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Abstract

Background: Despite the growing awareness of the necessity of a sustainable development, the global economy continues
to depend largely on the consumption of non-renewable energy resources. One such energy resource is fossil oil extracted
from the seabed at offshore oil platforms. This type of oil production causes continuous environmental pollution from
drilling waste, discharge of large amounts of produced water, and accidental spills.

Methods and principal findings: Samples from natural populations of haddock (Melanogrammus aeglefinus) and Atlantic
cod (Gadus morhua) in two North Sea areas with extensive oil production were investigated. Exposure to and uptake of
polycyclic aromatic hydrocarbons (PAHs) were demonstrated, and biomarker analyses revealed adverse biological effects,
including induction of biotransformation enzymes, oxidative stress, altered fatty acid composition, and genotoxicity.
Genotoxicity was reflected by a hepatic DNA adduct pattern typical for exposure to a mixture of PAHs. Control material was
collected from a North Sea area without oil production and from remote Icelandic waters. The difference between the two
control areas indicates significant background pollution in the North Sea.

Conclusion: It is most remarkable to obtain biomarker responses in natural fish populations in the open sea that are similar
to the biomarker responses in fish from highly polluted areas close to a point source. Risk assessment of various threats to
the marine fish populations in the North Sea, such as overfishing, global warming, and eutrophication, should also take into
account the ecologically relevant impact of offshore oil production.
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Introduction

The offshore oil industry discharges produced water into the sea,

both at the surface and at various depths [1,2]. The two primary

sources of produced water are fossil water present in the reservoir

and seawater injected into the reservoir to maintain pressure.

Produced water contains a complex mixture of organic and

inorganic substances with large variations in the amount and

composition between reservoirs and over the lifetime of a single

reservoir. In the Oslo-Paris (OSPAR) Convention area, the

discharge of oil via produced water is regulated on the basis of

total hydrocarbon concentration rather than volume or toxicity. At

the time of this study the maximum allowed concentration was

40 mg/L. Procedures generally used to limit the petroleum pollution

include separation of the hydrocarbons prior to discharge and, less

frequently, reinjection of the produced water into the reservoir.

At the time of this study, estimates of the annual worldwide

release of oil in the form of produced water into the oceans ranged

between 19,000 and 62,000 tons [2]. The corresponding estimate

for the North Sea was a total of approximately 8,200 tons

according to estimations from Norway, Denmark, the Nether-

lands, and the United Kingdom [2]. The discharge is steadily

increasing, since the volumes of produced water increase when oil

reserves become depleted. In 1992, the discharge of oil-based

drilling fluids, also known as muds, to the Norwegian continental

shelf was banned. These muds are still used, but must now be

reinjected into the reservoir or brought to shore for cleaning and

storage. Hence, in recent years muds released directly into the sea

have been primarily water-based.

We have investigated two areas in the North Sea with extensive

oil production: the Tampen area and the Sleipner area (Fig. 1).

The daily discharge of produced water in these two areas, as
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documented by the oil industry in 2002, was 278,000 m3 and

10,500 m3, respectively. The value for Tampen represents an

approximately 10-fold increase in the discharge of produced water

in that area over a decade [1]. At the time of this study, the

hydrocarbon content of the produced water released in the North

Sea by the offshore oil industry varied between 15 and 40 mg/L

[2]. These figures give an estimate of the daily release of oil and

grease of 4–11 tons at Tampen and 0.1–0.4 tons at Sleipner.

Accordingly, the discharge may differ by a factor of ten or more

between the two areas. The Egersund bank, with no oil or gas

production, was used as control. Some preliminary results from

this study were reported by Hylland et al. 2006 [3].

Figure 1. The investigated areas in the North Sea. Black dots indicate active oil platforms. The black ring at Frøy indicates a former oil
production site, which has been inactive since 2001, and from which the platform was removed in 2002. Diamonds indicate the sites where haddock
(Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua) were collected.
doi:10.1371/journal.pone.0019735.g001
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Genotoxicity was investigated also at the former oil production

site Frøy, which has been inactive since 2001 and from which the

platform was removed in 2002. The only visible traces of the

previous activities at this site were an approximately 506100 m

pile of drill cuttings and several buried pipelines on the sea floor.

