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INTRODUCTION

Effects of human activities such as fishing, nutrient
releases, and changes in freshwater runoff are believed
to have transformed coastal ecosystems long before
modern ecological investigations began (Jackson
2001). Although an increasing number of variables are
being monitored in coastal waters, time-series of poten-
tially important environmental drivers are still lacking
and this makes causal analyses of observed changes
unreliable. Water column light attenuation is a particu-
larly critical ecosystem variable. This is not only due to
its effect on primary production, but also because most
animals are sensitive to light. This sensitivity includes
light intensities several orders of magnitude below that
required for photosynthesis (Frank & Widder 1994,
Holzman & Genin 2005, Hernandez-Leon 2008). Short-
term changes in the light regime of coastal areas might
be considerable (Frette et al. 2004, Gallegos et al. 2005),

but little is known about long-term changes and conse-
quences. Apart from Secchi disc observations (Fal-
kowski & Wilson 1992, Sanden & Håkansson 1996, Ak-
snes & Ohman 2009) long time-series of marine optical
properties do not exist. The usefulness of Secchi disc
observations is limited because they provide informa-
tion about surface water only. Proxies of light attenua-
tion would therefore be useful in analyses of environ-
mental change involving e.g. declines in fish stocks
(Aksnes 2007, Daskalov et al. 2007), submerged aquatic
vegetation (Kemp et al. 2004), nitracline (Aksnes et al.
2007) and euphotic zone shoaling (Aksnes & Ohman
2009), and biodiversity changes in general (Jackson
2001). Such changes could then be analysed in a wider
perspective than allowed by commonly monitored vari-
ables such as temperature.

It is well-known that coastal water attenuates light
more than oceanic water does (Jerlov 1968). This is
partly due to higher concentrations of particulate mat-
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ter (such as phytoplankton), but also because of dis-
solved organic matter (DOM) in the freshwater compo-
nent of coastal water (Aarup et al. 1996, Højerslev et al.
1996, Helms et al. 2008). This tends to give a negative
correlation between light attenuation and salinity, and
salinity is therefore a potential proxy for light attenua-
tion. In stark contrast to the general lack of optical
time-series, measurements of salinity are incorporated
in any routine marine investigation. If precipitation
and runoff affect salinity, e.g. as a result of climate
change (Greene et al. 2008), we should also expect
changes in the coastal light regimes with possible eco-
system implications (Pozdnyakov et al. 2007).

A long-term freshening of the Norwegian Coastal
Water (NCW) has been connected to increased precip-
itation and runoff in Northern Europe and increased
southwesterly winds associated with a high North At-
lantic Oscillation (NAO) (Sætre et al. 2003, Sætre
2007). Here we explore whether this freshening might
have contributed to a higher light attenuation of the
mesopelagic habitat of Norwegian fjords. Previous evi-
dence suggests that light absorption tends to increase
with oxygen depletion (Sørnes & Aksnes 2006), there-
fore we also explore how water column darkening re-
lates to variations in dissolved oxygen.
This is potentially important because
decreased dissolved oxygen in subsur-
face water follows eutrophication and
has resulted in oxygen depletion in
coastal areas and shelf regions world-
wide (Diaz 2001), including coastal re-
gions of Scandinavia (Aure et al. 1996,
Johannessen & Dahl 1996, Nordberg et
al. 2000).

Potential implications of variation in
optical properties on food web structure
are illustrated in 2 well-studied fjords
(Masfjorden and Lurefjorden) that serve
as models in the present study (Fig. 1).
Lurefjorden is much darker than Mas-
fjorden (Eiane et al. 1999, Sørnes &
Aksnes 2006). The 2 main zooplankti-
vores in Masfjorden are the mesopelagic
fishes Maurolicus muelleri and Ben-
thosema glaciale, while such visual pre-
dators are practically absent in Lurefjor-
den. Instead there is a total dominance of
the jellyfish Periphylla periphylla and
other tactile invertebrate predators
(Eiane et al. 1999, Bagøien et al. 2001,
Sørnes et al. 2007). Evidence suggests
that Lurefjorden has not always been
suitable to P. periphylla, since the mass
occurrence apparently was established
in the 1970s (Fosså 1992). It has been hy-

pothesized that a gradual NCW darkening has caused
this apparent regime shift by affecting light conditions in
favour of tactile predators (Eiane et al. 1999, Sørnes et al.
2007). In recent years there has been an apparent in-
crease in the number of Norwegian coastal locations
where such mass occurrences have been observed (J. A.
Sneli, C. Schander & K. Eiane pers. comm.). We test here
the hypothesis that the water column of Lurefjorden has
darkened as a result of the long term NCW-freshening
(Sætre et al. 2003, Sætre 2007).

