Brage IMR Havforskningsinstituttets institusjonelle arkiv

Dette er forfatters siste versjon av den fagfellevurderte artikkelen, vanligvis omtalt som postprint. I Brage IMR er denne artikkelen ikke publisert med forlagets layout fordi forlaget ikke tillater dette. Du finner lenke til forlagets versjon i Brage-posten. Det anbefales at referanser til artikkelen hentes fra forlagets side.
Ved lenking til artikkelen skal det lenkes til post i Brage IMR, ikke direkte til pdf-fil.

Brage IMR -
 Institutional repository of the Institute of Marine Research

This is the author's last version of the article after peer review and is not the publisher's version, usually referred to as postprint. You will find a link to the publisher's version in Brage IMR. It is recommended that you obtain the references from the publisher's site.
Linking to the article should be to the Brage-record, not directly to the pdf-file.

the language of science

ELECTRONIC REPRINT ORDER FORM

After publication of your journal article, electronic (PDF) reprints may be purchased by arrangement with Springer and Aries Systems Corporation.

The PDF file you will receive will be protected with a copyright system called DocuRights®. Purchasing 50 reprints will enable you to redistribute the PDF file to up to 50 computers. You may distribute your allotted number of PDFs as you wish; for example, you may send it out via e-mail or post it to your website. You will be able to print five (5) copies of your article from each one of the PDF reprints.

Please type or print carefully. Fill out each item completely.

1. Your name:

Your e-mail address: \qquad
Your phone number: \qquad
Your fax number: \qquad
2. Journal title (vol, iss, pp): \qquad
3. Article title: \qquad
4. Article author(s): \qquad
5. How many PDF reprints do you want?
6. Please refer to the pricing chart below to calculate the cost of your order.

Number of PDF reprints	Cost (in U.S. dollars)
50	$\$ 200$
100	$\$ 275$
150	$\$ 325$
200	$\$ 350$

NOTE: Prices shown apply only to orders submitted by individual article authors or editors. Commercial orders must be directed to the Publisher.

All orders must be prepaid. Payments must be made in one of the following forms:

- a check drawn on a U.S. bank
- an international money order
- Visa, MasterCard, or American Express (no other credit cards can be accepted)

PAYMENT (type or print carefully):
Amount of check enclosed: \qquad (payable to Aries Systems Corporation)

VISA \qquad
MasterCard \qquad
American Express \qquad
Expiration date: \qquad Signature:

Your PDF reprint file will be sent to the above e-mail address. If you have any questions about your order, or if you need technical support, please contact: support@docurights.com

For subscriptions and to see all of our other products and services, visit the Springer website at:
http://www.springeronline.com

Metadata of the article that will be visualized in OnlineFirst

ArticleTitle	Development of twelve microsatellite loci in the corkwing wrasse (Symphodus melops)
Article Sub-Title	
Article CopyRight	Springer Science+Business Media B.V. (This will be the copyright line in the final PDF)
Journal Name	Conservation Genetics Resources
Corresponding Author	Family Name Knutsen
	Particle
	Given Name Halvor
	Suffix
	Division
	Organization Institute of Marine Research, Flødevigen Marine Research Station
	Address His, 4817, Norway
	Email halvor.knutsen@imr.no
Schedule	Received 1 September 2009
	Revised
	Accepted 10 September 2009
Abstract	We developed 12 microsatellite loci primers in the corkwing wrasse (Symphodus melops). All markers were obtained from partial genomic DNA libraries enriched for tetranucleotide repeats and characterized in 32 unrelated individuals from one putative population. The number of alleles ranged from 5 to 18 , with an average of 8.6 per locus, and the observed heterozygosity ranged from 0.464 to 0.969 (average 0.697). Crossamplification in two closely related commercially exploited species, the ballian wrasse (Labrus bergylta) and the goldsinny wrasse (Ctenolabrus rupestris), successfully resolved four loci of which two were polymorphic and two where monomorphic.
Keywords (separated by '-')	Symphodus melops - Ctenolabrus rupestris - Labrus bergylta - Microsatellite primers - Polymorphisms
Footnote Information	

Author Query Form the anguage of science

Please ensure you fill out your response to the queries raised below and return this form along with your corrections

Dear Author,
During the preparation of your manuscript for typesetting, some questions have arisen. These are listed below. Please check your typeset proof carefully and mark any corrections in the margin of the proof or compile them as a separate list. This form should then be returned with your marked proof/list of corrections to spr_corrections1@sps.co.in

