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Abstract 

As known from mammalia, the co-receptors CD4 or CD8 associate with a lymphocyte cell-

specific kinase (Lck) upon T-cell activation. Lck phosphorylates tyrosine residues within the 

CD3 chains, providing docking sites for a 70 kDa zeta-associated-protein (ZAP-70), a 

tyrosine protein kinase important for T-cell signaling. The sequences of a CD4-like gene 

(CD4-2), Lck, and ZAP-70 were cloned, characterized, and the relative expression pattern 

was explored in several organs of Atlantic halibut (Hippoglossus hippoglossus L.). Important 

structural features, as a signal peptide, two Ig-like domains followed by a connecting peptide, 

a transmembrane region, and a CxC motif within the cytoplasmic tail were conserved within 

the predicted halibut CD4-2 protein. The deduced halibut Lck protein sequence was found to 

be composed of a N-terminal Src homology (SH) 4 domain, required for membrane 

attachment and CD4/CD8 binding, SH3 and SH2 adapter domains, and a SH1 domain 

followed by a regulatory C-terminal tail (COOH-domain). Tyrosine residues important in Lck 

activation were conserved within the SH1 and COOH-domain. Structural features of ZAP-70 

as tandem SH2 domains and a C-terminal SH1 domain were predicted within the halibut 

ZAP-70 sequence, having the highest level of conservation within these regions. Several 

important phosphorylation sites found to play a critical role in T-cell antigen receptor 

signaling in mammalian were conserved. The overall expression pattern of the three genes 

was highly similar, showing the highest mRNA level of all three genes in thymus. Some 

expression was seen in spleen, anterior and posterior kidney, gills, and fin, as seen for other 

halibut T-cell markers. This study will enable further experiments on halibut T-cell signaling 

and activation, and enhance understanding about the development of immunological memory 

T-cells of halibut.   

Keywords: lymphocyte cell-specific kinase, 70 kDa zeta-associated-protein, teleost, T-cell 
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1. Introduction  

In mammals, T-cells can be activated when antigenic peptides, presented by major 

histocompatibility complex (MHC) molecules as peptide MHC (pMHC) complexes, are 

recognized by the T-cell receptor (TCR). CD4 and CD8 are transmembrane glycoproteins 

belonging to the Ig superfamily, functioning as co-receptors for the TCR by their interaction 

with MHC and downstream signal transduction. T-cells can be divided into two major subsets 

based on the expression of CD4 and CD8, namely CD4+CD8- T helper (TH) cells and CD4-

CD8+ T cytotoxic (TC) cells. Upon T-cell activation, CD4 or CD8 associates with a 

lymphocyte cell-specific kinase (Lck), belonging to the Src-family of protein tyrosine kinases 

(PTKs). The TCR is non-covalently bound to a CD3 complex that carries immune-receptor 

tyrosine based activation motifs (ITAMs), and Lck phosphorylates tyrosines (Y) within these 

motifs. This provides docking sites for a cytosolic 70 kDa zeta-associated-protein (ZAP-70), 

belonging to the Syk/ZAP-70 family of PTKs. The kinase activity of the receptor-associated 

ZAP-70 becomes activated after tyrosine phosphorylation by Lck, and several tyrosine 

residues of ZAP-70 becomes phosphorylated creating docking sites for downstream 

molecules of the activation cascade. The phosphorylation of ZAP-70 occurs either by 

autophosphorylation both in cis and trans, or with the help of kinases such as Lck. Also, 

ZAP-70 directly phosphorylates and activates important signaling molecules of the calcium 

and Ras pathway.       

Generally, the T-cell system in fish is believed to be very similar to the mammalian system, 

and several molecules involved in T-cell activation have been identified in several fish 

species. Molecules identified in halibut believed to have preserved their structural 

characteristics  includes RAG1 (FJ769824); TCRα, TCRβ, CD3γδ, CD3ε, CD3ζ [1]; CD8α, 

CD8β [2]; and CD4 [3]. In fish, different CD4 like molecules have been identified that shows 

resemblance to CD4 of higher vertebrates [4-10], one form that has the classical four Ig-like 

domain (D1-D4) structure, another that has three Ig-domains (D1-D3), and a third form that 

holds only two Ig-domains (D1-D2) followed by a connecting peptide that is believed to be 

compensating for the two missing Ig-domains. Seemingly, different fish species are in the 

possession of only two of the three divergent forms of CD4, the classical CD4 and either the 

three domain form or the two domain form. However, all CD4-like molecules in fish hold a 
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transmembrane region and a CxC Lck binding motif in their cytoplasmic tails. The presence 

of a CxC motif makes them structurally different from the lymphocyte activation gene-3 

(LAG-3), another member of the CD4 family [11]. Previously described halibut CD4 

molecule has the classical four Ig-domain structure [3].    

There is little knowledge about T-cell signaling in teleosts, and the activity of Lck during fish 

T-cell development and activation is not thoroughly investigated. However, there is some 

evidence that the function of Lck is conserved between higher vertebrates and teleost. In 

mammals, Lck is composed of a N-terminal Src homology (SH) 4 domain (unique domain) 

required for membrane attachment and CD4/CD8 binding, SH3 and SH2 adapter domains, 

and a SH1 catalytic kinase domain followed by a regulatory C-terminal tail, structural 

characteristics also found in fish Lck [12-14]. And, as in mammals, the expression of fish Lck 

could be detected in tissues associated with lymphocyte function and development. In 

rainbow trout (Oncorhynchus mykiss), the expression was restricted to cell surface IgM- 

anterior kidney lymphocytes and was up-regulated in in vitro PHA and PMA stimulated 

lymphocytes [13]. Also, the basic mechanism that regulates the lymphocyte-specific 

expression of Lck was shown to be conserved between fugu (Takifugu rubripes) and 

mammals [12]. However, studies in fish regarding the binding affinity of Lck to CD4 or CD8, 

and its ability to phosphorylate downstream molecules as ZAP-70 are limited. Structural 

features shared by the Syk/ZAP-70 protein-tyrosin kinases family includes tandem SH2 

domains, that interacts with phosphorylated ITAMs within the CD3 chains, and a C-terminal 

kinase domain, also seen in fish ZAP-70 [15]. However, little is known about the action of 

ZAP-70 in fish T-cell immunity, as this kinase has not been carefully characterized in fish. 

Here, we report the description of a halibut ZAP-70 gene, in addition to the characterization 

of a halibut Lck and CD4 like gene having two Ig-domains (here referred to as CD4-2).  

2. Materials and methods 

2.1 Fish stocks and sample collection 

Four individuals, approximately 1 year old weighing between 70 – 150 g, were obtained from 

Austevoll Aquaculture Reseach station, Norway. They were reared in 9ºC sea water (salinity 

of 34.5 ‰), and fed commercial feed twice a day. An overdose of benzocain (The Norwegian 



5 

 

medicine depot) was given before tissue sampling. Samples were collected from thymus, 

spleen, skin, heart, anterior and posterior kidney, pectoral fin, gills, brain, liver, anterior and 

posterior gut, and white muscle for total RNA isolation. The organ samples were snap-frozen 

in liquid nitrogen immediately after dissection and stored at –80ºC until use.  

2.2 Isolation of total RNA and cDNA synthesis 

Total RNA from organ samples was isolated using TRI reagent (Sigma) according to the 

Trizol reagent protocol described by Invitrogen, with a few modifications as described 

previously [2]. The concentration and the purity of the total RNA were assessed with a 

NanoDrop Spectrophotometer (NanoDrop Technologies), and the quality of random samples 

was analyzed with an Agilent 2100 Bioanalyzer (Agilent Technologies). Total RNA was 

reverse transcribed using a Reverse Transcription Core Kit (Eurogentec) and random 

nonamers as primers in 30 μl reactions with 500 ng total RNA. The cDNA was stored at –

20ºC until use. 

2.3 DNA sequencing and Bioinformatic analysis 

Expressed sequence tags (EST) representing CD4-2 (GenBank accession no.: GE31586), Lck 

(GenBank accession no.: GE630612), and ZAP-70 (GenBank accession no.: GE630252) 

were identified by blast search in a database created on the basis of Atlantic halibut cDNA 

libraries [16]. To sequence the 5’end and 3’end of the genes, the SMARTTM RACE cDNA 

amplification kit from Clontech was used as described previously [3]. Amplification and 

sequencing of cDNA was performed as to confirm the open reading frame of the genes 

(GenBank accession no.: CD4-2 -  GU985449, Lck -  FJ769822, and ZAP-70 - GU985452), 

and genomic sequences were amplified to confirm exon-exon boundaries, as described 

previously [2]. Only fragments, sufficient for designing a real time RT-PCR assay not 

detecting genomic DNA, were amplified for the Lck (GenBank accession no.: FJ769823) and 

ZAP-70 genes (GenBank accession no.: GU985453). The genomic structure of CD4-2 

(GenBank accession no.: GU985448) was however more carefully sequenced.  