Our study consists of 3 parts. Firstly, we establish an
empirical relationship between light attenuation on
one hand and salinity, dissolved oxygen and chloro-
phyll on the other. This relationship is based on obser-
vations made in fjords along the western coast of Nor-
way at a time of the year when solar radiation and
chlorophyll concentrations are low. Secondly, we apply
the empirical relationship to salinity measurements of
the NCW that extend back to 1935 to estimate long-
term increase in the light attenuation of the 2 coastal
locations, Lurefjorden and Masfjorden. Finally, we
discuss whether the apparent mesopelagic regime
shift in Lurefjorden is consistent with the ‘darkening
hypothesis.’
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Fig. 1. Location of Sognesjøen hydrographical station (61° 01.4’ N,  4° 50.4’ E),
which has operated since 1935. The Norwegian Atlantic Current (NWAC) trans-
ports saline North Atlantic Water (NAW) into the Norwegian Sea, whereas the
Norwegian Coastal Current (NCC) transports less-saline Norwegian Coastal
Water (NCW) from the North Sea northwards along the Norwegian coast. NAW
is dense and submerges below NCW, and intrudes into fjords where the sill
depth is deeper than the thickness of the NCW. In Lurefjorden, NAW does not
intrude because of a shallow sill (20 m), while Masfjorden has a deeper sill 

(75 m) that allows regular intrusions of NAW
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MATERIALS AND METHODS

Measurements of downwelling irradiance in Lure-
fjorden and Masfjorden. During a cruise with RV
‘Trygve Braarud’ 2 wk prior to the main field cam-
paign, downwelling irradiance was measured with a
Trios RAMSES ACC hyperspectral radiometer in Lure-
fjorden (11 October 2006) and Masfjorden (6 October
2006) from the surface down to approximately 80 m
depth. Observations were made every meter down to
10 m, and every 5 m thereafter. We compared the at-
tenuation coefficient for downwelling irradiance,
Kd(500), with measurements of absorption, am(500), in
collected unfiltered water samples (see below). For this
purpose, Kd(500) for a particular depth (z), where
am(500) was measured, was calculated as the attenua-
tion of downwelling irradiance in the depth segment
z – 5 to z + 5 m.

Measurements of light absorption. From 29 October
to 5 November 2006 a cruise was conducted with
RV ‘Håkon Mosby’ along the western coast of Norway.
Water samples were collected with 12 l rosette-
mounted Niskin water collectors and sampling span-
ned the range 0 to 1200 m depth (Table 1). Simultane-
ous measurements of salinity, temperature and dis-
solved oxygen were obtained with a Seabird SBE 911
CTD (Sea-Bird Electronics). The water samples were
acclimatized to room temperature and light absor-
bance was measured at 400, 420, 440, 450, 460, 480,
500 and 550 nm with a spectrophotometer (UV/VIS
Spectrometer Lambda 2, Perkin Elmer). The purpose of
these measurements was to obtain a proxy for light
attenuation at great depths. The water samples were
not filtered and consequently our modified absorbance
measurements include scattering and absorption from
particles (such as phytoplankton) that otherwise would
have been removed by filtering. Although the particle
content is low at this time of the year, particulate scat-
ter and absorption would have contributed to a higher
apparent absorbance; we have therefore used the sym-
bol am instead of the conventional a for absorption. A
total of 8 absorbance readings were made for each

depth; 2 successive readings were made in a 10 cm
quartz cuvette and 2 cuvettes were taken from 2 sepa-
rate water samples. The blank control contained dis-
tilled freshwater purified with a Millipore Simplicity
185 Water Purification System. Our modified absorp-
tion measurement, [am(λ), m–1], at wavelength λ, was
calculated from absorbance, am(λ) = 2.303A(λ)/0.1, ac-
cording to am(λ). We fitted the exponential function