In order to ensure a correct interpretation of the DNA adduct and

ethoxyresorufin O-deethylase (EROD) activity data, control

material was also collected southwest of Iceland, i.e. from remote

waters without any known point sources of pollution.

The aim of this study was to investigate if fish health is affected

by oil production in the North Sea. The responses of a battery of

established biomarkers proved to be similar to the biomarker

responses in fish from highly polluted areas close to a point source.

The results also indicate significant background pollution in the

North Sea.

Materials and methods

Fish
Haddock (Melanogrammus aeglefinus) was collected in the Tampen

area, the Sleipner area, and at the Egersund bank in the autumn

2002 (Fig. 1), at Frøy in the summer 2003 (Fig. 1), and southwest

of Iceland in the spring 2004. Atlantic cod (Gadus morhua) was

collected in the Tampen area and at the Egersund bank in the

autumn 2002 (Fig. 1). Within each species, the material was

homogeneous with respect to length, weight, gonad and liver size,

and there were no differences between the sexes in the investigated

variables. In accordance with contemporary regulations, no ethical

permit was needed for the collection and killing of the fish.

Sampling
The fish were caught by trawling and maintained in basins

during sampling in on-board laboratories. The fish were killed

with a hard blow on the head, and the abdomen was opened. The

gall bladder was dissected without contaminating other inner

organs and the bile was collected in cryotubes. The liver was

dissected and pieces were put in cryotubes. The liver piece for

analysis of DNA adducts was taken from the central part of the

liver. Epaxial muscle pieces were dissected and put in cryotubes.

All cryotubes were immediately snap frozen in liquid nitrogen.

The samples were later stored at 280uC until further preparation

and/or analysis.

Homogenisation of liver samples
The liver samples were thawed on ice and homogenised in 5

volumes of ice-cold 0.1 M phosphate buffer, pH 7.8, containing

0.15 M KCl, 5% glycerol, and 1 mM dithiothreitol, using a 9 mL

Potter-Elvehjem homogeniser (size 21) with four up and down

strokes at 400 revolutions per min and under constant cooling

with ice. The homogenate was centrifuged at 10,000 g and 4uC
for 30 min. The supernatant (S9 fraction) was collected and cen-

trifuged at 50,000 g and 4uC for 2 h. The supernatant (cytosolic

fraction) was collected, mixed and divided into aliquots, which

were put in cryotubes. The pellet (microsomal fraction) was

resuspended in the same medium as used for the homogenisation

and divided into aliquots, which were put in cryotubes. All

cryotubes were immediately snap frozen in liquid nitrogen. The

samples were later stored at 280uC until analysis.

Bile metabolites of PAHs
The bile samples were diluted 1:1600 with a mixture of

methanol and water (1:1), and metabolites of polycyclic aromatic

hydrocarbons (PAHs) were semi-quantified with fixed wavelength

fluorescence (FF) spectrometry. Fluorescence was measured at the

excitation and emission wavelength pairs 290/335 nm (2- and 3-

rings), 341/383 nm (4-rings), and 380/430 nm (5- and 6-rings),

optimised for the detection of metabolites of naphthalene, pyrene,

and benzo[a]pyrene, respectively, and with a slit width of 2.5 nm

for all excitation and emission wavelengths [4]. The results were

expressed as mg pyrene fluorescence equivalents (PFE) per mL bile.

In addition to this, the identity of the measured PAH metabolites

was confirmed with synchronous fluorescence spectrometry with a

difference of 42 nm between the excitation and emission

wavelengths [5].

Analysis of specific PAH metabolites in the bile (i.a. hydroxyl-

ated forms of naphthalene, phenanthrene, and pyrene) was

performed by gas chromatography/mass spectrometry (GC/

MS). These metabolites were first deconjugated by incubation

with b-glucuronidase (200 U/mL bile) containing sulfatase activity

(10 U/mL bile) in 0.4 M sodium acetate buffer, pH 5.0, at 40uC
for 2 h [6]. Hydrolysed metabolites were extracted with ethyl

acetate (3 times with 0.5 mL each time), dried over anhydrous

sodium sulphate, and concentrated to a volume of 0.5 mL.