The open reading frames (ORF) were blasted using ExPASy BLAST form 

(http://ca.expasy.org/tools/blast/), and aligned with ClustalW 

(www.ebi.ac.uk/Tools/clustalw/index.html). A phylogenetic tree was constructed by the 

http://ca.expasy.org/tools/blast/�
http://www.ebi.ac.uk/Tools/clustalw/index.html�
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neighbor-joining algorithm using ClustalW Multiple Alignment 

(http://www.bioinformatics.nl/tools/clustalw.html) and 2000 bootstrap replications. Location 

of domains was predicted using InterProScan (http://www.ebi.ac.uk/InterProScan), and 

physico-chemical parameters were calculated using ProtParam 

(http://au.expasy.org/tools/protparam.html). Post translational modifications were predicted 

using the MYR Predictor (http://mendel.imp.ac.at/myristate/SUPLpredictor.htm), CSS-Palm 

(http://bioinformatics.lcd-ustc.org/css_palm/prediction.php), NetPhos 2.0 Server 

(http://www.cbs.dtu.dk/services/NetPhos/), NetOGlyc 3.1 Server 

(http://www.cbs.dtu.dk/services/NetOGlyc/) and NetNGlyc 1.0 Server 

(http://www.cbs.dtu.dk/services/NetNGlyc/). 

2.4 Real time RT-PCR assay and data analysis 

Primers and probes for real time RT-PCR were designed with Primer express software 3.0 

(Applied Biosystems), according to the manufacturer´s guidelines. Either the probe or one of 

the primers was designed such that they spanned an exon-exon boundary, as to avoid 

amplification of genomic DNA. Five-point standard curves of 4-fold dilution series (1:1 – 

1:256) from pooled cDNA were used for calculation of the PCR efficiency, given by the 

equation E% = (101/slope – 1) x 100 [17], and for revealing PCR poisoning. The primer and 

probe sequences with corresponding PCR efficiencies are listed in Table 1.  

The PCR reaction mix contained 1x TaqMan Fast PCR Master Mix (Applied Biosystems), 

900 nM of each primer, 200 nM TaqMan probe and 1 μl cDNA in a final volume of 12.5 μl. 

The PCR cycling was carried out as follows: 95ºC for 20 sec, 40 cycles of 95ºC for 1 sec 

followed by 60ºC for 20 sec. Samples were run in duplicate on the 7900 HT Fast Real-Time 

PCR System (Applied Biosystems), and the mean Ct value for each sample was used for 

analysis if the deviation was smaller than 5 %. The real time RT-PCR data was normalized 

using elongation factor 1 alpha (EF1A1) as internal reference gene [18]. Efficiency of each 

assay was taken into consideration and the relative expression was transformed using the 

following formula (Efficiency)-∆∆Ct [19, 20], calibrated against the liver expression. 

 

http://www.bioinformatics.nl/tools/clustalw.html�
http://www.ebi.ac.uk/InterProScan�
http://au.expasy.org/tools/protparam.html�
http://mendel.imp.ac.at/myristate/SUPLpredictor.htm�
http://bioinformatics.lcd-ustc.org/css_palm/prediction.php�
http://www.cbs.dtu.dk/services/NetPhos/�
http://www.cbs.dtu.dk/services/NetOGlyc/�
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3. Results 

3.1 Characterization of CD4-2, Lck, and ZAP-70 

3.1.1 CD4-2 

The halibut CD4-2 cDNA was found to be 1167 base pair (bp), containing an ORF of 924 bp 

encoding 308 amino acids (aa). The predicted protein shared a sequence identity of 33% with 

rainbow trout, and 32% with green puffer fish (Tetraodon nigroviridis) and salmon (Salmon 

salar) CD4 chains having two Ig-like domains; and 30% with zebrafish (Danio reio) and 

25% with channel catfish (Ictalurus punctatus) CD4 chains having three Ig-like domains. The 

human CD4 chain showed a sequence identity of 26% with the halibut CD4-2, which is more 

than the classical four domain CD4 molecule of halibut [3]. Both CD4 molecules (CD4 and 

CD4-2) grouped with other CD4 molecules in fish and higher vertebrates, and not with LAG-

3 (Figure 1A).  

Despite the low level of sequence identity between different CD4 molecules, some important 

structural features were conserved in the predicted halibut CD4-2 protein. A signal peptide is 

likely to be cleaved at amino acid 18, giving a mature protein of 32 kD. The CD4-2 gene was 

found to have two Ig-like domains, both having two cysteines for possible formation of 

disulfide bridges (Figure 2). Also, tryptophan residues believed to stabilize the Ig-like 

domains were found. The halibut CD4-2 D1 showed a higher sequence identity with D1 of 

human and halibut CD4 molecules than D3, having an important residue (corresponding to 

human F43) for MHC interaction. The D2 domain of halibut CD4-2 aligned with the D2 of 

human CD4 and the D4 of the classical halibut CD4 molecule. The two Ig-like domains were 

found to be followed by a connecting peptide region having a CxxC motif that may be 

involved in dimer formation, a region of 23 aa likely to form a transmembrane helix, and a 

longer cytoplasmic tail compared to the classical CD4 molecules. The CxC motif believed to 

interact with Lck through a zinc clasp structure [21, 22], was found to be conserved in the 

cytoplasmic tail of halibut CD4-2. No N-linked glycosylation sites were predicted within the 

halibut CD4-2 sequence, while three possible O-linked glycosylation sites were found; one 

within D2 and two within the connecting peptide. A palmitoylation site was predicted in the 

juxtratransmembrane region.  
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A genomic sequence of 3984 bp, corresponding to the halibut CD4-2 cDNA sequence, was 

amplified in overlapping segments and assembled. The halibut CD4-2 gene was found to be 

separated into 9 exons by 8 introns (Figure 3) with a conserved GT-AG splicing pattern. The 

first intron divides the 5’UTR over the first two exons. Exon 2 also encodes the first part of 

the signal peptide, while the second part lies in exon 3. D1 was encoded for by exon 3 and 4, 

while exon 5 encoded D2. The connection peptide was found within exon 6 and 7. Exon 7 

was also found to encode the transmembrane region and the first part of the cytoplasmic tail 

found to span the entire exon 8 and the first 82 bp of exon 9 that also encoded the 3’UTR.    

3.1.2 Lck 

The halibut Lck cDNA was found to be 1984 bp, containing an ORF of 1530 bp encoding 

509 aa. The predicted protein sequence was estimated to have a molecular weight of about 58 

kDa, and shared a sequence identity of 85%, 81%, 76%, and 70% with fugu, rainbow trout, 

zebrafish, and chicken (Gallus gallus) Lck, respectively; and 68 % with human and mouse 

Lck. The halibut Lck also showed similarities with other Src tyrosine kinase family members, 

with identities from 59 – 66 % to mammalian and fish non-Lck Src kinases. However, halibut 

Lck grouped with other fish Lck sequences with high bootstrap support (Figure 1B).  

 

Important structural characteristics within the four Src homology (SH) domains of the Lck 

gene were identified in the predicted halibut Lck protein (Figure 4). Residues known to be 

important for lipid modification and membrane localization of Lck in a CD4/CD8 

independent manner [23-25], were conserved in the N-terminal unique (SH4) domain of 

halibut Lck, the domain that distinguishes Lck from other Src-kinases. The post-

transcriptional modifications of these motifs were predicted equally to what is seen in 

mammalian Lck, with myristoylation of halibut G2 and palmitoylation of C3 and C5. Also, the 

dicysteine motif (CxxC), found to interact through a zinc clasp structure with a corresponding 

dicysteine motif (CxC) in the CD4 and CD8α chains of human [21, 22], was conserved in the 

SH4 domain of halibut Lck. The highest degree of conservation was found in the adaptor 

protein SH2 and SH3 domains and in the catalytic kinase domain. Tyrosine residues believed 

to be phosphorylated (corresponding to human Y394) and dephosphorylated (corresponding to 

human Y505) upon Lck activation, were found within the SH1 domain and COOH-domain of 

halibut Lck sequence, respectively (Figure 4). 
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3.1.3 ZAP-70 

The halibut ZAP-70 cDNA was found to be 2363 bp, containing an ORF of 1839 bp 

encoding 612 aa. The predicted protein was estimated to have a molecular weight of about 69 

kDa, and shared the highest similarity to other ZAP-70 sequences with a sequence identity of 

64% to African clawed frog (Xenopus laevis) and 63% to human, mouse, and rat. The halibut 

ZAP-70 sequence did also show similarity to the spleen tyrosine kinase (Syk), with identities 

of 49 – 51% to mammals and 48% identity to salmon and zebrafish Syk. Phylogenetic 

analysis indicated, however, that halibut ZAP-70 have a closer relationship to other ZAP-70 

sequences of fish and higher vertebrates than to Syk (Figure 1C).   

Structural features of ZAP-70 as a tandem SH2 domains and a C-terminal kinase domain 

were predicted within the halibut ZAP-70 sequence, having the highest level of conservation 

within these regions (Figure 5). Several of the predicted phosphorylation sites were 

conserved between halibut and mammals, as the tyrosines corresponding to human Y292, Y319, 

Y492, Y493, and Y598 [26-30], were present in halibut ZAP-70 (Figure 5). However, other 

tyrosine residues found to play a critical role in T-cell antigen receptor signaling, as Y315 and 

Y474 [31, 32], were not seen in the predicted protein sequence of halibut ZAP-70.  

3.2 mRNA levels in different organs of one year old halibut 

The overall expression pattern of the three genes analyzed by real time RT-PCR was highly 

similar, showing the highest mRNA level of all three genes in thymus (Figure 6). Some 

expression was seen in spleen, anterior and posterior kidney, gills, and fin. Also, some 

expression of the two kinases was observed in skin, however relatively little CD4-2 mRNA in 

skin compared to liver could be seen.  

