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Abstract 14 

Salmon may sense and respond to a range of environmental variables within sea-cages, 15 

including light, temperature, salinity, dissolved oxygen, water currents and certain chemical 16 

treatments used during production. Environments within sea-cages are typically highly 17 

variable in both space and time, with greatest variation occurring with depth. Preferred 18 

swimming depths and densities of salmon are the result of active trade-offs among 19 

environmental influences and an array of internal motivational factors such as feed and 20 

perceived threats. When preferred levels of multiple environmental cues exist at different 21 

depths, behavioural responses to temperature, light, the entry of feed, oxygen levels or the 22 

presence of treatment chemicals may dominate and override behavioural responses to all other 23 

drivers and determine swimming depths. Behavioural trade-offs in response to environmental 24 

drivers typically result in schooling at specific depths within sea-cages at densities 1.5 to 5 25 

times their stocked density, and up to 20 times in extreme cases. Understanding the spatial 26 

and temporal variability of key environmental variables within sea-cages and how salmon 27 

respond to them may enable modifications to sea-cage environments to improve welfare 28 

outcomes, feeding regimes, artificial light management strategies and the efficacy of sea-lice 29 

treatments. 30 

31 
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1. Introduction 80 

1.1. Scope and study limitations 81 

The majority of Atlantic salmon production takes place in marine net cages (hereafter sea-82 

cages) where the fish are exposed to a complex natural and artificial environment. Their 83 

movements are restricted by the volume set by the net and the surface, wherein they display 84 

their preferences and aversions. Behavioural studies of caged Atlantic salmon have revealed 85 

that fish rarely distribute themselves randomly in sea-cages, but that their swimming depth 86 

and speed is a response to several environmental gradients (e.g. Juell, 1995; Oppedal et al., 87 

2007; Johansson et al., 2007; Korsøen et al., 2009). In general, the metabolic rates of fish are 88 

governed by controlling (e.g. temperature) and limiting (e.g. metabolites, food, water and 89 

respiratory gases) factors and their preferences have been suggested to reflect behavioural 90 

adaptations aimed at optimising their position in the environment (Fry, 1947). Adjustments of 91 

management practices to the natural behavioural traits of salmon, utilising their adaptive 92 

capacities and avoiding maladaptive behaviours, may improve production efficiency and 93 

welfare of the farmed fish.  94 

Salmon behaviours in sea-cages have been extensively studied. However, since the last 95 

comprehensive review that synthesised existing knowledge on the behaviour of salmon in 96 

relation to efficient cage-rearing (Juell, 1995), diverse new insights have emerged from a 97 

range of field and experimental studies (e .g. Oppedal et al., 2001a; 2007; Juell et al., 2003; 98 

Juell and Fosseidengen, 2004; Cubitt et al., 2005; Johansson et al., 2006; 2007; 2009; 99 

Dempster at al., 2008; 2009a; Korsøen et al., 2009). Approximately 20 experiments have been 100 

conducted in industry-scale sea-cages (Table 1). The majority of these studies used the echo-101 

sounder techniques introduced by Bjordal et al. (1993), which have enabled measurement of 102 

the detailed vertical distribution of salmon groups in sea-cages with high temporal (seconds) 103 

and depth resolution (0.5 m depth increments). In addition to assessing vertical distributions 104 

of salmon, many of these studies have manipulated or simultaneously measured a range of 105 

environmental and production variables, such as light, salinity, temperature, oxygen, current 106 

speeds, feeding regimes and the application of chemical therapeutants, to test the behavioural 107 

responses of salmon.  108 

Here, we synthesize the insights generated by these industry-scale trials as to how salmon 109 

respond to, and trade-off between, different environmental variables within sea-cages by 110 

altering their vertical positioning and modifying other behaviours. Finally, we make 111 

recommendations to ensure that the present knowledge is better utilised by the salmon 112 

farming industry to improve production parameters such as stocking densities, feeding 113 

regimes, artificial light management and the efficacy of sea-lice treatments, and propose new 114 

hypotheses regarding the behaviour of salmon in sea-cages that require testing. 115 

2. General overview of modern salmon production in sea-cages  116 

To provide general context, we first provide a brief overview of the extent of salmon 117 

aquaculture in sea-cages and typical culturing practices. 118 



2.1. Worldwide production of salmonids 119 

Worldwide, approximately 1.58 million tons of Atlantic salmon and 286 kilotons (kt) of 120 

rainbow trout were produced in 2008 (Table 2; reproduced from Kjønhaug, 2009). Production 121 

is dominated by Norway and Chile, with Great Britain, North America, the Faroe Islands and 122 

Australia also significant producer nations.  123 

2.2. Farm sites and sea-cage sizes 124 

Salmonid farming sites are located in bays, sounds, fjords or scattered amongst islands within 125 

archipelagos. Farms in coastal areas typically have relatively homogenous water quality, are 126 

subject to a stronger and more variable current regime, and may experience wind-driven 127 

upwelling of colder water with lower oxygen saturation levels. Farms located in fjords are less 128 

likely to experience upwelling events, but typically experience greater seasonal variation in 129 

environmental conditions with strong vertical stratifications variations in salinity, temperature, 130 

oxygen and water currents (e.g. Johansson et al., 2007; Oppedal et al., 2007).  131 

Salmon are typically held in either square or rectangular sea-cages of 20-40 m sides, 20 to 35 132 

m deep or circles of 90-157 m in circumference and up to 48 m deep. Cage volumes range 133 

from 20000-80000 m3. Square cages are typically clustered together in a steel platform with 134 

between 4-28 cages per site with little distance (2-4 m) between adjacent cages. Circular cages 135 

are arranged in mooring grids in single or double rows but with typically greater space 136 

between them (>20 m) than square cages. 137 

2.3 Biomasses and stocking densities 138 

Cages may contain up to 200000-400000 individuals at densities typically up to 25 kg m-3 139 

(maximum allowable stocking density = 25 kg m-3 in Norway; Norwegian Ministry of 140 

Fisheries and Coastal Affairs, 2008). In practice, the largest Norwegian sites produce more 141 

than 10000 tons of salmon biomass per generation (pers. comm., Trine Danielsen, Marine 142 

Harvest) involving more than 2 million individual salmon per site. In 2008, approximately 300 143 

million individual Atlantic salmon and rainbow trout were held in sea-cages in Norway at any 144 

given time (Norwegian Fisheries Directorate, 2009).  145 

2.4. Underwater lights, sexual maturation and growth 146 

To arrest and reduce the incidence of sexual maturation, artificial lights are used during winter 147 

for both spring- (Hansen et al., 1992; 2000; Oppedal et al., 1997; Porter et al., 1999) and 148 

autumn seawater-transferred (Oppedal et al., 2006) Atlantic salmon. Photoperiodic treatment 149 

also alters the seasonal growth cycle and larger salmon may be produced in shorter time 150 

(Oppedal et al., 1997; 1999; 2003; 2006; Nordgarden et al. 2003). Typical growth rates are in 151 

the range of 0.3-2% of the stocked biomass in the cage, depending on season, artificial 152 

photoperiod, fish size and water temperature (e.g. Oppedal et al., 2006; Skretting, 2009) with 153 

daily feed rations at similar levels. 154 

3. Group and individual behaviours 155 



3.1 Schooling patterns and swimming speeds 156 

Salmonids typically form a circular swimming pattern at daytime and avoid both the 157 

innermost part of the cage volume and the cage corners (Sutterlin et al. 1979; Fernö et al. 158 

1988; Juell and Westerberg 1993; Huse and Holm, 1993; Juell et al. 1994; Oppedal et al. 159 

2001a; Dempster et al. 2008; 2009a; Korsøen et al. 2009). While this behaviour is not 160 

‘classical’ schooling, which involves tightly organised synchronised swimming direction and 161 

speed (Cushing and Harden Jones, 1968), its semi-organised nature means that it is often 162 

referred to as such throughout the literature. Schooling typically leads to packing of the fish in 163 

certain areas within the cage at densities 1.5-5 times the stocking density, reaching as high as 164 

20 times in extreme cases (Table 1). 165 

When salmon are held at commercial densities, the cumulative interactions of all individuals 166 

in avoiding the sea-cage and other individuals are believed to cause the characteristic circular 167 

schooling patterns observed during the day (Juell and Westerberg, 1993; Fernö et al., 1995; 168 

Juell, 1995; Føre et al. 2009). Salmon require a certain density in order to form schools; an 169 

increase from 30 to 530 individuals in a 500 m3 cage was required before structured schooling 170 

was observed (Juell and Westerberg, 1993). Similarly, schooling was first observed in a group 171 

size of 243 individuals in a 2000 m3 cage, and further pronounced when the group size was 172 

increased to 729 individuals (Folkedal, 2006). This schooling pattern was recently verified in 173 

an individual-based model by Føre et al. (2009) based on a set of simple rules defining the 174 

responses of salmon to other individuals, avoiding the cage and including a stochastic 175 

component. The structured behavioural patterns seen at the group level are an ‘emergent 176 

property’ of the combined individual behaviours that ultimately create a self-organising 177 

school (Føre et al., 2009).  178 

During feeding, circular schooling largely breaks down and fish swim towards the food 179 

pellets which are normally distributed in a centralised feeding area (Sutterlin et al., 1979; 180 

Huse and Holm, 1993; Juell et al., 1994; Ang and Petrell, 1998) and move back towards the 181 

periphery as hunger is reduced (Juell et al., 1994). When fish are continuously fed throughout 182 

the day, they form a ring-like structure, characterised by organised foraging (Ang and Petrell, 183 

1998). In contrast, when fed in batches, salmon initially form a spiral-like structure followed 184 

by foraging in a disorganised style until feed becomes unavailable. Avoidance of the cage 185 

bottom is often observed (Huse and Holm, 1993; Fernö et al., 1995) and could represent anti-186 

predator avoidance, as large piscivorous fish are frequently observed immediately below the 187 

cages (e.g. saithe and cod in Norway; Dempster et al., 2009b). 188 

Swimming speeds during the day are typically faster than at night (day: 0.2-1.9 BL sec-1: 189 

Sutterlin et al., 1979; Kadri et al., 1991; Blyth et al., 1993; Juell and Westerberg, 1993; Smith 190 

et al., 1993; Oppedal et al., 2001a; Andrew et al., 2002; Dempster et al., 2008; 2009a; 191 

Korsøen et al., 2009; night: < 0.4 BL sec-1 ; Korsøen et al., 2009) as illustrated in Fig. 1 192 

