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The appendix includes some supplementary text on the robustness of the obtained results and on

the methodology used, plots showing time series of spawning stock biomass (SSB) and re-

cruitment for each stock (Fig. A1), residual diagnostics (Figs. A2-A3), combined effects of SSB

and year (Figs. A4-A5), interaction effects between SSB and climate (Fig. A6), and results if

SSB effects were set to zero for 7 stocks not displaying any R-SSB relationship (Figs. A7-A9),

and tables with results when auto-regressive and year effects are excluded from the model

(Table A1) or SSB effects were set to zero for 7 stocks not displaying any R-SSB relationship

(Table A2).

SUPPLEMENTARY TEXT

Robustness of results to the inclusion of SSB effects for stocks for which no detectable

association between recruitment and SSB exists

It has been argued that using recruitment per spawning stock biomass (R/SSB) as response when

no significant relation between R and SSB exists may mask possible recruitment-environment

relationships (Cardinale & Hjelm 2006). Although we used loge(R/SSB) as response, we do not

think this argument applies to our analyses. We think so because SSB was included among the



predictors, and the model thus allowed modelling near-zero responses to SSB (as is evident for

example from Fig. A5). Nonetheless, to ascertain the robustness of the results, we performed an

analysis in which SSB effects were excluded from the model for the stocks for which no

detectable association between R and SSB existed. We also decided to omit effects of year for

stocks for which no detectable association between R and year existed.

To perform this analysis, we modified the final model (corresponding to Eq. 4) as

follows:

loge(Ri,j) = ai + ki loge(SSBi,j) + bi SSBi,j + ci loge(Ri,j-1
) + di(Year) + e NAOj + f(Longi,Lati)

NAOj + g(Yearj,Longi,Lati) NAOj + _i,j. (A1)

For stocks displaying an R-SSB relationship, the constant k was fixed at 1 and the constant b was

estimated from the data, modelling a Ricker-type response. For stocks that did not display any R-

SSB relationship, both the constants k and b were set to 0. Similarly, the function d was set to

zero for stocks that did not display any effect of year. To select which stocks should have SSB

effects, we first substituted the two SSB-terms with a stock-specific smooth effect of loge(SSB)

(in a model not including NAO or year effects). The smooth effects were selected

“automatically” by adding a shrinkage term to the roughness penalty. The penalty was estimated

by minimizing the GCV. If the true function was linear for a given stock, the shrinkage term

would dominate the penalty. And if the true function was identically zero, a high penalty would

likely be selected, inducing high shrinkage that might shrink the function to a zero function

(estimated degrees of freedom close to 0; c.f. the help manual of gam.selection in the mgcv

library of R developed by Wood 2001). For seven stocks the estimated degrees of freedom were

less than 0.1 (Gulf of Maine, S Grand Bank, Flemish Cap, S Gulf St. Lawrence, N Gulf St.

Lawrence, Baltic E, Faroe). These stocks thus displayed no relation between R and SSB,

wherefore we set their values of k and b in Eq. A5 to zero. We then determined which year

effects to exclude, by adding a shrinkage term to the penalty of the smooth effect of year (d in

Eq. A1). All stocks displayed effects of year (estimated df  0.5), wherefore the d term was

retained for all stocks. Finally, we added NAO effects to the model.

We found that results regarding the effects of the NAO were qualitatively similar whether

or not the SSB effects were excluded from the model for the seven stocks that did not display

any R-SSB relationship (Table A2, Figs. A7-A9). We therefore judged the results to be robust to

the above-mentioned potential problem.



Generalized Cross Validation (GCV)

The method of cross validation (CV) consists of setting aside a data case, predicting its response

value by the model fitted to the other data cases, computing the squared predictive error, and

then repeating this procedure for each data case to obtain the average sum of squared predictive

error:
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y  is the predicted value of the ith data case from the model fitted to all data except the

ith data case. The calculation can be speeded up by using the formula:
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where 
i
a  is the ith diagonal element of the hat (influence) matrix, H:

H = X (X'X)
-1

 X' (A4)

where X is the vector of predictor variables. Each of the ai elements measures the distance

between a data point and the centroid of the X-space, and thus the influence of the data case.

The generalized cross validation is calculated by replacing the inflation factors ai by their

average value, a :
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Besides being computationally simpler, the GCV has the advantage compared to the CV

that it is invariant with respect to orthogonal transformations of the space to which the response

vector and the covariate vectors belong (Wahba 1990).

The GCV of a model is thus a proxy for the model’s out-of-sample predictive mean

squared error. A model with lower GCV has more explanatory power, and hence is preferred,

compared to a model with higher GCV. The GCV is analogous to Akaike’s Information



Criterion (AIC, Akaike 1974) in that it aims at optimising the trade-off between the numbers of

parameters in a model and the goodness-of-fit of the model.

In our analyses the GCV criterion was used for two purposes: (i) find the optimal

roughness of each smooth term in a generalized additive model (Wood 2001, 2004), and (ii) find

the optimal model structure, e.g. when comparing models with different predictor variables.

Fig. A1. Estimated annual number of recruits (R; whole lines) and spawning stock biomass

(SSB; stippled lines) for each cod stock. For R, year refers to the spawning year. See Table 2 in

main text for data sources.