am(λ) = Ce–km λ (1)

to the wavelength specific absorption values obtained
at each depth by use of linear regression on the log-
transformed absorption. Here C is a constant and km is
the spectral slope factor. As for am, this coefficient will
also be affected by particle absorption and scattering.
Particles could potentially also introduce variation
during a scan, resulting in a poor fit when fitting
Eq. (1), but only 1 out of 71 different sampling depths
gave r2 < 0.95. The reported modified absorption val-
ues (am[500]) represent the regression estimate that
was obtained for insertion of 500 nm in Eq. (1) for each
sampled depth. We apply this wavelength, rather than
the lower wavelengths used in chromophoric DOM
(CDOM) studies, because we investigate effects on
downwelling irradiance at great depths where 500 nm
is representative for the deepest penetrating wave-
lengths. For the clearest water, the absorbance mea-
surements at 550 nm were at the detection limit of the
instrument while measurements below 550 nm were
not seriously affected. The precision of the regres-
sion based am(500)-estimate for the clearest water
(am[500] = 0.011 m–1, at 500 m depth in Sognefjorden)
corresponds to a 95% CI of about ±20%. For the aver-
age water clarity (am[500] = 0.059 m–1) in our data set,
95% CI corresponds to ±7%.

Samples (100 ml) for chlorophyll a (chl a) analysis
were filtered through 0.45 µm Sartorius filters, and
frozen for later analysis using acetone extraction
(Holm-Hansen et al. 1965).

Time-series of salinity and temperature. Since 1935
the Institute of Marine Research, Bergen, Norway has
measured salinity and temperature approximately bi-
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Date Location Lat. Long. Bottom Sampling depth (m)
(° N) (° E) depth (m)

29 Oct Lurefjorden 60.41 5.10 439 10, 20, 40, 60, 100, 150, 200, 250, 300, 400
30 Oct Masfjorden 60.52 5.25 483 10, 20, 40, 60, 100, 150, 200, 250, 300, 400, 450
1 Nov Sognefjorden 61.08 6.06 1248 10, 20, 40, 60, 100, 150, 200, 250, 300, 400, 500, 600, 800, 1000, 1200
2 Nov Lysefjorden 59.00 6.17 454 2, 5, 10, 20, 40, 60, 100, 150, 200, 250, 300, 400
3 Nov Jøsenfjorden 59.17 6.19 645 0, 5, 10, 20, 40, 60, 100, 200, 300, 400, 500, 600
3 Nov Hylsfjorden 59.31 6.18 503 0, 5, 10, 20, 40, 60, 100, 200, 300, 400, 450

Table 1. Locations along the western coast of Norway where modified light absorption (see ‘Materials and methods’), salinity, 
dissolved oxygen and chl a concentrations were measured in 2006
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monthly at the station Sognesjøen (Fig. 1, http://atlas.
nodc.no/stasjoner/). This station is located close to
Lurefjorden and Masfjorden, and we utilize the obser-
vations of salinity and sigma-t to estimate the effect of
NCW freshening on the darkening of these 2 adjacent
fjords.

Due to a shallow sill (20 m), the basin water of Lure-
fjorden (maximum depth 439 m) contains NCW, which
floats above the more saline and dense North Atlantic
Water (NAW). The basin of this fjord is renewed by
NCW that passes above the 20 m sill, while the deeper
NAW is blocked by the shallow sill. Deep basin
renewals take place at times when NCW is denser than
the residing basin water, which becomes diluted with
time due to vertical mixing. We consider sigma-t at
10 m depth at the Sognesjøen station (Fig. 1) to be
indicative of the density of the water that renews with
the basin water of Lurefjorden.

The sill depth (75 m) of Masfjorden is deeper than for
Lurefjorden and the basin water of Masfjorden (maxi-
mum depth is 483 m) consists of NAW, although in cer-
tain years the salinity of this fjord basin has been
slightly affected by NCW and Norwegian Trench
Water (Sørnes & Aksnes 2006). We consider sigma-t at

50 m depth at the Sognesjøen station to be indicative
for the density of the water that renews the basin of
Masfjorden.