Trimethylsilyl ethers of the deconjugated metabolites were

prepared by the addition of 0.2 mL bis(trimethylsilyl)trifluoroace-

tamide and incubation of the samples at 60uC for 2 h. Standards,

instrument settings, and additional treatment of samples, including

the analysis of certified reference materials, have been described

previously [6]. Most PAH metabolites gave only a trace signal,

whereas the concentration of 2-hydroxynaphthalene was possible

to quantify. The results were expressed as ng 2-hydroxynaphtha-

lene per mL bile.

Hepatic enzyme activities
Microsomal cytochrome P4501A (CYP1A) was measured both

fluorometrically, on the basis of its ethoxyresorufin O-deethylase

(EROD) activity [7], and by western blotting, using standard

procedures described previously [8]. Haddock CYP1A was blotted

with a polyclonal anti-fish CYP1A antiserum (CP226, Biosense,

Bergen, Norway), whereas Atlantic cod CYP1A was blotted with a

monoclonal anti-cod CYP1A antiserum (NP-7, Biosense, Bergen,

Norway). Cytosolic glutathione transferase activity was measured

with 1-chloro-2,4-dinitrobenzene as the second substrate [9].

Cytosolic glutathione reductase was measured as the oxidation of

reduced nicotinamide adenine dinucleotide phosphate (NADPH)

[10]. Cytosolic selenium-dependent glutathione peroxidase activity

was measured with hydrogen peroxide as the substrate and sodium

azide as a catalase inhibitor [11]. Protein was quantified with the

method described by Lowry et al. 1951 [12]. The method was

adapted for plate-reader, and bovine immunoglobulin was used as

the standard. Specific enzyme activities were expressed as the

amount of substrate converted per min and mg protein. The

amount of CYP1A enzyme was expressed as absorbance per mg

protein.

Fatty acids
The total lipid in epaxial muscle and in the liver was extracted

with a mixture of chloroform and methanol (2:1, 4 mL per 0.2 g

sample). The methyl ester of the fatty acid 19:0 was added as an

internal standard. The samples were stored at 220uC overnight

and then filtered and saponified. The fatty acids were esterified in

methanol containing 12% BF3. The resulting fatty acid methyl

esters were separated, as described previously [13], and identified

on the basis of their retention times, which were determined with a

standard mixture of fatty acid methyl esters (Nu-Check-Prep,

Elysian, MN, USA). The following fatty acids were measured:

18:3n-3, 20:4n-3, 20:5n-3, 22:5n-3, 22:6n-3, 18:2n-6, 20:2n-6, and

20:4n-6. The ratio of n-3 to n-6 fatty acids in the muscle was
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computed. The concentration of arachidonic acid (20:4n-6) in the

liver was expressed as mg arachidonic acid per g tissue (wet weight).

Muscle a-tocopherol
Epaxial muscle tissue was saponified in a saturated solution of

pyrogallol, ascorbic acid, and ethylenediaminetetraacetic acid

(EDTA) in 80% aqueous ethanol containing 20 mM KOH at

100uC for 20 min. a-Tocopherol was extracted with hexane,

separated with normal-phase high performance liquid chroma-

tography (HPLC), and quantified by its fluorescence [14]. The

excitation wavelength was 289 nm and the emission wavelength

was 331 nm. The concentration of a-tocopherol in the muscle was

expressed as mg a-tocopherol per g tissue (wet weight).

Hepatic DNA adducts
The liver samples were semi-thawed and the DNA extracted and

purified as described by Dunn et al. 1987 [15], Beach and Gupta 1992

[16], and Reichert and French 1994 [17] with slight modifications

described by Ericson et al. 1998 [18] and Ericson and Balk 2000 [19].

The DNA adducts were enriched with the nuclease P1 method:

incubation for 45 min with 0.8 mg nuclease P1 per mg DNA [16,20].

The DNA adducts were then radio-labelled with 59-[c-32P]-adenosine

triphosphate ([c-32P]-ATP) in a reaction catalysed by T4-polynucleo-

tide kinase. The radio-labelled DNA adducts were separated and

cleaned-up by multidirectional thin-layer chromatography (TLC) on

polyethyleneimine cellulose sheets. The sheets were produced by us in

order to obtain maximum resolution of DNA adducts formed by large

hydrophobic aromatic xenobiotics, such as PAHs with 4, 5, or 6 rings

[17,19], or other correspondingly large hydrophobic xenobiotics.

