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Tracking of individual fish targets using a split-beam echosounder is a common method for
investigating fish behavior. When mounted on a floating platform like a ship or a buoy, the
transducer movement often complicates the process. This paper presents a framework for tracking
single targets from such a platform. A filter based on the correlated fish movements between pings
is developed to estimate the platform movement, and an extended Kalman filter is used to combine
the split-beam measurements and the platform-position estimates. Different methods for gating and
data association are implemented and tested with respect to data-association errors, using manually
tracked data from a free-floating buoy as a reference. The data association was improved by utilizing
the estimated velocity for each track to predict the location of the next observation. The data
association was more robust when estimates of platform tilt/roll were used. Other techniques to
estimate position and velocity, like linear regression and smoothing splines, were implemented and
tested on a simulated data set. The platform-state estimation improved the estimates for methods like
the Kalman filter and a smoothing spline with cross validation, but not for robust methods like linear
regression and smoothing spline with a fixed degree of smoothing. © 2005 Acoustical Society of
America. �DOI: 10.1121/1.2011410�

PACS number�s�: 43.30.Sf �KGF� Pages: 2210–2223
I. INTRODUCTION

The split-beam echosounder has become an important
tool for investigating fish behavior. It provides four-
dimensional observations �range, two angles, and time�,
making it possible to track objects over a period, thus obtain-
ing information about fish movements in the acoustic
beam.1,2 The technique has several applications, including
studies of migratory behavior, vessel-avoidance effects, and
counting fish. Tracking objects with a split-beam echo-
sounder is fairly easy for well-defined targets observed by a
fixed transducer, but is more difficult if the targets are weak
and/or the transducer platform is unstable.

The concept of the “single echo” often arises in fisheries
acoustics. This is the echo formed by one fish in isolation.
The split-beam echosounder measures the range and the an-
gular direction to the target, and an algorithm for single-echo
detection �SED� is used to detect these echoes, discarding
any that have overlapping contributions from more than one
fish. Different single-target algorithms have been tested, and
it was found that algorithms based on the phase stability
�measured by the standard deviation of the phase angle� re-
jected multiple targets most efficiently, and a method utiliz-
ing amplitude differences between the split-beam transducer
elements performed well for strong targets.3

After the single targets are detected they must be com-
bined into tracks. This can be achieved using an algorithm
for multiple-target tracking �MTT�. This is an automatic pro-
cedure that can handle several tracks simultaneously. MTT is
used in several applications, and the literature is extensive.4,5
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Any motion of the transducer complicates the tracking
of fish. Data association is the process of combining the
single echoes into useful tracks. Transducer motion makes
this more difficult and causes error in the velocity estimates.
In this paper, we investigate various methods of data asso-
ciation and velocity estimation under these conditions, lead-
ing to improved techniques for fish tracking.

II. MATERIALS

Observations made from a free-floating buoy6 are used
to test the performance of the tracker. The buoy contains a
Simrad EK60 split-beam echosounder with an ES38-12 split-
beam transducer of approximately 11.5° symmetrical beam
width between the −3 dB directions. The transducer is
mounted on a cable with floats and weights to stabilize it
during operations.7 The resulting depth of the transducer is
40 m. A compass is mounted on the transducer house to
determine its alongship direction.

The test data set was recorded during a fish avoidance
study in the Barents Sea in March 2001. The buoy was
passed several times by a trawling vessel, and the purpose of
the study was to investigate the behavior of the fish �mainly
cod� in response to the vessel and gear.7 Data from one such
passing comprise the test set whose total duration is 10 min.
The ping rate is 1 s−1 and the data include 5700 single-echo
detections �see the echogram shown in Fig. 1�.

The EK60 Mark 1 software �Ver. 1.3.0.54� was used to
detect single targets within the echo beam. The settings for

the SED algorithm are given in Table I.
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III. METHODS

Our method of tracking single fish observed from a
moving platform is divided into three subtasks: initial track-
ing, platform-state estimation, and final tracking. The initial
tracking and the final tracking use the same MTT algorithm.
The initial tracking gives a first association of measurements
to tracks, from which we subsequently estimate the platform
state �i.e., the position and direction of the acoustic axis�. In
the final tracking, the platform state is used to estimate the
geo-relative position and velocity for each track at each time
step. This set of positions and velocities is called the track
state xk which is obtained using several alternative methods.
The extended Kalman filter �EKF� is only one method for
estimating the track state, but since predictions of track state
are easily obtained from the EKF, the EKF is presented to-
gether with the MTT in Sec. III A. The alternative track-state
estimators require previously associated data points and are
presented in Sec. III B. The technique for platform-state es-
timation is described in Sec. III C.

FIG. 1. Tracked buoy data. White lines indicate the tracks. The gray-scaled
the trawl and the warps are seen. Vertical lines above the trawl are noise fr

TABLE I. EK60 single echo detection �SED� settings according to the Sim-
rad EK60 Scientific echosounder manual, p. 141. The echo lengths are given
as a factor � multiplying the pulse length �or pulse duration time�.

Description Value

Minimum Echo Length 0.8� �m�
Maximum Echo Length 1.8� �m�
Maximum Phase Deviation 8.0 �phase steps�
Maximum Gain Compensation 6.0 �dB�
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Methods for measuring data-association errors based on
manually associated data, and track-state-estimation errors
based on simulated data, are presented. These are described
in Secs. III D and III E, respectively. In addition, the sensi-
tivities to the various tracking parameters are quantified for
both measures.

A. Multiple target tracking „MTT… using extended
Kalman filtering „EKF…

The MTT process associates measurements to tracks and
estimates the track state based on the single-echo detections
and the transducer platform state �measured or estimated�.
The MTT consists of several elements: track-state estima-
tion, track-state prediction, gating, data association, and track
support. The track-state estimation gives the location and
velocity for each track indicated by the current and previous
measurements. Based on this information, we predict where
the next measurement is likely to be. The prediction is then
used in the gating and in the data association. Gating is the
process of removing unlikely track/observation pairs, and
data association is the actual pairing of predictions and ob-
servations into tracks. The last element of the MTT is the
track-support algorithms. These take care of initiating, termi-
nating, and validating tracks.