Statistical analyses. The absorption measurements
were analyzed in a multiple regression analysis with
observed salinity, chl a, and oxygen as the indepen-
dent variables, and we tested for all possible inter-
action effects. The software package Statistica version
8 was used for this purpose.

RESULTS

Comparison of Lurefjorden and Masfjorden

The vertical profiles of am(500) salinity, oxygen, chl a
are shown in Fig. 2. For all depths the am(500) in
Lurefjorden were much higher than in Masfjorden
(Fig. 2A). The basin water of Lurefjorden contained
NCW with salinity of ~33 PSU, while the basin water of
Masfjorden contained NAW with salinity slightly
above 35 PSU (Fig. 2B). The difference between the 2
basins was also reflected in the dissolved oxygen con-
centrations, with 3 to 3.3 and 4.2 to 4.6 ml l–1 below
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Fig. 2. Depth profiles of (A) am(500) (see Eq. (1) for details), (B) salinity, (C) dissolved oxygen, and (D) chl a in Masfjorden (30 October 
2006) and in Lurefjorden (29 October 2006)
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150 m depth in Lurefjorden and Masfjorden, respec-
tively (Fig. 2C). The chl a concentrations were low and
similar in both basins, but higher in Lurefjorden close
to the surface (Fig. 2D).

The measurements of downwelling irradiance at
500 nm suggest that light penetration down to 70 m
was 20 times higher in Masfjorden than in Lurefjorden
(Fig. 3). The linear regression analysis between the
attenuation coefficients for downwelling irradiance
calculated (Kd[500]) from the observations in Fig. 3
(see ‘Materials and methods’) and the corresponding
am(500) measurements (Fig. 2A) yielded:

Kd(500) = 1.059am(500) + 0.013 (r = 0.99, n = 7, p < 10–4)
(2)

which suggests that am(500) is a good predictor for
light attenuation for the depth range 10 to 80 m.

am(500) as a function of salinity, oxygen and chl a

The mean values and ranges of am(500) and km(500)
(see Eq. 1) observed for the different fjord locations are
shown in Table 2. A multiple regression analysis sug-
gests that all am(500) measurements can be expressed
by the equation:

am(500) = 0.64 – 0.016S – 0.012O2 + 0.15Chl
(r = 0.89, n = 70) (3)

where S, O2 and Chl are salinity, dissolved oxygen
concentration (ml l–1) and chl a (mg m–3), respectively.
All 3 effects were statistically significant and no inter-
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(6 October 2006) and in Lurefjorden (11 October 2006)

am(500) (m–1) km(500) (nm–1) Salinity Oxygen (ml l–1) Chl a (mg m–3)

Depth > 100 m
Lurefjorden 0.101 –0.010 33.11 3.1 0.010

(0.082, 0.117) (–0.011, –0.009) (33.08, 33.13) (3.0, 3.1) (0.006, 0.022)
Masfjorden 0.046 –0.011 35.09 4.5 0.010

(0.024, 0.068) (–0.016, –0.008) (35.07, 35.11) (4.2, 4.6) (0.004, 0.013)
Sognefjorden 0.020 –0.016 35.05 4.8 0.013

(0.010, 0.039) (–0.023, –0.010) (35.05,35.01) (4.3, 5.4) (0.011, 0.015)
Lysefjorden 0.053 –0.013 33.39 2.1 0.009

(0.025, 0.093) (–0.018, –0.009) (33.32, 33.42) (1.9, 2.4) (0.008, 0.012)
Jøsenfjorden 0.071 –0.010 35.05 1.7 0.006

(0.031, 0.099) (–0.013, –0.008) (35.04, 35.08) (0.7, 4.0) (0.005, 0.008)
Hylsfjorden 0.075 –0.008 35.06 3.7 0.007

(0.043, 0.109) (–0.011, –0.007) (35.05, 35.08) (3.1, 4.2) (0.006, 0.008)

Depth ≤≤ 100 m
Lurefjorden 0.128 –0.012 31.88 5.0 0.024

(0.071, 0.203) (–0.013, –0.011) (30.97, 32.97) (4.4, 5.3) (0.009, 0.606)
Masfjorden 0.069 –0.012 33.17 4.9 0.084

(0.035, 0.103) (–0.014, –0.010) (31.81, 34.97) (3.9, 5.3) (0.014, 0.250)
Sognefjorden 0.045 –0.014 32.93 5.3 0.195