Finally, the DNA adducts were visualised and quantified by storage

phosphor imaging with a PhosphorImagerTM and ImageQuant 5.0

software. The frequency of DNA adducts was expressed as nmol

adducts per mol normal nucleotides. Positive and negative controls

were processed parallel with the samples and confirmed the reliability

of the assay [21].

Statistics
The data (Dataset S1) are presented as means 695% confidence

intervals. Differences between station means were determined by

analysis of variance (ANOVA) followed by the post-hoc test

Fisher’s protected least significant difference (Fisher’s PLSD). A

p-value ,0.05 was considered significant. Two-way ANOVA with

station and sex as factors showed that there were no differences

between the sexes in the investigated variables. The software

Statview 5.0 (SAS Institute Inc., Cary, NC, USA) was used for the

analyses.

Results and Discussion

Evidence of PAH exposure and uptake
The presence of PAH metabolites in the bile is evidence of PAH

exposure and uptake. In fish, as in other vertebrates, PAHs exert

much of their toxicity as reactive intermediate metabolites formed

during the enzymatic biotransformation into more water-soluble

compounds destined for excretion [22–24]. Consequently, the

presence of PAH metabolites in the bile is also indicative of

adverse intracellular toxic effects in the rest of the body [25]. The

most toxic PAHs in produced water have not been identified.

Therefore, we analysed the bile with respect to unspecific PAH

metabolites of three different sizes: 2- and 3-rings, 4-rings, and 5-

and 6-rings (Fig. 2a–c). We also analysed the specific bile PAH

metabolite 2-hydroxynaphthalene (Fig. 2d), since naphthalene is a

major PAH in produced water [1]. In haddock from Tampen, we

found elevated concentrations of bile PAH metabolites with 2, 3,

Figure 2. Metabolites of polycyclic aromatic hydrocarbons
(PAHs) in the bile. In a–c bile metabolites in haddock (Melano-
grammus aeglefinus) were measured as pyrene fluorescence equivalents
(PFE). a, 2- and 3-ring PAH metabolites. b, 4-ring PAH metabolites. c, 5-
and 6-ring PAH metabolites. d, Enzymatically deconjugated 2-hydro-
xynaphthalene in haddock. The bars represent arithmetic means and
the error bars 95% confidence intervals. An asterisk (*) indicates that the
mean is significantly different (p,0.05) from the mean for the Egersund
bank (control).
doi:10.1371/journal.pone.0019735.g002
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and 4 rings, as well as the specific bile PAH metabolite 2-

hydroxynaphthalene, and there was a graded response in these

variables with respect to the intensity of the oil production in the

investigated areas (Fig. 2a,b,d). No corresponding pattern was

obtained for PAH metabolites with 5 and 6 rings (Fig. 2c). Other

recent studies confirm the utility of bile metabolites in fish as

markers of exposure to produced water [26,27].

Induction of hepatic enzyme activities
The cytochrome P450 system catalyses the first biotransforma-

tion step in the conversion of PAHs and other xenobiotics into

more water-soluble compounds. The cytochrome P450 isoform 1A

(CYP1A) is up-regulated by PAH exposure in a process called

substrate induction. CYP1A catalyses many reactions in vivo, and

its activity may be measured in vitro as the deethylation of the

artificial substrate ethoxyresorufin. This activity is commonly

referred to as EROD activity. The EROD activity is often

assumed to be directly proportional to the amount of active

CYP1A enzyme. In this study, we measured both the EROD

activity and the amount of CYP1A enzyme in the liver in order to

substantiate the extent of substrate induction of CYP1A.

The EROD activity was elevated in Atlantic cod from Tampen

(Fig. 3b), and there were tendencies towards elevated EROD

activity and amount of CYP1A enzyme in haddock from Tampen

(Fig. 3a,c). The EROD activity and CYP1A enzyme values were

comparatively high even at the Egersund bank. For example, the

EROD activity in haddock from Iceland was only 6%

(13.6610.4 pmol per min and mg protein, n = 20, not shown) of

the EROD activity in haddock from the Egersund bank. This

difference is too large to be explained only by normal seasonal

variation. Moreover, in Atlantic cod from Lofoten, Norway,

collected in the autumn 2000 and 2001, the EROD activity was

below 10 pmol per min and mg protein [28]. This is less than 15%

of the EROD activity in Atlantic cod from the Egersund bank.