4. Discussion 

Since the first discovery of a non-classical CD4 like gene in teleost, it has been speculated 

upon which roles the different CD4 forms play in fish immune responses. In many ways, the 

two-domain CD4 molecule is similar to the mammalian CD4 molecule, of course with the 

exception of the missing Ig-domains. The genomic organization of the halibut CD4-2 gene 

shows a close relationship with CD4 and LAG-3 genes, as the first domain D1 was shown to 

be dispersed between two exons. This is a special feature seen in the CD4 and LAG-3 genes 
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of higher vertebrates, and found in all the teleost CD4 genes characterized to date [3-8]. 

Interestingly, a sea lamprey (Petromyzon marinus) two-domain CD4-like gene was found to 

have the D1 domain in a single exon [33], and the three-domain CD4-like gene in channel 

catfish have both the D1 and D3 domain separated in two exons [5].  

An important feature of the D1 of CD4 in mammals is the binding of non-polymorphic 

residues of the MHC II molecule, bringing Lck to the site of immune recognition. A crystal 

structure of the human CD4 in complex with MHC II proposed that the major binding energy 

was provided by the aromatic ring of F43 in the mature CD4 molecule surrounded by the 

hydrophobic residues from the α2 and the β2 domain of MHC class II [34]. Surprisingly, the 

F43 was conserved in halibut CD4-2 (Figure 2), and not in the classical four-domain halibut 

CD4 [3]. The two-domain CD4 of fugu is also in the possession of a phenylalanine 

corresponding to human F43 [4], giving the consensus FxxK in halibut, fugu, and human but 

not in other CD4 like genes [3-10]. Other features common in mammalian and fish CD4 Ig-

domains are the presence of cysteines for intra-chain disulfide bridging and a core tryptophan 

forming an essential structural triad thought to stabilize most Ig-domains [35]. Fish non-

classical molecules having two or three Ig-domains, are all in the possession of a C-CW triad 

for possible disulfide bridging in D1 [4-7, 33], as seen in human CD4 [36]. This C-CW triad 

is also seen in D2 of all teleost CD4-like sequences although the positions are not conserved 

between fish and human. The first cysteine in human D2 is located noncanonically, and is 

substituted in many vertebrates. In murine CD4, indications are found for the formation of a 

disulfide linked dimer formed by domain swapping of D2 giving disulfide-bonds between 

C130 in one monomer and C159 in the other one [37]. In human CD4, K318 and Q344 were 

identified as important residues for a non-covalent dimer association between D4 of adjacent 

CD4 molecules [38], and it has been speculated that this aligning of two CD4 monomers 

gives the opportunity for efficient forming of a covalently disulfide linked CD4 dimers [37]. 

K318 and Q344 are poorly conserved in the classical four-domain CD4 molecules of fish 

(Figure 2). However, the two-domain CD4 in teleost are all in the possession of a CxxC motif 

within the connecting peptide between D2 and the transmembrane domain, giving the 

opportunity to form disulfide linked dimers. This can be an important feature of CD4-2, as it 

has been demonstrated that CD4 dimerization is required for CD4-mediated T-cell activation 

[38, 39], and it has been indicated that the preferred MHC class II co-receptor is disulfide 
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linked dimeric CD4 [37]. Also, the connecting peptide region of the two-domain CD4-like 

molecules can be important for MHC binding, as a high percentage of prolines (about 21% in 

halibut CD4-2) may allow an extended structure so that the D1 of CD4-2 can reach the MHC 

molecule.         

The cytoplasmic tail of mammalian CD4 is in the possession of residues important for lipid 

raft localization and internalization. Two palmitoylation sites located in the junction between 

the transmembrane domain and cytoplasmic tail of CD4 (CxxC) was found to be important 

for lipid raft localization [40, 41]. This palmitoylation site was found to be poorly conserved 

in the halibut four-domain CD4-like molecules [3]. Though, in the two-domain CD4-like 

molecule a single palmitoylation site was predicted in the juxtratransmembrane region 

indicating a preserved function (Figure 2). A dileucine motif has been found to be essential 

for endocytosis of CD4 through clathrin-coated pits, however only when S408 and S415 are 

phosphorylated [42]. Two serines were indicated to be phosphorylation sites in the 

cytoplasmic tail of halibut CD4-2, not present in the classical four-domain CD4 of halibut 

[3]. This is a general trend where the fish two-domain and three-domain CD4-like molecules 

have possible phosphoserines, but lack the dileucin motifs [4-10, 33], besides the fugu CD4L-

2 [4] and the green spotted puffer CD4-2 protein (Figure 2) that both have a dileucine motif 

with one preceding serine. Interestingly, the chicken CD4 chain lacks the phosphoserines 

[43], indicating another regulation mechanism in chicken and fish.  

 

In human, Lck is found to interact through a dicysteine motif (CxxC) within the SH4 domain, 

forming a zinc clasp structure with a corresponding dicysteine motif (CxC) in the 

cytoplasmic tails of CD4 and CD8α [21]. This motif is conserved in all CD4-like molecules 

[3-10] and Lck sequences [12-14] characterized in teleost, including halibut CD4-2 and Lck. 

Interestingly, a third cycteine is seen in all the teleost Lck sequences giving the motif 

CxxCxC, followed by a proline. In human Lck, the CxxC motif is positioned for metal 

coordination by a β hairpin [21], and the proline that is also seen in the mammalian Lck 

homologues, could be conserved as to give this β hairpin a kink. The interaction between 

human Lck and CD4 was shown to include short amphipathic α- helixes at the N-terminal of 

the CxC motifs of both molecules packed together with a hydrophobic interface [21]. The 

different CD4-like molecules in fish are, as mentioned before, in the possession of a CxC 
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motif, but with different surroundings. The classical four-domain CD4 molecules have a 

relatively short cytoplasmic tail, with a large number of basic residues. The CD4-like 

molecules with two domains have a longer cytoplasmic tail with amino acid residues in a 

pattern that are suited for the formation of an amphipatic α helix as seen in human (Figure 2). 

The Lck of halibut and other teleosts is also in possession of residues that can make up a 

short amphipatic α helix in a similar pattern as seen in human Lck (Figure 4). The interface 

between human CD8α and Lck was found to be much smaller than that seen between CD4 

and Lck, but with similar affinity likely as the metal coordination contributes to a large part 

of the binding energy [21]. In fish, the CxC motif of CD8α is found as CxH in both CD8α 

and CD8β, and it has been suggested that both molecules would be able to interact with Lck, 

with contribution from histidine for metal coordination [2, 44]. Other feature of the unique 

domain of Lck is the presence of a GCxCS motif. This motif is believed to be important for 

membrane localization of Lck in a CD4/CD8 independent manner, due to palmiotylation of 

C3 and C5 dependent on the myristoylation of G2  [23-25]. This motif was identified within 

the halibut Lck sequences (Figure 4), indicating a preserved lipid raft localization strategy 

between halibut Lck and Lck of higher vertebrates.  

The regulatory SH3 and SH2 protein interaction domains and the SH1 kinase domain of 

halibut Lck shows the highest sequence conservation (Figure 4), naturally as these domains 

comprises several important functions of Lck. Soon after T-cell activation, tyrosin residues 

within numerous of proteins involved in T-cell signaling are phosphorylated, many dependent 

on the presence of Lck. Naturally a close regulation of the Lck kinase activity is important. A 

regulatory tyrosin (corresponding to human Y505) within the COOH-domain of mammalian 

Lck is essential in this regulation, phosphorylated by a C-terminal Src kinase (Csk) [45], and 

dephosphorylated by the phosphatase CD45 [46-48]. In the Src family of PTKs the 

phosphorylated form of the regulatory tyrosin (corresponding to Y505 in Lck) binds to the 

SH2 domain, keeping the kinase in an inactive conformation, helped by the association 

between the SH3 domain and a PxxP motif within the linker sequence [49]. The kinase 

domain becomes accessible again as CD45 dephosphorylates Y505 and it dissociates from 

SH2 [46, 48]. A tyrosin within the activation loop (corresponding to human Y394) becomes 

phosphorylated in the active form of the kinase, mainly by autophosphorylation [50], causing 

a conformational change essential for its kinase activity. This mechanism for regulation is 
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likely to be preserved between mammals and fish, as these tyrosine residues are found in the 

fish Lck sequences including halibut Lck (Figure 4). Also, the PxxP motif within the linker is 

seen in fish Lck (Figure 4), however, the consensus sequence of the regulatory COOH-tail, 

TATExQYQxQ/G, is not conserved in halibut Lck. The last glutamine (Q) in halibut Lck is 

substituted by an aspartic acid (D), and for unknown reasons the tail is five amino acids 

longer than any other Lck sequence available. Probably, this would not affect the regulatory 

function of the tail, as this is an important feature of the kinase. Another mechanism for 

down-regulation is proposed by the phosphorylation of serine residues, especially S59 as a 

substrate for the mitogen-activated protein kinase (MAPK) [51-53]. After T-cell stimulation, 

the phosphorylation of S59 was found to decrease enzyme activity and regulate SH2 binding 

specificity [51, 54]. S59 is found within the unique domain of Lck as a part of a MAPK target 

sequence (PxPS), and is conserved between mammals and fish (Figure 4). Considering the 

low level of conservation otherwise in the unique domain, the regulatory function of this 

serine is probably preserved.  