Disk use

In some instances we may be unable to process the electronic file of your article and/or artwork. In that case we have, for efficiency reasons, proceeded by using the hard copy of your manuscript. If this is the case the reasons are indicated below:
\square Disk damaged \square Incompatible file format LaTeX file for non-LaTeX journal

- Virus infected Discrepancies between electronic file and (peer-reviewed, therefore definitive) hard copy
- Other:

We have proceeded as follows:
Manuscript scanned \square Manuscript keyed in $\quad \square$ Artwork scanned

Bibliography

If discrepancies were noted between the literature list and the text references, the following may apply:
The references listed below were noted in the text but appear to be missing from your literature list. Please complete the list or remove the references from the text.
\square Uncited references: This section comprises references that occur in the reference list but not in the body of the text. Please position each reference in the text or delete it. Any reference not dealt with will be retained in this section.

Queries and/or remarks

Section/paragraph	Details required	Author's response
Quotes	Please provide opening quotes for the sentence ending with "... introduced into E. coli strain DH5".	
References	Please update and provide complete details for the reference Knutsen et al. (2009).	
References	Please provide complete details for the references Lewis and Zaykin (2001). Muus and Nielsen (1999).	
References	Please note that the cross reference Pareti and Randall (2000) has not been provided in the reference list.	
References	Please note that the reference Parin (1986) has not been cited in the text.	

2 Development of twelve microsatellite loci in the corkwing wrasse (Symphodus melops)

Abstract

We developed 12 microsatellite loci primers in the corkwing wrasse (Symphodus melops). All markers were obtained from partial genomic DNA libraries enriched for tetranucleotide repeats and characterized in 32 unrelated individuals from one putative population. The number of alleles ranged from 5 to 18, with an average of 8.6 per locus, and the observed heterozygosity ranged from 0.464 to 0.969 (average 0.697). Cross-amplification in two closely related commercially exploited species, the ballian wrasse (Labrus bergylta) and the goldsinny wrasse (Ctenolabrus rupestris), successfully resolved four loci of which two were polymorphic and two where monomorphic.

Keywords Symphodus melops • Ctenolabrus rupestris • Labrus bergylta • Microsatellite primers • Polymorphisms

The corkwing wrasse (Symphodus melops) belongs to the family Labridae which is the third lagest family of marine fish with 580 species in 82 genera (Pareti and Randall 2000). S. melops is a rocky shore species inhabiting tem-perate-cold Atlantic waters from Norway to Morocco and the Azores. It may reach an age of 9 years and about 28 cm in length (Quignard and Pras 1986). The species coloration is very variable; with the ground color of the male being greenish or blue while females are brownish to yellowish (Muus and Nielsen 1999). The diet mostly consists of mollusks, hydroids, bryozoans, worms and various crustaceans. Males grow faster than females (Quignard and Pras 1986). The species is most commonly found in the upper

[^0]30 m of the water column and is believed to be nonmigratory with a territorial behaviour. Males build seaweed nest that they gard among rocks or in crevices, and ripe females show short ovipositor during summer. Sex reversal is sometimes observed (Quignard and Pras 1986).

The Labribes (species like S. melops, Ctenolabrus rupestris and labrus bergylta) is increasingly being exploited commercially by the salmon industry, to remove lice from salmon (Salmo salar) and have over the last decade become a commercially important resource (Treasurer 2002). The current knowledge about population structure, as a basis for management, is lacking for all these species. Therefore, there is an urgent need for a better understanding of population structuring for these species to aid management. Here we present 12 microsatellite loci developed for S. melops that also partly cross-amplify with C. rupestris and L. bergylta and are thus usable as a method for detecting potential population structure in these species.

We employed the company GIS (Genetic Identification Service Inc.) for the development of tetra repeat loci. The colony production and libraries were performed the following way: Recombinant plasmids included in the microfuge tubes were produced by ligating restriction fragments from S. melops DNA into the HindIII site of pUC19 plasmid. The fragments were enriched for a microsatellite motif. Ligation products were introduced into E. coli strain DH5" (ElectroMaxJ, Invitrogen) by electroporation. GIS used 2:1 of ligation mix for each of the libraries. Libraries were prepared from genomic DNA fragments being 350-700 bp long.