Our interpretation is that CYP1A is substrate induced even at the

Egersund bank, and that the true background EROD activity of

haddock and Atlantic cod should be lower.

Ideally, when the EROD activity is directly proportional to the

amount of active CYP1A enzyme, the (species-specific) ratio

between the two variables should be constant. In haddock this

ratio was 1.2 nmol per min and absorbance at Tampen and

1.1 nmol per min and absorbance at the Egersund bank. The

difference was not significant (Student’s t-test, p.0.05, not shown).

In Atlantic cod the ratio was 10.2 nmol per min and absorbance at

Tampen and 6.9 nmol per min and absorbance at the Egersund

bank. The difference was significant (Student’s t-test, p = 0.025, not

shown) and the two most likely explanations are either interaction

between agonists in the complex mixture of petroleum pollutants,

or contribution of other cytochrome P450 isoforms to the

deethylation of ethoxyresorufin, in the Atlantic cod from Tampen.

Glutathione transferases are a family of enzymes catalysing the

conjugation of many PAHs and other xenobiotics with glutathi-

one. In most vertebrates, the glutathione transferase activity

measured with 1-chloro-2,4-dinitrobenzene as the second sub-

strate probably reflects the overall activity of the glutathione

transferase isoforms responsible for the conjugation of PAH

metabolites. This is most likely true also for the haddock and the

Atlantic cod. The glutathione transferase activity was elevated in

haddock from Tampen (Fig. 4a), and there was a tendency

towards a corresponding elevation in Atlantic cod from Tampen

(Fig. 4b). Our interpretation is that also this group of biotrans-

formation enzymes is substrate induced by petroleum pollutants.

The enzyme glutathione reductase is responsible for the

maintenance of glutathione in the reduced form. Glutathione

has several functions in the body. One of them is conjugation with

metabolites of PAHs and other xenobiotics. Another important

function of reduced glutathione is to act as an antioxidant. The

glutathione reductase activity was elevated in Atlantic cod from

Tampen (Fig. 4d). In haddock the glutathione reductase activity

was similar at all three sites (Fig. 4c).

The enzyme selenium-dependent glutathione peroxidase is part

of the antioxidant defence of the body. It functions as a highly

efficient catalyst to reduce a wide variety of intracellular peroxides,

including hydrogen and lipid peroxides, thereby detoxifying these

potentially damaging molecules [29]. The selenium-dependent

glutathione peroxidase activity was elevated in both haddock

(Fig. 4e) and Atlantic cod (Fig. 4f) from Tampen, and in haddock

there was a graded response with respect to the intensity of the oil

production in the investigated areas (Fig. 4e). Our interpretation is

that this enzyme is induced by oxidative stress caused by

petroleum pollutants.

Changes in fatty acid composition
The ratio of n-3 to n-6 fatty acids in the muscle is both an

indicator of the fatty acid composition and a measure of the

nutritional value for human consumption. In Atlantic cod, the

major part of the total muscle lipid is phospholipids [30], and the

same would be expected for haddock. Accordingly, the ratio

measured here reflects the fatty acid composition of the

membranes. The muscle n-3 to n-6 fatty acid ratio was reduced

in both haddock (Fig. 5a) and Atlantic cod (Fig. 5b) from Tampen.

This result may be explained by a wide range of causes. In the

living cell, the fatty acid composition of the membranes is highly

regulated [31,32]. Petroleum hydrocarbons may accumulate in the

membranes, thereby altering their properties, or interfere directly

Figure 3. Hepatic ethoxyresorufin O-deethylase (EROD) activity
and amount of hepatic cytochrome P4501A (CYP1A) enzyme.
a, EROD activity in haddock (Melanogrammus aeglefinus). b, EROD
activity in Atlantic cod (Gadus morhua). c, CYP1A enzyme in haddock. d,
CYP1A enzyme in Atlantic cod. The bars represent arithmetic means
and the error bars 95% confidence intervals. An asterisk (*) indicates
that the mean is significantly different (p,0.05) from the mean for the
Egersund bank (control).
doi:10.1371/journal.pone.0019735.g003
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with the metabolic reactions and/or molecular signalling regulat-