An important task of Lck is the phosphorylation of ITAMs within the CD3 chains upon T-

cell activation, creating docking sites for the tandem SH2 domains of ZAP-70 [55, 56]. The 

ITAMs within the CD3 chains of halibut and other fish species confirms mainly to the 

consensus [1, 57-63], indicating a preserved binding mechanism of ZAP-70 between 

mammals and fish. The high conservation of the tandem SH2 domains of halibut ZAP-70 

(Figure 5) agrees with this. When ZAP-70 binds to the phosphorylated ITAMs of the CD3 

chains, its SH1 kinase domain becomes activated. Further, ZAP-70 can be phosphorylated 

creating docking sites for other SH2-containing proteins [64], or directly phosphorylate 

substrates as LAT and SPL-76 and thereby activate signaling pathways such as the calcium 

and Ras pathways [65, 66]. The phosphorylation of ZAP-70 Y493 by Lck is required for the 

activation of the ZAP-70 catalytic activity [26-28]. Y493 is conserved within the activation 

loop of halibut ZAP-70, indicating a conserved mechanism for regulation through evolution. 

The SH2 domain of Lck is required for efficient TCR-mediated signaling in higher 

vertebrates [67], as it is found to interact with ZAP-70 following T-cell stimulation [68]. The 

SH2 domain of Lck was found to use the sequence Y319SDP within the interdomain B of 

ZAP-70 for binding [69, 70], and mutation analysis identified Y319 as an important regulator 

for TCR-dependent phospholipase Cγ1 (PLCγ1) and Ras activation [30, 70]. Mutational 
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analysis of Y315 within the interdomain B of ZAP-70 showed that this tyrosine binds to a SH2 

containing guanine nucleotide exchange factor Vav [71], and also allosterically regulates the 

interaction of the ZAP-70 SH2 domain to ITAMs [31]. Both tyrosines are followed by a 

proline at the +3 position (Y315ESPY319SDP). The interdomain B is the region showing the 

least conservation between fish and higher vertebrates, and the YESPYSDP sequence is not 

preserved in the halibut ZAP-70 (Figure 5). However, a possible tyrosine phosphorylation 

site is seen within the same region of the interdomain B of fish ZAP-70 having a proline at 

position +3 (Y308HNP in halibut). The phosphorylation of halibut ZAP-70 Y308 can thereby 

have a similar function as Y315 and/or Y319. In mammals, the engagement of a CTL-

associated Ag-4 (CTLA-4) was suggested to be important for T-cell suppression, as it inhibits 

the phosphorylation of Y319 and the binding of Lck to ZAP-70 [72], emphasizing the 

necessity of such a regulatory tyrosin within the interdomain B of halibut ZAP-70. Also, 

other tyrosine residues found to be important for down-regulation of antigen receptor 

function, Y292 and Y492 [27, 28], are conserved within the halibut ZAP-70 sequence. 

Phosphorylated Y292 have been found to interact with the negative regulator protein Cbl [73], 

hence the identification and binding analysis of halibut Cbl may support the importance of 

this tyrosine residue in fish ZAP-70 regulation. 

 

Another identified regulatory phosphotyrosine, Y474 within the SH1 kinase domain of human 

ZAP-70, is not seen within halibut or green spotted puffer ZAP-70 (Figure 5), a tyrosine 

residue found to bind to a phosphotyrosine binding domain within the Shc adaptor protein 

[32]. Evidence was found that the interaction between ZAP-70 and Shc lead to the 

phosphorylation of the Gbr2 binding site of Shc, which thereby couples the activated TCR to 

the Ras activation pathway. The functional consequence of the substitution of Y474 with 

phenylalanine within halibut and green spotted puffer ZAP-70 can be interesting for further 

study, as Y474 is preserved in zebrafish ZAP-70, and in zebrafish [15], salmon (accession no.: 

BT059215), common carp (Cyprinus carpio; accession no.: AF253045) and green spotted 

puffer (accession no.: CAF96564.1) Syk sequences. Other conserved tyrosine residues as Y69, 

Y126, and Y178 (Figure 5) might function as a binding sites for Ras activators in halibut, 

predicted to be sites for phosphorylation in halibut as well as in mammals [74]. However, the 

http://www.ebi.ac.uk/cgi-bin/expasyfetch?BT059215�
http://www.ebi.ac.uk/cgi-bin/expasyfetch?AF253045�
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=emblcds&id=CAF96564�
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functionality of these predicted phosphotyrosines should be carefully evaluated before any 

conclusions can be drawn.   

 

Real time RT-PCR analysis revealed a highly similar expression pattern of the halibut CD4-2, 

Lck, and ZAP-70 genes (Figure 6). Compared to the expression levels in other organs, the 

halibut thymus was found to have a relatively high mRNA level of the three genes, which is 

expected as it is believed to be the site of thymocyte maturation [75]. Next to thymus, some 

expression was seen in spleen, anterior and posterior kidney, gills, and fin; similar to what is 

seen for rainbow trout Lck [13] and different CD4-like molecules of several fish species [4-

10]. Also, a highly similar expression patterns is seen in halibut transcription of the CD4-like 

molecule containing four Ig-like domains [3], as well as CD8α, CD8β [2], TCRα, TCRβ, 

CD3γδ, CD3ε, and CD3ζ [1], confirming the functional relationship of the genes as T-cell 

markers and signaling molecules. The evaluation of the ZAP-70 relative expression pattern is 

very important in the characterization of this kinase, as structural features defining ZAP-70 

are likely to be shared by both ZAP-70 and Syk, as seen in other vertebrates [15, 76]. In 

mammals, ZAP-70 is found to be exclusively expressed in all major thymocyte populations 

and NK cells [55, 77]. Syk on the other hand, is found to be most abundantly expressed in B-

cells [77, 78], and the expression pattern of a halibut Syk gene would therefore be expected to 

be more similar to the IgM expression pattern of halibut [79]. The expression pattern of 

halibut ZAP-70 is thereby a confirmation of its homology, in addition to its high sequence 

conservation and the phylogenetic analysis grouping the halibut ZAP-70 sequence together 

with other known ZAP-70 sequences with high bootstrap support (Figure 1C).         

5. Conclusion  

Here we report the cloning and characterization of the genes encoding CD4-2, Lck, and ZAP-

70 from Atlantic halibut, believed to be essential in T-cell signaling. The sequence data 

suggest that the three genes are involved in T-cell immunity in teleost fish, as structural 

features important for T-cell signaling are preserved. The tissue expression pattern of the 

three genes was highly similar, also to other T-cell markers previously reported in Atlantic 

halibut, likely to be related to functional assets of T-cells. This study facilitates further 

research on halibut T-cell signaling and activation, and eases further studies involving halibut 

immune responses against pathogenic stimuli and vaccines.   
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Tables 

Table 1   

Primers and probes for real time RT-PCR and in situ hybridisation. Abbreviations: F – 

forward primer, R – reverse primer, P – probe, is – in situ hybridisation, 6FAM – 6-

carboxyfluorescein, BHQ – black hole quencher, MGBNFQ – Minor groove binder non-

fluorescent quencher. 

 
Name Sequence 5’  3’ Accesion nr E% 
EF1A1 F CCATGGTTGTGGAGTCCTTCTC EU561357 96 

EF1A1 R GATGACACCGACAGCCACTGT   

EF1A1 P 6FAM – CTCCCCTCGGTCGTTTCGCTGTG - BHQ   

CD4-2 F CGAGGTCCAAGACGTACTGTCA GU985449 90 

CD4-2 R CGTCCTGGCTGTGGTTTCTC   

CD4-2 P VIC - TGTAACTGCCGTCCAGC - MGBNFQ   

Lck F TGCCACTTCCCTGTCATTATTG FJ769822 100 

Lck R CTTGGAGCAGGACAGTTTGGA   

Lck P TATGGATGGGAGAATACAAT   

Lck is F AACTGCAGTTCGGATTATTCAGACA   

Lck is R CCCAAAGGACCACACATCTGATTT   

ZAP-70 F TTCCTCAGCAGCAACAAGGATAC GU985452 98 

ZAP-70 R CCAGATACTTCATCCCCATCGA   

ZAP-70 P 6FAM - CACTGCAGAGAACATT - MGBNFQ   
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Figure 1 

Phylogenetic tree, constructed by the neighbor-joining algorithm using ClustalW Multiple 

Alignment. All CD4 homologues with two Ig-like domains are designated CD4-2, with three 

Ig-like domains are designated CD4-3, and with four Ig-like domains are designated CD4-4. 

Bootstrap values above 50 % are shown at the branches, and the branch length scale in terms 

of genetic distance is indicated below the trees. Accession numbers are written in parenthesis. 