(reproduced from Korsøen et al., 2009). The breakdown in schooling behaviour after sunset 193 

may be responsible for this change in swimming speed (Fernö et al., 1988; Juell, 1995, 194 

Oppedal et al., 2001a; Korsøen et al., 2009) and may also lead to salmon spreading 195 

themselves more evenly throughout the cage on the horizontal plane.  196 



3.2. Feed and feeding motivation 197 

Salmonids in sea-cages are fed through the distribution of feed at the water surface. As pellets 198 

become available in the surface water layer, salmon display a range of horizontal and vertical 199 

behaviours in response, such as horizontal movement towards pellets, change in swimming 200 

speed and swimming depths (Sutterlin et al., 1979; Huse and Holm, 1993; Juell et al., 1994; 201 

Ang and Petrell, 1998). The rate at which fish naturally respond when feed becomes available 202 

is principally related to hunger level (e.g. review by Dill, 1983).  203 

Juell et al. (1994) determined that the vertical distribution of caged Atlantic salmon was a 204 

good indicator of their hunger level or feeding motivation, with responses to feed input 205 

clearer at high compared to low feeding intensities. In essence, salmon ascend to the surface 206 

feeding area to feed and thereafter descend gradually in the cage during the course of the 207 

feeding period as they become satiated and their feeding motivation declines (Bjordal et al., 208 

1993; Juell et al., 1994; Fernö et al., 1995; Ang and Petrell, 1998; Johansson et al., 2007). 209 

Hungry fish remain at the surface in the feeding area after the feeding period and fish fed at 210 

high intensities move towards the surface more rapidly than at low intensities (Juell et al., 211 

1994). The response rates of hungry fish correlated with their initial hunger levels. Infrequent, 212 

intensively fed fish generally remained deeper than fish fed throughout the day in small 213 

batches (Fernö et al., 1995).  214 

An observed rise to the surface during the hour prior to the start of feeding may be interpreted 215 

as an anticipatory behaviour related to feeding time and suggests that not only the presence 216 

but also the expectation of food has an effect on vertical distribution (Fernö et al. 1995). 217 

Several salmon farmers have reported increased surface activities prior to feeding either as 218 

responses to feed time, feed boat arrival or start of feeding systems, suggesting anticipatory 219 

feed behaviours may be learnt and triggered by unintentional cues such as noise. Recent tank 220 

studies have shown that blinking lights can be used to teach salmon to anticipate feeding and 221 

respond by moving towards the point of feed entry (Thomassen and Fjæra, 1991; Stien et al., 222 

2007; Bratland et al., 2010; Folkedal, 2010). Fernö et al. (2006) suggest that fishes learn, for 223 

example, to associate the footsteps of the farmer or the sound of pellets in the feeding pipes 224 

with food and can show strong anticipatory behaviour (e.g. rise to surface and increased 225 

surface activity) before the food arrives. The anticipatory behaviour functions as an arousal 226 

for appetitive responses and is a positive emotional event that should increase feeding 227 

motivation and welfare (Lamb, 2001; Spruijt et al., 2001). 228 

In addition to the immediate pre-feeding period anticipatory response, several studies have 229 

hypothesized that the gradual seasonal movement of salmon towards the surface from winter 230 

to summer in sea-cages occurs due to a seasonal increase in hunger level (Oppedal et al., 231 

2001a; Juell et al., 2003; Juell and Fosseidengen, 2004). Smith et al. (1993) recorded a surge 232 

in appetite in spring, which was independent of temperature, further suggesting that a 233 

seasonal movement to shallower depths may be related to increasing appetite. If this is the 234 

case, fish will be easily “underfed” when feed-ration calculations are based on temperature 235 

alone.  236 

3.3 Group versus individual behaviours 237 



The great bulk of knowledge of the vertical behaviours of salmon in sea-cages (Table 1) is 238 

based on average values obtained from measurement techniques that integrate information 239 

across large numbers of fish (e.g. echo-sounders; Bjordal et al. 1993), which are often verified 240 

by short-term camera observations of random individuals. Individuals are difficult to follow, 241 

although ultra-sonic and data storage tags are available and have been used in aquaculture 242 

settings (Juell and Westerberg 1993; Bégout Anras et al., 2000; Kristiansen et al. 2004; Cubitt 243 

et al. 2005; Rillahan et al. 2009).  244 

Direct comparison of the specific vertical behaviours of individuals and the average group 245 

behaviour has been performed on a long-term data set by Johansson et al. (2009), who used 246 

individual data storage tags and echo-sounders to investigate swimming depths. Average 247 

individual behaviours correlated with group behaviours both in the short (hours) and long 248 

term (days to weeks), as illustrated by the similar diel cyclical movement patterns within 249 

cages or similar warm and cold water avoidances (Johansson et al., 2006; 2009). While 250 

confirming the validity of group-based measurements, the study revealed that a separate level 251 

of spatial and temporal variation in displayed behaviours exists at the level of individuals. 252 

Only 1 of 23 individuals displayed a cyclical rhythm in swimming depth and temperature 253 

across 3 different sub-periods spread over 7 weeks. Behaviours of all other individuals were 254 

inconsistent in either swimming depth or temperature rhythm or both between sub-periods. 255 

When feeding times were excluded, thereby largely ruling out the effects of the trade-off 256 

towards the surface due to feeding motivation, large variation among individuals was still 257 

evident during the day, but reduced at night. Johansson et al. (2009) suggested that this 258 

variation may reflect a more active environmental sampling by salmon during day than night 259 

in order to update information on spatial variation. Such sampling may be difficult to perform 260 

at night due to the limited visibility and high number of fish in the cages leading to a high risk 261 

of collisions with other fish. Further, the higher daytime variation may reflect a general 262 

increase in swimming activity with more trade-offs between different needs during day than 263 

night. Taken together, the large intra- and inter-individual variation suggests the existence of 264 

unsynchronized variability in the motivational status of individual fish making different and 265 

fluctuating multiple trade-offs.  266 

4. Group behavioural responses to environmental variables 267 

4.1. Natural and artificial light 268 

Groups of Atlantic salmon kept in cages generally display a diurnal swimming depth rhythm 269 

controlled by natural changes in light intensity.  Salmon descend at dawn, swim relatively 270 

deep during the day, ascend at dusk and swim close to the surface at night (Bjordal et al., 271 

1993; Fernö et al., 1995; Oppedal, 1995; Hevrøy et al., 1998; Bégout Anras et al., 2000; 272 

Oppedal et al., 2001a; Juell and Fosseidengen, 2004; Cubitt et al. 2005; Johansson et al., 273 

2006; 2007; 2009; Dempster et al. 2008; Korsøen et al., 2009). In combination with a slower 274 

average swimming speed (Fig. 1), salmon utilise more of the cage volume at night than during 275 

the day (Oppedal et al., 2001a; Dempster et al., 2008; Korsøen et al., 2009).  276 

Early studies indicated that salmon avoid high surface light intensities during spring and 277 

summer and exhibit preferences for specific light intensities (Huse and Holm 1993; Fernö et 278 



al. 1995). However, similar light intensity preferences have not been observed in several 279 

subsequent studies (e.g. Oppedal et al., 2001a; 2007; Juell and Fosseidengen, 2004; Johansson 280 

et al., 2007). An explanation for this could be either that the higher precision environmental 281 

monitoring conducted in the later studies has enabled the role of other environmental factors 282 

in vertical distribution to be more clearly distinguished or that light preferences were 283 

overruled by temperature.  284 

Distinct changes in the diel and seasonal patterns of vertical distribution of salmon occur 285 

when surface mounted artificial lights are applied to sea-cages (Oppedal et al., 2001a). In 286 

essence, illumination modifies night time behaviour towards the normal daytime schooling 287 

pattern; fish swim at the same depth throughout the diel cycle and maintain daytime 288 

swimming speeds. In commercial-scale cages containing 85000 fish per cage, surface 289 

mounted lights induced movement of the fish towards the surface and resulted in higher 290 

schooling densities and shallower swimming at night compared to the day (Juell et al., 2003). 291 

In a different study conducted at similar commercial densities, surface mounted lights also 292 

caused the group of salmon to ascend but to a lesser extent compared to salmon in cages with 293 

natural dark conditions at night (Juell and Fosseidengen, 2004).  294 

Submerged light sources were developed for the aquaculture industry as they reduce loss of 295 

energy from surface reflections, hazards for boat traffic, aesthetic considerations and therefore 296 

provide more effective illumination to the fish. Submerged light sources generally expose the 297 

fish to a wider depth range with illumination, both above and below the deployed light depth 298 

(Juell et al., 2003; Oppedal et al., 2007), compared to surface mounted lights that provide only 299 

downwards illumination (Juell et al., 2003).  300 

Salmon display clear attraction to submerged light sources (Juell et al., 2003; Juell and 301 

Fosseidengen, 2004; Oppedal et al., 2007; Dempster et al., 2009a; Fig. 2c-e) and school at 302 

lower densities compared to sea-cages illuminated with surface mounted lights (Juell et al., 303 

2003; Juell and Fosseidengen, 2004). Night swimming depths suggest that salmon prefer to 304 

distribute in highest densities around the depth of the highest light intensity (Juell et al., 2003; 305 

Juell and Fosseidengen, 2004; Oppedal et al., 2007; Dempster et al., 2009a). As a direct 306 

consequence, lower fish densities occur above and below the depth of peak submerged light 307 

intensity, which spreads salmon more effectively throughout the cage volume compared to the 308 

higher fish densities observed under surface mounted lights where only half as much volume 309 

is available below the peak light intensity (Juell et al., 2003; Juell and Fosseidengen, 2004). 310 

Through the choice of light deployment depth, farmers may thus influence salmon swimming 311 

depths and densities at night (Juell and Fosseidengen, 2004; Oppedal et al., 2007). This is 312 

exemplified by data from a commercial farm (Fig. 2c-e) where the salmon are attracted 313 

towards the light depth at night. Behavioural responses to short-term changes in deployment 314 

depths and light intensity gradients appear rapid, suggesting that swimming depths and fish 315 

densities can be manipulated effectively by selectively positioning underwater lamps (Juell 316 

and Fosseidengen, 2004).  317 

Peak light intensity can be stretched over a broad depth range by deploying lights at different 318 

depths, thereby dispersing the fish throughout the cage volume (Juell et al., 2003; Juell and 319 