Sterilized toothpicks were used to transfer white colonies from the spread stock plates onto a bluo-gal/IPTG/ ampicillin LB (BIA-LB) plate that has a transparent grid taped to the bottom (samples enclosed). This plate was

	Journal : Large 12686	Dispatch :	15-9-2009	Pages: 4
	Article No. : 9100 MS Code: COGR136	$\begin{aligned} & \square \mathrm{LE} \\ & \boldsymbol{C P}^{\mathrm{LP}} \end{aligned}$		$\begin{aligned} & \square \text { TYPESET } \\ & \text { DISK } \end{aligned}$

Table 1 Primer sequences and characteristics of 12 corkwing wrasse (Symphodus melops) microsatellite loci

Size range of fragments (bp), number of alleles $\left(N_{\mathrm{A}}\right)$, expected $\left(H_{\mathrm{E}}\right)$ and observed $\left(H_{\mathrm{O}}\right)$ heterozygosity and deviation from Hardy-Weinberg expectations (F_{IS}), are based on a sample of 32 individuals. Uncorrected P values for two-sided tests, $* P<0.05$, $* * * P<0.001$

* $(\mathrm{TGGA})_{7}(\mathrm{GATA})_{37}(\mathrm{GACG})_{8}(\mathrm{GACA})_{2} ;{ }^{* *}(\mathrm{TAGG})_{3}(\mathrm{TGGA})_{4}(\mathrm{TAGA})_{18}$

	Journal : Large 12686	Dispatch :	15-9-2009	Pages: 4
	Article No. : 9100 MS Code: COGR136	$\begin{aligned} & \square \\ & \boldsymbol{V}_{\mathrm{CP}} \end{aligned}$		$\begin{aligned} & \square \text { TYPESET } \\ & \text { DISK } \\ & \hline \end{aligned}$

Table 2 PCR cross-amplification of all microsatellite loci in Labrus bergylta and Ctenophora rupestris developed for Symphodus melops (cf. Table 1)

Locus	Size range (bp)	N_{A}	H_{E}	H_{O}	$F_{\text {IS }}$
L. bergylta					
SMA103	na	na	na	na	na
SMD112	179	1	0	0	0
SMD121	na	na	na	na	na
SMD131	na	na	na	na	na
C. rupestris					
SMA103	198	1	0	0	0
SMD112	na	na	na	na	na
SMD121	$235-237$	2	0.400	0.25	0.391
SMD131	$87-91$	2	0.233	0.25	0.077

Four primers successfully amplified and were partly found to be polymorphic for both species ($n=8$ per species). Size range (in base pairs, bp) refers to specific alleles, N_{A} is total number of alleles, H_{E} refers to expected and H_{O} to observed heterozygosities, and $F_{\text {IS }}$ to deviation from Hardy-Weinberg expectations. As only eight individuals were used, the HW estimates is only indicative of possible deviations
incubated overnight, and colonies were selected from this plate rather than from the original spread. The procedure above largely follows Meredith and May (2002) and Schwartz and May (2004). Four libraries were screened for the microsatellite motifs $(A A A C)_{n},(C A T C)_{n}(\text { TACA })_{n}$ and $(\text { TAGA })_{n}$. A total of 100 clones were sequenced and 19 primer pairs were designed using DesignerPCR, version 1.03 (Research Genetics, Inc.). These primers were tested against library DNA plus DNA from seven individuals resulting in 12 polymorphic and reliably amplifying loci.

Population screening was conducted by analysing of 32 individuals, caught near the capital of Norway, Oslo (59.54 $\mathrm{N} ; 10.44 \mathrm{E}$). Genomic DNA was isolated using Viogene Blood and Tissue Genomic DNA Extraction Miniprep System (Viogene Inc.) according to manufacturer's protocol. PCR amplifications were carried out in $10 \mu \mathrm{l}$ reaction volumes on Bio-Rad MYCycler, with fluorescently (CY-5) 5'-tagged forward primers (Sigma). The standard reaction composition included $1 \mu \mathrm{l}$ of template DNA, corresponding to $20-40 \mathrm{ng}, 10 \times 15 \mathrm{mM} \mathrm{MgCl}{ }_{2}$ PCR buffer, 0.4 mM dNTPs, 0.125 mM of forward and reverse primers (Sigma) and 0.06 units $\mu \mathrm{l}^{-1}$ of Taq DNA polymerase (Qiagen Inc.). Dilutions were done using Eppendorf Molecular Biology Grade Water. Thermal cycling conditions were as follows: An initial denaturation step at $94^{\circ} \mathrm{C}$ for 5 min , followed by 30 cycles of $95^{\circ} \mathrm{C}$ denaturation, annealing at specific temperature (cf. Table 1) and $72^{\circ} \mathrm{C}$ synthesis, each for 30 s . A final elongation step at $72^{\circ} \mathrm{C}$ for 15 min completed the amplification.