The three is showing the relationship between A) CD4 and LAG-3 molecules of halibut 

(Hippoglossus hippoglossus) CD4-2 (GU985449) and CD4-4 (FJ185042); green spotted 

puffer (Tetraodon nigroviridis) CD4-2 (EF601918) and CD4-4 (EF601919): rainbow trout 

(Oncorhynchus mykiss) CD4-2 (AY772711) and CD4-4 (AY973028); salmon (Salmo salar) 

CD4-2 (BT056594) and CD4-4 (EU409794); fugu (Takifugu rubripes) CD4-2 [4] and CD4-4 

(AB164055); sea lamprey (Petromyzon marinus) CD4-2 (AY686862); zebrafish (Danio 

rerio) CD4-3 (EF601915) and CD4-4 (EF601917); channel catfish (Ictalurus punctatus) 

CD4-3 (DQ435304) and CD4-4 (DQ435301); chicken (Gallus gallus) CD4-4 (AY560013) 

and LAG-3 (XP_416510); mouse (Mus musculus) CD4-4 (M36850) and LAG-3 (X98113); 

and human (Homo sapiens) CD4-4 (M12807) and LAG-3 (X51985), B) Halibut Lck 

(FJ769822); turbot (Psetta maxima) Lck (DQ848967); fugu Lck (AF411956); salmon Lck 

(BT044859), Hck (AF321110), and Lyn (BT045857); rainbow trout Lck (AY973032); gin-

buna (Carassius auratus langsdorfii) Lck (AB279594); zebrafish Lck (BC115230), and Lyn 

(BC081601); chicken Lck (BC115230); mouse Lck (M12056), Hck (Y00487), Lyn 

(M64608), and Blk (BC030668); human Lck (X05027), Hck (M16592), Lyn (M16038), and 

Blk (Z33998); rat (Rattus norvegicus) Lck (BC160881), Hck (BC078890), Lyn (L14951), 

and Blk (BC098683); and frog (Xenopus laevis) Lyn (BC170242), and C) Halibut ZAP-70 

(GU985452); green spotted puffer ZAP-70 (CAG00734) and Syk (CAAE01014482); 

zebrafish ZAP-70 ( NP_001018425) and Syk (AF253046); frog ZAP-70 (BC077883) and 

Syk (BC077278); mouse ZAP-70 (U04379) and Syk (U25685); human ZAP-70 (L05148) 

and Syk (Z29630); rat ZAP-70 (BC089855) and Syk (U21684); and common carp (Cyprinus 

carpio) Syk (AF253045).  
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          SIGNAL PEPTIDE----------- D1--------------------------------------------------- 
HAL CD4-2 MNVI-----VCLGFVLGALSAAA---TVFHTKPRQRVTLECG-VDSYSRSVAWSHR---DELIIQIDKKSGFPRK---G  64 
PUF CD4-2 MKKIGRLEFAFLLAVLSCAPPADG--DVIVGKPGGRVAFRCG-LPRGGGPLGWYHQ---ENVVYREDARTGIPQR---G  69 
TRO CD4-2 MKTL-----SWFVFALCILHVVG---EVIYKRIGLPVNIDCG-VKTSNKDMEWSHKAVGGSKSVLIVDYFGKNGKERKG  70 
HAL CD4   MERF----VLILFPALISTSGA----KSVYAQVGGRVVLKPPAINT-YKYVYWRFAKE-DGLQLAWRNHLGGTGINK--  68 
PUF CD4   MEKFRSALLLLLLSALVSASRAQ---EVTYAEVGQPVSLTCPKTQS-WGHLEWLFG----GRELAWRNHMGGQKVNT--  69 
TRO CD4   MKCVSG-FLSIIIALFISSTGA--EDVVVYGQVGETVTLPRSKWGSERVLVQWFFG-I-DTQPLISRNSHGRETI----  70 
HUM CD4   MNRGVPFRHLLLVLQLALLPAATQGKKVVLGKKGDTVELTCTASQKKSIQFHWKNS-----NQIKILGNQGSFLTK--G  72 
          *:         :   :     .         .    * :           . *                 *      
 
          ------------------------------------------------------------- D2--------------- 
HAL CD4-2 PAAIKERTKLKRDKN------LEISDVRREDAGAFTCEAD-------GRSHAHTLLVVS--VSASPSEELQPGSKVTLQ 128 
PUF CD4-2 KGDICLRATMRQMT-------LEIRDLKETDAGTFTCKKN-------LQSEQHQLIVIT--VSASPSASLQLGGTATLQ 132 
TRO CD4-2 NAPMVERAKVRRDR-------LEISALNDGDAGLYICKVD-------GKDMDHRLDIVT--VKVHPSNELNEGNNAILE 133 
HAL CD4   DEPWTNKLTLPDES-------LVITNLQPENFGTYFCEITS----GSQTLPIHSIELIKLNVSVSPAEPLLPGESLSLS 136 
PUF CD4   DGNWKELALSPDGS-------LTVNYIRPEQFGIYVCKVSESGSSGTGTEKAVSYKVLRV--SAEPS-LVLSGQTVTLV 140 
TRO CD4   DPEWKDRLSLSKTDFS-----LIINNIRLEDFKSFKCELKDF---MPQTSTSVTFRLFRLTVSVQPVSPLLAGKNLNLK 139 
HUM CD4   PSKLNDRADSRRSLWDQGNFPLIIKNLKIEDSDTYICEVE-------DQKEEVQLLVFGL--TANSDTHLLQGQSLTLT 142 
                               * :  :.  :   : *:                  :.    .. .   :  * .  *      
 
          ----------------------------------------------------------------------- D3----- 
HAL CD4-2 CEVAG--LNPDSTVQWMRPDGSAH--------EGSDTVHLNPVAASDSGTWECAFSHGGETYREKLDVRVK-------- 188 
PUF CD4-2 CRVKG--PNLEPEVRWKKPDGSLY--------SGSKDADLTEVARSDEGTWNCTFDYQGRQYGETLDIHVI-------- 192 
TRO CD4-2 CQVTG--VDPLPSVEWVSPGGKVEGAPGR---PGSRNVSFSSVALSDTGEWTCQITQDEKTHKETQTINVR-------- 198 
HAL CD4   CTADY--RKK-PEIYWLNPRGERIKN-------NQGTVTVR-VTSQDDGMWICVVAEEKQ---VKMPVKVVGLSPAPLV 201 
PUF CD4   CEAPHPSSRQTPEIHWLDPQGEEVK-------RGNGEVKVS---GRHSGQWTCMVTLGQRTHRAHVSVTV--VDLDSPP 207 
TRO CD4   CDIEE--IFKGTQRRWLSPQKQDLNEDKRAQIRNDGSLTVMSVTDQDHGEWTCVVTYQGREAYANTHVTVIDLSPAHPQ 216 
HUM CD4   LESPP---GSSPSVQCRSPRGKNIQ--------GGKTLSVSQLELQDSGTWTCTVLQNQKKVEFKIDIVVLA-FQKASS 209 
                     .      *  .           .     .      . * * * .    .       : *   
 
          -------------------------------------------------------------------------------          
HAL CD4-2 ------------------------------------------------------------------------------- 188 
PUF CD4-2 ------------------------------------------------------------------------------- 192 
TRO CD4-2 ------------------------------------------------------------------------------- 198 
HAL CD4   PHYTSTSSP--ITVPC--SIPPLITWEQIKAKGIHEVHWQFFPETSSGLISQDAQRLFSLSLAGPLSWKRDQPRGLSPA 276 
PUF CD4   LQYTSKSSP--LSIPC--SIPAHVSWEQIKALGLQEGHWHFFPRSASDLLSSEAQRLFSLSLD-PVAWQSDQTRGLSSS 281 
TRO CD4   PIYTSVSSLSLLHLPCFFSIPPPLSWSDSQEKSIQGGRWTFTPSPAAGSLTGVVQTLANLSLGPPLAWVVNQKRELDVS 295 
HUM CD4   IVYKKEGEQ--------VEFSFPLAFTVEKLTGSGELWWQAERASSS-------KSWITFDLKNKEVSVKRVTQDPKLQ 273 
 
          --------------------------------------------- D4------------------------------- 
HAL CD4-2 ------------------------------------------------------------------------------- 188 
PUF CD4-2 ------------------------------------------------------------------------------- 192 
TRO CD4-2 ------------------------------------------------------------------------------- 198 
HAL CD4   RDPKT-GNLDLTRKLARVEDRGDYMCTMKFKNGRTLNRTVHVEVLQIISSPGPHLLSGQQLNLTCSVGQPLPSDLHLQW 354 
PUF CD4   PDLKN-RNLSLGRRKGDDGDRGDYVCSLKFDNGLTLSRTVRVDVLEIVSAPGTDLISGQQLNLSCSLGVPLTSDLRPRW 359 
TRO CD4   ALQRTNLNLSLSKKGVTEGDRGEYTCAVEFQRGDTLKRSMRVEVLQVFSSPAPVAFVGQEVNLTCTLGHPLTSDLKVKW 374 
HUM CD4   MGKKLPLHLTLPQALPQYAGSGNLTLALEAKTG-KLHQEVNLVVMRAT---------QLQKNLTCEVWGPTSPKLMLSL 342 
                
          ------------------------------------------------------------ CONNECTING PEPTIDE 
HAL CD4-2 --------------------------------------------------------------DPVSPTSPAVRTSEF-N 205 
PUF CD4-2 -----------------------------------------------------------------APPPAPVTSRGP-G 206 
TRO CD4-2 ---------------------------------------------------------------SLLPNDGQYDGQGHSG 215 
HAL CD4   FRPKQSAQPDL----KSARLTIPEVSTDDGGQWECGLL-QGETRLTSAAITLTIEPK-LSVW----------------- 409 
PUF CD4   IPPEGSSLQRP----LSGRLAIPAVSAGDGGKWRCELR-RNDTLLTSAVITLKIESR-LTVW----------------- 414 
TRO CD4   IPPRQSSLLALGSAPDSAHLTIPEARDINGGRWRCELW-RNKTKLTSVEITLKIERVPMDVW----------------- 434 
HUM CD4   KLENKEAKVSK-------REKAVWVLNPEAGMWQCLLSDSGQVLLESNIKVLPTWSTPVQP------------------ 395 
                