Fosseidengen, 2004). Lamps positioned mid-depth in cages produce a normally distributed 320 

light intensity and cause the fish to distribute themselves on both sides of the lamps, while 321 

lamps closer to the bottom or surface produce a stronger vertical light gradient, possibly 322 

inducing crowding (Juell et al., 2003; Juell and Fosseidengen, 2004; Oppedal et al., 2007). 323 

To understand the swimming depth preferences of salmon under artificial lights, the normal 324 

diel behaviour of caged salmon proves informative. Salmon school during day, ascend to the 325 

surface and reduce swimming speeds in response to the fading natural light at dusk, with an 326 

ultimate breakdown of the school structure as light levels fall (reviews; Juell, 1995; Huse, 327 

1998). Schooling behaviour in several pelagic fish species relies on visual contact (Glass et 328 

al., 1986). In contrast to mammals, the eyes of fish rely mainly on a relatively slow 329 

retinomotor response to adapt to changes in light levels (Guthrie, 1993). For example, Ali 330 

(1959) found that adaptation time from light to darkness in Pacific salmon smolts was about 331 

50 minutes. It is thus likely that, at some point during dusk, when the fading natural light is 332 

weaker than the artificial light, the salmon actively seek out suitable light levels so they can 333 

continue to school rather as a preference to waiting for their eyes to adapt and allowing 334 

schooling to break down. Thus, moving towards the artificial light depth maintains their 335 

schooling behaviour (Juell et al., 2003; Juell and Fosseidengen, 2004; Oppedal et al., 2007).  336 

4.2. Temperature 337 

Temperatures within sea-cages positioned in surface waters (0-50 m) vary with depth and 338 

vertical profiles are normally season-dependent (e.g. Oppedal et al., 2001a; 2007; Fig. 2a). 339 

Temperature profiles change from being positively correlated with depth in winter to 340 

negatively correlated with depth in summer, with transitional periods where profiles are more 341 

variable, but often with highest temperatures at mid-cage depths in fjords (e.g. Johansson et 342 

al., 2006; Oppedal et al., 2007).  343 

At stratified sites where temperature and other environmental variables have been measured 344 

in high spatial and temporal resolution, salmon clearly positioned themselves vertically in 345 

relation to temperature within sea-cages (Johansson et al., 2006; 2007; 2009; Oppedal et al., 346 

2007; Dempster et al., 2008; 2009a; Korsøen et al., 2009; Fig. 2). Seasonal changes in the 347 

vertical distribution of salmon have occurred concurrent with temperature shifts, suggesting 348 

that salmon prefer the highest available temperature (<14°C) or avoid colder temperatures 349 

(Oppedal et al., 2001a).  350 

Johansson et al. (2006) performed a multivariate analysis to determine which environmental 351 

variables most influenced the vertical distribution of salmon; temperature emerged as the key 352 

environmental factor associated with density and swimming depth. The preferred temperature 353 

range was 16-18 °C within a range of 11-20 °C. Salmon individuals and groups displayed 354 

both avoidance to water warmer than 18 °C and water at the cold end of the temperature 355 

spectrum, indicating active behavioural thermoregulation (Johansson et al., 2006; 2009). In 356 

contrast, in reasonably homogenous environments where temperature varies little with depth, 357 

temperature does not influence the vertical distribution of salmon (Juell et al., 2003; Juell and 358 

Fosseidengen, 2004). Salmon farming is expanding into areas with <4 °C; at present the 359 

literature does not describe behavioural effects at this end of the temperature scale. 360 



Results from small-scale experiments in tanks (e.g. review by Beitinger, 1990; Birtwell et al., 361 

2003) provide supportive evidence that temperature strongly influences fish distributions, 362 

particularly when a gradient is present. Salmon are known to be highly temperature sensitive 363 

(Coutant, 1977; Jobling, 1981). In general, fish presented with thermal gradients occupy 364 

narrow ranges of temperatures, defined as their preferred temperatures (e.g. Fry, 1947; 365 

Johnson and Kelsch, 1998) and such active behaviour is often referred to as behavioural 366 

thermoregulation. Optimising temperature is of great physiological significance for 367 

poikilotherm fish; thermoregulation may improve metabolic processes such as circulation, 368 

food intake, digestion, growth, bioenergetical re-acclimation processes and scope for activity 369 

(e.g. Brett, 1971; Biette and Geen, 1980; Claireaux et al., 1995; 2000). Correlative evidence 370 

exists that preferred temperature ranges match optimum temperatures for growth and 371 

performance for various species (e.g. Jobling, 1981; Kellogg and Gift, 1983).  372 

4.3. Salinity  373 

Many salmonid farming sites either close to shore, within fjords or near the mouths of rivers 374 

are affected by freshwater runoff.  Surface waters at these sites may become less saline with 375 

development of a distinct halocline with a brackish layer of variable thickness and salinity 376 

(but often < 20; Plantalech Manel-La et al., 2009) on top and water with typical marine 377 

salinity (> 30) below (e.g. Bjerknes et al., 2003; Johansson et al., 2007).  378 

Newly transferred Atlantic salmon smolts show a distinct preference to distribute at the depth 379 

of the halocline, independent of the temperature, for the first 2 months in the sea (Fig. 3). 380 

Similar preferences are shown by salmon smolts migrating out from rivers towards the open 381 

sea (Plantalech Manel-La et al., 2009). This behaviour might form part of the imprinting 382 

necessary for salmon to find their way back to natal rivers as adults or as a strategy to avoid 383 

the risk of infection from sea lice (Lepeophtheirus salmonis) (Plantalech Manel-La et al. 384 

2009) which avoid salinities of < 20 (Heuch, 1995). Alternatively, this strategy may be 385 

beneficial as it reduces the amount of energy required for osmoregulation in saltwater, which 386 

is particularly physiologically costly for small salmon (e.g. Smith, 1982).  387 

Sutterlin and Stevens (1992) suggested that salinity preferences may be one of three factors 388 

(temperature, salinity and social factors) that regulate the swimming depth of fish in sea-cages 389 

in stratified waters. During the return migration of salmon, which normally occurs during 390 

spring and summer, it could be expected that salmon develop a lower salinity preference prior 391 

to spawning in freshwater (Thorpe, 1988). Thus, observations of salmon gradually ascending 392 

towards the surface throughout spring (Oppedal et al., 2001a; Oppedal et al., 2007) or early 393 

autumn (Johansson et al., 2006; 2009) could be explained by a lowered salinity preference. 394 

However, as the incidence of sexual maturation in the observed groups was < 6%, this 395 

behaviour was unlikely to have resulted from a preference for lower salinities driven by the 396 

sexual maturation cycle. Evidence exists that salinity does not influence non-migratory 397 

salmon (Bakke et al., 1991; Johansson et al., 2006; 2009).  In addition, larger fish have greater 398 

osmoregulatory ability than small post-smolts due to reduced relative leakage of water as a 399 

function of their relatively smaller surface area to volume ratio (e.g. Schmidt-Nielsen, 1990). 400 

Accordingly, salinity preferences appear unimportant in determining vertical distributions in 401 



sea-cages of > 3 month old, sexually immature post seawater-transferred Atlantic salmon 402 

(Oppedal et al., 2001a; 2007; Johansson et al., 2006; 2007; 2009). 403 

4.4. Dissolved oxygen (DO) 404 

Complex spatial and temporal variations in DO levels exist within sea-cages stocked with 405 

salmon (Johansson et al., 2006; 2007; Vigen, 2008; Stien et al., 2009). Strong vertical 406 

gradients in DO typically coincide with the pycnocline, while fluctuating patterns occur over 407 

days to weeks (Johansson et al., 2006; 2007). Severely hypoxic conditions (30% saturation at 408 

12 °C) have been recorded over periods of up to 1 hour in the centre of a commercial cage 409 

(Fig. 4; reproduced from Vigen, 2008) and were correlated with periods of low water flow 410 

(Vigen, 2008). Seasonal variations in DO levels are also frequently observed at commercial 411 

salmon farms (Fig. 5).  412 

Adequate DO levels are a key requirement to ensure fish welfare and development (Kindschi 413 

and Koby, 1994; Van Raaij et al., 1996; Ellis et al., 2002). Pedersen (1987) showed that at 15 414 

°C, growth rates of juvenile rainbow trout decreased if fixed levels of DO fell below 7.0 mg 415 

O2 l−1 (70% oxygen saturation) and that trout fed less when fixed levels reached 6.0 mg O2 l−1 416 

(60 % oxygen saturation).  A recent study with full-feeding Atlantic salmon held in seawater 417 

at 16 °C and given fluctuating hypoxic saturation levels of 70% led to reduced appetite; 60% 418 

additionally initiated acute anaerobic metabolism and increased skin lesions; 50% additionally 419 

initiated acute stress responses, reduced feed conversion and growth; and 40% additionally 420 

caused impaired osmoregulation and mortalities (Anon, 2008). Growth rates and condition 421 

factors gradually decreased and proportions of fish with skin infections gradually increased in 422 

severity as hypoxia levels rose. Lack of energy from aerobic metabolism for fish within the 423 

hypoxic groups may have led to down-regulation of energy-demanding processes such as feed 424 

uptake, growth and immune function (e.g. review by Wu, 2002). Thresholds levels for the 425 

ability to maintain oxygen uptake rates in full-feeding Atlantic salmon of average size 400 g 426 

held in seawater were found at approximately 60, 40 and 30 % oxygen saturation at 18, 12 427 

and 6 °C, respectively (Torgersen et al., unpublished data). This very recent work was 428 

performed using an adapted protocol from Valverde et al. (2006) with gradually decreasing 429 

oxygen levels in an open-respirometry setup. At oxygen levels where fish have problems 430 

maintaining homeostasis, stress hormones are released, and fish cannot survive for long if 431 

sufficient oxygen levels are not restored. 432 

Despite the importance of DO to production parameters and welfare, little specific 433 

information exists to determine how salmon modify their behaviours within sea-cages in 434 

response to sub-optimal DO levels. Kramer (1987) classified the response of fish to increasing 435 

hypoxic conditions as changes in activity and vertical or horizontal habitat changes. Like most 436 

other aquatic animals, fish have the capacity to detect and actively avoid low oxygen levels 437 

(DOconc 1-4 mg l−1/ DOsat 15-60% at 25 °C seawater; Wannamaker and Rice, 2000; Wu, 2002) 438 

and migrate vertically in the water column to avoid hypoxic zones (e.g. Hazen et al., 2009). 439 