ing the fatty acid composition of the membranes. Specifically,

reduced amount of n-3 fatty acids has been reported in Atlantic

cod exposed in the laboratory to alkylphenols, which are present in

relatively high concentrations in produced water [33]. Another

possibility is that oxidative stress [34–36] alters the fatty acid

composition of the membranes by lipid peroxidation [37]. Natural

factors, like temperature and diet, are less likely to be responsible

for the observed effects. The temperature at the Egersund bank

was 9.3–17.6uC (average 16.4uC) at 10 m depth and 7.3–8.0uC
(average 7.5uC) at the bottom, whereas the temperature at

Tampen was 10.1–16.1uC (average 13.8uC) at 10 m depth and

8.3–10.1uC (average 9.0uC) at the bottom. These temperature

differences are too small to give rise to any measurable change in

fatty acid composition. In studies of the effect of temperature on

membrane lipids in fish [e.g. 31,38,39], the investigated temper-

ature differences were much larger. The extent of any dietary

influence on the fatty acid composition in this investigation is

unknown. Extreme diets in experiments with Atlantic cod have

resulted in changes in the muscle n-3 to n-6 fatty acid ratio of the

same magnitude as the difference between the Egersund bank and

Tampen [40,41]. Such extremes are, however, not to be expected

in the natural diet of haddock and Atlantic cod in the investigated

areas. Natural variation in the muscle n-3 to n-6 fatty acid ratio

between populations that are reproductively isolated from each

other cannot be excluded. Little is known, however, about such

variation.

Arachidonic acid and many of its metabolites have multiple

functions in cell signalling [42–44]. Arachidonic acid is also an

important constituent of biological membranes [44]. Here,

arachidonic acid was measured in the total liver lipid, which

may constitute 30–76% of the haddock and Atlantic cod liver,

depending on latitude and time of the year [45]. More than 90%

of the total liver lipid may be triglycerides, and in comparison, the

phospholipid proportion of the total liver lipid is negligible [46].

The concentration of arachidonic acid in the liver was elevated in

both haddock (Fig. 5c) and Atlantic cod (Fig. 5d) from Tampen.

These observations further support the hypothesis of altered fatty

acid metabolism.

a-Tocopherol is one of eight lipid-soluble substances covered by

the generic term vitamin E [47]. a-Tocopherol has antioxidant

Figure 4. Hepatic glutathione dependent enzyme activities. a,
Glutathione transferase (1-chloro-2,4-dinitrobenzene) in haddock (Mel-
anogrammus aeglefinus). b, Glutathione transferase (1-chloro-2,4-
dinitrobenzene) in Atlantic cod (Gadus morhua). c, Glutathione
reductase in haddock. d, Glutathione reductase in Atlantic cod. e,
Selenium-dependent glutathione peroxidase in haddock. f, Selenium-
dependent glutathione peroxidase in Atlantic cod. The bars represent
arithmetic means and the error bars 95% confidence intervals. An
asterisk (*) indicates that the mean is significantly different (p,0.05)
from the mean for the Egersund bank (control).
doi:10.1371/journal.pone.0019735.g004

Figure 5. Fatty acids and a-tocopherol. a, The n-3 to n-6 fatty acid
ratio in the muscle of haddock (Melanogrammus aeglefinus). b, The n-3
to n-6 fatty acid ratio in the muscle of Atlantic cod (Gadus morhua).
c, Concentration of arachidonic acid in the liver (ww) of haddock.
d, Concentration of arachidonic acid in the liver (ww) of Atlantic cod.
e, Concentration of a-tocopherol in the muscle (ww) of haddock.
f, Concentration of a-tocopherol in the muscle (ww) of Atlantic cod. The
bars represent arithmetic means and the error bars 95% confidence
intervals. An asterisk (*) indicates that the mean is significantly different
(p,0.05) from the mean for the Egersund bank (control).
doi:10.1371/journal.pone.0019735.g005
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properties and may be consumed by reactive oxygen species [47],

although other, and probably more important, functions in vivo are

currently the subject of creative research efforts [48] and an

animated debate [49]. The concentration of a-tocopherol in the

muscle (and accordingly the nutritional value) was reduced in both

haddock (Fig. 5e) and Atlantic cod (Fig. 5f) from Tampen. A

possible explanation is depletion due to oxidative stress.