          ------------------------------------ TRANSMEMBRANE---------- CYTOPLASMIC DOMAIN 
HAL CD4-2 NG------TPCPSC--GAD--PLG-----WWGPLGWWLWAAAGAGGLVVLLLMVLVIVLCRRIRRRKRKWQNKMKNGQR 269 
PUF CD4-2 PN------PPCKDC--GANGRPVGPSPSPLLG-LSWWMWVVIGVGCLIVLVLVVFIICLYKRIQRKKRKLR-RMENSRQ 276 
TRO CD4-2 PNSDVHTVTTCHHCTKGSQ-QPVEWVP--MLG-LSLWVWVAVGAGCLVGVLLLVTIVLLHRRNKIMKRRDR-KMKNIRV 289 
HAL CD4   -------------------------------------MLVISCSAAAIVSLLLLILGLIIHR-----RRRR-KMRHLR- 444 
PUF CD4   -------------------------------------MLVIICSAAVIV-FLLLLLGFLCRH-----RRAQ-KMRHMR- 448 
TRO CD4   -------------------------------------LLVTICGAAVIF-VLLLILTVILNR-----RHRQ-RVTMPRR 469 
HUM CD4   --------------------------------------MALIVLGGVAGLLLFIGLGIFFCVRCRHRRRQAERMSQIKR 437 
                                                .    .     .*.: :  :        *:   ::   :   
 
          --------------------------------------- 
HAL CD4-2 SARSKTYCQCNCRPAAEKPQPGRQKARPSTLAQKPLLRE 308  
PUF CD4-2 LLMNKQYCQCDRPAAAPKPQ---QDACERALGPP---RH 309 
TRO CD4-2 PLKSNDYCQCNRTLEGPPRR--TQREKPSAGPRQQ--R- 323 
HAL CD4   ----PQLCRCK------KPK-------PKGFYRT----- 462 
PUF CD4   ----HRLCQCK------NPK-------PKGFYRT----- 466 
TRO CD4   --GKRRICRCK------DPQ-------PKGFYRN----- 489  
HUM CD4   LLSEKKTCQCP-------HR------FQKTCSPI----- 458 
                *:*         : 
Figure 2 
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Figure 2 

Alignment of the predicted halibut CD4-2 amino acid sequence with other known CD4 

sequences. Gaps, shown as dashes, maximized the alignment of sequences. Identical residues 

are indicated by an asterisk below the alignment, while double dots and single dots indicate 

chemical similarity between the amino acids. The positions of domains are shown above the 

alignment in upper case. Conserved cysteines believed to form inter- and intra-chain disulfide 

bridges, as well as conserved tryptophan residues that may form a structural triad (C-CW) 

thought to stabilize the intra-chain disulfide bridges within the Ig-domains are on a grey 

background. In human CD4, the F43xxK interacting with MHC, K318 and Q344 important in 

non-covalent dimer formation, the palmiotylation sites (CxxC), and the dileucin motif 

essential for endocytosis of CD4 with the phosphorylation sites S408 and S415, are in bold. So 

are the F43xxK motif and the predicted palmitoylation site within halibut CD4-2. The 

conserved CxC motif within the cytoplasmic tail believed to interact with Lck through a zinc 

clasp structure, are indicated with white letters on a black background. N-linked and O-linked 

glycosylation sites are shown in bold letters and underlined. Abbreviations: HAL CD4-2 – 

Atlantic halibut CD4-2 (Hippoglossus hippoglossus; GU985449), PUF  CD4-2 - Green puffer 

CD4-2 protein (Tetraodon nigroviridis; EF601918), TRO CD4-2 - Rainbow trout CD4-like 

2a*01 protein (Oncorhynchus mykiss; AY772711), HAL CD4 – Atlantic halibut CD4 

(Hippoglossus hippoglossus; FJ185042), PUF CD4 – Green spotted puffer CD4-4a protein 

(Tetraodon nigroviridis; EF601919), TRO CD4 - Rainbow trout CD4 (Oncorhynchus mykiss; 

AY973028), and HUM CD4 – Human T-cell surface glycoprotein CD4 (Homo sapiens; 

M12807). 

 

Figure 3 

Schematic representation of the halibut CD4-2 gene. Open boxes represents untranslated 

regions (UTRs), shaded boxes represent coding regions, and introns are indicated with a line. 

Numbers refer to the size of the corresponding exon or intron, where bold numbers refer to 

the size of exons. Abbreviations: S – signal peptide, D – Ig-like domains, CP – connecting 

peptide, T – transmembrane region, C – cytoplasmic tail.  
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    SH4 (UNIQUE DOMAIN)------------------------------------------ SH3  ----------------- 
HAL MGCNCSSDYSDTDWIENLDEICEQCNCPIPPQS-------CNPYTDQLIPCHS-QHSPPMSPLPDNLVEAIYSYEPNHDGDLGF -  76 
FUG MGCNCSSDYSDGEWIENLDEMCEHCNCPIAPQS-------CNPYTDQLIPIHSPQLSPPSSPLPDNLVVAIYSYEPKHDGDLGF -  77 
TRO MGCNCSSDYDD-DWVENLDEVCDNCNCPIPTQS-------AKPYTDQLIPYPS-HLTPPSSPLPDSLVIAIYSYEPNHNDDLGF -  75 
ZEB MG-NCGSFDPDDEFSYHPDEWCDQCNCPKPPVS-------QN--FDPLIPYPSQYTPPPSSPLPENLVVAIYKYDPAHSDDLGF -  74 
MOU MGCVCSSNPEDDWMEN--IDVCENCHYPIVPLDSKISLPIRNGSEVRDPLVTYEGSLPPASPLQDNLVIALHSYEPSHDGDLGF -  82 
HUM MGCGCSSHPEDDWMEN--IDVCENCHYPIVPLDGKGTLLIRNGSEVRDPLVTYEGSNPPASPLQDNLVIALHSYEPSHDGDLGF -  82 
    **  *.*   *        : *::*: *  . .        :               ** *** :.** *::.*:* *..****  
 
    ----------------------------------------     SH2 ----------------------------------- 
HAL EKGDKLKIINKDDPEWYLAESLTTGQQGFIPYNFIAMT-TVETEPWFFKSISRNEAMRLLLAPGNTQGSFLIRESETIQGSYSL - 159 
FUG EKGDKLKIISKEDPEWYLAESLTTGQRGYVPYNFVAMS-TMEIEPWFFKNISRNEANRRLLAPGNTQGSFLIRESETTPGSYSL - 160 
TRO EKGDKLKILNKDDPEWFMAESLITGQKGFIPYNFVAPLNSMEMETWFFKNLSRNDAMRLLLAPGNTQGSFMVRESETAQGSFSL - 159 
ZEB EKGEKMKILDCDDPEWYMAESLFTGQRGYIPKNFVAKLNSMETEPWFYKNLSRNDAMRQLLAPGNTQGSFLIRESETQPGSFSI - 158 
MOU EKGEQLRILEQSG-EWWKAQSLTTGQEGFIPFNFVAKANSLEPEPWFFKNLSRKDAERQLLAPGNTHGSFLIRESESTAGSFSL - 165 
HUM EKGEQLRILEQSG-EWWKAQSLTTGQEGFIPFNFVAKANSLEPEPWFFKNLSRKDAERQLLAPGNTHGSFLIRESESTAGSFSL - 165 
    ***::::*:. .. **: *:** ***.*::* **:*   ::* *.**:*.:**::* * *******:***::****:  **:*: 
 
    ----------------------------------------------------------- LINKER------------- SH1- 
HAL SIRDLDHNTGEGVKHYRIRNMDNGGFYITAKISFSSLKELVQHHVRETDGLCTKLGKPCQSRAPQKPWWQDEWEIPRESLKLLR - 243 
FUG SIRDLDSNVGDEVKHYRIRNMDNGGFYITAKISFNALKELVQHYSRDSDGLCTKLVKPCQSKAPQKPWWQDEWEIPRESLKLER - 244 
TRO SVRDLDPNTGDTVKHYRIRNLDTGGFYITAKISFNSLKELVQHHSREADGLCTRLMKPCQSRMPQKPWWQDEWEIPRESLKMER - 243 
ZEB SVRDLDPMQGDIIKHYRIRNMDAGGFYITNKISFNSLSELVKHYSREADGLCTRLVKPCQTRAPQKPWWQDEWEVPRESLKLER - 242 
MOU SVRDFDQNQGEVVKHYKIRNLDNGGFYISPRITFPGLHDLVRHYTNASDGLCTKLSRPCQTQKPQKPWWEDEWEVPRETLKLVE - 249 
HUM SVRDFDQNQGEVVKHYKIRNLDNGGFYISPRITFPGLHELVRHYTNASDGLCTRLSRPCQTQKPQKPWWEDEWEVPRETLKLVE - 249 
    *:**:*   *: :***:***:* *****: :*:* .* :**:*: . :*****:* :***:: ******:****:***:**: .  
 