However, whether salmon actively avoid depths within sea-cages that have low to 440 

intermediate oxygen levels (DOconc 2.5-6 mg l−1 or DOsat 30-75% saturation in 15 °C 441 

seawater) remains unresolved. In an investigation of the environmental parameters 442 



influencing the vertical distributions of salmon at 4 commercial sites, a multivariate analysis 443 

indicated that salmon avoided specific depths in the water column where oxygen saturation 444 

levels approached 60% at 15 °C (Johansson et al., 2007). However minimum levels of oxygen 445 

ranging down to 57% saturation at 14 °C in an experimental study of different stocking 446 

densities did not implicate DO as significantly affecting fish densities, possibly due to other 447 

environmental factors exerting greater effect on vertical positioning (Johansson et al., 2006). 448 

Experimental testing is required to reveal the dynamics and hierarchical effects between 449 

hypoxia and other factors.  450 

4.5. Water current velocity 451 

Scant information exists to fully assess the role water currents play in the behaviours of 452 

salmon in sea-cages. In a multivariable analysis, extremely turbulent mean current velocities 453 

of 5-9 cm s-1 measured outside cages did not affect the relative schooling density of salmon 454 

(Johansson et al., 2006). Currently, the salmon farming industry is developing into more 455 

current-exposed locations (Jensen et al., 2010) and recent development applications in 456 

Norway have been made for the establishment of farms at sites where water currents reach a 457 

maximum of 0.85 m s-1 (F. Oppedal, pers. obs.). Stronger currents may have the potential to 458 

influence schooling structure, swimming speeds, directions and ultimately depths, thus their 459 

influence on cage-related behaviours requires further understanding.  460 

Swimming capacities of salmon vary with size of individuals, temperature, light conditions 461 

and possibly space availability. Estimates of critical swimming velocities (Ucrit) of ≈3 BL s-1 462 

for Atlantic salmon smolts exist (Lijalad et al., 2009) and Ucrit of 2.2 BL s-1 for 800 g 463 

postsmolts (Deitch et al., 2006). However, these are derived from swimming tunnels with 464 

unfed, individual fish and therefore may not be representative of fully-satiated salmon held 465 

under commercial densities. No comparable data exist for larger Atlantic salmon, but 466 

Steinhausen et al. (2008) indicate a Ucrit ≈1.35 BL s-1 for adult (2.2-2.9 kg) sockeye salmon 467 

caught during their homing migration.  468 

Normal swimming speeds within cages are below these threshold values for critical 469 

swimming speeds. During the daytime, salmon typically cruise at 0.3-0.9 body length s-1 (BL 470 

s-1) (e.g. review by Juell, 1995; Dempster et al., 2008; 2009a) while night speeds are slower at 471 

0-0.4 BL s-1 (Korsøen et al., 2009). However, under high current conditions, Ucrit values may 472 

be approached or exceeded. If currents exceed Ucrit levels, anaerobic capacity is exhausted, 473 

swimming ceases, and the fish will be forced into the net wall. Generally, larger fish should 474 

tolerate higher current speeds due to their larger body size, with smolts being more vulnerable 475 

to high currents despite their higher Ucrit levels (Fig. 6).  476 

Typically, smolts are set out at 15-25 cm BL (e.g. Oppedal et al., 2006); at these sizes, current 477 

speeds of 45-75 cm s-1 will cause exhaustion if Ucrit ≈3 BLs-1 (Lijalad et al., 2009). In 800 g 478 

salmon of 56 cm, exhaustion will take place at about  120 cm s-1 with Ucrit = 2.2 BL s-1 479 

(Deitch et al., 2006). However, in commercial cages lower current speeds probably cause 480 

exhaustion as Ucrit levels will be reduced in fully fed fish or fish held in high densities. If 481 

currents approach Ucrit levels and differential current speeds exist at different depths in sea-482 



cages (see Lader et al., 2008 for an example), we hypothesize that salmon will modify their 483 

vertical positioning in cages to depths of suitable current speeds.  484 

Current speeds may also modify vertical behaviour by modifying the cage culture space 485 

available for swimming. Sea-cages deform in currents, with a consequent change in sea-cage 486 

shape and internal volume (Lader et al., 2008). Current speeds of 0.13 - 0.35 m s-1 at two full-487 

scale farms caused cage volume reductions of up to 20- 40% and resulted in the cage bottom 488 

being pushed upwards (Lader et al., 2008). The complex inter-relationships between high 489 

currents, packing densities and swimming speed ability for fish of different sizes, and the 490 

extent of cage deformation, requires resolution to understand the influence of current on the 491 

vertical behaviours of salmon and ensure good welfare under high current conditions. 492 

4.6. Sea lice chemotherapeutants 493 

Sea lice (principally the salmon louse Lepeoptheirus salmonis but also Caligus spp.) 494 

infestations are common within sea-cage salmonid farms. Several treatment strategies have 495 

been applied to control sea lice levels over the last decades, including the use of a variety of 496 

chemotherapeutants (Pike and Wadsworth, 1999; Boxaspen, 2006; Brooks, 2009). 497 

Therapeutants may either be administered orally through medicated feed or topically by 498 

bathing fish in enclosed net cages or well boats (e.g. Roth, 2000; Telfer et al., 2006).  499 

At present, one of the bathing techniques includes partial or full enclosure of an entire sea-500 

cage in situ with a tarpaulin followed by the addition of the chemotheraputant for 35-45 min 501 

to kill the sea lice. Recent studies have revealed a clear vertical avoidance reaction to the 502 

addition of chemotheraputants (Vigen, 2008; Oppedal and Vigen, 2009). Salmon responded to 503 

a controlled experimental addition of cypermethrin (BETAMAX VET, ScanVacc AS, Årnes, 504 

Norway) in a 12 m x 12 m cage with the net bottom raised to approximately 4 m and the 505 

enclosing tarpaulin hanging down to 6 m depth by crowding at three times the stocking 506 

density towards the surface or net-cage bottom when the treatment was added (Fig. 7; Vigen, 507 

2008). The movement and crowding reaction did not appear to be caused by the addition of 508 

the tarpaulin, as fish distributed evenly in cages enclosed by a tarpaulin but without 509 

chemotherapeutant added (Fig. 7; Vigen, 2008). In a full-scale, commercial bath delousing 510 

treatment of a circular cage of circumference 157 m, approximately 35 m deep and tarpaulins 511 

set to 15 m depth, salmon again avoided the surface waters and distributed themselves mainly 512 

below the depth in the water column where the chemotherapeutant deltamethrin (ALPHA 513 

MAX®, PHARMAQ AS, Oslo, Norway) was added and present (Fig. 8; from Oppedal and 514 

Vigen, 2009). 515 

Partially effective treatments where salmon are not exposed to correct doses of 516 

chemotherapeutants due to their avoidance behaviour may, highly undesirably, increase the 517 

speed of development of resistance of sea lice to treatments. As a variety of 518 

chemoterapeutants are required to maintain susceptible sea lice populations over time, it is 519 

essential that each treatment is carried out optimally (Jones et al. 1992). In general, 520 

observations of behavioural monitoring are scarce during delousing treatments, yet 521 

preliminary results indicate that without knowledge of the vertical behaviours of salmon, the 522 

efficacy of de-lousing treatments may be questionable (Vigen, 2008; Oppedal and Vigen, 523 



2009). We therefore contend that a detailed understanding of avoidance reactions and vertical 524 

behaviours of salmon in sea-cages is required to improve the effectiveness of de-lousing 525 

techniques and ensure appropriate animal welfare during treatments. 526 

4.7. Other factors 527 

Turbidity has been suggested as a possible directing factor for swimming depth and density. 528 

Surface layers of turbid water, colouring produced by runoff, and algal blooms reduce both 529 

light intensity and contrast in the water column (Nyquist, 1979). These properties can reduce 530 

the susceptibility of fish to surface predators (Guthrie and Muntz, 1993) and therefore 531 

possibly change the surface avoidance trade-off. However, to date no evidence exists to 532 

suggest turbidity modifies vertical behaviours of salmon in sea-cages. In contrast, the 533 

behaviours of groups of salmon held under low artificial light and natural light intensity in 534 

Oppedal et al. (2001a) suggested that turbidity was unimportant in swimming depth selection. 535 

Forced submergence in sea-cages modifies both horizontal and vertical behaviours as salmon 536 

compensate for a loss of buoyancy due to depleted swim bladder volumes. When they cannot 537 

access the surface to refill their swim bladders, salmon increase their swimming speeds up to 538 

1.6 times normal levels and school more tightly (Dempster et al., 2008; 2009a; Korsøen et al., 539 

2009). 540 

5. Behavioural trade-offs to multiple environmental variables 541 

Environments within sea-cages are typically characterised by highly fluctuating levels of 542 

multiple factors in both space and time. Vertical positioning of salmon therefore stems from 543 

active trade-offs among these multiple environmental influences and an array of motivational 544 

factors such as feed and perceived threats. When many fish prefer the same depth strata 545 

within a cage, crowding and social factors must also be taken into account. Salmon must 546 

therefore continuously update and make trade-offs of preferred swimming depths and 547 

densities. The trade-offs made will likely differ among individuals, as their environmental 548 

preferences, motivations and social interactions clearly differ (Sutterlin and Stevens, 1992; 549 

Claireaux et al., 2000; Johansson et al., 2009). As a result, no single strategy is necessarily 550 

optimal or can be expected at any given time, either for individuals or the entire group of fish 551 

(Johansson et al., 2009). Here, we describe and explain the dynamics of trade-offs among 552 

multiple environmental influences from existing examples (Table 1). 553 

5.1. Surface avoidance and feeding motivation 554 

Vertical distribution of salmon in sea-cages can often be explained by a trade-off between 555 

light-induced surface avoidance and attraction to food (Juell et al. 1994; Fernö et al. 1995). 556 

Many fish species migrate downwards as a response to increased light levels at day or with 557 

season (e.g. Fernö et al., 1995). This has been suggested as an evolved trait for avoidance of 558 

surface predators (e.g. birds) and possible avoidance of damaging UV-light in surface waters 559 

(Bullock, 1988; Fernö et al., 1995). However, surface feeding induces a shift in vertical 560 

positioning towards the surface (see Section 3). The degree of response is largely dependent 561 

on feeding motivation, with salmon initially close to the surface at the beginning of a feeding 562 



period followed by a descent away from the surface as feeding progresses. The level of 563 

feeding motivation seems to be traded-off against the light avoidance both during feeding and 564 

after or between meals. Further, several long-term studies indicate that the trade-off between 565 

surface light avoidance and swimming depth is modified by a seasonal increase in feeding 566 

motivation, with fish positioning themselves at shallower cage depths as appetite increases 567 