1. The extended Kalman filter and track-state
estimation and prediction

One method for estimating the track state is the extended

ground is the volume backscattering values. In the middle of the echogram
e trawl, trawl sensors, and trawl doors.
back
om th
Kalman filter �EKF�. The advantage of the EKF is that the
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state is estimated by weighting the previous state with the
new observation, thus it is unnecessary to recalculate the
whole track. See Sec. III C for a description of alternative
track-state estimators. The true position and velocity for tar-
get i at ping k and time tk are given by the track-state vector

xk = �xk yk zk ẋk ẏk żk TSk�egc

T ,

where �xk ,yk ,zk� is the position vector, �ẋk , ẏk , żk� is the ve-
locity vector, TSk is the target strength, T denotes matrix
transposition, and egc denotes the geo-referenced coordi-
nate system �see Fig. 2�. The corresponding estimate is
denoted by x̂. In general there are several tracks i and
measurements j for each ping k, but for easier readability
we have here omitted i and j from the notation. Under a
constant-velocity assumption, the track state at time tk+1

= tk+�Tk is given by

xk+1 = ���Tk�xk + w�, �1�

where ���Tk� is the matrix of the track-state transition for
the time interval �Tk and w�=w�tk� is an additive system
error component �see Appendix A for details�. The error is
assumed to be normally distributed and the target-model-
covariance matrix is defined as ��=E�w�w�

T � �see Appen-
dix A�.

From the estimated track state at time step k−1, we can
predict the state at step k. The predicted track state x̃ is found

FIG. 2. The platform state shown in the geographical coordinate system, egc.
The eastward, northward, and vertical directions are indicated with
Xg, Yg, and Zg, respectively. The platform state zk= ẑk+vy,k

= �x� y� z� �� �� 	��egc

T is indicated in the figure. The alongship,
athwartship, and vertical transducer axes are given by Xt, Yt, and Zt, respec-
tively. The compass reading 	� is the angle off Yg for the projection of Xt

onto the horizontal plane.
by setting the model error w�=0 in Eq. �1�,
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x̃k = ���Tk�x̂k−1. �2�

We have also implemented a “zero-velocity” prediction. This
is achieved by setting �Tk=0 in Eq. �2�, which yields x̃k

= x̂k−1 since ��0�= I. Note that this prediction is used in the
data association algorithm only, and not in the Kalman-filter
estimates �see below�.

A split-beam echosounder with a SED algorithm calcu-
lates the alongship angle �k, the athwart ship angle �k, the
range rk, and the target strength TSk, for each target at every
time step k. These measurements are represented by

yk = ��k �k rk TSk�etp

T + vy,k.

Here, vy,k is an additive error component that depends on the
accuracy of the transducer, and etp denotes the transducer
coordinate system.

The platform state zk describes the acoustic axis of the
transducer, which may move in space and point in any direc-
tion. It is given by

zk = ẑk + vz,k = �x̂k� ŷk� ẑk� �̂k� �̂k� 	̂k��
T + vz,k, �3�

where ẑk is the estimated platform state, �x̂k� , ŷk� , ẑk��egc
is the

transducer position at time tk , 	̂k� is the corresponding trans-

ducer compass reading, ��̂k� , �̂k�� are the tilt angles in east-
west and north-south directions �see Fig. 2�, and vz,k is an
additive error component. The errors are combined in vR,k

= �vy,k

vz,k� and are assumed to be additive and normal with co-
variance �R,k=E�vR,kvR,k

T � �see Appendix B�. In our case, all
the off-diagonal elements of �R,k are assumed to be zero.
The relationship between the track state xk, the platform state
ẑk, and the measurement yk is defined by

yk = h�xk, ẑk,vR,k� , �4�

where h is a nonlinear function defined in Appendix B. Since
the relationship between the track state and the measurement
is nonlinear, an EKF must be used instead of an ordinary
Kalman filter. The EKF uses a linear approximation of Eq.
�4� about the predicted track state, x̃k, the estimated platform
state, ẑk, and the measurement-error vector set to zero, vR,k

=0. The linear relationship between the measurement and the
track state is

yk � h�x̃k, ẑk,0� + H�xk − x̃k� + VvR,k,

where

H�l,m,k� =
�h�l�

�x�m�
�x̃k, ẑk,0�

and

V�l,m,k� =
�h�l�

�v�m�
�x̃k, ẑk,0� .

The predicted measurement is found from the predicted track
state by setting the measurement error vR,k=0 in Eq. �4�,

ỹk = h�x̃k, ẑk,0� . �5�
The error covariance of the predicted estimate is given by
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�̃x,k = ���Tk��̂x,k−1���Tk�T + ��,

where �̂x,k−1 is the estimated track-state-error covariance
from the previous time step and �� is the track-state-

transition covariance. Initially �̂x,k−1=�x,0 where

�x,0 = �P0 xy
2 ,P0 xy

2 ,P0 z
2 ,P0 dxdy

2 ,P0 dxdy
2 ,P0 dz

2 ,P0 TS
2 �I . �6�

The elements of �x,0 are parameters. The estimated track
state is found by weighting the predicted track state and the
observation by the Kalman gain, Kk,

x̂k = x̃k + Kk�yk − h�x̃k, ẑk,0�� ,

where

Kk = �̃x,kHk
T�Hk�̃x,kHk

T + Vk�R,kVk
T�−1.

The estimated track-state-error covariance is

�̂x,k = �I − KkHk��̃x,k,

the linearized innovation, 
̂k=yk− ỹk, is


̂k = H�xk − x̃k� + VvR,k,

and the linearized covariance of the innovation is

�
,k = Hk�̃kHk
T + Vk�R,kVk

T.