Hepatic DNA adducts
DNA adducts are formed when reactive electrophilic metabo-

lites of xenobiotics or endobiotics bind covalently to the DNA,

which contains approximately 20 sites susceptible to adduct

formation. Such reactive electrophilic metabolites also readily

attack RNA, protein, and other cell constituents, thereby

increasing the risk of a wide range of dysfunctions. Consequently,

DNA adducts may be used both as a measure of the direct

genotoxic effect, and as an indicator of a wider range of toxic

exposure [50,51]. In vivo, DNA adducts may give rise to a

multitude of genotoxic effects – from immediate cell death to the

development of cancer in subsequent generations [52–55].

The most sensitive method for DNA adduct analysis is the

nuclease P1 version [20] of the 32P-postlabelling method [56],

designed for the analysis of large hydrophobic aromatic adducts.

DNA adducts, analysed in this way, have been widely used as a

biomarker in fish [e.g. 18,19,57–59] and are considered to be one

of the best biomarkers of PAH exposure. To our knowledge, DNA

adducts are still the only biomarker of genotoxicity that does not

require prior knowledge about the exact structure of the genotoxic

substances. The application of two-dimensional TLC allows both

fingerprinting (see [60] for an example) and quantification of the

DNA adducts.

The level of hepatic DNA adducts in haddock from Tampen

was considerably higher than at any other site (Fig. 6a).

Intermediate levels were found at Sleipner and Frøy, and a

relatively low level was found at the Egersund bank (Fig. 6a). It

should be pointed out, however, that only the haddock from

southwest of Iceland fulfilled the criterion for background level of

hepatic DNA adducts (#1.060.5 nmol adducts per mol normal

nucleotides) [21]. Both Sleipner and Frøy, but not the Egersund

bank, differed significantly from Iceland (Sleipner p = 0.007, Frøy

p = 0.008, Egersund bank p = 0.104, not shown). The typical DNA

adduct pattern was a diffuse diagonal radioactive zone (DRZ),

indicative of a broad spectrum of DNA adducts (Fig. 6b). Similar

DRZ patterns have been reported previously in other vertebrate

species exposed to complex mixtures of PAHs from known and

unknown sources [e.g. 57,61].

The very high DNA adduct levels at Tampen (,20 nmol

adducts per mol normal nucleotides) were similar to the DNA

adduct levels found in perch (Perca fluviatilis) from contaminated

areas measured with the same method. In the PAH polluted

recipient of an aluminium smelter, the perch had DNA adduct

levels of 29 nmol adducts per mol normal nucleotides [18], and in

a creosote polluted area the perch had DNA adduct levels of

7 nmol adducts per mol normal nucleotides [60]. The DNA

adduct levels at Tampen were also similar to the DNA adduct

levels found in Atlantic cod exposed in the laboratory to 1 ppm

dispersed crude oil for 3–16 days [25]. We propose that the very

high level of DNA adducts at Tampen primarily is caused by the

continuous discharge of produced water, although old drilling

waste from previous operations may contribute, as indicated by

the intermediate level of DNA adducts at the former oil

production site Frøy.

In addition to the DRZ, we found a specific adduct spot, which

occurred in every specimen (even in the Icelandic haddock) and

was uncorrelated with the other adducts and the DRZ. This may

be an example of a natural or endogenous DNA adduct, although

such DNA adducts are very unusual. For example, no natural or

endogenous DNA adducts were found in perch from a truly

pristine area [60], in Northern pike (Esox lucius) from a breeding

facility [19], or in 11 other fish species from the arctic or sub-arctic

areas of the North Atlantic [21]. The natural or endogenous DNA

adduct in haddock was excluded from the DNA adducts presented

in Fig. 6a and is presented separately in Fig. 6c. The frequency of

this adduct was similar at all sites (Fig. 6c). The adduct may

originate from an endogenous substance, a natural toxin, or a

widespread anthropogenic genotoxic substance. It could also

reflect endogenous modification of a DNA base in the regulation

of gene expression. Natural or endogenous DNA adducts

occasionally found in mammals have been proposed to arise from

ageing, normal dietary factors, or endogenous substances, such as

steroids [62]. Further research should be performed to find the

exact cause of this natural or endogenous DNA adduct in

haddock.