(Fernö et al., 1995; Oppedal et al., 2001a; Juell et al. 2003; Juell and Fosseidengen 2004). 568 

With a regression tree analysis, Johansson et al. (2007) determined that higher fish densities 569 

close to the surface were strongly related to feeding time itself, but traded-off outside feeding 570 

hours. Overall, a clear trade-off exists between surface avoidance and surface feeding 571 

motivation.  572 

5.2. Temperature and natural light 573 

Salmon trade-off between light and temperature in sea-cages when preferred levels exist at 574 

different depths. Temperature often dominates the light-temperature trade-off, presumably 575 

because the physiological benefits of maintaining a position in a preferred temperature range 576 

outweigh those associated with optimal light levels. A multiple regression analysis on the 577 

influences of surface light, temperature at 0.2 m and visibility range on fish density in the 0-1 578 

m depth interval indicated that an increase in temperature was the main factor affecting the 579 

ascent in spring, overruling the surface light avoidance (Fernö et al. 1995). Further, Oppedal 580 

et al. (2001a) documented that temperature overruled responses to other factors when surface 581 

waters were warmest, with salmon gathering at the surface, regardless of the typical 582 

avoidance of the high light intensities at the surface in spring and summer during the day. At 583 

night in winter, movement upwards toward the natural low light levels is overruled by the 584 

avoidance of cold surface water (Oppedal et al., 2001a; Korsøen et al., 2009). In both 585 

abovementioned studies, salmon ascended towards the surface at night within the relatively 586 

homogenous temperature layer below the thermocline, but did not ascend further through the 587 

thermocline into the colder overlying waters. These vertical behaviours can be interpreted as 588 

temperature overruling the avoidance of the surface due to high light levels during the day, 589 

and attraction to the surface at night as light levels fall. Finally, Oppedal et al. (2007) 590 

observed that salmon expressed an increasingly stronger temperature preference as the 591 

temperature range in sea-cages increased, displayed as higher swimming densities in the 592 

depth layer of optimal temperature. This trade-off between thermo- and photoregulatory 593 

behaviour may derive from the fact that temperature has more direct impact on physiology 594 

with respect to growth, while schooling may be maintained at a wider range of light 595 

intensities.  596 

5.3. Temperature and artificial light 597 

The underlying drivers governing trade-offs between thermo- and photoregulatory behaviour 598 

are likely to be similar whether natural of artificial lights are used. However, the outcome of 599 

trade-offs in terms of where fish position themselves in cages may differ markedly due to the 600 

ability artificial light sources give to manipulate light levels either at the surface or sub-601 

surface. In studies using surface mounted lights, salmon in coastal waters with homogeneous 602 

temperatures throughout the water column responded at night by attraction towards the 603 



artificial illumination of < 10% of normal daylight intensities (Juell et al., 2003). In contrast, 604 

fish in thermally stratified fjord waters responded by swimming in the deep warmer water in 605 

winter and gradually ascended towards the surface as temperatures peaked in shallower 606 

waters as summer approached (Oppedal et al. 2001a). Clearly, this suggested that temperature 607 

modified the effect of artificial surface light. In a following study by Oppedal et al. (2007), 608 

where submerged lights were positioned randomly at 1, 5 or 10 m depths for 2 weeks during 609 

winter, spring and summer, the multiple trade-offs between temperature and light were 610 

elegantly illustrated: i) when warmest temperature (<14°C) and illumination where at the 611 

same depth, salmon swimming depth remained at this depth throughout the diel cycle; ii) 612 

when slightly warmer temperature was at a different depth than illumination, the salmon 613 

preferred the depth with warmest waters during the day and moved towards depths with 614 

greatest illumination at night or iii) displayed a bimodal distribution with some fish preferring 615 

illumination at night while others preferred depths where warmest waters occurred but all fish 616 

still preferred depths with warmest waters during the day; iv) when the vertical temperature 617 

gradient was strong (7 °C), the warmest water was preferred through the diel cycle, 618 

completely overruling illumination. Salmon contained in standard sea-cages with submerged 619 

lights at 7 m depth in late spring/early summer behaved similarly to group ii) in Oppedal et al. 620 

(2007), with a vertical preference for temperature (1-2 °C difference) during the day and 621 

vertical migration to the depth with greatest illumination at night (Dempster et al., 2009a). 622 

Salmon followed over a production cycle in larger commercial cages display similar patterns 623 

(Fig. 2). When lights were switched on at 7 and 15 m depths, fish avoided the colder surface 624 

area both day and night. Artificial lights at these depths overruled the typical night ascent as 625 

the depths with illumination matched the depths with warmest water. During the spring rise in 626 

temperature at the surface layer, fish choose the warmest temperature during the day and the 627 

illuminated, but slightly colder, deeper waters at night. In summer, the bimodal distribution of 628 

fish during the day indicates that individual fish make different trade-off choices, preferring 629 

either highest temperature or illuminated waters during the day, while all fish prefer 630 

illumination in the short night of summer. 631 

5.4. Multiple trade-offs 632 

During a 50 hr period, a shift in the trade-offs salmon made among differing environmental 633 

influences was documented within two replicate commercial cages (Fig. 9, reproduced after 634 

Figs. 2 and 8, site 4 of Johansson et al., 2007). Temperature was relatively homogenous 635 

among depths at approximately 15 °C. During the afternoon of day 254, salmon 636 

predominantly swam deep in the cage, avoiding light at the surface. From dusk of day 254 637 

and through the night, salmon distributed relatively evenly throughout the water column with 638 

a proportion of the salmon moving towards and staying close to the surface. This may be 639 

interpreted as a reduction in the importance of the daytime surface light avoidance as the 640 

illumination attenuated. On the morning of day 255, the fish descended away from the high 641 

light levels at the surface, but this trade-off was overruled when feeding started as fish 642 

responded to pellets delivered at surface by moving into surface waters (see Section 2.2). 643 

When the hunger level was reduced, the salmon again moved downwards in the water column 644 

to avoid surface light (see Section 2.3). At dusk of day 255, the salmon again distributed 645 



evenly as per the previous night, but after midnight all fish descended and avoided the 646 

hypoxic conditions (DO < 70%) which occurred from 0-7 m depth. A strong movement 647 

towards the surface in response to feed occurred when the hypoxic conditions were moderate 648 

at day 256 with fish moving downwards as feeding terminated. This example illustrates the 649 

complex outcomes of trade-offs made by salmon under conditions where light and DO levels 650 

fluctuate against short periods of strong feeding motivation when feed become available. 651 

Feeding motivation overrode light levels and drove vertical behaviours when DO levels were 652 

moderate (> 85%), while hypoxia (< 70%) overrode behaviour driven by low light intensity at 653 

night. 654 

6. Conclusions, future research and recommendations for practical implementation of 655 

knowledge to date 656 

6.1 Need and recommendations for measuring environmental variables in sea-cages  657 

Given the clear environmental driving of salmon behaviour in sea-cages summarised in this 658 

review, we recommend the establishment of environmental monitoring protocols. Without 659 

knowledge of their production environment, farmers will have no capacity to adaptively 660 

manipulate cage environments to improve production. Environmental monitoring 661 

requirements have recently been included in Norwegian legislation (Norwegian Ministry of 662 

Fisheries and Coastal Affairs, 2008) and must be implemented by the Norwegian industry. 663 

Salmon farming industries elsewhere in the world should enact similar guidelines. 664 

Ideally, continuous, whole of the water column, real-time monitoring would provide farmers 665 

with the best information on environmental conditions in cages. Whole of the water column 666 

monitoring technologies are under development and may be widely available to the industry 667 

soon (e.g. welfare meter; http://www.imr.no/welfaremeter/). In the meantime, as a minimum 668 

environmental sampling strategy for sea-cages, we recommend continuous monitoring of a 669 

temperature and salinity profile at each farm. Temperature and salinity should be monitored at 670 

a minimum of 4 depths in the cage, to adequately capture the top layer, the position of the 671 

thermocline or halocline and the bottom layer within cages. Dissolved oxygen levels should 672 

be measured continuously at a reference point outside of the farm and inside the farm within 673 

the most susceptible cage for low DO levels. Such a cage would be positioned between other 674 

cages, where the least current flow occurs and/or in the cage with highest stocked biomass. 675 

DO measurements should be taken a minimum of one third of the way into the cage and 676 

ideally at the same 4 depths as temperature and salinity. The depths measured must be chosen 677 

depending on the behavioural trade-offs fish exhibit towards environmental variables 678 

(principally feeding, light and temperature preferences) and modified according to seasonal 679 

changes in the outcomes of behavioural trade-offs. 680 

6.2. Documenting the effects of sporadic events on vertical behaviours and environmental 681 

trade-offs in sea-cages 682 

Numerous sporadic, short-term events dramatically alter conditions in sea-cage over time 683 

scales of hours to weeks. Such events include storms (high surface turbulence combined with 684 

increased currents), and jellyfish (e.g. Sammes and Greathead, 2004) and phytoplankton 685 



blooms (e.g. Johnsen and Sakshaug, 2000). Salmon may modify their vertical behaviours in 686 

response to these events and the nature and outcome of trade-offs towards environmental 687 

variables may in turn change. Some very limited evidence exists that suggests salmon move 688 

away from the surface and swim deep within cages during stormy weather (Bégout Anras et 689 

al., 2000), and that this behavioural response overrides vertical preferences towards other 690 

environmental variables such as temperature and light. While salmon are known to feed 691 

poorly during phytoplankton blooms and suffer increased mortality in both phytoplankton and 692 

jellyfish blooms, no data exists to assess how or whether salmon adapt their vertical 693 

behaviours or trade off decisions to cope with the modified conditions these blooms create. 694 