(0.024, 0.083) (–0.019, –0.010) (31.07, 34.85) (5.1, 5.5) (0.019, 0.602)
Lysefjorden 0.131 –0.011 31.36 4.7 0.265

(0.042, 0.293) (–0.016, –0.009) (28.94, 33.21) (2.9, 5.8) (0.011, 0.638)
Jøsenfjorden 0.094 –0.011 33.00 4,8 0.060

(0.042, 0.216) (–0.012, –0.010) (31.51, 34,78) (4.7, 5.0) (0.006, 0.194)
Hylsfjorden 0.125 –0.013 28.72 5.5 0.109

(0.031, 0.416) (–0.018, –0.010) (14.59, 34.97) (4.6, 7.0) (0.011, 0.347)

Table 2. Mean values and ranges (in parentheses) of am(500), km(500) (see ‘Materials and methods’), salinity, oxygen and chl a at 
the 6 investigated locations (see Table 1)
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action effects were detected (Table 3). The beta-val-
ues, which are a measure of the relative contribution of
each independent variable, were –0.73, –0.23, and
0.35 for salinity, oxygen, and chl a, respectively (nega-
tive sign indicates negative contribution to am[500]).
This suggests that salinity had the highest overall
effect on am(500) in the present dataset. It should be
noted however that this relationship represents a time
of year (October/November) and depth range (10 to
1200 m) where chl a concentrations were low (range
0.05 to 0.6 with mean 0.1 mg chl a m–3).

Eq. (3) implies that decreased dissolved oxygen con-
centration is accompanied by increased light absorp-
tion. In a multiple regression analysis we also obtained
statistical significant effects on the spectral slope coef-
ficient, km (Eq. 1), from dissolved oxygen (p = 5.3 10–4)
and chl a (p = 0.02) but not from salinity (Table 4). This
suggests that the am(500) of the higher wavelengths
was relatively more affected than the lower wave-
lengths by a decrease in oxygen (Fig. 4).

Long-term NCW freshening at Sognesjøen

Although seasonal variation dominates the scatter,
the salinity measurements obtained at 1 m depth at the

Sognesjøen station (Fig. 1) suggest an overall decrease
of 1 PSU over the period 1935 to 2007 (Fig. 5). At 10 m
depth the freshening corresponds to 0.6 PSU. At 50 m
depth, however, no long-term freshening is apparent
(Fig. 5).

Estimated effect of NCW freshening on darkening in
Lurefjorden and Masfjorden

The water masses that periodically renew the basins
of Lurefjorden and Masfjorden have to pass over sills
that are 20 and 75 m deep, respectively. We will
assume that the salinity of these basins corresponds to
the salinity of the water masses that intrude from 10
and 50 m depths at the Sognesjøen station, respec-
tively (see ‘Materials and methods’). The sigma-t at
10 m peaks in January to April (Fig. 6), suggesting that
the renewal of the Lurefjorden basin is likely to occur
at this time of the year.
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Fig. 4. am(500) at different wavelengths for (A) low (0.7 to
1.0 ml l–1) and high (5.1 to 5.4 ml l–1) dissolved oxygen, but
where salinity was approximately constant (35.03 to 35.10),
and for (B) low (33.7 to 33.9) and high (35.03 to 35.10) salinity,
but where oxygen was approximately constant (5.1 to 5.4 ml
l–1). Chl a was lower than 0.015 mg m–3 in all samples. The
exponents of the fitted exponential equation (see Eq. 1) were
km = –0.0166 ± 0.0002, r2 = 0.998 (high oxygen in A and high
salinity in B), km = –0.0086 ± 0.0004, r2 = 0.984 (low oxygen in
A), and km = –0.0139 ± 0.0004, r2 = 0.994 (low salinity in B)

Coefficient SE p-level β

Intercept 0.644 0.058 <10–6

Salinity –0.016 0.002 <10–6 –0.73
Oxygen –0.012 0.003 9.1 × 10–4 –0.23 
Chl a 0.153 0.031 6.0 × 10–6 0.35

