperature-dependent dynamics of
CaCO3 precipitation [15].
doi:10.1371/journal.pone.0027055.g001

A Bioenergetic Model to Otolith Formation
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which may individually have a positive or a negative effect on

otolith growth and opacity. These interactions as well as the

above-mentioned differences in their relative response dynamics

explain why empirical studies have reached contradictory

conclusions on the regulation of the formation of otolith

structures among species and stocks [12].

Improving the reliability of otolith-based individual and

population data is critical to population dynamics and ecology.

In this respect, our model provides a conceptual basis to interpret

well-known but poorly understood otolith characteristics:

N The coupling between otolith growth and fish somatic growth

during high feeding periods [10,22] results from the large

contribution of the somatic growth flux (aCpG..bCpG, Eq.

1). In contrast, low feeding periods [10,22] lead to a

decoupling due to the weaker but significant contribution of

the maintenance flux in otolith growth (aCpG,0 and bCpG.0,

Eq. 1);

N The correlation between otolith growth and fish respiration

[23] follows naturally as CO2 production is also modelled as a

weighted sum of metabolic processes in a DEB context [18];

N The differences in the relative contributions from the somatic

and maintenance fluxes (Eq. 3) result in metabolism-induced

opacity changes; improved feeding conditions lead to a more

opaque accretion [21]. They also explain the lifespan decrease

of opacity as the growth flux decreases as the individual gets

closer to its asymptotic size [19];

N The greater otolith accretion at higher temperatures [11,24] is

a direct outcome of the temperature-dependent dynamics of

the precipitation of aragonite (Eq. 1). This mechanism also

accounts for the formation of a more opaque otolith zone

when the fish experiences colder temperatures [11,24].

Beyond these new mechanistic interpretations, scenario-based

model simulations are of primary interest to interpret and predict

otolith characteristics in response to environmental changes (e.g.

climate). For instance, they provide new means for the

discrimination of seasonal vs. non-seasonal otolith structures, a

crucial issue for the improvement of the accuracy of individual

age data [1]. Direct model inversion also presents a great

potential for the reconstruction of individual life traits from

otolith patterns. For instance, given temperature records obtained

from data storage tags or estimated from the oxygen isotopic

ratios of the otolith, modeled otolith accretion and opacity may

be fitted to the recorded macrostructures of real otoliths by tuning

individual feeding dynamics and growth. To our knowledge, the

Figure 2. Model calibration and validation on cod otoliths using two experimental datasets: 1) reduced feeding conditions (day 110
to day 220) with seasonal temperature variations (left column), and 2) constant feeding with seasonal temperature cycles over a
two-and-a-half-year period (right column). We report temperature and feeding conditions (a, b) and the comparison between model
simulations and opacity data (c, d). We display opacity data (Data, gray) and model simulations without the temperature effect on calcium carbonate
precipitation (Model A, blue) and with this temperature effect (Model B, red).
doi:10.1371/journal.pone.0027055.g002

A Bioenergetic Model to Otolith Formation
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acquisition of feeding dynamics at the individual scale remains a

challenge in non-monitored environments, but it is particularly

important for the understanding and prediction of food web

dynamics. The analysis of otolith chemical composition could

also benefit from the proposed framework. Both element and

isotopic signatures provide invaluable information on fish

migration and population connectivity [4,6]. However, they

often depict complex interactions between endogenous and

environmental factors [7] that may be deciphered by extensions

of our approach.

The biomineralization of other structures such as coral skeletons

and bivalve shells also lacks a comprehensive understanding. The

proposed framework provides a generic basis for modeling their

formation. The biomineralization mechanisms we considered, a

metabolism-driven control parameterized by somatic growth

(assumption A1) and maintenance energy fluxes and a tempera-

ture-specific effect on precipitation dynamics and (assumption A2)

are generic and their implementation exploits a theory for

metabolic organization already applied to fish, bivalves and corals

[25,26]. DEB-based biomineralization models could then provide

simulation tools to addres the effects of climate change on a large

variety of calcifying organisms [27]. Furthermore, by providing a

framework where pH conditions could impact i) metabolic

processes and ii) CaCO3 precipitation directly and indirectly via

their impact on metabolic processes, we strongly believe that these

models represent a promising starting point to investigate the

consequences of ocean acidification on biocalcifying organisms

[28].

Methods

A generic model of otolith formation
The biomineralization of otoliths is primarily controlled by

organic compounds in the endolymph [17]. These organic

compounds being synthesized by specialized cells of the saccular

epithelium, we here relate otolith formation to fish bioenergetics in

the framework of the DEB theory [18]. Our model relies on two

basic assumptions:

N A1-Both the aragonite fraction and the organic matrix of an otolith are

metabolic products. In DEB theory, such compounds are formed

during metabolic processes but do not require maintenance

and are not used to fuel other metabolic processes [18]. This

applies to fish otoliths as they are inert biomineralized

structures whose formation is primarily controlled by physio-

logical factors [17];

N A2-The precipitation of the mineral fraction of the otolith is temperature-

dependent. This assumption is supported by in-vitro analysis of

aragonite precipitation [15].