Thus, documenting the effects of sporadic events on behaviour should be a priority area for 695 

future research. Such information may provide farmers with the ability to modify the cage 696 

environment to enable salmon to engage in greater coping behaviours.  697 

6.3. Welfare perspectives 698 

Fish that experience a wide range of salinity, temperature and DO values may be better 699 

prepared to meet short-term changes and thus spatial variation may not necessarily be 700 

negatively correlated with fish welfare (Johansson et al., 2007). However, environmental 701 

variation might induce a stress response that incurs a physiological cost for the fish. Changes 702 

in environmental conditions will generally lead to a mismatch between physiological states 703 

and the environment, causing reduced maximum oxygen uptake rate and increased oxygen 704 

consumption. For example, temperature variation induces an extra energetic cost measured as 705 

increased oxygen consumption for individuals, with acclimation rates of 20-25 % per day 706 

towards the new temperature (Torgersen et al., 2009). Further, a negative psychological and 707 

physiological impact occurs in salmon exposed to an acute increase in temperature from 8 to 708 

14 °C (Folkedal et al., 2010), as indicated by weaker conditioned responses to the anticipatory 709 

signal of a blinking light to indicate the commencement of feeding (see section 3.2).  710 

Recently, several studies have indicated that stressful rearing conditions, including 711 

environmental stressors such as temperature and oxygen, are correlated with increased 712 

susceptibility to diseases and suppressed cytokine expression in fish (Wedemeyer, 1997; Metz 713 

et al., 2006; Fridell et al., 2007; Ndong et al., 2007; Fast et al., 2008; Perez-Casanova, 2008). 714 

For example, outbreaks of pancreas disease caused by the salmonid alpha virus may be stress 715 

related (McLoughlin and Graham, 2007). These findings emphasize that monitoring protocols 716 

for environmental stress are required during salmonid farming in sea-cages to identify when 717 

remedial actions should be taken. 718 

6.3.1. Site-specific environments require specific stocking density limits 719 

Maximum allowable stocking densities are a common tool used to regulate production (e.g. 720 

Norway: 25 kg m-3; Norwegian Ministry of Fisheries and Coastal Affairs (2008)). Stocking 721 

density limits have also been discussed in the context of setting limits to ensure acceptable 722 

welfare (FSBI, 2002; Turnbull et al., 2005; Adams et al., 2007; Huntingford and Kadri, 2008; 723 

Turnbull et al., 2008). However, recent reviews have argued that the use of stocking density 724 

alone is insufficient to ensure welfare of farmed salmon (Huntingford and Kadri, 2008; 725 

Turnbull et al., 2008). Stocking density per se may not be the overriding factor limiting 726 



production. Instead the underlying consequences of low or high levels of social interactions 727 

associated with changes in stocking density or, more importantly, the degradation of water 728 

quality with increasing density may ultimately limit production. A better approach may be to 729 

develop husbandry systems that maximise welfare through monitoring water quality and 730 

observing fish behaviour (Huntingford and Kadri, 2008). Reinforcing this conceptual line of 731 

argument, Dawkins (2004) states that the behavioural patterns of animals will indicate their 732 

social choices and likes or dislikes about their physical environment. Changes in such patterns 733 

with stocking density or degree of crowding will be particularly important in identifying 734 

whether animals want and require more space. 735 

A greatly underestimated aspect of the discussion regarding fish welfare in sea-cages is the 736 

actual swimming density of the fish and how it is affected by stocking density. Salmon rarely 737 

disperse evenly throughout the water column and instead congregate at certain depth intervals 738 

in densities from 1.5-20 times the stocking density (Table 1). Deriving generalisations from 739 

studies that have investigated the effects of stocking densities will prove difficult as the 740 

temporal and spatial variability of environmental variables that drive swimming densities to 741 

completely different levels than stocking densities will likely have been present yet 742 

unmeasured. Nevertheless, the great variation in vertical distributions in sea-cages induced by 743 

a changing environment identified in this review demands that preferences and aversions must 744 

be a component in establishing appropriate stocking densities.  745 

Competition for depths based on the trade-off preferences of salmon may be one way in 746 

which adverse welfare effects manifest at high stocking density in sea-cages (Ellis et al. 747 

2002). The severity of the effects would then depend on environmental heterogeneity, with 748 

increased severity where heterogeneity limits the volume of preferred space available 749 

(Johansson et al., 2006). For example, normal (7-11 kg m-3) compared to high (18-27 kg m-3) 750 

stocking densities allowed a greater proportion of caged salmon to occupy the more 751 

favourable, but restricted volume above the pycnocline (Johansson et al., 2006). Thus, high 752 

stocking densities may force more fish into sub-optimal environmental conditions, such as 753 

waters with high temperatures or low DO. Generally, a homogeneous sea-cage environment 754 

will have a higher production capacity compared to a heterogeneous environment, as long as 755 

environmental variables remain within thresholds. However, if threshold limits are 756 

approached, salmon will be better off in environments where they are able to choose based on 757 

their preferences.  758 

In summary, better welfare outcomes for salmon in sea-cages could be achieved through 759 

establishing site-specific biomasses and stocking densities linked to the prevailing 760 

environmental conditions at individual sites and revising these between each production 761 

cycle. For such measures to be effective, modern monitoring protocols must be developed and 762 

included within “simple to use” management tools. 763 

6.3.2 Manipulating vertical distributions through feeding regimes and artificial lights 764 

Feeding intensively at the surface to rapidly satiate salmon leads to fish swimming deeper at 765 

preferred depths throughout the day instead of the shallower swimming typically seen in fish 766 

that are hungrier for longer when fed in small batches throughout the day (see Section 3.2). 767 



Similarly, fully fed fish swam deeper compared to those fed in a restricted way. A 768 

combination of intensively fed and satiated fish thus leads to greater avoidance of the surface 769 

waters, which generally experience more variable and sub-optimal environmental conditions 770 

and may also lead to fish perceiving a sustained predation risk. Feeding regimes that provide 771 

the fish with the longest possible periods at their preferred environments (Dawkins, 2004) 772 

deeper in the cages may thus improve welfare. 773 

Several studies indicate that light deployment depth may be used as a powerful management 774 

tool to attract the fish to optimal depth layers or disperse them to utilise more of the cage 775 

volume (see Section 4.1). Submerged artificial lights are superior to surface mounted artificial 776 

lights in this regard, as surface lights may induce crowding of the fish at night compared to 777 

submerged lights. Acute or chronic crowding may reduce the welfare of the fish through 778 

increased fin erosion (e.g. Latremouille, 2003; Person-Le Ruyet et al., 2008; 2009) or 779 

exposure to periods of suboptimal oxygen levels. Further, deployment of lights to specific 780 

depths may attract the fish away from potential depth-related harmful environmental 781 

conditions such as aluminium toxicity in freshwater runoff, algal and jellyfish blooms, 782 

suboptimal temperatures and oxygen, algae or parasitic infections such as sea-lice (reviewed 783 

by Dempster et al., 2009a).  784 

6.3.3 Development of a behaviour-based operational welfare index (OWI) 785 

The development of operational welfare indices (OWIs) to measure fish welfare has been a 786 

focus of the fish farming industry for the last decade (see review by Branson, 2008), yet few 787 

functional OWIs currently exist. Norway, the largest producer of Atlantic salmon (Table 2), 788 

has recently legislated that OWIs must be introduced (The Norwegian Animal Welfare Act, 789 

2004). Despite this, in 2008, approximately 300 million individual Atlantic salmon and 790 

rainbow trout were held in sea-cages in Norway at any given time (Norwegian Fisheries 791 

Directorate, 2009) without any proper measure of their welfare status. Proxy measures of 792 

welfare, based on normal growth rates, the absence of disease outbreaks and low mortalities, 793 

are used as indirect measures. However, these measures (mortality and poor growth rates in 794 

particular) only allow recognition of episodes resulting in poor welfare after the fact and 795 

provide little or no ability for farmers to detect and react to the onset of conditions that lead to 796 

poor welfare. Disease outbreaks are often initiated by poor environmental conditions, 797 

indicating that a more immediate, early-warning OWI could provide a mechanism to 798 

implement cage management strategies to avoid disease (e.g. WEALTH; 799 

http://wealth.imr.no/).  800 

OWIs must be easy for farmers to use and measurement should be simple or remote. Recent 801 

attempts to use indirect OWIs based solely on environmental measurements (e.g. temperature, 802 

oxygen) appear promising (e.g. welfare meter; http://www.imr.no/welfaremeter/). However, 803 

these environment-based measures of welfare are still indirect or rely on measurements of 804 

condition after the event. A new, instantaneous behaviour-based OWI could be based on the 805 

motivations, preferences or aversions of fish.  806 

Using the comprehensive knowledge of preferred behaviour of Atlantic salmon in sea-cages 807 

now gathered in this review (Table 1) and Juell et al. (1995), we propose that an OWI based 808 



on modelled preferred vertical behaviours and deviations from these behaviours could be 809 

developed. The foundation of the OWI would be swimming depth preferences and packing 810 

densities of fish in sea-cages compared to expected preferred distributions. Normal cage 811 

behaviours at the group- and partly individual-level have been studied in detail (Table 1) and 812 

some of this behaviour has been modelled (Alver et al., 2004; Føre et al., 2009); combined, 813 

these studies provide a solid basis for establishing preferred behaviours under differing 814 

environmental conditions. If an unexpected packing density is observed, then the fish are 815 

choosing to avoid an area of the cage due to an undesirable environment. Calculation of an 816 

index based on deviation from expected behaviour could be used as a welfare index. In 817 

preliminary work, Oppedal et al. (2007) developed an index of preference displaying the 818 

avoidance/preference towards variable environments observed in cages.  Further work in this 819 

area could result in the development of a real-time OWI that would allow farmers to respond 820 

to the onset of conditions through cage management techniques. 821 

6.4. Comparing trade-off decisions between surface-based and submerged feeding 822 

Preferred ranges of key environmental variables often occur at conflicting depths in sea-cages, 823 

forcing salmon to make trade-off decisions in their vertical positioning. For example, light 824 

conditions may induce fish to remain at depths where temperature or oxygen conditions are 825 

sub-optimal for growth relative to other depths. In such cases, control over salmon behaviour 826 

may prove beneficial as it enables the farmer to reduce the impact of detrimental culture 827 

conditions. As the addition of food to cages significantly influences salmon behaviour (see 828 

Section 3.2), altering food insertion depths and the time and duration of feeding events may 829 

represent ways in which to steer the fish both in time and space. 830 

In all previous studies, feeding motivation has been based on surface feeding and trade-offs 831 

made by the fish have always been towards the surface (see Section 3.2). Submerged feeding 832 

at depths corresponding to the normal swimming depth preferences of salmon, for example in 833 

response to temperature, will likely drive the trade-off towards the environmental factors 834 

salmon themselves choose to be of most importance. Changing the depth position of the fish 835 

towards its preference should therefore enable better welfare (Dawkins, 2004). Keeping the 836 

fish away from the surface may increase growth, as indicated by Thomassen and Lekang 837 