2. Gating and data association

The next step in the MTT algorithm is to associate the
observations with existing predictions. The challenge is to
avoid associating a false prediction-observation pair, and to
avoid not associating a true prediction-observation pair
�track splitting�. The innovation 
̂ijk is the difference between
the predicted measurement from track i and the observation j
at ping k; it is used in the gating and data-association algo-
rithms. Innovations based on both constant and “zero-
velocity” predictions are implemented and tested. Gating is
the initial step in the data association, where unlikely pairs of
predictions and observations are removed. The distance indi-
cated by the innovation is calculated, and any pair separated
by more than a set amount is deemed to be outside the gate.
The gate can be specified in several ways. We have imple-
mented two types. Firstly, a static gate accepts pairs within a
fixed ellipsoidal volume around the prediction:

dijk
2 = 
̂ijkG
̂ijk

T � 1, �7�

where

G = ��G
2 0 0

0 �G
2 0

0 0 rG
2 �

−1

. �8�

Here �G, �G, and rG act as gates in angles and range, respec-
tively. Note that different gate widths may be used in the
initial and final tracking. These are indexed by numbers, i.e.,
rG1 and rG2. If no measurement is associated with a given
track at time step k, the algorithm continues the search at
time step k+1. However, the volume likely to contain the
next measurement of the track is now larger, and it will

increase for each time step when no association is made.
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This suggests the use of a dynamic gate whose size increases
with the prediction covariance. Such a gate requires a priori
knowledge of the detection probabilities and measurement
errors.8 In order to test the concept of a dynamic gate, sup-
pose the detection probabilities are constant, so that

dijk
2 = 
̂ijk �
,ijk

−1 
̂ijk
T � 2 ln� cG

	
�
,ijk

� + ln �
�
,ijk
� , �9�

where cG is a constant. The last term is a penalizing term to
prevent tracks with high innovation covariance �many miss-
ing pings� being preferred over those with low innovation
covariance.8

When gating is performed, a sparse matrix is obtained
containing the d2’s for all combinations of predictions �i� and
observations �j� for ping k that fall inside the gates. The
association algorithm assigns observations to predictions
based on the elements in this matrix. Several data-association
methods are described in the literature.8 One of the most
common is the global nearest neighbor �GNN� method,
which assigns observations to tracks by minimizing the total
sum of distances. In this case an assignment with a higher d2

may be chosen at a given time step if the total cost is lower.
This assignment problem is solved by the Bertsekas auction
algorithm.9 We also implemented a simpler algorithm that
first assigns the best pairing at each time step, then the next
best, continuing until all observations inside the gates are
assigned. In this case the total sum of distances may be
higher than for the GNN method. We have compared the
methods with respect to their data-association errors.

3. Track support

The last part of the MTT algorithm is track support. This
starts, terminates, and validates the tracks. When an observa-
tion is not connected to an existing track, a new one is
spawned. The new track state starts with the position indi-
cated by the observation, the velocity set to zero, and �x,0 as
an assumed error covariance. A track is terminated at the last
ping before the first sequence of MP consecutive missing
pings. The track is rejected if it is less than ML �minimum
track length�, or if the number of missing pings divided by
the track length is more than MN. The track length is simply
the number of pings from start to finish, including any miss-
ing pings.

B. Other track-state estimators

In the previous section, the EKF was used both for pre-
diction and estimation of the track state. Since the EKF es-
timates the new track state based on the new associated mea-
surements and the present track prediction only, this
technique is well suited to be integrated with the gating and
data-association algorithms. However, after the measure-
ments have been associated, other techniques can be used to
estimate the position and velocity of the targets. The addi-
tional techniques we have tested are the Kalman-smoothing
algorithm, linear regression, and a smoothing spline.

After estimating the tracks with the Kalman filter and
computing the track-support functions, a Kalman smoothing

algorithm may be applied. The advantage over the Kalman-
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filter algorithm is that the influence of the initial values �zero
velocity and �x,0� is avoided. This is achieved by using the
Kalman-filter predictions and estimates to compute the Kal-
man smoothed estimate

x̂̂k = x̂k + Jk�x̂̂k+1 − ���Tk�x̂k� ,

with covariance

�̂
ˆ

x,k = �̂x,k − Jk��̂
ˆ

x,k+1 − �̃x,k+1�Jk
T,

by moving backwards through the track. Here

Jk = �̂x,k���tk�T�̂x,k
−1 .

Both the Kalman filter and the Kalman smoother estimate
the position and velocity errors. However, the comparison
with other methods is based on the position and velocity
estimates only, not the errors. For the Kalman-filter estimate
we define position and velocity vectors

ŝk
KF = x̂k�1¯3�, ûk

KF = x̂k�4¯6�

and for the Kalman smoothed estimate

ŝk
KS = x̂̂k�1¯3�, ûk

KS = x̂̂k�4¯6�.

The linear regression and the smoothing spline methods re-
quire us to map the measurements yk to Cartesian coordi-
nates �egc�. This is achieved using the estimated platform
state ẑ,

sk = g�y, ẑ� = �x

y

z
�

egc

,

where g is found from h �see Appendix B�. A constant-
velocity track,

sk
L = s0

L + uLtk, �10�

is then fitted to sk by minimizing SS=�k�ŝk
L−sk�2

2, and ŝ0
L and

ûL are found. However, a straight regression line through the
sk’s may be a rather crude approximation. Therefore, we also
used a smoothing spline, which minimizes a compromise
between the exact fit and the smoothness of the track. This is
implemented in the R function10 smooth.spline, where the
degree of smoothness can be chosen automatically by cross
validation, or by setting the parameter “spar” to a given
value. We have used both the nonparametric �cross valida-
tion� and parametric �spar=0.7� methods, denoted by sk

SNP

and sk
SP, respectively. For details see the documentation of

smooth.spline in the R program,10 and the standard-S
literature.11

C. Platform-state estimation

When tracking targets from vessels and buoys, the posi-
tion and the direction of the acoustic beam may change from
ping to ping. Knowledge of the transducer position and ori-
entation is required for accurate results. There are standard
notation and sign conventions for the motion of a submerged
body.12 However, the angles defined in this section are rela-

tive to the east-west and north-south directions, not the ves-
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sel heading, i.e., the measurements of ship or buoy motion
have to be mapped into zk before evaluating Eq. �3�. If direct
measurements of transducer position and orientation were
available, the initial tracking and platform-state estimation
would be unnecessary.

However, this is often not the case. We have therefore
developed a method to extract correlated fish movements
relative to the acoustic beam, based on the association from
the initial tracking. This common movement is attributed to
movement of the transducer platform. In our test data, the
transducer compass direction and the GPS positions are mea-
sured, while the tilt, roll, and heave are unknown. The un-
known platform-state variables are set to zero before initial
tracking. The measurements are mapped from etp coordinates
to egp coordinates �see Appendix B for details�, and the mean
differences in angles and range between successive pings are
used to estimate the transducer movement. For the east-west
angle the mean difference is computed as

�k
=

1

Nk

i=1

Nk

��ki − �k+1,i� , �11�

where k is the ping number, i is the track number, Nk is the
number of tracks with measurements in both ping k and k
+1, and � is the east-west angle to the target relative to the
transducer position. Some tracks are short and are therefore
rejected by the track-support functions. However, in this pro-
cedure these short tracks are retained since the platform
movement may split tracks.