Effects of habitat and migration
The relatively high proportion of small PAHs (2- and 3-rings) in

produced water may restrain the generation of DNA adducts by

the larger PAHs (4-, 5- and 6-rings) [63,64]. Such large PAHs bind

particularly well to settling matter in the water column and are

thus accumulated in the sediment at a higher rate than small

PAHs. By measuring DNA adducts in haddock, which often feeds

on the seafloor, we increased the probability to find DNA adducts

formed by the larger PAHs. Models have indicated a high

sedimentation rate in the three investigated areas in the North Sea

[65]. This may explain why we find DNA adduct levels in the

open sea that are similar to the DNA adduct levels in fish from

highly polluted areas close to a point source.

Both haddock and Atlantic cod migrate seasonally [66]. Accord-

ingly, they cannot be assumed to have resided in the investigated areas

longer than since the spawning in the spring, although repeated

exposure is possible if these species return to the same polluted area

every year. Owing to the migration of haddock and Atlantic cod, the

biological effects of petroleum pollution on more sedentary species

may be even stronger. The haddock from Frøy was collected in the

summer, a few months earlier than the haddock from the Egersund

bank, Sleipner, and Tampen. Hence, there is a risk that the biomarker

response at Frøy is underestimated, owing to a shorter period of

exposure. For example, it took several months (between 16 and 44

weeks) to develop hepatic DNA adducts above the background in

Atlantic cod exposed to a cocktail of low-molecular weight PAHs and

short-chained alkylphenols in an experiment intended to mimic field

exposure to produced water [67].

Causes of the observed effects
It has been estimated that 2.9 million m3 of drill cuttings and

muds, discharged from approximately 1300 wells, had accumulated

on the Norwegian continental shelf by 2000 [68]. How much of this

waste that still remains at the sites where it was formed is difficult to

estimate. It is suspected, however, that a significant proportion has

been spread by sea currents over a wider area in the North Sea and

the North Atlantic. The investigated fish species are exposed to

produced water, drill cuttings, muds, and accidental spills from the

offshore oil production simultaneously. There are, of course, also

other, more diffuse, pollution sources in the North Sea, but in

comparison with the oil production in areas like Tampen and

Sleipner, such pollution sources must be considered as minor. The

results of this study do not give any detailed information about the

relative contribution to the biomarker responses from the different
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major pollution sources. Neither can the most toxic substances be

determined. The relationships between pollution sources, toxic

substances and biomarker responses may also differ between areas

and fish species.

Conclusions
There was a general relationship between the intensity of oil

production in the investigated North Sea areas and the biomarker

responses in haddock and Atlantic cod. The biological effects

included induction of biotransformation enzymes, oxidative stress,

altered fatty acid composition, and genotoxicity. PAH metabolites

were also demonstrated in the bile. It is most remarkable to obtain

biomarker responses in natural fish populations in the open sea

that are similar to the biomarker responses in fish from highly

polluted areas close to a point source.

The results of the measurements of EROD activity and DNA

adducts raise the question whether the Egersund bank is a valid

control. If Sleipner and Tampen are instead compared with the

waters southwest of Iceland, the biological effects of oil production

appear to be much stronger. Hence, the validity of the Egersund

bank, or any other area in the North Sea, as control requires

further investigation.

Risk assessment of various threats to the marine fish populations

in the North Sea, such as overfishing, global warming [69], and

eutrophication [70], should also take into account the ecologically

relevant impact of offshore oil production.

Figure 6. Hepatic DNA adducts. a, The level of DNA adducts in haddock (Melanogrammus aeglefinus) exclusive of the possible natural or
endogenous DNA adduct(s). b, Representative autoradiograms for haddock from the investigated areas. The typical diagonal radioactive zone (DRZ)
is indicated in the autoradiograms for specimens from Tampen. The possible natural or endogenous DNA adduct(s) is encircled in white. c, The level
of the possible natural or endogenous DNA adduct(s) in haddock. The bars represent arithmetic means and the error bars 95% confidence intervals.
An asterisk (*) indicates that the mean is significantly different (p,0.05) from the mean for the Egersund bank (control).
doi:10.1371/journal.pone.0019735.g006
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