Fig. A2. Stock-specific autocorrelation functions of residuals from the final cod recruitment

model (Eq. 3). Stippled lines: 95% confidence intervals.



Fig. A3. Residuals and fitted values from the final cod recruitment model (Eq. 3). The residuals

are weighted by an iteratively determined function of stock and spawning stock biomass.



Fig. A4. The combined effects of year and spawning stock biomass on recruitment

(loge[R/SSB]). R is annual number of recruits and SSB is spawning stock biomass. Whole, thin

lines: observed time trends. Bold, broken lines: the predicted combined effect of year and SSB in

a generalized additive model (Eq. 2) at NAO (North Atlantic Oscillation Index) = 0.



Fig. A5. The effects of spawning stock biomass (SSB) and year on annual numbers of recruits

(R). Stippled, whole and broken lines are, respectively, predictions for the first, middle and last

year with data for each stock. The predictions are from a generalized additive model (Eq. 2) at

NAO (North Atlantic Oscillation Index) = 0. See Fig. 3 in the main text for the predicted year

effects on recruitment when SSB is fixed.



Fig. A6. Interaction between the effects of spawning stock biomass and the North Atlantic

Oscillation (NAO) on cod recruitment. Each panel shows the estimated slope of a linear effect of

NAO on loge(R/SSB), where R is annual number of recruits and SSB is spawning stock biomass.

Whole and broken lines: predictions and 95% bootstrap confidence bands from a model in which

the NAO effect depends on SSB (Eq. 4). Points and bars: predictions and 95% bootstrap

confidence limits from a model in which the NAO effect is fixed (Eq. 2; Fig. 4).



Fig. A7.  The effects of spawning stock biomass (SSB) and year on annual numbers of recruits

(R). Stippled, whole and broken lines are, respectively, predictions for the first, middle and last

year with data for each stock. The predictions are from a generalized additive model in which

SSB effects were set to zero for 7 stocks not displaying any R-SSB relationship (marked by

asterisks). See Supplementary text for details. The figure is analogous to Fig. A5.



Fig. A8. Spatial pattern of the effect of the North Atlantic Oscillation (NAO) on cod recruitment.

The isoclines represent the slope of a linear effect of NAO on loge(R), where R is annual number

of recruits. SSB is spawning stock biomass. The plot is based on a model in which SSB effects

were set to zero for 7 stocks not displaying any R-SSB relationship (see Supplementary text),

and is analogous to Fig. 4.



Fig. A9. Temporal change in the impact of the North Atlantic Oscillation (NAO) on cod

recruitment. The lines show estimated slopes of a linear effect of NAO on loge(R), where R is

annual number of recruits. The effect of NAO is modelled to be linear for any given location and

year, but the slope of the effect may vary spatially and temporally. Bold and broken lines:

estimated slope and 95% bootstrap confidence bands for spatially and temporally varying NAO

effect. Points and bars: estimated slope and 95% bootstrap confidence limits for spatially varying

NAO effect. The plot is based on a model in which effects of spawning stock biomass (SSB)

were set to zero for 7 stocks not displaying any R-SSB relationship (Eq. A1), and is analogous to

Fig. 5.



Table A1. Comparison of original results (Table 3 in main text) with results obtained when auto-

regressive and year effects were not included in the model (“alternative results”). See Table 3 for

explanations of acronyms and terms.

Original results Alternative results

Predictors GCV R
2

GCV R
2

Stock 4.43 57.1% 4.43 57.1%

Spawning stock biomass 3.82 65.3% 3.82 65.3%

Auto-regressive effect 2.43 79.3% - -

Year effect 2.18 83.1% - -

Fixed NAO effect 2.14 83.8% 3.65 67.1%

-----------------------------------------------------------------------------------------------------

Non-linear NAO effect 2.14 83.8% 3.65 67.7%

NAO effect _ SSB 2.12 84.3% 3.66 67.3%

NAO effect _ Year 2.07 84.8% 3.58 71.6%

Table A2. Comparison of original results (Table 3 in main text) with results obtained when SSB

effects were set to zero for 7 stocks not displaying any R-SSB relationship (“alternative results”).

See Supplementary text and Table 3 for details and explanations of acronyms and terms. Note

that in the original analyses the response variable was loge(R/SSB) while in the alternative

analysis it was loge(R). The GCV and R
2
 values are therefore not directly comparable across

analyses, although the relative merits of the different sub-models are.

Original results Alternative results

Predictors GCV R
2

GCV R
2

Stock 4.43 57.1% 5.84 79.9%

Spawning stock biomass 3.82 65.3% 4.68 83.8%

Auto-regressive effect 2.43 79.3% 2.46 92.0%

Year effect 2.18 83.1% 2.16 93.7%

Fixed NAO effect 2.14 83.8% 2.09 94.0%

-----------------------------------------------------------------------------------------------------

Non-linear NAO effect 2.14 83.8% 2.12 93.9%

NAO effect _ SSB 2.12 84.3% 2.07 94.3%

NAO effect _ Year 2.07 84.8% 2.01 94.4%
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