From (A1), the dynamics of the volumes of the mineral and

organic fractions of the otolith, respectively VC (mm3) and VP (mm3),

are derived as functions of the somatic growth flux (pG, J.d21) and

the maintenance flux (pM, J.d21) of an individual fish:

dVC

dt
~cC Tð Þ: aCpGzbCpM½ � ð1Þ

Figure 3. Resolving the non-synchronous seasonality of opacity patterns of Barents Sea (BS) and southern North Sea (NS) cod
otoliths: Feeding and temperature conditions (panel A) that explain otolith opacity patterns observed for southern North Sea (NS,
black) and Barents Sea (BS, red) cod (panels B and C). Observed seasonal patterns (dashed lines), given as the relative proportions of opaque
edges in the monthly sampled otolith sets [21], are compared to normalized simulated opacity patterns (solid lines). Model simulations reproduce
both the opposite seasonal opacity patterns (panel B) and the remarkable differences in the contrast of the otolith images of the two populations
(panel C). The Supp. Mat. details the stock-specific scenarios (Text S1 & Fig. S5) and animated model simulations are provide as an electronic appendix
(Video S1).
doi:10.1371/journal.pone.0027055.g003

A Bioenergetic Model to Otolith Formation
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dVP

dt
~aPpGzbPpM ð2Þ

where aC, bC, aP, bP (mm3.J21) are model parameters. The

regulation factor cC(T), stated as an Arrhenius law (Text S1,

Section 1), accounts for the temperature effect on mineral

precipitation dynamics (A2). As defined by DEB theory [18], the

growth and maintenance fluxes (pG and pM) are functions of the

state of the individual (reserves and length) and of its environment

(temperature and food density) (Text S1, Section 1). Given that the

organic fraction accounts for less than 5% of the otolith volume

[17], we neglect its contribution and the otolith volume is

predicted by the volume of the mineral fraction.

Otolith opacity O relates to variations in the ratio between the

volumes DVP and DVC of the organic and mineral fractions of the

newly precipitated material [19]:

O~
DVP

DVC

&
dVP=dt
dVC=dt

~
1

cC Tð Þ
: aPpGzbPpM

aCpGzbCpM

ð3Þ

The temporal simulation of otolith formation is transformed into a

2D transverse section image of an otolith using calibrated shape

deformation algorithms [20]. This allows comparing simulated

otolith images to real ones. We let the reader refer to the Supp.

Mat. for further details on the modeling assumptions (Text S1,

Section 1) and model parameters (Table S1 & S2).

Model validation and calibration
We used otolith data from two different cod rearing experiments

for model calibration and validation. In Experiment 1, one-year-

old fish ranging from 30 to 35 cm were reared under seasonal

temperature variations in high feeding conditions for 100 days,

lower feeding conditions for the subsequent 120 days and ad

libitum conditions for the last 80 days [10]. In Experiment 2, fish

were 7 months old at the start of the experiment. They were fed ad

libitum for 22 months and experienced seasonal temperature

conditions [29]. In both cases, calibrated otolith data (i.e., time-

referenced otolith growth and opacity data) were available along

with the fish growth data.

The otolith data from Experiment 1 along with published data

[30] were used to calibrate the DEB otolith model and the dataset

from Experiment 2 was used as a validation dataset. The Supp.

Mat. (Text S1, Table S1 & S2) further details model calibration

and validation and reports calibrated model parameters.

Analysis of seasonal otolith patterns
We applied the calibrated cod otolith model to the analysis of

the opposite seasonal opacity patterns of two cod populations,

namely Barents Sea cod and Southern North Sea cod [21]. The

definition of two population-specific feeding and temperature

scenarios relied on data available in the literature (Fig. S5):

N For the NS cod population, the yearly temperature conditions

are given by the dynamics of surface temperatures in the

southern North Sea [21]. Following [31], mid-level and high-

level feeding conditions were respectively assumed from

December to February and between March and July while a

low feeding behaviour corresponding to temperature highs was

considered from August to October;

N For the BS cod population, the considered temperature

conditions were issued from records of data storage tags [32]

showing a long southward migration to warmer temperatures

in winter. In accordance with this seasonal migration, we

assumed that feeding conditions improved in the winter and

spring with a peak in feeding conditions, corresponding to the

seasonal feeding on capelin in March–April [33], followed by

lower feeding conditions form August to November prior to

the start of the southward migration in December.

For the two populations, we compared simulated otolith images

to real ones as well as the observed and predicted seasonal opacity

patterns. These observed seasonal opacity patterns from [21] were

given as the percentage of opaque otolith edges for monthly

sampled cod otolith sets. The seasonal patterns of the model

simulations were issued as detrended and normalized version of

the predicted opacitie series.