Table 3. Statistical significance (p-level) of the 4 coefficients
in a multiple regression analysis (see Eq. 3). Dependent vari-
able was am(500) (m–1) and the independent variables were
salinity, dissolved oxygen (ml l–1), and chl a (mg m–3) (n = 70).
No significant (p > 0.05) interaction effects were found in a
stepwise procedure that started with inclusion of all possible
interaction effects and successive removal of the highest or-
der non-significant interaction. The β-values are a measure
of the relative contribution of each independent variable in 

the particular dataset (Table 1)

Coefficient SE p-level

Intercept –0.0002 0.0056 0.97
Salinity –0.0002 0.0002 0.15
Oxygen –0.0012 0.0003 5.3 × 10–4

Chl a 0.0070 0.0030 0.02

Table 4. Statistical significance (p-level) of the 4 coefficients
in a multiple regression analysis where the spectral slope
coefficient, km (see Eq. 1), was the dependent variable and
the independent variables were salinity, oxygen (ml l–1), and 

chl a (mg m–3) (n = 70)
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Over 73 yr an increase in am(500) from 0.043 to
0.055 m–1 is indicated for Lurefjorden (Fig. 7), which,
according to Eq. (2), corresponds to an increase in
Kd(500) from 0.059 to 0.071 m–1. This implies a 2 orders
of magnitude darkening at the bottom of the 439 m
deep Lurefjorden (i.e. the amount of irradiance that

penetrates to this depth is reduced by a factor of 194).
It should be noted that this approximation reflects the
freshening effect only and not possible effects from
changes in oxygen and pigment concentration that
might have occurred over the 73 yr.

The sigma-t at 50 m at the Sognesjøen station peaks
in April to July (Fig. 6), which is the likely renewal
period for the Masfjorden basin. No freshening-associ-
ated change in am(500) was detected for this basin
(Fig. 7), suggesting the darkening of this fjord has been
limited to that caused by freshening of the upper part
of the water column where NCW is present. It should
be noted, however, that annual variations in oxygen
concentration have been observed in this fjord with
consequences for basin water light attenuation (Sørnes
& Aksnes 2006).

DISCUSSION

We have shown that salinity and dissolved oxygen,
in addition to chlorophyll, can serve as proxies for the
light attenuation in coastal waters of Norway, and that
freshening and oxygen decline are accompanied with
increased light attenuation. Yellow substances associ-
ated with fresh water runoff have long been recog-
nized as an important contributor to the light attenua-
tion of coastal water (Sverdrup et al. 1942) and this is
reflected in the optical classification scheme of marine
waters (Jerlov 1968). The observed negative correla-
tion between light absorption and oxygen appears to
be less known. The dissolved oxygen concentration of
a fjord basin is affected by the actual organic load and
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the turnover time of the basin water (Stigebrandt et al.
1996), and a low oxygen concentration is indicative of
waters where microbial degradation of POM to DOM
has occurred for some time. Elevated concentrations of
degraded DOM might explain why the am(500) values
are negatively correlated with oxygen concentration in
the investigated fjord basins (Sørnes & Aksnes 2006).
Interestingly, Yamashita & Tanoue (2008, p 579) con-
cluded that fluorescent dissolved organic matter is pro-
duced in situ in the ocean interior, along with biologi-
cal oxidization of organic matter, and
that it is resistant to biological de-
gradation on centennial to millennial
timescales. This suggests that a rela-
tionship between light attenuation and
dissolved oxygen might be a general
feature of deep waters. Helms et al.
(2008) showed that aerobic microbial
alteration of CDOM in darkness re-
sulted in a change in spectral slope
characterized by higher absorption at
the longer wavelengths. This might
explain the effect of low oxygen on the
spectral slope in our study (Fig. 4A,

Table 4), although our wavelength
region (400 to 550 nm) was different
from those in Helms et al. (2008) (275 to
295 and 350 to 400 nm).

Our results suggest that moderate
variations in salinity and oxygen can be
associated with variations in light pene-
tration spanning several orders of mag-
nitude due to the integrative effect of
light attenuation. The light attenuation
above a certain depth not only affects
the light intensity at this depth, but also
at all depths below. In Table 5 we give
the fraction of downwelling irradiance
that penetrates through a 200 m hypo-
thetical water column with no chl a but
where salinity and dissolved oxygen
vary over the ranges 33 to 35 PSU and 1
to 6 ml l–1, respectively. The difference
between the clearest and the darkest
water is striking (8 orders of magni-
tude) and our results suggest that an
oxygen drop from 6 to 3 ml l–1 affects
light penetration similarly to a salinity
drop from 35 to 33.