If fish are swimming in one direction through the beam,
consecutive �k

will be positive. If the transducer is moving
cyclically, consecutive �k

will vary from positive to negative
within the cycle. To extract this cyclical movement, the dif-
ferences are summed cumulatively to get �RAW,k� =�RAW,k−1�
+�k

, starting with �0=0. To compensate the effect of polar-
ized swimming, a running-mean filter is used to remove the
drift component �platform translation and fish migration�
from ��RAW,k� �,

�̂k = �RAW,k� −
1

2M + 1 
l=k−M

k+M

�RAW,l� ,

where M is here the length of the running-mean filter. We set
M equal to 1/ f0 rounded up to the nearest integer, where f0

is a constant defining the lowest tilt/roll frequency that the
algorithm can detect. To estimate the north-south and range
components of the transducer movement, the same process is
applied to �� and z�. Then the tracking is repeated utilizing
the obtained estimates of transducer tilt, roll, and heave.

D. Testing data association

To test the performance of the data association algo-
rithms, the buoy data set is first tracked manually �true
tracks�, and then compared with the tracks obtained from the
various algorithms �auto tracks�. The auto-track identifiers
are compared with the true-track identifiers. If the auto-track

identifier changes along a true track, a split error has oc-
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curred. If the true-track identifier changes along an auto
track, a connection error has occurred. The measure for track
splitting is defined as

Jsplit�p� =
�iCi

s

�i�Li − 1�
, �12�

where p gives the parameter settings, Ci
s is the number of

changes in the auto-track identifier along the true track i, and
Li is the length of the true track i. An example is given in
Fig. 3. The measure for false associations is similarly defined
as

Jconnect�p� =
�iCi

c

�i�Li − 1�
, �13�

where Ci
c is the number of changes in the true-track identifier

along auto track i and Li is the length of auto track i. The two
measures are combined into a single measure of the associa-
tion error

Jalloc = 1
2 �Jsplit + Jconnect� . �14�

To test the parameter sensitivity to the data association
error, the tracker is run with one parameter perturbed by
±10% at each run. The sensitivity measure is defined as

Spa = 0.5� 
�J+10%

Jalloc

+

�J−10%


Jalloc
�� 
�p


p
�−1

, �15�

where �J+10% and �J−10% are the changes in Jalloc when
perturbing parameter p±10% , �p / p=0.1, except for MP,
which is an integer. To test the sensitivity to MP, this
parameter is increased or decreased by one. A relative
measure is still used, i.e., �p / p=1/MP0, where MP0 is the
unperturbed value.

E. Testing position and velocity estimates

A simulated data set is used to test the validity of the
position and velocity estimates for each track. Different fish
trajectories are simulated, including transducer tilt/roll ef-
fects. The track states estimated by the various techniques
are then compared with the known positions and velocities
from the simulations. The simulated data comprise four

FIG. 3. The splits and false associations of a true track compared with an
auto track. The pairs of numbers show �true-track number, auto-track num-
ber�. The split error is found by counting the number of auto-track number
changes along the true tracks �1+1� divided by possible number of changes
�3+3�. The connection error is the number of true-track changes along the
auto tracks �1+0+0� divided by the possible number of changes �3+1+1�.
constant-speed tracks: two straight lines and two half circles
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�see Table II�. Instead of simulating transducer tilt/roll/heave,
we estimated the transducer platform state from the test data,
ẑk,testdata. These estimates are taken as the true platform state
in the simulations, i.e., z= ẑk,testdata. This is applied only to the
tilt/roll/heave; the transducer translation and compass head-
ing are set to zero. The simulated tracks are mapped to mea-
surement space and an error is added according to

yk = h�xk,zk,0� + vk�7¯10�. �16�

To simulate missing pings, randomly selected data points are
removed from the tracks. Short tracks are simulated by ter-
mination after the desired track length �L�. Distributions of
the track lengths and the ratio of missing pings to the track
length are calculated from the test data. To make the test
more realistic, we simulated 1230 data sets based on these
distributions. An overview of the simulated data sets is given
in Table III.

The mean along-track errors in position and velocity,

MEs =
1

L

k=1

L

�ŝk
E − xk�1¯3��2 �17�

and

MEu =
1

L

k=1

L

�ûk
E − xk�4¯6��2, �18�

are evaluated as measures of the fit between the true and
estimated position and velocity, respectively. Here L is the
track length and E denotes the estimation technique �KS, KF,
L, SNP, or SP�. The means MEs and MEu are calculated for
each of the four tracks in all the simulated data sets, using
all the estimation techniques. Note that for the constant-
velocity tracks, ûk is the same for all k’s.

The sensitivity of the estimated position and velocity to
the tracking parameters is tested. The manually associated
data set is the reference. Thus we can compare the impact of
different parameter settings on the track estimates of the de-
scribed algorithms. The sensitivity measure is

TABLE II. The simulated tracks.

Track Curve Speed �m/s� Direction Depth

1 Line 0.53 NE 200
2 Line 0.37 E 150
3 Semicircle 0.589 N to S 230
4 Semicircle 0.589 N to S 170

TABLE III. The number of simulated data sets for each track length �L� and
each missing ping to track length ratio �MN�. There are several duplicates
for each setting due to the added normally distributed error.

L

15 25 35 45 55 65 75

MN 0.1 90 120 60 60 30 30 30
0.3 120 160 80 80 40 40 40
0.5 60 80 40 40 10 10 10
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Sps =
1

�i=1
M Li


i

M


k

Li

�ŝik
E − ŝik

Ep�2 �19�

for the position estimates and

Spv =
1

�i=1
M Li


i

M


k

Li

�ûik
E − ûik

Ep�2 �20�

for the velocity estimates. Here M is the number of tracks, Li

is the track length for track i, ŝik
E and ûik

E are the position and
velocity estimates for track i at time tk using estimation tech-
nique E and the optimal parameter setting for the data asso-
ciation error, and ŝik

Ep and ûik
Ep are the position and velocity

estimate where parameter p is perturbed. The parameters are
perturbed by ±10%, one at a time. The mean Sps and Spv
are calculated for each parameter and each estimation
technique.