    --Catalytic core-------------------------------------------------------------------- 
HAL RLGAGQFGEVWMGEYNNDREVAIKKLKMGTMSVEAFLAEANMMKNLQHPRLVRLFAVVTQEPILIVTEYMENGSLVDFLKTTEG - 327 
FUG KLGAGQFGEVWMGIHNNERRVAIKCLKIGTMSVEAFLAEANMMKSLQHMHLVRLFAVVTQEPIFIVTEYMENGSLVDYLKTTEG - 328 
TRO RLGAGQFGEVWMGLYNNHRRVAIKNLKVGTMSMAAFLAEANLMKELQHPRLVRLFAVVTQEPIYIITEFMENGALVDFLKSSEG - 327 
ZEB RLGQGQFGEVWMGLYNNNRQVAIKSLKPGTMSISAFLAEANLMKSLQHPRLVRLFAVVTQEPIYIITEYMENGSLVDFLKTPEG - 326 
MOU RLGAGQFGEVWMGYYNGHTKVAVKSLKQGSMSPDAFLAEANLMKQLQHPRLVRLYAVVTQEPIYIITEYMENGSLVDFLKTPSG - 333 
HUM RLGAGQFGEVWMGYYNGHTKVAVKSLKQGSMSPDAFLAEANLMKQLQHQRLVRLYAVVTQEPIYIITEYMENGSLVDFLKTPSG - 333 
    :** ********* :*.. .**:* ** *:**  *******:**.*** :****:******** *:**:****:***:**:..* 
 
    ---------------------------Catalytic loop-------Activation-loop--------------------- 
HAL SSLPMNTLIDMASQVADGMAFIEQENYIHRDLRAANILVSHEHICKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTF – 411   
FUG SSLSINTLIDMASQARHGMAFIEARNYIHRDLRAANILVSHELICKIADFGLARLIENNEYTAREGAKFPIKWTAPEAINYGTF - 412 
TRO SNIPINTLIDMASQVAEGMAYIEAKNYIHRDLRAANILVSDELICKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTF - 411 
ZEB SDIPINTLIDMAAQVAEGMAYVEQKNYIHRDLRAANILVSHELTCKIADFGLARLIKNNEYTAREGAKFPIKWTAPEAINYGTF - 410 
MOU IKLNVNKLLDMAAQIAEGMAFIEEQNYIHRDLRAANILVSDTLSCKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTF - 417 
HUM IKLTINKLLDMAAQIAEGMAFIEERNYIHRDLRAANILVSDTLSCKIADFGLARLIEDNEYTAREGAKFPIKWTAPEAINYGTF - 417 
     .: :*.*:***:*  .***::* .***************.   ************::************************** 
 
    -------------------------------------------------------------------------------- --- 
HAL SIKSDVWSFGILLTEIVTYGRIPYPGMSNPEVIQNLERAYRMPKPDNCPEGLYNVMGMCWRETPDDRPTFEYLRSVLEDFLTAT - 495 
FUG SIKSDVWSFGILLTEIVTYGRIPYPGMSNPEVIHQLEQNYRMPKPENCPDGLYNFMLLCWREKPEDRPTFDYLRSVLEDFFTAT - 496 
TRO SIKSDVWSFGILLTEIVTYGRIPYPGMSNPEVIQNLEKGYRMPRPENCPEDLYNIMDLCWKESPENRPTFEYLRSVLEDFFTAT - 495 
ZEB SIKSDVWSFGVLLTEIVTYGRIPYPGMTNPEVIANLERGYRMPCPDNCPEALYNVMKHCWTENPDNRPTFEFLRSVLEDFFTAT - 494 
MOU TIKSDVWSFGILLTEIVTHGRIPYPGMTNPEVIQNLERGYRMVRPDNCPEELYHLMMLCWKERPEDRPTFDYLRSVLDDFFTAT - 501 
HUM TIKSDVWSFGILLTEIVTHGRIPYPGMTNPEVIQNLERGYRMVRPDNCPEELYQLMRLCWKERPEDRPTFDYLRSVLEDFFTAT - 501 
    :*********:*******:********:***** :**: ***  *:***: **:.*  ** * *::****::*****:**:*** 
 
    COOH-domain--- 
HAL ERQYQEDPCMGRRT - 509    
FUG ERQYQE-------- - 502 
TRO ERQYQEQP------ - 503 
ZEB EGQYQEQPC----- - 503 
MOU EGQYQPQP------ - 509 
HUM EGQYQPQP------ - 509 
    * ***          
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Figure 4 

Alignment of the predicted halibut Lck amino acid sequence with other known Lck 

sequences. Gaps, shown as dashes, maximized the alignment of sequences. Identical residues 

are indicated by an asterisk below the alignment, while double dots and single dots indicate 

chemical similarity between the amino acids. The positions of domains are shown above the 

alignment in upper case. The N-terminal domain associated with myristoylation and 

palmitoylation (GCxCS), the conserved CD4/CD8 interaction motif (CxxC), the nucleotide 

binding region (GxGxxG(x)15K), the protein tyrosine kinase motif (IHRDLRAANI), and the 

activation loop are in bold letters on a grey background.  Conserved tyrosines, Y394 and Y505, 

that are phosphorylated and dephosphorylated respectively upon Lck activation, and S59 that 

is believed to be a part of a MAPK target sequence (PxPS) are indicated with white letters on 

a black background. Abbreviations: HAL – Atlantic halibut (Hippoglossus hippoglossus; 

FJ769822), FUG – Fugu (Takifugu rubripes; AF411956), TRO – Rainbow trout 

(Oncorhynchus mykiss; AY973033), ZEB – Zebrafish (Danio rerio; AY390224), MOU –

Mouse (Mus musculus; M12056), and HUM – Human (Homo sapiens; X05027). 



              SH2 DOMAIN 1-------------------------------------------------------------- 
HAL MSTDPAAELPFYYGSISRTDAEQHLKLAGMVDGLFLLRQCLRSLGGYVLSIACNVEFNHYTIEKLLNGTYCIVGGKPHCGPAEL - 84 
PUF MSTDPAAELPFFYGSISRAEAEQHLKLAGMDDGLFLLRQCIRSLGGYVLSVVCSLEFHHYSIEKQLNGTFCIAGGKPHCGPAEL - 84 
ZEB –MTEPAADLPFFYGSISRSEAEEHLKLAGMGGGLFLLRQCLRSLGGYVLSMIWNLDFYHYSIEKQLNGTYCIAGGKPHCGPAEL - 83 
FRO –MPDVAGHLPFYYGSISRADAEEYLKLGGMMDGLFLLRQCLRTLGGYVLSMVYNVHFHHYPVERQLNGTYAIAGGKAHCGPAEL - 83 
MOU –MPDPAAHLPFFYGSISRAEAEEHLKLAGMADGLFLLRQCLRSLGGYVLSLVHDVRFHHFPIERQLNGTYAIAGGKAHCGPAEL - 83 
HUM –MPDPAAHLPFFYGSISRAEAEEHLKLAGMADGLFLLRQCLRSLGGYVLSLVHDVRFHHFPIERQLNGTYAIAGGKAHCGPAEL - 83 
      .: *..***:******::**::***.** .********:*:*******:  .: * *:.:*: ****:.*.***.******* 
 
    -------------------                                                             ---- 
HAL CEFYSKDADGLVSNLRKPCLRAPDTPIQPGVFDSLRENMLREYVKQTWALEGEAMEQAIISQAPQLEKLIATTAHERMPWYHGK - 168 
PUF CEFYSKDPDGLVCLLRKPCLRPADMPVRPGTFENLKEKMVRDYVKQTWNLEGEAMEQAIVSQASQLEKLIAITAHEQMPWYHGN - 168 
ZEB CEYYSKDPDGLVCTLRKPCLRSPETEIRKGVFDNLRDNMLREYVRHTWKLEGDAMEQAIISQAPQLEKLIATTAHEKMPWFHGK - 167 
FRO CEYYSKDADGLSCTLRRPCNRPVGVECQAGVFDNMRDNMMREYVRQTWKLEGDALEQAIISQAPQVEKLIATTAHERMAWYHGS - 167 
MOU CQFYSQDPDGLPCNLRKPCNRPPGLEPQPGVFDCLRDAMVCDYVRQTWKLEGDALEQAIISQAPQVEKLIATTAHERMPWYHSS – 167  
HUM CEFYSRDPDGLPCNLRKPCNRPSGLEPQPGVFDCLRDAMVRDYVRQTWKLEGEALEQAIISQAPQVEKLIATTAHERMPWYHSS - 167 
    *::**:*.*** . **:** *.     : *.*: ::: *: :**::** ***:*:****:***.*:***** ****:*.*:*.. 
 