(1993) and may also reduce sea lice infestations (Hevrøy et al., 2003). Therefore, we contend 838 

that studies at commercial-scale with submerged feeding are required to understand the 839 

importance of feeding and depth of feed entrance into sea-cages on the trade-off decisions 840 

made by salmon. 841 

6.5. Manipulating the swimming depths of salmon to reduce encounters with sea lice 842 

Sea lice are a perpetual problem for the salmon farming industry as they impose costs through 843 

reduced growth rates and treatments (Costello, 2009a), and they have been implicated in 844 

declines of wild stocks in Europe and North America (Ford and Myers, 2008). The salmon 845 

louse (Lepeoptheirus salmonis) is primarily responsible for infesting farmed salmon, although 846 

Caligus spp. epizootics can also occur (Costello et al., 2009b).  847 



The biology and genetics of sea lice has been recently reviewed (Boxaspen, 2006). The 848 

infective copepodid stage of the salmon louse is pelagic, strongly phototactic (Bron et al., 849 

1993), and typically occurs in greatest abundances at shallow depths in coastal waters 850 

(Johannesen, 1978; Costelloe et al., 1996; 1999; McKibben and Hay, 2004). Lice copepodids 851 

in large enclosures in the sea amassed near the surface during the day and dispersed into 852 

deeper layers at night (Heuch, 1995). Larvae actively avoid low salinity waters (Heuch et al., 853 

1995), resulting in reduced lice abundances on farmed fish in low salinity areas (Revie et al., 854 

2003; Jones and Hargreaves, 2007; Heuch et al., 2009). Depth, light and salinity preferences 855 

of sea lice larvae provide opportunities for active manipulation of the vertical distributions of 856 

salmon to reduce levels of infestation. 857 

Salmon held in 20 m deep cages had approximately 50% less lice coverage compared to 858 

salmon held in 6 m deep cages at the same site, probably as a result of fish swimming in 859 

deeper waters in the 20 m cages away from peak lice abundances in the top few metres (Huse 860 

and Holm, 1993). Manipulative trials where salmon were held in submerged cages at 10-20 m 861 

depth compared to surface cages held from 0-10 m depth (Osland et al., 2001) and in small 862 

submerged cages at 4-8 or 8-12 m depth compared to surface controls at 0-4 m depth (Hevrøy 863 

et al., 2003) also resulted in significantly lower sea lice infestation at the deeper depths. While 864 

infestation rates were increased in small groups of salmon exposed to surface mounted 865 

artificial lights compared to fish held in control cages subject to natural light (Hevrøy et al., 866 

2003), as part of a longer and larger study (Oppedal et al., 2001a) found that the preferred 867 

swimming depths of salmon were more important than the artificial surface light in 868 

determining lice infestation levels (Hevrøy et al., 2003).  869 

Combined, the existing evidence suggests that an opportunity exists to steer fish away from 870 

surface waters where sea lice are in highest abundances. Today’s use of submerged artificial 871 

lights, which attract salmon to the deployed light depth, may decrease infestation rates as 872 

salmon avoid the surface layer. Similarly, deployment of lights well below any steep 873 

halocline will also pull fish away from this area of concentrated sea lice larvae and likely 874 

reduce infestation levels. However, whether a phototactic locomotory response will also 875 

initiate vertical movement of larvae to depths at which artificial lights are deployed at, 876 

particularly at night, are unknown. If this were the case, actual infestation rates may be similar 877 

or increased. Rigorous testing is required to determine best light deployment practices.  878 

Submerged feeding may also enable salmon to be encouraged away from the surface to depths 879 

where sea lice larvae occur in reduced abundances. Salmon at commercial densities have been 880 

observed to feed effectively through a submerged feeding system with feed input at 6 m depth 881 

(Dempster et al., 2008; 2009a) and 15 m depth (Korsøen et al., 2009). For such a technique to 882 

be effective, however, the trade-offs between both light, feeding motivation and temperature 883 

preferences must be addressed and taken into account so fish are not forced away from 884 

preferred light or temperature levels. 885 

6.6. Climate change impacts on salmon aquaculture  886 

Ocean temperatures have risen over the last century (Domingues et al., 2008) and various 887 

scenarios predict global rises in water temperature over the next century of 1-3 °C (e.g. IPCC, 888 



2007). If such rises eventuate, longer periods of sub-optimal warm temperatures must be 889 

expected, with higher peak levels than normally seen today. Consequently, many of the 890 

current optimal salmonid farming regions (e.g. southern Norway, U.K., Tasmania, and the 891 

Chiloe Sea, Chile) will be exposed to a range of higher surface water temperatures above 892 

optimal thresholds in the summer months (> 20 ºC). Concurrently, sites to the north or south 893 

of these farming regions will become optimal and warmer winter temperatures may lead to 894 

marginally increased growth rates throughout winter. 895 

Despite salmonids being among the most intensively investigated fish, temperature thresholds 896 

for large Atlantic salmon and rainbow trout in seawater are poorly known. For salmon smolts 897 

in freshwater, lethal thresholds of 24-32 ºC have been determined depending on acclimation 898 

temperatures (Elliott et al., 1991). Similarly, the lethal range for small rainbow trout in 899 

freshwater is 27-29.5 °C (Beitinger et al., 2000). Lower temperature thresholds are likely for 900 

larger fish; a summary of laboratory studies indicated that extended exposures to temperatures 901 

of 21-22.2 °C are lethal for migrating adult salmon in the Columbia River (Gray, 1983). 902 

During short periods of high temperature, thermal stress builds-up and if recovery periods are 903 

insufficient, tolerable cumulative stress levels will be exceeded (Bevelhimer and Bennet, 904 

2000). Well below these critical threshold levels, rises in sea-surface temperatures are likely 905 

to significantly modify production parameters such as growth. The optimum temperature 906 

range for growth of Atlantic salmon in seawater ranges from 14-18 °C (e.g. Johansson et al., 907 

2009). Field data from the large growth database of Skretting (2009) indicate that growth 908 

declines by 20-25% when temperatures increase from 16 to 20 °C in Atlantic salmon farms 909 

worldwide, while no data above 20 °C is available. Data from Tasmania indicate more severe 910 

effects with negative growth rates above 18 °C (Fig. 10).  911 

Increased temperatures will likely increase periods of hypoxia within sea-cages, resulting 912 

from higher demand from the fish and lower solubility of oxygen in warmer water. Hypoxia 913 

will change the nature of environmental trade-offs, driving vertical avoidance behaviours. 914 

During periods of high temperature, fish in thermally stratified waters will move vertically 915 

and crowd in denser schools (e.g. Johansson et al., 2006), possibly escalating hypoxia 916 

problems. Within homogenous waters, fish will be equally exposed to unsuitable 917 

temperatures. If hypoxia results, poor welfare will ensue, resulting in a combination of 918 

increased disease susceptibility, poor growth, feed conversion and generally impaired 919 

performance. We therefore contend that future research on temperature thresholds for both 920 

individuals and groups of large salmonids in seawater is needed for improved site selection 921 

and farm management under a changing climate scenario. 922 

6.7. Individual-based measurements 923 

To increase our understanding of the preferences of salmon in sea-cages, future studies should 924 

include a greater focus on individual measurements. This will result in a better understanding 925 

of the coping and motivational mechanisms with environmental cues that drive the behaviour 926 

of fish in production environments (e.g. Sutterlin and Stevens, 1992; Juell, 1995; Johansson et 927 

al., 2007; Johansson et al., 2009). Such parameters would, if possible, include individual feed 928 

intake, growth, physiological status, sex, maturity, swimming speeds, horizontal movements, 929 



and parameters that describe the multiple environments they experience including depth, 930 

temperature, salinity and oxygen at high temporal and spatial resolution. This may in turn be 931 

used to better inform studies that rely on group-based measurements, improve production 932 

management and assist in ensuring acceptable welfare across the wide behavioural range 933 

exhibited by individuals within sea-cage production units of tens to hundreds of thousands of 934 

fish. 935 
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Table 1. Factors affecting swimming depth and densities of Atlantic salmon (Salmo salar) in sea-cages. Upper-case letters indicate strong effects, 1278 
lower-case letters indicate weak effects. 1279 
 Factor Method Environment/remarks  
         OFD Prac. Fish size no. fish SD  Volume  
Reference Feed Light Temp Sal DO SD Season Sub /SD Imp. kg  kg m-3 m3  
Huse and Holm, 1993 f NL     S   P 1.2-2.5 900 0.5-3 726 

2420  
4-14 °C at 0.2, 2 and  

55 m; Sea lice infestation 
Bjordal et al., 1993 F nl        P 0.4-1.0 3×30000 7-17 1800 6-12 °C 
Juell et al., 1994 F nl        P 0.3 

1 
2×4300 
2×4000 

1.3 
4 

1000 
1000 

Feeding intensity; 
Restricted feeding 

Fernö et al., 1995 F NL t    S  5x P 0.35 2×3475 1.2 1000 4-14 °C at 0.2 and 2 m 
Oppedal, 1995a f NL/LL t    s  2x P 1-2.7 4×4962 3-8.5 1584 0-9 °C at 0-10 m 
Juell, 1995 (review) F NL t    s   P      
Hevrøy et al., 1998  NL/LL     S Sub  P 1.8 

1.8-4 
6×10 

4×2300 
0.2 
2-5 

100 
2000 

Sea lice infestation; 
3-14 °C at 0-14 m 

Bégout Anras et al., 2000 F NL       2x P 1.5 6000 15 1150 Strong and calm wind 
Oppedal et al., 2001 f NL/LL T s   S  10x P 1.8-4 4×2300 2-5 2000 3-14 °C at 0-14 m 
Juell et al., 2003  LL t    s  20x P 0.5-1.1 4×85000 2-7 12500 5-11 °C at 1-15 m 
Juell and Fosseidengen, 2004 f NL/LL t    s  13x P 0.2-0.7 4×200000 4-7 17500 5-16 °C at 1-25 m 
Johansson et al., 2006  NL T s DO SD S   P 

 
1.7-2.3 
1.5-2.2 

3×8800 
3×24700 

7-10 
18-27 

2000 11-20 °C at 0-12 m 

Oppedal et al., 2007  LL T s   S  10x P 0.3-1.4 3×15000 2-9 2000 2-14 °C at 0-14 m 
Johansson et al., 2007 f NL T s DO    10x P 1.3-4.8 8×50000 8-16 12500- 