IV. RESULTS

The various methods for data association and track esti-
mation are examined by comparing the tracker results ob-
tained, respectively, with simulated data and the test data.
The questions are: how do the different data association al-

TABLE V. List of parameters and the optimal param
Appendix B for details of the error model paramet
�� , � , 	 , � , and �� are given in degrees.

Case 1 Case 2

�� Qxy 0.100 0.100
Qz 0.050 0.050

Qdxdy 0.150 0.149
Qdz 0.100 0.100

�x,0 P0 xy 0.200 0.200
P0 z 0.100 0.100

P0 dxdy 0.300 0.300
P0 dz 0.200 0.200

�R Rx� 0.100 0.100
Ry� 0.100 0.100
Rz� 1.000 1.000

R�� 1.000 1.000
R�� 1.000 1.000
R	� 0.500 0.500
R� 0.500 0.500
R� 0.500 0.500
Rr 0.100 0.100

RTS 0.000 0.000

Track f0 0.050 0.049
support MN 0.400 0.400

MP 4.000 5.000
ML 15.000 15.000

Initial �G1�G1 3.940 4.020
gate rG1 1.000 1.000

cG1 N/A N/A

Final �G2�G2 6.862 4.018
gate rG2 1.082 1.000
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gorithms perform, how accurate are the velocity and position
estimates, and does the estimation of platform state improve
the results?

A. Data association

We tested the performance of six different cases of data
association on the manually associated data sets �see Table
IV�. The association measures defined in Eqs. �12�–�14� are
used in the tests. All cases were tested with both GNN and
BPF data-association methods.

settings for the different cases. See Appendix A and
/A indicates “not applicable.” Note that all angles

Case 3 Case 4 Case 5 Case 6

0.100 0.100 0.100 0.100
0.050 0.050 0.050 0.050
0.151 0.150 0.148 0.151
0.100 0.100 0.100 0.099

0.200 0.200 0.200 0.200
0.100 0.100 0.100 0.100
0.300 0.300 0.298 0.300
0.200 0.200 0.200 0.200

0.100 0.100 0.100 0.100
0.100 0.100 0.100 0.100
1.000 1.000 0.980 1.005
0.995 1.000 1.005 0.995
1.000 1.000 1.005 0.995
0.500 0.500 0.500 0.500
0.500 0.500 0.500 0.497
0.500 0.500 0.502 0.500
0.100 0.100 0.100 0.100
0.000 0.000 0.000 0.000

0.050 0.050 0.049 0.050
0.400 0.400 0.400 0.400
5.000 4.000 5.000 4.000
15.000 15.000 15.000 15.000

N/A 3.940 4.020 N/A
N/A 1.000 1.000 N/A

1.000 N/A N/A 1.000

N/A 6.724 4.996 N/A
N/A 1.082 1.040 N/A

TABLE IV. The test cases for the manually associated data.

Case Description

1 Kalman prediction with a fixed Euclidean gate �static
gate�

2 “Zero-velocity” prediction with a fixed Euclidean gate
�static gate�

3 Kalman prediction with a maximum likelihood gate
�dynamic gate�

4 As case 1, but with no correction for platform movement
5 As case 2, but with no correction for platform movement
6 As case 3, but with no correction for platform movement
eter
ers. N

cG2 N/A N/A 1.000 N/A N/A 1.000
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To do a fair comparison of the methods, we use the
parameters that give the lowest Jalloc for each case. These
parameters are found initially by a searching over the param-
eter space, then a gradient method is used to minimize Jalloc.
The resulting parameters are given in Table V. Note that MN
and ML are not in the optimization since the association
measure does not contain a penalizing term for excluding
short tracks. If the longest track is correctly associated, the
optimal ML will be equal to the length of the longest track.
The parameter estimation procedure is performed using the
BPF data-association algorithm.

The split error, the connect error, and the association
error for the six cases are given in Table VI. The GNN and
BPF methods showed no difference in the data association
error, and BPF is used since it is computationally less de-
manding. The association error is lower for a static gate com-
pared to a dynamic gate. Velocity prediction �cases 1 and 4�
decreases the association error. Note that the optimal final
horizontal gates ��G2 and �G2� are larger when velocity pre-
diction is included �see Table V�. The platform-state estima-
tion gives little improvement. When velocity prediction is
used �cases 1 and 4�, the connect error increases by 25%,
while the split error is reduced by 50% by the platform esti-
mation.

Another way to evaluate the effect of platform-state es-

TABLE VI. The data-association error for the six cases. The optimal param-
eter settings for each case are given in Table V.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Jalloc 0.017 0.022 0.041 0.017 0.026 0.061
Jsplit 0.008 0.020 0.041 0.014 0.038 0.060

Jconnect 0.025 0.024 0.041 0.021 0.014 0.062
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timation is to look at the distribution of the innovations �i.e.,
the differences between predictions and observations�. The
innovation distributions for the initial and final tracking re-
sults for case 1 are shown in Fig. 4. To compare the distri-
butions, the initial gate is set equal to the final gate. The
innovation distribution is shifted left, indicating a better fit
between prediction and measurement. Examples of data with
and without correction for platform movements are given in
Figs. 5 and 6.

As indicated above, changes in the various parameters
influence the association error. The sensitivity index defined
in Eq. �15� is used to test this, and the results are shown in
Fig. 7. The results are sensitive to MP and MN in all cases.
When using static gates, the gate parameters are important.
In particular, note the high sensitivity when platform-state
estimation is omitted. This is seen for the vertical gates in
cases 4 and 5, and especially for the horizontal gates in case
5. The sensitivity to horizontal gates is lower when velocity

FIG. 4. The white bars �upper panel� and black bars �lower panel� show the
gate distance �d2� distribution for case 1 without and with platform-state
estimation, respectively. The gray bars indicate the difference between the
distributions. The vertical lines indicate the means for the distributions.

FIG. 5. Range as a function of ping
number for two tracks. Asterisks
�white� and triangles �black� show the
tracks with and without buoy move-
ment estimation, respectively.
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prediction is used. The sensitivity to the error model param-
eters �R� is higher when using dynamic gates. Note also that
the detection probabilities, hidden in cG, are less important
compared to the error model parameters.

B. Track state estimation

We used the simulated data sets described in Sec. III E
to investigate the accuracy of the various track-state estima-
tors. The data sets are tracked, with and without platform-
state estimation, and the position and velocity estimates are
evaluated using the measures defined in Eqs. �17� and �18�.