Allele sizes and genotypes were determined by fragment analysis using Beckman Coulter CEQ 8000 automated
sequencer and included software (CEQ8000 Genetic Analysis System, version 8.0). We tested the loci for all individuals to assess gene diversity and evidence for linkage disequilibrium or deviation from Hardy-Weinberg expectations. Gene diversity was estimated with GDA (Lewis and Zaykin 2001); $F_{\text {IS }}$ was estimated and tested using the probability tests within GENEPOP on the web (http://wbiomed.curtin.edu.au/genepop/). The software MICROCHECKER (Van Oosterhout et al. 2004) was used to investigate the potential presence of null alleles or other technical artifacts. Only one locus, SMD128, deviated significantly from Hardy-Weinberg equilibrium in the GENEPOP probability tests. The locus was estimated to contain 27% null alleles (Chakraborty estimate) by MICROCHECKER. No other evidence for null alleles or Hardy-Weinberg deviations was found. No linkage disequilibrium (LD) was detected between pairs of loci (using GENEPOP). Finally, we cross amplified all loci with eight individuals of two related species Ctenolabrus rupestris and Labrus bergyltay resulting in four useful microsatellite DNA loci (Table 2). It is worth noting that the phylogenetic relationship between S. melops and the other two species is not very close (Hanel et al. 2002) and probably causing the primer loci to give a lower success in cross-amplification than anticipated between closely related species (see Knutsen et al. 2009).

Acknowledgments This work was supported by the Norwegian Research Council (through proposal no. 189570/S40) and through the European Science Foundation project "Marine phylogeographic structuring during climate change: the signature of leading and rear edge of range shifting populations" see http://biocongroup.eu/Marin Era/Welcome.html). I thank Hanne Sannæs and Kate Enersen for technical assistance in the lab.

References

Hanel R, Westneat MW, Sturmbauer C (2002) Phylogenetic relationships, evolution of broodcare behavior, and geographic speciation in the wrasse tribe labrini. J Mol Evol 55: 776-789
Knutsen H, Catarino D, Sannæs H, Stefanni S (2009) Development of eleven microsatellite loci in the deep sea black scabbardfish (Aphanopus carbo). Conserv Genet Resour (in press)
Lewis PO, Zaykin D (2001) Genetic data analysis: computer program for the analysis of allelic data (version 1.0 (d16c)). Free program distributed by the authors over the Internet from http://lewis. eeb.uconn.edu/lewishome/software.html
Meredith EP, May B (2002) Microsatellite loci in the Lahontan tui chub, Gila bicolor obesa, and their utilization in other chub species. Mol Ecol Notes 2:156-158
Muus BJ, Nielsen JG (1999) Sea fish. Scandinavian Fishing Year Book. Hedehusene, Denmark, p 340
Parin NV (1986) Trichiuridae. In: Whitehead PJ, Bauchot ML, Hureau JC, Nilesen J, Tortonese E (eds) Fishes of the north-east Atlantic and the Mediterranean, vol 2. UNESCO, Paris, France, pp 976-980

Quignard JP, Pras A (1986) Labridae. In: Whitehead PJP, Bauchot M-L, Hureau J-C, Nielsen J, Tortonese E (eds) Fishes of the north-eastern Atlantic and the Mediterranean, vol 2. UNESCO, Paris, pp 919-942
Schwartz RS, May B (2004) Characterization of microsatellite loci in Sacramento perch (Archoplites interruptus). Mol Ecol Notes 4:694-697

Treasurer JW (2002) A review of potential pathogens of sea lice and the application of cleaner fish in biological control. Pest Manag Sci 58:546-558
an Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) Microchecker: software for identifying and correcting genotyp- 166 ing errors in microsatellite data. Mol Ecol Notes 4:535-538

[^0]: Institute of Marine Research, Flødevigen Marine Research
 A3 Station, 4817 His, Norway
 H. Knutsen (\triangle)
 e-mail: halvor.knutsen@imr.no