21875 
8-16 °C at 0-20 m 

Dempster et al., 2008  NL t     SUB 10x P 1.7-4.4 4×500 0.7 1100 6-14 °C at 0-10 m 
Dempster et al., 2009  LL t     SUB 10x P 0.4-0.6 4×3800 1-2 1800  
Vigen, 2008  NL   DO    3x P 2.5 7000 31 576 Delousing treatment 
Korsøen et al., 2009  NL t     SUB 3x P 3.5-4.6 6×2300 5-7 2000 3-11 °C at 0-25 m 
Johansson et al., 2009b  NL t   SD    P 1.5 23 6-32 2000 11-20 °C at 0-12 m 
Temp: temperature; Sal: salinity; DO: dissolved oxygen; SD: stocking density; Sub: Submergence; OFD: Observed Fish Density; Prac. Imp.: 1280 
practical implications; NL: natural light; LL: continuous artificial light; Volume = experimental sea-cage volume. 1281 
a rainbow trout; b study on individuals1282 
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Table 2 . Worldwide production of salmonids (Atlantic salmon; Salmo salar L., and rainbow trout; 1283 
Onchorhynchus mykiss) in sea-cages in 2008 (numbers in kilotons live biomass) within major 1284 
production areas. Live body mass recalculated from Kjønhaug, 2009. 1285 
 1286 
Country Salmo salar O. mykiss 
Norway 797 92 
Chile 429 194 
Great Britain 146  
North America 145  
Faroes 39  
Australia 28  
Total 1584 286 

1287 
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Figure captions 1288 
 1289 
Figure 1. Example of variations in mean group swimming speed (body lengths per sec; BL sec -1) 1290 
with time of day for Atlantic salmon (Salmo salar L.) held in sea-cages during December and 1291 
January. Night is indicated by the dark bar at the top of the figure. Measurements were made using 1292 
underwater cameras and infra-red light sources. Average swimming speeds per cage are shown with 1293 
standard deviations. Data were taken from three 2000 m3 cages in the control group of Korsøen et 1294 
al. (2009). 1295 
 1296 
Figure 2. Temperature from 10 August 2007 to 30 June 2008 (a) and group schooling densities in 5-1297 
day periods (b-e) from a representative, commercial salmon cage at Centre for Aquaculture 1298 
Competence in Rogaland, southern Norway, illustrating some of the behavioural drivers discussed 1299 
within the review. Data reproduced from Stien et al. (2009). The cage held 68 000 Atlantic salmon 1300 
(Salmo salar L.) of average size 70 g in May and grew to 5.3 kg at harvest in November the year 1301 
after. Cage size was 24 × 24 m wide, 20 m deep until January and 35 m deep thereafter. Stocking 1302 
densities increased from 1.7 to 7.8 kg m-3. Continuous artificial underwater light sources were 1303 
applied at 7 and 15 m depth from 20 December until 12 June. A normal seasonal temperature 1304 
pattern with warmest water in the surface layer during summer and coldest during winter was 1305 
observed (a). In August (b), the salmon were attracted to the surface for feeding combined with a 1306 
subgroup deep down that avoided the strong surface light. At night, all fish swam close to the 1307 
surface where temperatures were most favourable. In December (c), a strong diurnal rhythm was 1308 
observed with salmon choosing the slightly warmer deep water and avoiding high surface light 1309 
intensities during the day and ascending towards the surface at night. Following the onset of 1310 
continuous light, the rhythm disappeared and ‘daytime’ behaviour was observed continuously. In 1311 
April (d), a reversed diurnal rhythm was evident with salmon in the 2-3 °C warmer surface layer 1312 
during the day and descending down to the artificial light sources at night. In June (e), the larger 1313 
salmon (>2.5 kg) avoided the high surface temperatures. The highest observed fish densities (2.6 × 1314 
stocking density) were seen in April and resulted from a temperature preference and possibly high 1315 
hunger motivation in spring. 1316 
 1317 
Figure 3. Halocline preference in Atlantic salmon (Salmo salar L.) post-smolts held in sea-cages at 1318 
Institute of Marine Research, Matre, southern Norway, one month after sea transfer distinguishable 1319 
as peak fish biomass in the middle of the halocline and not at peak temperature. Data reproduced 1320 
from Oppedal et al. (2001b). The vertical biomass distributions (% of biomass with depth) are based 1321 
on echo-sounders in 4 replicate 12 × 12 × 14 m deep cages with approximately 4 × 7800 salmon 1322 
with a mean weight of 113 g at sea-transfer on May 3. Distributions are means ± S.E. of two-hour 1323 
periods before (June 2, am), during (June 2, pm and June 3) and after (June 5) strong freshwater 1324 
runoffs. Corresponding temperature and salinity profiles are taken within the two hour period. 1325 
Similar halocline preferences were still seen in August (not shown). 1326 
 1327 
Figure 4. Extreme oxygen variation in September within a commercial sea-cage compared to 1328 
outside reference (from Vigen, 2008). Cage size was 24 × 24 × 15 m deep and most of the 110 000 1329 
post-smolt Atlantic salmon (Salmo salar L.) of ca. 700 g (77 tons) swam in the upper 10 m at 7 to 1330 
15 kg m-3. The severe hypoxia is correlated to slack water conditions. 1331 
 1332 
Figure 5. Oxygen fluctuations through a year exemplified by data inside a commercial Atlantic 1333 
salmon (Salmo salar L.) cage from 1 March 2008 to 1 March 2009 in the archipelago of Austevoll 1334 
in Hordaland, Western Norway. Data reproduced from Kristiansen and Stien (2010). White areas 1335 
indicate missing data.  The cage held approximately 90600 Atlantic salmon at smolt transfer at end 1336 
of October 2007 (55 g) and the salmon grew to 4.3 kg at start of June 2009 when they were 1337 
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harvested. Cage size was 25 x 35 m wide and 20 m deep. Periods of oxygen super-saturation 1338 
(>100%) occur during the spring algae bloom, while in the autumn there are periods of very low 1339 
oxygen saturation (<50%). Oxygen saturation varies with time and depth.     1340 
 1341 
Figure 6. Fish body length versus water current speed, indicating that smaller fish must swim faster 1342 
(higher body lengths per second) than larger fish to maintain their position in a sea-cage during 1343 
current flow.  1344 
 1345 
Figure 7. Atlantic salmon (Salmo salar L.) attempt to avoid delousing chemicals by crowding in the 1346 
1-m surface water layer compared to an even distribution in a control group with only the de-1347 
lousing skirt present (reproduced from Vigen, 2008). Observed Fish Density (OFD) based on echo 1348 
sounders are given on the colour scale. Skirts were completely set 15 min before (-15 on x-axis) the 1349 
chemical was applied (time 0 min) and removed 45 to 51 min after treatment commenced. The 1350 
control cage (skirt only) had the skirt set at time 0 and removed after 95 min. A commercial dose of 1351 
cypermethrin (BETAMAX VET, ScanVacc AS, Årnes, Norway) was added within 5 min to the 1352 
treatment volume (12 × 12 × 4 m deep) enclosed by the 6 m deep skirt which surrounded the sea-1353 
cage. The stocking density with net bottom lifted to approximately 4 m during the treatment was 30 1354 
kg m-3 (7000 fish of 2.5 kg).  1355 
 1356 
Figure 8. Atlantic salmon (Salmo salar L.) avoid the volume in a sea-cage where a delousing 1357 
chemical is present (reproduced from Oppedal and Vigen, 2009). The colour scale gives Observed 1358 
Fish Density (OFD) based on echo sounders used during a bath treatment with deltamethrin 1359 
(ALPHA MAX®, PHARMAQ AS, Oslo, Norway) in a commercial cage of circumference 157 m, 1360 
35 m deep using two skirts of 90 m length × 15 m deep. Total biomass was approximately 999 tons 1361 
(196000 fish of 5.1 kg) giving a stocking density of 15 kg m-3. The cage net was not lifted during 1362 
treatment. Salmon were starved for 2 days prior to treatment. Feeding started 17 min prior to 1363 
treatment application (-17 on x-axis) to attract the fish towards the surface and into the treatment 1364 
volume. Skirts were set at -65 to -20 min and removed 38 to 85 min after the treatment was applied. 1365 
The deltamethrin treatment was added from 0 to 1 m depth from time -12 to 0 min. Salmon swam 1366 
deeper in the cage during setting of the skirt. Thereafter, a large proportion of the caged population 1367 
were attracted to the surface when feeding commenced. Following chemical distribution, the 1368 
salmon swam at depths below the treatment volume enclosed by the skirt. After skirts were 1369 
removed and water flow through the sea-cage returned, salmon returned to the surface to feed.  1370 
 1371 
Figure 9. Oxygen conditions and observed fish density (OFD) during a 50-hour period in a sea-cage 1372 
(25 × 25 × 25 m deep) containing 146 tons of Atlantic salmon (Salmo salar L.) (reproduced from 1373 
Johansson et al., 2007). The vertical distributions show an example of multiple behavioural trade-1374 
offs made by the salmon between surface light avoidance during the day, surface feed and feeding 1375 
motivation attraction during the day and avoidance of depths in the sea-cage where hypoxia 1376 
occurred during the second night and morning. 1377 
 1378 
Figure 10. The effect of ambient water temperatures on the specific growth rate (SGR) of Atlantic 1379 
salmon (Salmo salar L.) illustrated by data from the Skretting growth performance database of 1380 
commercial farmers worldwide (closed squares; Skretting, 2009) where the cold temperature data 1381 
mainly represent East Canada, and Finnmark and Agder in Norway. Growth data from Tasmania 1382 
are shown for temperatures above 14 °C (open triangle). Fish size used for illustration is 1.5 kg 1383 
while negative effects of high temperatures are more pronounced in large compared to small fish. 1384 
The more severe negative effects of high temperature in the Tasmanian data is due to long-term (>3 1385 
months) experience of warm water at water depths experienced by the fish. In comparison, the 1386 
worldwide data set is dominated by short-term high temperature experiences in combination with 1387 
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unknown temperatures below 6 m depth and to what degree the fish occupy these or the measured 1388 
temperatures.  1389 
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Figure 2.  
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Figure 3. 
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Figure 4.  
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Figure 5 
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Figure 6. 
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Figure 7.  
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Figure 8.  
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Figure 9.  
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Figure 10.  
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