Tables VII and VIII show the mean position and velocity
errors for the five estimation techniques and for three differ-
ent scenarios. Firstly, the data are simulated with platform
movement, and platform-state estimation is applied. Sec-
ondly, the platform movement is simulated but not estimated.
The last simulation is the “control,” where platform move-
ment is neither simulated nor estimated. Comparing the re-
sults with and without platform movement estimation, the
position estimate error is reduced for the Kalman methods
KS and the KF when the platform movement is estimated,
but for the L and SP methods it increases. For the velocity
estimates, the errors of KS indicate divergence in all cases.

FIG. 7. Sensitivity indices for association error, Spa. Nonsensitive param-

FIG. 6. Horizontal positions for a single track. Asterisks and triangles show
the track with and without buoy movement estimation, respectively.
eters are not included.
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For KF and the SNP the velocity error is reduced by estimat-
ing the platform state, whereas for L and SP the error levels
are similar.

The sensitivity to the estimated velocity and position is
tested by calculating the measures Sps and Spv, using the
various track-state estimators on the test data set described in
Sec. II. The position sensitivity measure, Sps, is the mean
difference in position. The position estimates deviate at the
most 0.3 m when perturbing the parameters ±10% �Fig. 8�,
and they depend mainly on f0. This parameter controls the
platform estimation. All the techniques are equally sensitive,
except that SP is also sensitive to the smoothing parameter
spar.

As regards the velocity estimates, there are differences
between the techniques, although all except SP are most sen-
sitive to changes in f0 �Fig. 9�. The sensitivity to f0 is ex-
tremely high for KS and SNP, while it is lower for KF and
SP, with L being the most robust method. Note also the high
sensitivity to spar for the SP method.

V. DISCUSSION

This paper presents a general framework for tracking
fish with a split-beam echosounder when the transducer is
moving. The performance of various methods of data asso-
ciation and track estimation is investigated.

A. The extended Kalman filter

The extended Kalman filter serves two purposes in the
MTT. It links observations to predictions, taking into account
errors due to the prediction, the echosounder, and the plat-
form movement, and it is used to estimate positions and ve-
locities. The extended version of the Kalman filter is required
due to the nonlinear relationship between the measurement
space and the state space. The main contribution here is a
framework for tracking when the error models are known.
The track-state-transition error may be seen as the deviation
in swimming speed from a straight line �constant velocity�
and has nothing to do with the measurement errors. This
enables us to separate the observation error from that due to
nonconstant fish velocity. Track state transition models based
on the observed behavior, the coordinated turn model, for

TABLE VII. Mean absolute position errors for different track-state estima-
tors.

KS KF L SNP SP

PlatMove, PlatEst. 1.082 1.368 1.628 1.336 1.158
PlatMove, No PlatEst. 1.929 2.577 1.303 3.295 0.829

No PlatMove, No PlatEst. 0.627 1.138 1.029 0.417 0.346

TABLE VIII. Mean relative velocity errors for different track-state estima-
tors.

KS KF L SNP SP

PlatMove, PlatEst. 315% 52% 31% 68% 32%
PlatMove, No PlatEst. 721% 88% 28% 815% 35%

No PlatMove, No PlatEst. 428% 51% 23% 45% 16%
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example,5 might improve the track-state transition �predic-
tion�. We decided against that approach because of the large
errors in our observations. The convergence of the Kalman
filter depends on the error model. This is discussed in Sec.
IV D.

To take full advantage of the EKF, proper error models
for the measurements and state transitions should be estab-
lished. This would allow us to estimate the track state includ-
ing both error models. This is not a feature of the alternative
track-state estimators, except KS, and is the reason for the
central role the EKF has in this work.

B. Platform-state estimation

Since we had no measurements of the platform tilt and
roll, there was a need to estimate this movement somehow.
We used a simple approach to solve this problem, but other
techniques like fitting a model of wave-induced movement to
the data could be considered. We tried using a bandpass filter
to remove low and high frequencies, but the association error
was more than that of our simple algorithm �which may be
compared to a high-pass filter�. We therefore chose not to
proceed with more elaborate models. The reason why the
simple filter works well in our example is probably due to
the rigging of the transducer. The transducer hangs from a
cable, and the dynamics of this arrangement are complicated.
The motion of a transducer attached to a ship’s hull is prob-
ably simpler to model, and more complex models may im-
prove performance in that case. It is important to note that
our method does not detect any constant tilt of the acoustic
axis; only the periodic movement about the �unknown� mean
is estimated. If measurements of the platform state are avail-
able, the platform estimation technique and the second track-
ing are unnecessary.

The algorithm seems to estimate the platform state quite
well, but what are the consequences of utilizing these esti-
mates? This is discussed below, both for data-association er-

FIG. 8. Sensitivity indices for estimated position, Sps. The P and Q param-
eters are the elements of the parametrized �x,0 and ��, respectively. See
Eqs. �6� and �A1� for details. Nonsensitive parameters are not included.
ror and track-state estimation.
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C. Data association

Correct data association is crucial for successful track-
ing. If the data-association algorithm fails, the platform state
and the tracks will be poorly estimated. An important part of
the data association is accurate prediction. We have tested
two kinds of predictions, the constant-velocity prediction and
the “zero-velocity” prediction. When comparing the
constant-velocity and “zero-velocity” predictions, we see
that the split error is smallest in the former prediction �cases
1 and 4�. This indicates a better result from the constant-
velocity prediction, which allows the data-association algo-
rithm to handle more candidates within a gate, hence the
larger optimal horizontal gates for cases 1 and 4. However,
the larger horizontal gates cause more connection error, al-
though the total association error is still improved. There is a
trade-off between connect and split errors. If one desires to
reduce the connect error, narrower horizontal gates may be
applied. The total association error is then increased, but it is
still lower than that of the “zero-velocity” prediction. We
conclude that it is better to base predictions on the actual
velocity estimates rather than the zero-velocity assumption.

The platform-state estimation has a similar effect: The
split error is reduced, while the connect error is increased,
but here the total association error remains the same. The
benefit of platform-state estimation in the data-association
process is not evident. However, if we decrease the horizon-
tal gates from 6° to 4°, the platform-state estimation does
improve the results. The Jalloc is then 0.07 and is reduced to
0.02 after platform-state estimation. For some parameter val-
ues the platform-state estimation is important, but not when
using the optimal settings for our example. However, when
considering the innovation distribution, it is seen that the
platform-state estimation reduces the distance between the
predictions and the observations. In addition, the sensitivity
to the gate parameters is higher without platform-state esti-
mation. Thus, the platform-state estimation makes the asso-
ciation algorithm more robust.