Has coastal water darkening
facilitated mesopelagic regime shifts?

It has been shown previously that
mesopelagic fish and zooplankton abundance in dif-
ferent coastal locations correlate with light availability
(Aksnes et al. 2004). Eiane et al. (1999) and Sørnes et
al. (2007) hypothesized that (1) light attenuation of
NCW has increased and (2) that this has made Lure-
fjorden less suitable for visual predators and more hos-
pitable for tactile predators. Our results are consistent
with the first part of this hypothesis. But it is question-
able whether the estimated 2 orders of magnitude
darkening (at the bottom of Lurefjorden) associated
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Oxygen Salinity
(ml l–1) 33 33.5 34 34.5 35

1 2.0 × 10–11 1.1 × 10–10 6.0 × 10–10 3.3 × 10–9 1.8 × 10–8

2 2.6 × 10–10 1.4 × 10–9 7.6 × 10–9 4.1 × 10–8 2.2 × 10–7

3 3.3 × 10–9 1.8 × 10–8 9.6 × 10–8 5.2 × 10–7 2.9 × 10–6

4 4.1 × 10–8 2.2 × 10–7 1.2 × 10–6 6.7 × 10–6 3.6 × 10–5

5 5.2 × 10–7 2.9 × 10–6 1.6 × 10–5 8.5 × 10–5 4.6 × 10–4

6 6.7 × 10–6 3.6 × 10–5 2.0 × 10–4 1.1 × 10–3 5.8 × 10–3

Table 5. Fraction (f ) of downwelling irradiance (500 nm) that penetrates a 200 m
hypothetical water column with different salinity and oxygen characteristics.
Here, f = e–200Kd(500) where Kd(500) was calculated from Eqs. (2) & (3) with chl a

concentration set at 0
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Fig. 7. Calculated effect of Norwegian Coastal Water (NCW) freshening on light
attenuation in the fjord basins of Lurefjorden and Masfjorden. Annual means
(±SE) of am(500) for Lurefjorden and Masfjorden were calculated according to
Eq. (3), where dissolved oxygen (O2) and chl a concentrations (Chl) were con-
stant at 6 ml l–1 and 0 mg m–3, respectively, for the entire-time series. Thus varia-
tions in am(500) reflect the variation in the salinity of the source water of the 2
fjords and possible long-term trends in dissolved oxygen, browning, and phyto-
plankton biomass are not accounted for (see ‘Discussion’). The source water for
Lurefjorden was defined as the water at 10 m depth at the Sognesjøen station in
the period January–April, while 50 m depth (May–July) was the defined source 

water for Masfjorden (see ‘Materials and methods’)
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with NCW freshening, is sufficient to have caused
regime shift involving the observed mass occurrence
of Periphylla periphylla (Fosså 1992, Sørnes et al.
2007). However, this darkening might be underesti-
mated, as unaltered pigment and oxygen concentra-
tion over the period 1935 to 2006 were assumed. Com-
bined with freshening, a hypothetical average decline
in dissolved oxygen of 1 ml l–1 in this period suggests a
5-, instead of 2-, order-of-magnitude darkening. Baliño
& Aksnes (1993) observed that the mesopelagic fish
Maurolicus muelleri has a preference for light on the
order 10–3 to 10–5 (given as a fraction of daytime sur-
face light, Table 6), while evidence (Sørnes et al. 2007)
suggest that the preference of P. periphylla is several
orders of magnitude lower (Table 6). Fjords containing
clear Atlantic Water (salinity > 35 and high dissolved
oxygen concentration) must be much deeper than 500
m in order to satisfy such preference for low light. The
results in Table 5, however, indicate that combined
freshening and oxygen decline can effectively provide
darkness in shallow fjords.