Supporting Information

Figure S1 Model simulations for a shift in feeding
conditions (Exp. 1): first row, feeding conditions,
temperature conditions (a–b); second row somatic and
otolith distal radius (c–d). Model simulations (red) are

compared to otolith data (gray) for the known feeding and

temperature conditions. The model parameters are given in

Tables S1 and S2.

(TIF)

Figure S2 Model simulations for a shift in feeding
conditions (Exp. 1): otolith data (gray, thin solid lines)
for the known feeding and temperature conditions are
compared to the model simulations for two parameter
settings: a model with no temperature-specific effect
(i.e., parameter TAC set to 0) (R2 = 0.93, p,0.001, blue
dashed line) and the calibrated otolith model (Table S1
& S2) (R2 = 0.96, p,0.001, red, solid line).

(TIF)

Figure S3 Model simulation for constant feeding condi-
tions and seasonal temperature cycles (Exp. 2): first row
(from left to right), feeding and temperature conditions
(a–b); second row, somatic growth and otolith distal
radius (c–d). The simulation of the calibrated model (red) is

compared to individual data (gray).

(TIF)

Figure S4 Simulation of opacity patterns for constant
feeding conditions and seasonal temperature cycles
(Exp. 2). Real opacity data (gray, thin solid lines) are compared

to three different simulations: a simulation of the calibrated model

(Table S1 & S2) (red, solid line), a simulation with no temperature

regulation (blue, dashed line) and a simulation where otolith

opacity depends only on temperature (magenta, dashed-dotted

line). The correlation coefficients with the real data were

R2 = 0.90, R2 = 0.66 and R2 = 0.43, respectively (p,0.001 in all

cases).

(TIF)

Figure S5 Model simulations for Southern North Sea
cod (NS, black) and Barents Sea cod (BS, red): food
density series (a), temperature series (b), somatic
growth patterns (c), and otolith opacity patterns (d).
The somatic growth data (panel c, dashed lines) were obtained

from Bolle et al. (Jørgensen 1992) for the both populations.

(TIF)

Figure S6 Seasonality of the timing of otolith zone
formation for the simulated and real data for NS and
BS cod: feeding conditions (a), temperature conditions

A Bioenergetic Model to Otolith Formation
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(b), and seasonal opacity patterns (c). BS cod are

represented by red and NS cod by black. We compared the

average proportions of translucent otolith edges for real otoliths

taken from Høie et al. (Høie, Millner et al. 2009) (dashed lines) to

identify simulated seasonal opacity patterns (solid lines).

(TIF)

Figure S7 Seasonal otolith opacity patterns for NS cod
with constant and non-constant feeding conditions:
feeding conditions (a), temperature conditions (b), and
seasonal opacity patterns (c). We display two simulations: the

one reported in Fig. S6 (solid lines, R2 = 0.96, p.0.001) and a

scenario assuming a constant feeding with the temperature

conditions used in Fig. S6 (dotted lines, R2 = 0.64, p.0.001).

Simulated opacity patterns are compared to the otolith data

(dashed, see Fig. S5).

(TIF)

Figure S8 Seasonal otolith opacity patterns for BS cod
with constant and non-constant feeding conditions:
feeding conditions (a), temperature conditions (b), and
seasonal opacity patterns (c). We display two simulations: the

one reported in Fig. S6 (solid lines, R2 = 0.96, p.0.001) and a

scenario assuming a constant feeding with the temperature

conditions used in Fig. S6 (dotted lines, R2 = 0.54, p.0.001).

The simulated opacity patterns are compared to the real otolith

data (dashed line, see Fig. S5).

(TIF)

Figure S9 Seasonality of the timing of otolith zone
formation for BS and Norwegian coastal (NC) cod:
feeding conditions (a), temperature conditions (b) and
seasonal opacity patterns (c). BS cod are shown in red and

NC cod in magenta. Both populations are known to display the

same seasonal otolith opacity pattern. We compared the average

proportions of translucent otolith edges for real otoliths taken from

Høie et al. (Høie, Millner et al. 2009) (dashed lines) with simulated

seasonal opacity patterns (solid lines).

(TIF)

Text S1 This Supplementary Text provides further
details and analysis regarding the key aspects of the

proposed bioenergetic model of otolith biomineraliza-
tion. It is organized as a report and involves three main sections:

N 1. A generic bioenergetic model of otolith biominer-
alization. This section further details model assumptions and

equations.

N 2. Model calibration and validation. This section details

calibration and validation dataset and results, and report

calibrated model parameters.

N 3. Resolving the seasonal timing of the formation of
opaque and translucent zones in fish otoliths of
different cod populations. This section details the analysis,

from model simulations, of the non-synchronous and synchro-

nous seasonal opacity otolith patterns of several cod popula-

tions, namely Barrents Sea, Southern North Sea and

Norwegian coast cod populations.

(DOC)

Table S1 Variables, parameter values and equations
for individual growth and somatic maintenance in a
standard DEB model.

(TIFF)

Table S2 Variables, parameter values and equations
for otolith biomineralization.

(TIFF)

Video S1 Animated version of model simulations re-
ported in Fig. 3.

(MOV)
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