We tried to implement maximum-likelihood track-
support functions.5 This would avoid ad hoc parameters like

FIG. 9. Sensitivity indices for estimated velocity, Spv. The P and Q param-
eters are the elements of the parametrized �x,0 and ��, respectively. See
Eqs. �6� and �A1� for details. Nonsensitive parameters are not included.
missing pings, MN ratio, and predetermined gates. The idea
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is to use the prediction covariance to define the gate, but it is
necessary to estimate the detection probabilities. We tested
whether we could improve the results by setting constant
detection probabilities and then optimizing the parameters
with respect to the data-association error. These probabilities
are in fact not constant, and we were unable to come close to
the performance of a fixed Euclidean static gate and ad hoc
parameters. One reason for the failure could be the narrow
acoustic beam. The transducer’s pendulum movement causes
the detection probabilities to change rapidly, thus the use of
constant parameter values may be incorrect. Consequently,
we cannot rule out the possibility that the maximum-
likelihood track-support functions may work. However, with
the accuracy of the detection probabilities and the error mod-
els in mind, we believe that the ad hoc approach is more
robust.

A similar situation is found for the data-association al-
gorithms. Although the GNN algorithm is quite simple, the
even simpler method of picking the nearest target first works
equally well. This indicates that the system has low vulner-
ability to the choice of the data-association algorithm. This
may be explained by the nature of the SED which detects
only one target at a given range, and rejects closely spaced
targets. It is concluded that the choice of data-association
algorithm is not crucial to the result. These conclusions are
based on the data-association test. A crucial part in the test is
the validity of the true tracks. These are obtained by first
applying the tracker and then correcting the tracks manually.
The manual data association is subjective to some extent,
and only the target range, not the angles, is used in the
manual process. Therefore some false track connections
might occur. In addition, our results are based on only one
data set, and the result is, strictly, only valid for this data set.
The convergence of the optimization algorithm is also impor-
tant. If the algorithm sticks on a local Jalloc, wrong conclu-
sions may be drawn. Also, the relative weights of Jsplit and
Jconnect influence the results, as illustrated by the above-
mentioned example of increased horizontal gates.

For our data, the constant-velocity prediction improves
data association, while the platform-state estimation reduces
the sensitivity to the gate parameters. In general, these ef-
fects are connected, and we argue that both methods improve
the quality of the data association.

D. Track-state estimators

The validity of the estimated positions and velocities are
central to the success of the tracker. Tracking fish from a
free-floating and moving buoy with high noise in the posi-
tioning may require a different approach compared to the
analysis of fine-scale behavior from a known or stable plat-
form state.

The Kalman filter �KF� is an integral part of the MTT,
and error models of the measurements and fish movement
are taken into account. The KF works well for the position
estimates. Each position includes an estimate of the error,
assuming that the error models are correct. The velocity es-
timate is less good. One reason is that the initial velocity is

set to zero, and it takes several pings for the velocity estimate

2220 J. Acoust. Soc. Am., Vol. 118, No. 4, October 2005
to converge. This depends on the initial state estimate error
and the measurement error model. An important feature of
the KS estimate is that the tracker runs backwards through
the tracks, thus eliminating the impact of the initial estimate
covariance. The problem with KS is that accurate error mod-
els and platform-state estimates are usually necessary to pre-
vent the results from diverging. In our case this was not so.
KS is excellent for the position estimates, which are greatly
improved when the platform estimation technique is applied.

A linear regression fit to the track loci may be a crude
approximation. This is seen in the rather poor position esti-
mates obtained from the regression method. However, the
linear regression L is a robust method for estimating velocity.
The velocity estimate from L is the same with or without
platform-state estimation. This occurs because the periodic
buoy movement is removed by the straight-line regression,
provided the tracks are longer than half the period of the
platform movement. Another advantage is the low sensitivity
to the tracking parameters. The simple linear regression is a
good choice when the noise level is high and a robust
method is required, although the amount of detail in the re-
sults is limited.

The nonparametric spline works fairly well for the posi-
tion estimates. Cross validation is used to set the parameters
in the interpolation. This approach automatically determines
the relative weights according to smoothness and fit and has
the advantage that ad hoc parameters are avoided. However,
the estimated positions are rather bad if the platform-state
estimation is omitted. The cross-validation technique detects
the periodic movement of the platform and tends to follow
the observations and the buoy movement closely. This leads
to bad position estimates. The velocity estimate of SNP is
unsatisfactory. The derivative of the spline is used, and if the
degree of smoothness is too low, the velocities will be
grossly over estimated. On the other hand, SP seems to work
well with spar=0.7. This velocity estimate is the best, but it
is highly sensitive to spar. When a high degree of smoothing
is applied, the spline smooths the buoy movement in a simi-
lar manner to the linear regression. In that case, there is no
evidence that estimating the buoy movement is useful.

As discussed earlier, the various track-state estimators
have different properties. However, these conclusions are
based on the simulated data set, which is similar to our test
data set. For our test data the robust linear regression seems
to be the best choice. Other data sets may have different
properties, like higher ping rates, fewer missing pings, etc. It
might then be feasible to incorporate more detailed track-
state estimators. A general statement of what is the best es-
timator is therefore difficult.

E. Other tracking issues

Although we have said little about the algorithm for
single-echo detection �SED�, the efficiency of this algorithm
is an important factor in target tracking. Traditional SED
methods are discussed in the literature.3 For weak targets,
systematic angle measurement errors may occur.13 If the
SED were improved, the maximum allowed number of miss-

ing pings could be reduced with consequent benefits for the
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platform-state estimation, the data association, and the track
estimation. There are promising developments in this field.14

The orientation of the transducer may change between
the transmitted and the received pulses. The adverse effect
on echo integration has been investigated.15 The same prob-
lem may affect the SED efficiency, and also the target-angle
measurements. This requires further investigation, as regards
the effects on target detection algorithms and the perfor-
mance of target trackers.