Nevertheless, more observations are obviously
needed to test whether coastal water darkening has
favored tactile predators like Periphylla periphylla
over visual predators like Maurolicus muelleri. In re-
cent years there has been an increase in the number of
locations with mass occurrences of P. periphylla along
the Norwegian coast (J. A. Sneli, C. Schander, K. Eiane
pers. comm.). Each of these represents an opportunity
to test whether the occurrences are consistent with the
‘darkening hypothesis’ or whether some of these occur

in environments where darkening can be excluded.
Locations where time-series of both salinity and oxy-
gen can serve as proxies would be particularly useful
to address effects of darkening on marine food web
structure in Norwegian coastal areas and elsewhere.

Other factors affecting water column darkening

Altered patterns in precipitation and freshwater
runoff are expected from climate change and global
warming, yet so far the potential effect of associated
changes in water clarity on marine ecosystems have
not received much focus. Added to variation in runoff
patterns, several studies suggest a ‘browning’ of fresh-
water around the North Sea, but also of waters enter-
ing coastal areas in general (Evans et al. 2005, Roulet &
Moore 2006, Monteith et al. 2007). Such browning is
caused by elevated concentrations of DOM. For UK
upland waters, Evans et al. (2006) report a 91% in-
crease in DOC from 1988 up to 2003, but due to a lack
of longer time-series the duration of this browning is
uncertain. The increased light attenuation indicated in
Fig. 7 does not account for such browning and might
therefore underestimate the actual NCW darkening, at
least in recent years.

Increased marine production associated with eutro-
phication also implies a darkening of coastal water due
to increased pigment concentration as well as a gen-
eral increase in POM and DOM. Based on observations
extending back to 1919, Sanden & Håkansson (1996)
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Mean depth Light absorbance Light attenuation Light preference 
Zm, m A(400–500), m–1 Kd(500), m–1 (f )

P. periphylla (< 4 cm)
Lurefjorden 172 0.077 ± 0.001 0.127 10–10

Sognefjorden 947 0.020 ± 0.003 0.036 10–15

Halsafjorden 276 0.061 ± 0.004 0.102 10–12

Mean 10–12

P. periphylla (> 4 cm)
Lurefjorden 140 0.077 ± 0.001 0.13 10–8

Sognefjorden 584 0.020 ± 0.003 0.04 10–9

Halsafjorden 280 0.061 ± 0.004 0.10 10–13

Mean 10–10

M. muelleri (juvenile) 10–3

M. muelleri (adult) 10–5

Table 6. Approximated light preferences for the jellyfish Periphylla periphylla and the mesopelagic fish Maurolicus muelleri.
Observations of the mean depth of the daytime vertical distribution of P. periphylla and the light absorbance values in Lurefjor-
den are from Table 4 in Sørnes et al. (2007). Their reported light absorbance measurements (A[400–550]) represented the average
of the 400 to 550 nm range averaged over 100 to 300 m depth. We obtained the following relationship between am(500) and
A(400–500): am(500) = –0.008 + 1.51A(400–500) (n = 70, r2 = 0.95, p < 10–3) for our data set and used this relationship to transform the
measurements reported in Sørnes et al. (2007) into am(500). Our Eq. (2) was used to approximate Kd(500). The light preference
in the last column represents the fraction of light penetrating down to the mean depth of the P. periphylla vertical distribution at
daytime, i.e. f = exp(–Kd(500) × Zm). The light preferences of M. muelleri correspond to the midday isolume depth reported in 

Fig. 5 of Baliño & Aksnes (1993)
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reported a significant shoaling of the Secchi disc depth
in the Baltic Sea during the 20th century. They con-
cluded that this shoaling could be due to an increase in
humic substances but was more likely induced by
increased phytoplankton biomass. Again, our NCW-
darkening estimate does not account for eutrophica-
tion effects and increased phytoplankton biomass,
which also suggests that the actual darkening has
been higher than that indicated in Fig. 7.

CONCLUSION

Our study suggests that the NCW freshening has
been associated with a water column darkening that
has been most pronounced at coastal locations where
NCW penetrates down to large depths, such as Lure-
fjorden. Such locations are also vulnerable to oxygen
declines that according to our results can magnify the
darkening quite substantially. Due to absence of opti-
cal time-series we believe that water column darken-
ing has been underrated as a driving force for food
web changes in coastal areas around the world. Devel-
opment of optical proxies, including salinity and oxy-
gen variations, browning, and eutrophication, together
with available Secchi depth observations represent an
opportunity to assess the significance of changing
optics in coastal ecosystems.
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