    SH2 DOMAIN-2------------------------------------------------------------------------ 
HAL ITRQEGERRLYSGAQPDGKFLVRDRDKSGTFALSMIYGKTVYHYQILQEKSGKYCMPEGTKFDTIWQLVEYLKMKPDGLVTVLV - 252 
PUF IPRQEGERRLYCGAQPDGKFLVRERDEPGSFALSVMYGKTVYHYQILQAKSGKYSMPGGTNFDTIWQLVEYLKMKPDGLVTVLG - 252 
ZEB IPRQEGERRLYSGSQPDGKFLVRERDEMGTFALSVTYGKTVYHYQILRDKSGKIAMPEGTKFDTVWQLVEYLKMKPDGLVTVLR - 251 
FRO ISRDEAERKLYSGAQPDGKFLMRERKENGTYALSVMYGKTVYHYKIDQDKSGKYSIPEGTKFDTLWQLVEYLKLKSDGILAVLK – 251  
MOU LTREEAERKLYSGQQTDGKFLLRPRKEQGTYALSLVYGKTVYHYLISQDKAGKYCIPEGTKFDTLWQLVEYLKLKADGLIYRLK - 251 
HUM LTREEAERKLYSGAQTDGKFLLRPRKEQGTYALSLIYGKTVYHYLISQDKAGKYCIPEGTKFDTLWQLVEYLKLKADGLIYCLK - 251 
    :.*:*.**:**.* *.*****:* *.: *::***: ******** * : *:** .:* **:***:********:*.**::  * 
 
    --- INTERDOMAIN B ------------------------------------------------------------------ 
HAL ESCMNGKAAA-KMPNLP-----------ASRR---VNVNGYTPPPRVVTEASEPAAERDVLPMDC-----TGFNPYHNPNEVK- - 315 
PUF EVCINGRAAESTIPLFS-----------TLRP---QRQNGYTPPPGGHLAEARAAAPKTSVSMAADQDPGTDSNPYHNPNEIR- - 321 
ZEB EPCVNQNNAAPAPANAP-------------RR---SRGNGYTPPPMVPKPMG-AEGSRPSLPMDHD----GFTSPYDDPNELKK - 314 
FRO ESCANASTFSIAPAAAP-----PS---LPKVRPVASNSDGYTPEPF-------LGKSRI-LPMDTS----VYESPYSDPEELKE - 315 
MOU EVCPNSSAS--AAVAAPTLPAHPSTFTQPQRRVDTLNSDGYTPEPARLASS--TDKPRP-MPMDTS----VYESPYSDPEELKD - 326 
HUM EACPNSSASNASGAAAPTLPAHPSTLTHPQRRIDTLNSDGYTPEPARITS---PDKPRP-MPMDTS----VYESPYSDPEELKD - 327 
    * * *           .                   . :**** *            :  :.*          .** :*:*::               
                   
 
    -------   SH1----Catalytic core ---------------------------------------------------- 
HAL –RFNIKRTQLLIDEVELGCGNFGSVKKGVLKTDAGQIDVAIKVLKNENEKLVKEEMMREAEIMHQLNNPFIVRMLGLCNAESLM - 398 
PUF –KFSIQRSQLLIDEVELGSGNFGCVKKGVLRTDSGQVDVAIKVLKSDNESLVKDEMMREAEIMYQLSNRYIVRMLGLCNAENLM - 404 
ZEB KTLFIKRDKLMIDEVELGSGNFGCVKKGVFKMESKQIDVAIKVLKNENEKSVRDEMMREAEIMHQLSDPFIVRMIGLCEAEALM - 398 
FRO RKLFVKRELLLIDEVELGSGNFGCVKKGVYKLKKRQIDVAIKVLKVQEEKNVRDEMMKEAEFMHQLDNPYIVRMIGVCEAENLM - 399 
MOU KKLFLKRENLLVADIELGCGNFGSVRQGVYRMRKKQIDVAIKVLKQGTEKADKDEMMREAQIMHQLDNPYIVRLIGVCQAEALM - 410 
HUM KKLFLKRDNLLIADIELGCGNFGSVRQGVYRMRKKQIDVAIKVLKQGTEKADTEEMMREAQIMHQLDNPYIVRLIGVCQAEALM - 411 
      : ::*  *:: ::***.****.*::** :    *:********   *.   :***:**::*:**.: :***::*:*:** ** 
            
    ----------------------------------------------Catalytic loop ------Activation-loop--  
HAL LVMEMAAAGPLNKFLSSNKDTVTAENIVNLMHQVSMGMKYLEEKNFVHRDLAARNVLLVTQQFAKISDFGLSKALGADDSYYKA - 482 
PUF LVMEMAPAGPLNKFLSSKRDTVTVENIVQLMHQVSMGMKYLEEKNFVHRDLAARNVLLVNQRFAKISDFGLSKALGADDSYYKA - 488 
ZEB LVMEMAPAGPLNKFLSGKKDQITTENIVMLMHQVSMGMKYLEGRNFVHRDLAARNVLLVNQQYAKISDFGLSKALGADDNYYKA - 482 
FRO LVMEMASGGPLNKFLGAKKDTITVSNVVELMHQVSMGMKYLEGKNFVHRDLAARNVLMVNQHYAKISDFGLSKALAADDSYYKA - 483 
MOU LVMEMAGGGPLHKFLLGKKEEIPVSNVAELLHQVAMGMKYLEEKNFVHRDLAARNVLLVNRHYAKISDFGLSKALGADDSYYTA - 494 
HUM LVMEMAGGGPLHKFLVGKREEIPVSNVAELLHQVSMGMKYLEEKNFVHRDLAARNVLLVNRHYAKISDFGLSKALGADDSYYTA - 495 
    ****** .***:*** .::: :...*:. *:***:******* :*************:*.:::************.***.**.*  
 
    ------------------------------------------------------------------------------------ 
HAL KSFGKWPLKWYAPECINFHKFSSKGDVWSFGITMWEAFSYGGRPYKKMKGPDITRFIESGNRMERPTACSERMYAVMNECWTYK - 566 
PUF RTAGKWPLKWYAPECINFRKFSSKSDVWSFGVTMWEAFSYGGKPYKKMKGPEVNQFIEAGNRMERPEPCPEKMYALMKECWTYK - 572 
ZEB RTGGKWPLKWYAPECIHFHKFSSKSDVWSFGITMWEAFSFGGKPYKKMKGPEVITYIEGGSRLDCPAACPEAMYELMKECWTYK - 566 
FRO KSFGKWPLKWYAPECINYRKFSSRSDVWSYGITMWEAFSYGQKPYKKLKGTEVMSFIERNERLACPASCPPEMYQLMLDCWIFK - 567 
MOU RSAGKWPLKWYAPECINFRKFSSRSDVWSYGVTMWEAFSYGQKPYKKMKGPEVLDFIKQGKRMECPPECPPEMYALMSDCWIYK - 578 
HUM RSAGKWPLKWYAPECINFRKFSSRSDVWSYGVTMWEALSYGQKPYKKMKGPEVMAFIEQGKRMECPPECPPELYALMSDCWIYK - 579 
    :: *************:::****:.****:*:*****:*:* :****:**.::  :*: ..*:  *  *.  :* :* :** :*     
 
    --------------------- 
HAL HDDRPDFKKVEESMRSYHYSISNKAKPEGAADGAAAAAAAAAEPVK---- - 612  
PUF HEDRPDFKKVEESMKSYYTSISNKS------------------------- - 597 
ZEB HEERLNFAKVEEKMRTFYYSIAKKIPDYLKTENGTPPK------------ - 604 
FRO MEDRPNFENVEYRMRMYYYSIADKPDKESKEGKEGKEAEAGAAAEAPGKE - 617 
MOU WEDRPDFLTVEQRMRNYYYSLASRAEGPPQCEQVAEAACG---------- - 618 
HUM WEDRPDFLTVEQRMRACYYSLASKVEGPPGSTQKAEAACA---------- - 619 
     ::* :* .**  *:  : *::.: 
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Figure 5 

Alignment of the predicted halibut ZAP-70 amino acid sequence with other known ZAP-70 

sequences. Gaps, shown as dashes, maximized the alignment of sequences. Identical residues 

are indicated by an asterisk below the alignment, while double dots and single dots indicate 

chemical similarity between the amino acids. The positions of domains are shown above the 

alignment in upper case. The nucleotide binding region (GxGxxG(x)18K), the protein tyrosine 

kinase motif (VHRDLAARNV), and the activation loop are indicated above the motif in 

lower case and are shown in the alignment with a grey background. Conserved tyrosines 

believed to be important in T-cell regulation have a black background. Abbreviations: HAL – 

Atlantic halibut (Hippoglossus hippoglossus; GU985452), PUF - Green spotted puffer 

(Tetraodon nigroviridis, CAG00734.1), ZEB – Zebrafish (Danio rerio, NP_001018425.1), 

FRO – African clawed frog (Xenopus laevis; BC077883), MOU – Mouse (Mus musculus; 

U04379), and HUM – Human (Homo sapiens; L05148). 

http://www.ebi.ac.uk/cgi-bin/expasyfetch?BC077883�
http://www.ebi.ac.uk/cgi-bin/expasyfetch?U04379�
http://www.ebi.ac.uk/cgi-bin/expasyfetch?L05148�
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Figure 6 
Relative mRNA level of halibut CD4-2, Lck, and ZAP-70 analyzed by real time RT-PCR. 
Elongation factor 1α (EF1A1) served as internal reference gene while liver was used as 
calibrator. Data represents mean values of n = 4 fish (±confidence interval). Abbreviations: T 
- thymus, S - spleen, AK - anterior kidney, PK - posterior kidney, G - gill, F – pectoral fin, 
AG - anterior gut, PG - posterior gut, Sk - skin, M - muscle, H - heart, B - brain, and L - liver. 
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