VI. CONCLUSIONS

We have shown that compensating for platform move-
ment improves the quality of the data association, especially
when that is combined with predictions. Consequently, the
platform state should be taken into account whenever pos-
sible, and predictions should be based on the estimated ve-
locity. The various data-association algorithms we tested per-
formed very similar in our case, and we conclude that the
tracker is not sensitive to the choice of data-association al-
gorithm. On the other hand, the choice of gate had a large
influence, and we found that the simple static gate worked
best in our case. However, we cannot rule out the idea that
dynamic gates might perform better, given better knowledge
of detection probabilities and improved error models.

The choice of state estimation technique depends on the
quality of the data and how they are used. For example, more
detailed methods like SNP and KS require more accurate
estimates of platform state in order to perform well. Coarse-
scale estimators like linear regression are less vulnerable to
incorrect platform-state estimates. Velocity is more difficult
to estimate than position, and this should be taken into con-
sideration when choosing the track-state estimator. For our
data, the linear regression yielded a robust and relatively
accurate estimate of the velocity.

The EKF approach differs from the other techniques for
estimating the track state, since it takes account of errors
both in the measurements and in the prediction model, and it
models the two error types separately. To take full advantage
of this approach, better error models must be developed. This
work presents the framework for such an approach which, in
our opinion, is the natural next step.
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APPENDIX A: THE TRACK-STATE TRANSITION

Under the assumptions of constant velocity, the track
state at time tk+1= tk+�T is given by

xk+1 = ���T�xk + w�,

where ���T� is the track-state-transition matrix for the time
interval �T and w� is an additive system error component.

The track-state-transition matrix is given by
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���T� = �
1 0 0 �T 0 0 0

0 1 0 0 �T 0 0

0 0 1 0 0 �T 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

� ,

and the target-model-covariance matrix is defined as ��

=E�w�w�
T �. The error is assumed normal, independent, and

constant for all track-state variables and

�� = �Qxy
2 Qxy

2 Qz
2 Qdxdy

2 Qdxdy
2 Qdz

2 QTS
2 �I

�A1�

where the elements are parameters and I is the identity ma-
trix.

APPENDIX B: THE MEASUREMENTS

A split-beam echosounder with an algorithm for single
echo detection calculates the alongship angle �k, the athwart
ship angle �k, the range rk, and the target strength TSk, for
each target inside the sampled volume at every time step k.
These measurements are represented by

yk = ��k �k rk TSk�etp

T + vy,k.

The measurement has an additive error component, vy,k,
given by the accuracy of the transducer.

The transducer platform state is described by the posi-
tion, x̂�, ŷ�, and ẑ� relative to geo-referenced coordinates
�egc�, the transducer yaw �transducer compass reading� 	�,
and the tilt angles �� and �� relative to east-west and north-
south directions, respectively �see Fig. 2�. Note that this is
not the same as the usual vessel tilt and roll angles,12 which
are relative to vessel heading. The translation, tilt, and twist
of the transducer are given by

zk = ẑk + vy,k = �x̂� ŷ� ẑ� �̂� �̂� 	̂��egc

T + vz,k,

where vz,k is the additive error component. The error terms
are combined into

vR,k = �vz,k

vy,k
�

and assumed additive and normal with covariances �R,k

=E�vkvk
T�. The covariances are given as

�R,k = ��z,k 0

0 �y,k
� ,

where

�z,k = �Rx�
2 Ry�

2 Rz�
2 R��

2 R��
2 R	�

2 �I

and

�y,k = �R�
2 R�

2 Rr
2 RTSk

2 �I .
Here the elements are parameters and I is the identity matrix.
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The mapping from state space to measurement space,
h : �x̂k , ẑk ,vk�→yk, is a central part in the EKF. The mapping
involves Cartesian translation and rotation, and changing
from Cartesian to transducer coordinates. Note that the posi-
tive component of the acoustic axis is pointing away from
the transducer. The relationship between the transducer Car-
tesian coordinates �etc� and the transducer polar coordinates
�etp� is given by

yetp
= �

arctan
x

z

arctan
y

z

	x2 + y2 + z2

TS

�
etp

+ vy,k, �B1�

where x ,y ,z are the target position in etc coordinates and TS
is the target strength. The target position in etc is given by the
mapping between the geo-referenced track-state coordinates
�egc� and transducer platform Cartesian coordinates �etc�, de-
fined by

�
x

y

z

TS

1
�

etc

= AcAt�xegc

1
� , �B2�

where At is the translation matrix and Ac is the rotation ma-
trix, defined as

At�zk�1¯3�� = �
1 0 0 0 0 0 0 − xk�

0 1 0 0 0 0 0 − yk�

0 0 1 0 0 0 0 − zk�

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1
� ,

and

Ac�zk�4¯6�� = �
0 0

�ex� �ey� �ez� 0 0

0 0

0 0 0 1 0

0 0 0 0 1
�

−1

=�
�ex

T� 0 0

�ey
T� 0 0

�ez
T� 0 0

0 0 0 1 0

0 0 0 0 1
� .

The unity vectors are defined by

ex = k2� sin 	�

cos 	�

k1
�

e

,

gc
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ey = k2k3� k1 tan � + cos 	

− sin 	 − k1 tan �

tan � cos 	 − tan � sin 	
�

egc

,

ez = k3� tan ��

tan ��

− 1
�

egc

,

where

k1 = tan �� sin 	� + tan �� cos 	�,

k2 = �sin2 	� + cos2 	� + k1
2�−1/2, �B3�

k3 = �tan2 �� + tan2 �� + 1�−1/2.

Note that the platform-state variables are the sum of the error
and the estimate, i.e., x�= x̂�+vz,k�1�, thus giving the depen-
dence of vz in the mapping.

In order to spawn a new track and to facilitate the use of
the alternative track-state estimators, the mapping from mea-
surement yk to position sk is required, i.e., g : �yk , ẑk�→sk.
First the transducer coordinates �etp� are converted to trans-
ducer Cartesian coordinates,

z = r/	tan2 � + tan2 � + 1,

x = z tan � ,

y = z tan � .

Rotation and translation are applied to arrive at the geo-
graphical Cartesian coordinates �egc�,

sk = AtiAc
−1�

x

y

z

TS

1
� , �B4�

where Ac
−1 is the inverse of Ac and

Ati�zk�1¯3�� = �
1 0 0 0 + xk�

0 1 0 0 + yk�

0 0 1 0 + zk�

0 0 0 1 0

0 0 0 0 1
� .
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